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Abstract - We propose a novel reduced dimension channel impulse 
response (CIR) estimation procedure. Since the overall CIR is a 
convolution of the transmit and the channel filter, the number of unknown 
parameters can be reduced also reducing the training sequences. For 
symbol detection in fast fading, we introduce a new DFE coefficients 
computation algorithm which incorporates the channel variation during 
the decision delay into the minimum mean square error criterion, which 
we refer as to the non-Toeplitz DFE (NT-DFE). Finally, we show the 
feasibility of a suboptimal receiver which has complexity less than that 
of recursive least squares type adaptations with performance close to the 
optimal NT-DFE. 

I. INTRODUCTION 

The receiver design for frequency selective fading channels is quite 
demanding in fast fading. For example, in IS-54, assuming a mobile 
moves at a maximum highway speed of 120 kmllzr, the maximum 
normalized Doppler fading rate A/nf;,,T (the product of the maximum 
Doppler fading rate and the symbol period) reaches up to 0.0042 [ 11. This 
implies that the minimum time between the two fading nulls is 5 ms (1/ 
2&,) which is even shorter than the proposed burst length of 6.7 ms. 

For the estimation and tracking of such fast changing channels, the 
block adaptive strategy was reported more effective than the 
conventional symbol by symbol adaptation such as least mean squares 
(LMS) or even recursive least squares (RLS) [2,3,4,5,6]. The snap-shot 
channel estimates are computed exclusively from training symbols. 
Then, the channel tracking during the data segments is performed by 
interpolating a set of the snap-shot channel impulse response (CIR) 
estimates. With the interpolated CIR estimates, the receiver filter 
coefficients are computed. 

In this paper, we extend previous results on periodic channel 
estimation based on the diversity combining decision feedback equalizer. 
In section 11, we describe the system. Section 111 discusses a new reduced 
channel estimation method which exploits the fact that the overall 
channel is a convolution of the shaping and the time-varying channel 
filter. We also explain the interpolation procedures. In lV, we describe a 
new DFE coefficient computation algorithm to deal with very fast fades. 
In V, we show through computer simulations the performance of the 
receiver. Finally, the feasibility of a low computational complexity but 
suboptimal solution is discussed. 

11. SYSTEM DESCRIPTION 

A complex baseband representation of the system is shown in Fig. 1. 
The transmit filter f is a square root raised cosine (SRRC) filter with a 
roll-off p = 0.35 . i independent diversity received signals corrupted by 
additive complex-valued white Gaussian noise (AWGN) are assumed to 
be available. Since the received signal xl(t) at each diversity branch is 
bandlimited with an excess bandwidth of (1 +p)( I/"), T/2-spaced 
sampling is considered, i.e., xl(k):= x,(t = kT/2). Then, the impulse 

responses of the transmit and the channel filters could be realized with T/ 
2-spaced tapped delay line FIR filters [ 5 ] .  Then, I(k)  denotes the zero 
stuffed QPSWDQPSK symbol sequence, where k will denote the T/2- 
spaced epoch index. During the periodic training mode, I(k) represents 
the training symbols. Each filter coefficient is stored in the corresponding 
column vectors. Hence, each time-varying channel impulse response 
bdz;t) is expressed as an [NR x 11 column vector having time-varying 
coefficients M k )  = [b , , (k)  ... b, ,  .,(k)lT, where NR is the number of the 
time-varying channel taps (NR ''3 in this paper). The noise n,(t) is also 
assumed to be T/2-spaced sampled and the sampled noise sequence q ( k )  
has a variance 0,; 

I Tl;?-spaced I 

Fig. 1 Block diagram of the complete system 

The mountainous terrain multipath delay profile (MT-MPDP) in [5]  
exhibits the worst delay spreads among the various land mobile MPDPs 
[ 6 ] .  Thus, we use the same MT-MPDP, three fixed spaced (T/2-spucecE) 
relative rms powers of OdB, -5dB, -15dB and with a normalized rms 
delay spread of about 1/4. We assume that the channel taps undergo 
Rayleigh amplitude fading according to Jake's model [SI and are 
mutually uncorrelated [7]. In this paper, assuming a symbol rate (117) of 
24 ksps the fast fading corresponds to fdm = 100 Hz (fdmT= 0.0042) and 
slow fading to fdm = I O  Hz (fdmT = 0.00042). 

111. SNAP-SHOT CHANNEL ESTIMATION 

At the end of each periodic training segment, a snap-shot channel 
estimation is performed. That is, during the observation interval, mZ we 
assume the channel is effectively fixed. Consequently, we drop the time 
index of the channel vector. Similarly, for the overall channel, g(k) =f 
*b(k) =f*b = g during the observation k = 0, I, ..., 2m-I. 

A. Estimation Equations 

The use of bandwidth efficient shaping filters increases the effective 
span of the channel impulse response. Thus we shall estimate the overall 
channel impulse response (CIR). We truncate the length of the CIR to Nc 
symbol periods, i.e. 2Nc T/2-spaced taps, in the estimation model in 
order to reduce the length of the training sequence. The resultant 
modelling errors will be attributed to the overall channel estimation 
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errors. Then, for our double sampling system the received signal during 
training is described as, 

(1) 

where I(k) is a zero stuffed training sequence, i.e, QPSWDQPSK 
symbols for even k and 0 for odd k. Using ( 1 )  the number of unknowns 
are the 2Nc coefficients of g . However, using the fact that the overall 
filter is a cascade of the transmit and the channel filters, (1)  can be 
rewritten as 

2Nc- 1 
x ( k )  g i I ( k - 4  + n ( k )  7 

2Nc-1 N - 1  
x ( k )  G & = ~  E,:, f$jI(k-i) + n ( k )  , ( 2 )  

where the matrix elements V;i] are completely determined for a SRRC 
filter with a roll-off p. Then, the number of unknowns can be reduced to 
Nn. Having obtained the estimates of b , estimates of overall channel can 
be obtained. 

It can be shown that the received signals during the observation can 
be partitioned into even and odd indexed sequences and that each 
sequence yields a T-spaced channel estimation problem that can be 
described as 

where  is a observation vector for even or odd sequences. X is a [m x Nc] 
Toeplitz matrix whose elements are just delayed versions of the training 
symbols such that 

= I 1 ( 2 ( m -  1)) 1 ( 2 ( m - 2 ) )  ... 1 ( 2 ( N c + m - 2 ) )  
Thus, the length of training sequence Nt is Nc + m - 1. The [Nc x Nn] 
SRRC matrix F can be readily determined for even or odd sequences 
once the roll-off p is determined. The [m x I ]  noise vector 12 is a 
multivariate Gaussian vector with a zero mean vector and a covariance 
matrix of R,,= on I, where Idenotes for an identity matrix of appropriate 
dimension. From the even and the odd part, two estimates of b can be 
obtained. We choose the one that yields a smaller theoretical mean square 
estimation error for a given training sequence. 

B. Three Classical Estimates of b and their Mean Square Errors 

r = X F b + g ,  (3) 

1. I ( 0 )  1( -2)  ... I ( - 2 ( N c -  1))  
I ( 0 )  ... I ( - 2 ( N c - 2 ) )  

... ... ... ... 

2 

Given the estimation model (3), least squares estimation (LSE), 
maximum likelihood estimation (MLE), and maximum a posteriori 
estimation (MAP) criteria are considered for the estimation of b. In the 
derivations of estimators, the training sequence matrix X is assumed to be 
fixed both in the contents and in the dimension and only cases for 
m 2 NR will be considered in this paper. Moreover, the inverse matrices 
in each estimation operator to be derived are assumed to be well defined. 
We use the optimal training sequences discussed in [2] and find the 
inverses of the operators are well defined. 

First, if there is no a priori statistical knowledge about the noise and 
the channel, the LSE of b might be considered, i.e., 

(4) 
2 bLSE := arg minlr - X F ~ I  

b 
, 

= ( F H X H X F )  -l ( X F )  "r  
where the superscript 'H' implies the conjugate transpose operation of a 
matrix and "arg" denotes the argument. This results in the lowest 
complexity estimator among the three. The [Nn x m] matrix 
( F H X H X F )  -' ( X F )  can be precomputed and stored and the estimates 

will be obtained by multiplying it with the observation vector r. 
The MLE of b can be obtained as follows, 

b,, := a r g p  ( p  ( r ib)  ( 5 )  
- 

= argmax[-(r-XFb)Rn' ( r - X F b ) " ]  
b 

setting the gradient of the quadratic term equal to zero, we obtain 

Thus, the MLE requires the second order statistics of the noise, such 
as the noise covariance matrix R,,. The error covariance matrix (also a 
mean square error matrix for MLE and LSE since they are unbiased) is 

(7) @,, := E ( 6 , ~  - E (6 ,~))  ( b ~ ,  - E (&,,-)I " 

It can be shown that this error covariance matrix of (7) meets the Cramer- 
Rao lower bound (unbiased class). Thus, b,, is the best linear unbiased 
estimator for the estimation problem of (5). MLE is good when the noise 
is correlated and the autocorirelation function of the noise is known. Also 
note that interpreting the R,' as the optimal weighting matrix, the MLE 
criterion of ( 5 )  can be interpreted as the optimally weighted LS 
estimation of b. Thus, the MLE also minimizes the square residual errors, 
r - X F b ,  but not the estimation errors, $ , , -b .  In our problem, 
however, R,, = o,?I is assumed, thus LSE and MLE produce identical 
results, i.e., 

An estimator which directly minimizes the mean square estimation 
errors of b requires a priori statistical knowledge of& (Bayes estimates). 
In our case, the noise vector is a multivariate Gaussian, and thus the 
posterior density p(&) is alslo a Gaussian in which case the mode and the 
mean coincide. Then, the MAP estimator of b amounts to the minimum 
mean square estimator of b. 'The MAP estimate is obtained from 

(9) 

With some algebraic manipulations of the posterior density, we obtain the 
MAP estimator as 

bMAp = E { b l  r> (10) 

= R,  ( F H X H )  ( XFR,FHXH + R,,) r 
where R,  = E { b b H }  . 

mean square error matrix as 
Since the MAP estimator is a biased estimator, we directly obtain the 

(1 1) e,,, =: [R,-B+XFR,) , 

where B+ := R, ( F H X H )  (XFR,FHXH + R,,)- ' .  
Note that MAP not only requires R,, but also R,. Diagonal elements of 

the channel correlation matrix Rh are the average powers of the 
corresponding paths, the MT-MPDP defined in section 11, which we 
assumed estimated. Moreover, all off-diagonal elements are assumed to 
be zero valued from the wide-sense stationary uncorrelated scattering of 
the multi-path components. 

In Fig. 2, the performance of the channel estimators, MLE and MAP, 
in terms of the mean square channel estimation errors (MSCEE) are 
assessed both in theory and in simulation for (Nt, Nc) = (11, 6). 
Theoretical MSCEE are obtained from trace { 0) of (8) or (11). We 
notice that the MLE asymtotically reaches the performance of MAP. For 
the simulation MSCEE calculations, the channel estimates at the end of 
the training observation window are compared with the true b(k), where 
k is the center epoch in the window. In slow fading, for (Nt, Nc) = (1 1,6) 
the simulation curves are very close to the theory. This suggests that the 
truncation at Nc = 6 is sufficient. On the other hand, fast fading curves 
start to deviate from the slow fading curves at 30dB for both ML and 
MAP. These deviations are due to the snap-shot channel estimation 
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assumption that during the observation periods the channel is fixed. 

Ave. MSCEE performance: (Nt,Nc)=(?i .6) 
10' 

Theoretical 

Fig. 2 Mean square channel estimate errors. 

C. Channel Tracking by Interpolation 

Channel tracking by interpolation provides the channel state 
information during the decision delay which would not be the case for a 
recursive type tracking which relies upon the detected symbol to update 
the channel state. Thus, receiver coefficients can be computed more 
robustly. Obviously, the cost is the interpolation delay. 

In order to perform interpolations, first the frequency of channel 
estimation or the length of a frame B needs to be determined, where a 
frame consists of a training block (Nt) and a data block. According to the 
sampling theorem, B should satisfy B I 1 / (2fdmT) . For instance, if 
f , , T  = 0.0042, the shortest null to null distance of a fading tap is about 
240 symbols. Thus, B should be less than 120 symbols. Q (even integer) 
estimates are used for interpolation - Q/2 estimates of the past channel 
and Q/2 of the future. Thus, the interpolation delay should be at least (Q/ 
2)B symbols. For detection of the data segment at the center of the Q 
consecutive frames, an interpolation over the Q consecutive estimated 
channel vectors is performed to obtain a channel vector at every TD- 
spaced epoch. We use a sinc function (sindx) for interpolation [5 ] .  We 
use B = 80 and Q = 4 in this paper. 

IV. OPTIMUM DIVERSITY COMBINING DFE 

In this section, we discuss how to compute receiver coefficients using 
the estimates of the channel impulse response. We reformulate the 
Wiener-Hopf equations incorporating the channel variation during the 
decision delay into the minimum mean square detection error criterion 
[9J. The following summarizes the result of the derivation. 

L diversity output signals can be combined using a matched filter at 
each branch and then the combined signal can be fed to the front-end of 
a feedforward filter (Fig. 1). The matched filtering at each branch is 
possible since we estimate the channel. Then, the L T/2-spaced diversity 
combining DFE can be treated as a single channel T-spaced DFE 
problem. That is, T-spaced sampled z(n) can be described as, 

z ( n )  = y ( n ) T ! ( n )  + v ( n )  > (12) 
where the T-spaced summed channel autocorrelation function (SCAF) 
vector y ( n )  connotes the equivalent channel; v ( n )  is the T-spaced 
equivalent noise which has of . (n) as its autocorrelation function; 
l(k) now represents symbols with& zero stuffing. 

The decision delay A is defined as, 
A = N R + 2 ( N f -  1) , (13) 

where N, (even) is the number of TQ-spaced matched filter taps and N,is 
the number of the T-spaced feedforward taps in The matched filtered 
NT-DFE solution [9] on (I  2) can now be summarized as follows. For the 

following, assume n = 0 as the current epoch. 
The [N, x 1 J matched filter vector can be implemented as, 

T 
= [g;Np-l (-l) g;Nx-2 (-2) ." glf0 ( - N ~ ) ]  ' (14) 

Note the decreasing epoch index of the vector elements. Thus, the 
matched filter needs the NK previoys snap-shot channel estimates. 

The SCAF vector is a [(2N,  + 1) x 11 column vector, where 
= N R / 2  for even N,. The solution requires N, - 1 previous SCAF 

vectors which can be determined as, 

. g l , j+ iCi -NR- i (2r+  111,  (15) 
for i = -NR, ..., 0, ..., NR , and for r = 0, -1, ..., - N f +  1 . Note that 
(1 5 )  requires all the channel variation during the decision delay A T / 2  . 

Then, the i-th row andj-th column element of correlation matrix R is 

- 

where i, j = 0, 1, ..., N f -  1. The cross correlation column vector P is 
identified as 

(17) 

Finally, for the [Nb x N,] matrix B in the feedback part is, for 
i = O , l ,  ..., N h , a n d j = O , l  ,..., 

wNf- ,  - i ( - i ) ,  i = 0, 1, ..., N f -  1. 

Nf 7 

WN +j-i(-i) ' (18) 
I 

Then, the feedforward and fe5dback filters cap be deter*mined from using 
(16)-(1Q i.e., solving R_V = and yh = -B_V . Note that the 
correlation matrix R is non-Toeplitz in general. Ignoring all the time 
epoch terms, i.e., using only one snap-shot channel vector, the correlation 
matrix becomes Toeplitz. We refer to this conventional solution as 
Toeplitz DFE (T-DE) in this paper. 

In summary, fast fades can be tracked using the NT-DFE. The NT- 
DFE is optimal since it uses all the channel state information during the 
decision delay and thus can be used as a benchmark to identify the 
sources of errors. The T-DFE uses only partial information and is thus 
suboptimal but has lower complexity than the optimal NT-DFE. 

V. SYSTEM SIMULATION AND RESULTS 

The performance of the diversity combining DFE system is 
investigated through complex base band computer simulations. A Monte 
Carlo approach with 2000-50,000 independent trials is used. To evaluate 
the adaptation, each trial consists of 5-1 6 frames, where a frame is a block 
of B symbols including the Nt training symbols. The main modulation 
scheme used is QPSK, but also included is the simulation of DQPSK for 
the purpose of easy comparison to the existing literature. In fact, the 
DQPSK result is about 2 dB worse than that of the QPSK, not 3 dB since 
the errors tend to occur in bursts in a long deep fade. The transmit filter 
with the square root raised cosine impulse response with a roll-off p (= 
0.35) is realized with a TD-spaced 31 tapped delay line filter (i.e., 15 
symbols length truncation) with its energy normalized to 1. The SNR in 
this section implies the long term average SNR of the three path fading 
channel. 

In Fig. 3 and Fig. 4 ,  performances of three different channel 
estimation and tracking schemes are compared. ML or MAP refer to the 
MLE or MAP channel estimation and interpolation with NT-DFE with 
(NK, N,, NJ  = (20, 5 ,  5 ) .  We refer to this method as tracking by 
interpolation (TI). RLS refers to the use of RLS channel tracking T-DFE 
without interpolation. Research reported in [3,10] indicate the channel- 
estimate based DFE is superior to the conventional direct adaptation of 
the DFE coefficients. Thus, exponential windowing RLS channel 
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tracking is considered here for a comparison with our proposed scheme. 
TO be a fair comparison, the same known training blocks are inserted in 
the data stream. Thus, during the training mode the RLS algorithm and 
DFE filters are refreshed at the same rate. Furthermore, the exponential 
weighting factor (w) of the RLS algorithm is optimized at various SNRs, 
fade rates, and channel lengths. For this, the following equation is 
adopted from [IO], 

3 

(19) 

The other simulation parameter is block length B = 80. RLS and TI 
curves show comparable performance in slow fading but large 
differences in fast fading. 

In Fig. 3, the RLS tracking T-DFE performance of DQPSK signaling 
is evaluated with (NR, N,, N,,) = (12,4,4). Relying on the detected symbols 
to update the channel state, RLS cannot provide the channel information 
during the decision delay. Thus, only T-DFE can be considered with RLS 
channel tracking. However, using T-DFE a longer decision delay (longer 
receiver filter orders) might become counterproductive in fast fades (see 
[4] for details). Thus, shorter filter orders (Ng, N,, N,J = (12, 4, 4) are 
found to be the optimum trading-off for the worst case fading at fdm = 
100 Hz. We see that at fdm = 100 Hz the irreducible BER is too high (0.1 
for L = 1 and 0.01 for L =2) to be of any practical use. Therefore, we 
confirm that RLS actually fails to track the fast Rayleigh fading channel. 

( N c + 1 )  (1 -0 )  
2- SNR = 

(2fd,ZT) ( 1 + 0) 2 .  

lo-' 

o: to-* 

f 
10.~ 

w m 

e-0 L=2 fdm=IOHz 
D- fl L=l fdm=50Hz 
Q-E L=2 fdm=BOHz 1 o4 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 
10.' 

SNR/bits per channel 
Fig. 3 Ave. DQPSK BER: RLS channel tracking T-DFE 

In contrast, TI-NT-DE curves in Fig. 4 show a superior and robust 
BER performance against fast fading. The TI-NT-DFE BER curves for 
fdm = 100 Hz are not even flat out up to 30 dB. Moreover, for the Ideal 

Fig. 4 Ave. DQPSK BER of training & interpolation channel tracking 

CIR case (true channel values are used) the BER curves for fdm = 100 Hz 

are almost identical to the ones for 10 Hz. That is, no error floor is 
experienced by the virtue of our newly developed non-Toeplitz 
computation of the DFE filter coefficients. This is a significant departure 
from the other published results [4,1 I]  in which a DFE receiver whose 
coefficients are either updated from RLS or from direct calculations 
using the T-DFE exhibits relatively high irreducible BER floors in fast 
fading, even in an ideal channel reference mode. In addition, note that the 
throughput rate at this BER performance is ( B  - Nt) / B  = (80-11)/80 = 
0.8625. 

In Fig. 5,  we wish to distinguish the causes of the BER floor at the 
fastest fading rate. In particular, the NT-DFE and the T-DFE are 
compared and also three methods of obtaining channel impulse responses 
are contrasted. The optimal filter orders for the T-DFE are again (NK, N, 
N,,) = (12,4,4). The filter orders used for the NT-DE are (20,5,5).  The 
perfect CIR & interpolation in the figure implies tracking by interpolation 
on a set of perfect channel estimates, i.e., no errors in the periodic channel 
estimation. Comparison of these curves would identify the main cause of 
the irreducible error at the high SNRs. 

Non-Toeplitz DFE wix' hJV&)=(20,5,5) 
Toeplitz DFE with (N N N,,)=(12,4,4) 

+ + MAP CIR estimates &interpolation 
X X Perfect CIR estimates &interpolation 
o 0 IdealCIR - - - - 

10 12 14 16 18 20 22 24 26 28 30 
SNRbm 

I" 

Fig. 5 Ave. QPSK BER simulation to determine the source of error floors 

Not much difference is observed for low SNR. Thus, we pay attention 
to BERs at 30 dB. First, note that the T-DFE curves entail higher BER 
floors. Even the perfect CIR-'T-DFE produces a higher BER floor than the 
MAP-NT-DFE does. This illlustrates the detrimental consequence of 
ignoring the channel variatiion during the decision delay in the DFE 
coefficient computation. Seclond, comparing the non-Toeplitz curves it is 
demonstrated that the irreducible BER floors are mainly due to the 
interpolation errors. The inteirpolator performs poorly in the middle of the 
data segment, thus, the decision errors occur predominantly during the 
middle of the data frame. This problem persists even at B = 40 for which 
the BER at 30 dB is about 3 ~ 1 0 . ~  (not shown in the figures). This is 
improved but could still be made better 

In Fig. 6, the sensitivity of increasing the DFE update periods p is 
investigated at the fastest fading rate of fdm=lOO Hz, where p is the 
number of symbol periods between the DFE coefficients updates. Again, 
the BER performances of tlhe two matched filtered DFE methods are 
compared, Toeplitz and non-Toeplitz. We use again the optimal filter 
orders, (NK, N, N,,) = (12,4,4) for the Toeplitz case. For the non-Toeplitz 
case, (20, 5,  5) are used for p = 1, while shorter fillters of (16, 4, 4) for 
other values of p. The MAP estimator is used for the both. First, the 
performance difference of the two deepens for a higher diversity order 
and for higher SNR, whereas it becomes almost negligible for L = 1 and 
for low SNR. Second, the non-Toeplitz methods maintain its superiority 
to the Toeplitz only for a small p, i.e., for p 2 5 the BER gain quickly 
disappears. Thus, if a large p has to be chosen for a lower computational 
complexity, then the use of 1-DFE is adequate. 
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I, 
5 P  10 15 

Fig. 6 Ave. QPSK BER vs. the DFE filter update period (p) of training & 
interpolation schemes. 

Finally, in Table 1 we tabulate example calculations of computational 
requirements for each algorithm, i.e., the number of multiplications/ 
divisions for RLS-T-DFE, TI-T-DFE, and TI-NT-DFE. Assuming a T/2- 
sampled sinc function is stored, the interpolated overall CIR estimates of 

can be obtained with N,(Q+NJ complex multiplications, i.e., the 
interpolated channel vector h can be obtained from N,Q complex 
multiplications and the convolution of b and f requires another N R N h .  
No computation is required to obtain the matched filter coefficient vector 
M,(k) since we can get it from the channel estimates without calculation. 
The computational burden to obtain the updated optimal filter vector Y(k) 
might be high for a large Nf Computationally efficient methods can be 
used such as the Cholesky factorization for the NT-DFE and the 
Levinson-Durbin algorithm for the T-DFE, which usually require on the 
order of N: and N,Z complex multiplications [7] to obtain y(k). If these 
numbers are still too large, further savings can be achieved by increasing 
the filter update period p (e.g., p = 5 symbols). In such a case, the 
obvious choice is the T-DFE since the performance gain of the NT-DFE 
quickly disappears with increase of p as shown in Fig. 6. The example 
calculations are for ( N g ,  N, ,  Nb, Nc, Q, B,  Nt)  = ( 12, 4, 4, 6, 4, 80, 1 1 ) . 

TABLE 1. Number of multiplications/divisions 

1 
2 

RLS channel TI channel TI channel 
tracking T-DFE tracking T-DFE tracking NT-DFE 

279 (147) 263 (53) 464 
465(271) 436 (88) 714 

VI. CONCLUDING REMARKS 

We have presented robust channel estimation and tracking methods 
which require little system overhead over the fast Rayleigh fading 
dispersive channel. It has been explicitly shown through simulations that 
the tracking by interpolation method with our proposed channel 
estimation methods is significantly better than the RLS channel tracking 
method and than the previously published block CIR estimation methods, 
in terms of both the throughput and the BER performance. Our proposed 
reduced dimension CIR estimation allows us to employ shorter training 
sequences while maintaining the level of performance at a satisfactory 
level. 

We have derived the NT-DFE which takes into account the channel 
variation during the decision delay. The training and interpolation 
scheme can provide the channel variation information during the 
decision delay. Thus the NT-DFE can obtain the full benefit of the 
channel interpolation. As the result, unlike previous published results, 
even for the fast fading at the normalized fading rate of 0.0042 the NT- 

DFE produces no BER floors in an ideal channel reference mode. The 
optimal the NT-DFE incurs relatively high computational complexity, 
and thus for a suboptimal but low complexity solution we propose the use 
of T-DFE which provides performance better than RLS type adaptations 
with less complexity. 

For higher SNR, however, the curves still become flat. The reason for 
this error floor is identified as the interpolation errors, especially during 
the middle of the data frame. Design of interpolators to overcome this 
problem would be an interesting research exercise. 
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