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Abstract—In this paper, we consider a data collection network 
(DCN) system where sensors take samples and transmit them to a 
Fusion Center (FC). Signal correlation is modeled with signal 
sparseness. The number of compressed measurements which 
allows correct support set recovery at FC is investigated. This is 
done by finding the probability of support set recovery errors. 
The joint typical receiver considered by Akcakaya and Tarokh is 
used to avoid dependence on particular choice of recovery 
routines. The following interesting results have been obtained: 1) 
The number of compressed measurements per sensor (PSM) 
converges to sparsity as the number of sensors increases. 2) The 
detection failure probability linearly converges to zero as the 
number of sensors increases. 3) The number of sensors 
guaranteeing a certain level of failure probability is given the 
system parameters such as Gaussian noise variance, PSM, and 
sparsity.  

Keywords-Compressed Sensing, Joint Typicality, Distributed 
Source Coding, Distributed Compressed Sensing.  

I.  INTRODUCTION 
We consider a data collection network (DCN) system in 

which there are one signal fusion center (FC) and many sensors 
reporting to it. Sensors acquire signal samples independently 
and transmit acquired signal samples to FC. FC then aims to 
reconstruct each individual signal perfectly. The important 
problem we aim to investigate here is how to utilize the signal 
correlation present in the acquired signals and reduce the traffic 
volume from sensors to FC. This type of questions frequently 
arise in wireless sensor networks where sensors operate 
drawing power from onboard batteries and thus saving power 
from unnecessary transmissions is of utmost importance. To 
deal with this type of problem, distributed source coding [1][2] 
has been studied in the past. 

Signals in the DCN system are often correlated with each 
other because sensors are usually deployed in a restricted 
region and put to observe a phenomenon globally occurring in 
the region. Sensors can utilize signal correlations and reduce 
the amount of traffic. The signal reconstruction unit at FC also 
notices the presence of signal correlation and utilizes this 
information in a joint signal reconstruction. As the result, the 
amount of traffic each sensor has to transmit is reduced. This is 
the main idea of distributed source coding. Recently, Duarte et 
al. [6] coined the term Distributed Compressed Sensing which 
means that distributed source coding is achieved via 
compressed sensing (CS) at each sensor. CS [3], as a new 

signal acquisition paradigm, is suitable for sensors with limited 
onboard resources such as power and storage element. 

In CS, signal correlation is modeled by signal sparseness. 
A signal N∈ℜx  is said to be sparse with sparsity 

0
K=x , 

where 
0

x  is the number of non-zero elements of x . A 
support set is the collection of indices of the non-zero elements 
of x . The more a signal is correlated, the smaller the sparsity 
K . A sparse signal x , i.e., a correlated signal, can be 
compressively sampled, via a linear transformation, i.e., 
=y Fx  where F  is M N× , called the sensing matrix. 

Compression is said to be made when M N< . It is perhaps 
the most important and surprising fact in the CS theory that the 
unknown signal x  can be found uniquely from the compressed 
signal y  as long as a certain set of conditions on F  are 
satisfied [5]. 

For the DCN system, inter-sensor correlations exist 
between any two acquired signals. Inter-sensor correlations can 
be modeled by the portion of sensors having the same support 
set. Intra-sensor correlations, in contrast, are signal correlations 
that exist inside a single sensor signal. Thus, the collection of 
signals acquired by a group of sensors contains inter- and intra-
sensor correlations. A jointly sparse signal set can be defined to 
describe each signal in the collection. The joint signal 
reconstruction at FC thus should be able to exploit both the 
inter- and intra-sensor correlations and have each sensor take a 
less number of compressed samples transmitted to FC. 

The main focus of this paper is to determine how many 
number of measurements per sensor (PSM) is needed for 
correct recovery of the support of the jointly sparse signals, as 
the number of sensors and the noise variance are varied. The 
jointly typical decoder (JT decoder) introduced in [2][4] is 
extended for the DCN system so that a result which does not 
dependent upon any particular choice of recovery algorithms 
can be attained. We obtain an upper bound on the detection 
failure probability. We explicitly prove that PSM converges to 
sparsity as the number of sensors increases. We prove that the 
detection failure probability linearly converges to zero as the 
number of sensors increases. We obtain the number of sensors 
required for a guaranteed detection performance, given the 
system parameters such as Gaussian noise variance, PSM, and 
sparsity. 



II. RELATED WORKS 
Duarte et al [6] introduced a new theory and algorithm for a 

distributed compressed sensing. In their system, each sparse 
signal shares the same support set. Their strategy is described 
as follows: 1) Each sensor independently compresses their 
signals, i.e., iM

i i i= ∈ℜy F x , where sub index i denotes the ith 
sensors. 2) All the compressed signals are collected at the 
central unit via noiseless channel. 3) A decoder at the central 
unit tries to jointly reconstruct all the signals. To jointly 
reconstruct, they designed One-Step Greedy Algorithm 
(OSGA). Furthermore, they analyzed OSGA by using the 
central limit theorem. Their analysis and simulation result 
shows that 1M K≥ +  is sufficient for the perfect recovery, as 
the number of sensors increases. We note that all the sensing 
matrices can be different at each sensor and they did not 
consider the presence of noise in their work.  

Tang and Nehorai [7] worked an MMV problem which is 
similar to this work in the assumption that all the sensing 
matrices at each sensor are the same. They analyzed 
performance of estimating the support set that is shared by each 
sparse signal under a AWGN channel. They introduced a 
hypothesis test framework; obtained both upper and lower 
bounds on the probability that the support set is not correctly 
detected by using the Chernoff bound and Fano’s inequality. 
Their main result is that 2M K≥  is sufficient for estimating 
the support set in their Theorem 1. Similar to our result, they 
also mentioned it, i.e., 1M K≥ + . They insisted that this result 
can be derived  from their Theorem 3, as the following quote 
indicates “Actually, Malioutov et al. made the empirical 
observation that l1-SVD technique can resolve 1M −  sources if 
they are well separated. Theorem 3 still applies to this extreme 
case.” But it is not explicitly done and in fact difficult to make 
use of their Theorem 3 and draw the result, 1M K≥ + .  

Now, we aim to introduce the work in [4] because our JT 
decoder is inspired from [4]. Akcakaya and Tarokh [4] showed 
that ( )( )logM K N K= Ο  for a single sensor. To obtain it, 
they introduced JT decoder. Their JT decoder was inspired 
from Shannon’s work. They said that “We define a decoder 
that characterizes events based on their typicality. We call such 
a decoder a “joint typicality decoder.” and “Error events are 
defined based on atypicality, and the probability of these events 
are small as a consequence of the law of large numbers.” They 
analyzed the joint typical decoder by using probabilistic 
approaches. They obtained the upper bound on the probability 
of error events. After they obtained the upper bound, they 
showed that it converges to zero as the number of compressed 
measurements increases like ( )( )logK N KΟ . Furthermore, 
they showed that a distortion, i.e., mean square error, is roughly 
bounded. 

We adopt JT decoder here and we define events that JT 
decoder fails to detect the support set; obtained the upper 
bound on the probability on events. The one difficult problem 
is how we obtain the upper bound on the probability for the 
multiple sensors. In their case, they borrowed exponential 
inequalities from [10] and used as a tool. In our case, to obtain 
the upper bound, we first made the Chernoff bound; second get 

the new upper bound on the Chernoff bound. Finally, we 
minimize the further upper bound. Interestingly we found a 
way to factor out the number of sensors from the final form by 
taking the logarithm based on the natural number. Thus, the 
final form is well suitable for our work. 

III. SYSTEM MODEL 
There exist S  sensors measuring signals; each compresses 

the signals via CS and transmitting acquired samples to FC. Let 
the acquired signal at each sensor be N

s ∈ℜx with 
0s K=x , 

where { }1, 2, ,s S∈  . The support set of x  is defined as 

 ( ) ( ) ( ){ }: supp 0i x i= = ≠x x . 

We assume that all the sparse signals have the same support 
set. Thus, ( ) ( )1 S= = =x x  1. The compressed signal at 
each sensor is given as  

 s s s=y F x , (1) 

where all the elements of M N
s

×∈ℜF  follow i.i.d. Gaussian 
( )0,1 . We call  sF  the sth sensing matrix. All the 

compressed signals are transmitted to FC via an AWGN 
channel. Then, the decoder at FC receives 

 s s s= +r y n , (2) 

where all the elements of sn  follow i.i.d. Gaussian 

( )2
noise0,σ . We call sn  the sth noise vector. We assume 

that all the noise vectors and all the sensing matrices are 
mutually independent. For simplicity, we denote 1 S =  r r r , 

1 S =  x x x , and 1 S =  n n n . 

Similar model was considered in [6][7]. In both works, they 
assumed that all the signals have the same support set. In 
particular, when we remove all the noise vectors in our model, 
then ours becomes what Duarte et al used in [6]. In [7], they 
assumed that all the sensing matrices are the same. Both aims 
at correctly detecting the support set   from r  and all the 
sensing matrices. 

IV. JOINT TYPICAL (JT) DECODER AND EVENT 
Now, we aim to introduce joint typical (JT) decoder divided 

into two different parts. The first part is the Support Set 
Detection part, where JT decoder estimates the support set. 
After getting the estimated support set, JT decoder computes 
all the signals using pseudo inverse operation which is the 
Signal Estimation. 

Definition 1: (Support Set Detection) JT decoder estimates the 
support set by employing all the received vectors and all the 
sensing matrices. 

 ( )1 : : , :s s s sD ∀ ∀r F  , 

where { }1, , N⊂   with K= . 

1 ( ) ( )1 S= = =x x  :   is always the support set in the whole paper. 



Definition 2: (Signal Estimation) JT decoder computes all the 
signals by using the output of Support Set Detection. 

 ( ) 1T T
2 , , ,ˆ: i i i i i iD

−
∀ =x F F F r   , 

where sub-matrix ,iF   is constructed by collecting the set of 
column vectors of iF  corresponding to indices of   which is 
the output of Support Set Detection. 

Clearly, all the signals are reconstructed when an output 
from Support Set Detection is equal to the support set. Now, 
we introduce a δ − jointly typical event. 

Definition 3: ( δ − Joint Typicality) We say that an M S×  
matrix r  and a set   with K=  are δ − jointly typical if 

( ),srank K=F   for all s  and  

 
( ) ( )

2
2

, noise ,s s

s

M K
SM M

σ
δ

−
− <∑

Q F r  (3) 

where ( ) ( ) 1T T−
= −Q A I F F F F  and 0δ > . For simplicity, we 

consider ( )E , ,δr   that r  and    are a δ − jointly typical 
event. 

Now, we introduce failure events that JT decoder fails to 
estimate the support set. The first failure event is that there 
exists event such that ( ),srank K<F  . Clearly, JT decoder 
cannot estimate the support set because of (3). The second 
failure event is ( )E , ,δ≠r   . JT decoder considers the 
incorrect support set as the correct support set in this event. 
The last event is ( )E , , Cδr  2. JT decoder is not aware of the 
correct support set. Hence, JT decoder fails to estimate the 
correct support set whenever any one of these three events 
occurs. Let ( )E failureD  be the detection failure event. Then, 
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. (4) 

The last term, i.e., ( )( ),E srank K<F   in (4) can be 

ignored because all the entries of sF  follow i.i.d. Gaussian  
( )0,1 . Therefore, the first failure event rarely occurs. 

Now, we address the randomness for both the remaining events, 
i.e., ( )E , ,δ≠r    and ( )E , , Cδr  . 

It is easy to show ( ) 2

,s sQ F r  and ( ) 2

,s sQ F r  become 

( ) 2

,s sQ F n  and ( ) ( ) ( )( ) 2

,s s s si
x i i

∈
+∑Q F f n 

 in (3) 

respectively. In the System Model section, we assume that sn  

and ( )s if  are random vectors. Therefore, ( ) 2

,s sQ F r  and 

( ) 2

,s sQ F r  are random variables. 

V. PROBABILITES OF THE FAILURE EVENTS 
We continuously aim to talk about probabilities of all the 

failure events. By using the union bound approach, we have 

 
( ){ } ( ){ }

( ){ }
,

Pr E Pr E , ,

Pr E , ,
K

c
failureD δ

δ
≠ =∀

≤

+ ∑
r

r
  




. (5) 

We are interested in obtaining both probabilities, i.e., 

( ){ }Pr E , , cδr   and ( ){ }Pr E , ,δ≠r    respectively. Instead 

of obtaining exact probabilities, we get upper bounds on them. 
Lemma 1 and Lemma 2 provide upper bounds. The following 
notations become useful for representing both upper bounds: 

 ( )
' ' 2

, : exp 1
2

M KS

c
SM Mp T

M K
δ δ

−

   
= − × +   −   

  (6) 

and 

 

( ) ( )2 2
noise min2

min

2 2
noise
2 2
min min

, : exp
2i

M KS

SM M Kp T
M

M
M K

σ σ δ
σ

σ δ
σ σ

−

 − = − − +  
  

 
× + − 



 (7) 

where { }2
noise, , , ,T S M K δ σ= 3, 

{ }
( )2 2

min ,1, ,
min ss S

σ σ
∈

=


 , 

' 2
noiseδ δ σ=  and ( )22 2

, noises s
i

x iσ σ
∈

= +∑


. Here,   is one 

of the incorrect support sets. 

Lemma 1: Let   be the correct support set and the rank of 
,sF   be K  for all s . Then, for any 0δ > , we have 

 ( ){ } ( )Pr E , , 2 ,c
cp Tδ ≤r   . (8) 

Lemma 2: Let   be the one of the incorrect support sets, 
0 K≤ <   and the rank of ,sF   be K  for all s . Then, 
for any 0δ > , we have 

 ( ){ } ( )Pr E , , ,ip Tδ ≤r   . (9) 

The detailed proofs of them are given in [11]. 

VI. CONVERGENCE RESULT 
In the previous section, we obtained the upper bounds on 

the two events. In this section, we aim to examine their 
behavior depending on S . In other words, what is the 
behaviors of both the upper bounds when we increase S ? This 
will be useful for answering these questions. 

2 ( )E , , Cδr  : complement event of ( )E , ,δr  . 
3In the whole paper, T, T* and T1are always defined as { }2

noise, , , ,T S M K δ σ= , { }* 2
noise1, , , ,T S M K δ σ= =  and { }2

1 noise1, , , ,T S M K δ σ= +  respectively.  



Proposition 1: Let M K> ,   be the correct support set and 
the rank of ,sF   be K  for all s  and 0δ > . Then,  

( ){ }Pr E , , cδr   linearly converges to zero with rate 

( )* ,cp T   as S  increases. 

Proposition 2: Let M K> ,   be one of the incorrect support 
sets and the rank of ,sF   be K  for all s , 0δ >  and 

{ }
( )22

noise 1, ,
min ss S i

x iσ
∈

∈

< ∑


 

. Then,  ( ){ }Pr E , ,δr   linearly 

converges to zero with rate ( )* ,ip T   as S  increases. 

In both propositions, { }* 2
noise1, , , ,T S M K δ σ= = . The 

detailed proofs of them are given in [11]. 

Let us consider the assumptions in Proposition 1 and 
Proposition 2. From inspection of the upper bounds, we note 
M K> , seen in  (6) and (7). Next,  

{ }
( )22

noise 1, ,
min ss N i

x iσ
∈

∈

< ∑


 

 

appears only in Proposition 2. It is reasonable. If this condition 
is not satisfied, JT decoder cannot distinguish between the 
noise and the signal. It does not appear in Proposition 1 
because JT decoder observes noise components when ,sF   is 
used. 

Furthermore, we have proved that ( )*0 , 1cp T< <  and 

( )*0 , 1ip T< <  whenever M K>  and 0δ > . Therefore, 

( ){ }Pr E , , cδr   and ( ){ }Pr E , ,δr   linearly converge to zero.  

VII. THEOREMS AND DISCUSSIONS 
Theorem 1: Let M K> ,   be the correct support set,  

{ }1, , N⊂  with K=  and ≠  , all the ranks of ,sF   

and ,sF   be K  for all s , 0δ >  and 
{ }

( )22
noise 1, ,

min ss S i
x iσ

∈
∈

< ∑


 

. 

Then, ( ){ }Pr E failureD  linearly converges to zero with a rate, 

( ) ( )( )* * *max , , ,c ip T p T  4 , as S  increases. 

Proof : Let us remind the upper bound on ( ){ }Pr E failureD , i.e., 
(5). The upper bound can be bounded by using both (6) and (7): 

 

( ){ } ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

,

,

*

Pr E 2 , ,

2 , max ,

2 , , :

K

K

failure c i

N
c K i

N
c K i

D p T p T

p T p T

p T p T L S

≠ =

≠ =

∀

∀

≤ +

≤ +

= + =

∑
  

  

 

 

 

. (10) 

The term ( )N
K  appears because all the sparse signals have the 

same support set. We now know that ( ),cp T   and ( ),ip T   
converge to zero with given rates as S  increases. Therefore, 

the right term in (10) must converge to zero as S  increases. 
Now, we investigate the convergence rate of ( )L S . 

 

( )
( )

( )
( )
( ) ( ) ( )
( ) ( ) ( )

*
1 1

*
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lim lim

2 , ,
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S S

N
c K i
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L SL S

p T p T

p T p T

→∞ →∞

→∞

+ +
=

+
=

+

 

 

 (11) 

where { }2
1 noise1, , , ,T S M K δ σ= + . Let us consider the one of  

cases. 1) ( ) ( )* * *, ,c ip T p T>  : We divide the last term in 

(11) by ( ),cp T  , then we have 

 

( )
( ) ( ) ( )

( )
( )
( ) ( ) ( )

( )

( )

*
11

*
*
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2
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2
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, (12) 

where 
( )
( ) ( ) ( )

( )

* *
1 *
, ,

lim , lim 0
, ,

i i
iS S

c c

p T p T
p T

p T p T→∞ →∞
= =

 


 
 and  

( )
( ) ( )1 *,

lim ,
,

c
cS

c

p T
p T

p T→∞
=





.  Similar to this first case, we can 

prove the last term in (11) goes to zero for cases, where 
( ) ( )* * *, ,c ip T p T<   and ( ) ( )* * *, ,c ip T p T=  . 

Therefore, the convergence rate of ( )L S  is the maximum 

value between ( )* ,cp T   and  ( )* *,ip T  . Q.E.D. 

Similar result was reported. Duarte et al. [6] proved and 
demonstrated that M  converges to 1K + . Limitation of their 
work is that they did not consider the presence of noise. Tang 
and Nehorai [7] proved 2M K≥  for correct support set 
recovery from compressed signals obtained over an AWGN 
channel. They mentioned that M  converges to 1K +  when 
they discussed Theorem 3 of [7]. But, it is not explicitly done. 
From Theorem 3 of [7], it is difficult to draw  1M K≥ + . 
Davies and Eldar [8] designed a practical algorithm to recover 
K sparse signals from the MMV model, = +r Fx n , but 
without considering noises. Their empirical results also showed 
that only 1K +  measurements per sensor are enough for good 
recovery as well.  

Although the JT decoder is not a practical decoder as an 
OSGA developed in [6], it has benefit as a performance 
analysis tool. It provides benchmark independent of recovery 
algorithms. For example, given the systems parameters, the 
detection failure probability of the network system can be 
found immediately. 

When we see (10), (6) and (7), it is easy to see that when 
1M K≥ + , the expressions go to zero as S increases. We find 

the convergence rate and show that ( ){ }Pr E failureD  linearly 

4 ( ) ( )
,

*, : max ,
K

i ip T p T
≠ =∀

=
  

   throughout the entire part of this paper. 



converges to zero with the rate given in Theorem 1 as S  
increases. 

Proposition 3: Let all the parameters except for S , which are 
N , M , K , 2

noiseσ , 0δ > , and ( )0,1ρ ∈  be given. Then, the 

minimum number of sensors such that ( ){ }Pr E failureD ρ≤  is  

 
( )( )min *

log:
log up

S
p T

ρ 
 =
 
 

, (13) 

if ( ) ( )* 0,1upp T ∈ , where  

 ( ) ( ) ( ) ( )* * * *2 , ,N
up c K ip T p T p T= +  . (14) 

Proof: From (10), we derive 

 

( ){ } ( ) ( ) ( )
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( ) ( ) ( )
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N
failure c K i

S SN
c K i
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c K i

S
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D p T p T

p T p T

p T p T

p T

≤ +

= +

 ≤ + 

=

 

 

 
. (15) 

By taking logarithm on  both sides in (15), we get 

 ( ){ }( ) ( )( )*log Pr E logfailure upD S p T≤  (16) 

Now we aim to find S  such that ( ){ }Pr E failureD ρ≤ . By 

letting the right hand side term in (16) be less than ( )log ρ , we 
have 

 ( )( ) ( )*log logupS p T ρ≤ . (17) 

Eventually, we derive (13) from (17) , which is valid when 
( ) ( )* 0,1upp T ∈ .  

Q.E.D. 

Proposition 3 gives us the number of sensors sufficient for 

( ){ }Pr E failureD ρ≤  when all the other system parameters 

except S  are given and fixed. This is useful result. For 
example, suppose ( ){ }Pr E 0.3failureD ≤  for a single sensor 
DCN. Now, we aim to find the number of sensors S which 
guarantees ( ){ }Pr E 0.01failureD ≤ . From (13), we have 

( ) ( )log 0.01 log 0.3 4=   . It implies ( ){ }Pr E 0.01failureD ≤  

when 4S ≥ . 

VIII. CONCLUSIONS AND FUTURE WORKS 
The main focus of this paper was to investigate how many 

number of measurements per sensor (PSM) is needed for 
almost perfect support set recovery, as the number of sensors 
and the noise variance are varied. For this objective, we 

obtained an upper bound on the recovery failure probability. 
Using this upper bound, we explicitly proved that PSM 
converges to sparsity as the number of sensors increases, 
Theorem 1. We also proved that the upper bound linearly 
converges to zero as S  increases in Theorem 1. Finally, we 
provided a result (Proposition 3) which is useful to determine 
the sufficient number of sensors which guarantees a certain 
level of detection success given all the parameters except for 
S  are given and fixed. 

Due to space provided is limited; proofs for propositions 
and lemmas are relegated to the technical report in [11].  
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APPENDIX 
In Appendix, we always note that 0δ >  , M K> ,   is 

one of the incorrect support set and   is the support set. 

A. Proofs of Lemma 1 and 2 

Let us consider ( ),s sQ F r  and ( ),s sQ F r  respectively. 
They can be expressed as 

( ) ( )( )( )

( )

1T T
, , , , ,

,

s s s s s s s s s s s s

s s

−
= + − +

=

Q F r F x n F F F F F x n

Q F n

    



, 

and 

( ) ( )( )( )

( ) ( ) ( )( )

1T T
, , , , ,

, \

s s s s s s s s s s s s

s s s si
x i i

−

∈

= + − +

= +∑

Q F r F x n F F F F F x n

Q F f n

    

  

, 

where ( )sx i  is the ith coefficient of the sth signal and ( )s if  is 
the ith column vector of the sth sensing matrix. 

After we decompose ( ),sQ F   and ( ),sQ F  , then we get 
T

, ,s s s∑U U   and T
, ,s s s∑V V   , where M M

s
×∑ ∈ℜ  is a 

diagonal matrix with M K−  diagonal entries equal to one and 
the remaining entries equal to zero. ,sU   is a unitary matrix 

depending on ( )s if  for i∀ ∈  . It is obvious that ,sU   is 

independent of sn . Similarly, ,sV   is also unitary matrix 

depending on ( )s if  for i∀ ∈ . However, they are not only 

independent of sn  and but also of the columns  ( )s if  for 

\i∀ ∈   . Now we compute ( ) 2

,s sQ F r  and ( ) 2

,s sQ F r . 
They are 

 ( ) 2 2
,s s s s= ∑Q F r n , (18) 

and 

 ( ) ( )
2 2

,s s s s s= ∑ +Q F r t n , (19) 

where ( ) ( )\s s si
x i i

∈
= ∑t f

 
 whose entries follows i.i.d. 

Gaussian ( )( )2

\
0, si

x i
∈∑  

  . 

For simplicity, we assume that the first M K−  diagonal 
entries of  s∑  are one and remaining entries are zero. Then, 
both (18) and (19) can be rewritten as 

 ( ) ( )
2 2

, 1

M K
s s si

n i−

=
= ∑Q F r ,  (20) 

and 

 ( ) ( )
2 2

, 1

M K
s s si

c i−

=
= ∑Q F r  (21) 

where ( )sn i , which follows i.i.d. Gaussian ( )2
noise0,σ , is 

the ith element of the sth noise vector and ( ) ( ) ( )s s sc i t i n i= +  

which follows i.i.d. Gaussian 

( )( )22 2
, noise \

0, :s si
x iσ σ

∈
= +∑  

  owing to st  and sn  are 

mutually independent. Since ( )sn i  and ( )sc i  are Gaussian, 
both (18) and (19) are chi-square random variables. 

For simplicity, we let ( )2 2
,1 noise1

: M K
s si

Z n i σ−

=
= ∑  and 

( )2
,2 1

: M K
s si

Z c i−

=
= ∑ . Now, we consider ( ){ }Pr E , , cδr   and 

( ){ }Pr E , ,δ≠r   . From (3), we have 

 
( ){ } ( )

( )

,1 2
noise

,1 2
noise

Pr E , , Pr

Pr

c
s

s

s
s

SMZ S M K

SMZ S M K

δδ
σ

δ
σ

 
= ≥ − + 

 
 

+ ≤ − − 
 

∑

∑

r 
, (22) 

 and 

 ( ){ } ,2Pr E , , Pr s
s

Z SQδ  ≠ ≤ ≤ 
 
∑r   . (23) 

where ( ) 2
noiseQ M K Mσ δ= − + , ,1sZ  and ,2sZ  are the chi-

square random variables of M K−  degrees of freedom 
respectively, their means are M K−  and ( ) 2

,sM K σ−  , their 

variances are ( )2 M K−  and ( ) 2
,2 sM K σ−   respectively. 

After defining 1 ,1: s
s

Z Z= ∑  , then (22) is rewritten as 

 
( ){ } ( )

( )

1 2
noise

1 2
noise

Pr E , , Pr

Pr

c SMZ S M K

SMZ S M K

δδ
σ

δ
σ

 
= ≥ − + 

 
 

+ ≤ − − 
 

r 
, (24) 

where 1Z  is also a chi-square random variable of ( )S M K−  
degrees of freedom since it is sum of independent chi-square 
random variables. Now we apply the Chernoff bound to obtain 
an upper bound on (24). We have 

 ( ){ } ( )
( )

( )
( )

1 1 2 1

1 1 2 2

exp exp
Pr E , ,

exp exp
c Z Z

S S
ν ν

δ
ν λ ν λ

      ≤ +r 
 

, (25) 

where ( ) ( )
( )

2
1exp 1 2

S M K

j jZν ν
−

−  = −  , 

( ) 1
2
noise

1 i
i

MM K δλ
σ

−= − + − . To optimize (25) with respect to 

1ν  and 2ν , we find them such that 
( )

( )
1exp

0
exp

i

i i i

Zd
d S

ν
ν ν λ

   =


 for 

{ }1,2i∀ ∈ . It is easy to find 1ν  and 2ν . They are 

 1
1

1 1 0
2

M Kν
λ

 −
= − > 

 
, (26) 

and  



 2
2

1 1 0
2

M Kν
λ

 −
= − < 

 
. (27) 

Using (26) and (27), we finally obtain the upper bound on 

( ){ }Pr E , , cδr  . That is 

 

( ){ }

( )

' ' 2

' ' 2

' ' 2

Pr E , , exp 1
2

exp 1
2

2exp 1
2

: ,

M KS
c

M KS

M KS

c

SM M
M K

SM M
M K

SM M
M K

p T

δ δδ

δ δ

δ δ

−

−

−

  
≤ − +  −  

  
+ −  −  

  
≤ − +  −  
=

r 



. (28) 

where { }2
noise, , , ,T S M K δ σ= , ' 2

noiseδ δ σ=  and ( ),cp T   
appears in (6). Last inequality appears due to  

 ( )( )
( )

( )( )
( )

' ' ' '2 2

2 2exp 1 exp 1
S M K S M K

SM M SM M
M K M K

δ δ δ δ
− −

−
− −+ ≥ − . 

It completes the proof of Lemma 1. Now, we continue to 
prove Lemma 2. By applying the Chernoff bound to (23), we 
have 

 ( ){ } ( )

3 ,2

3 3

exp
Pr E , ,

exp

s
s

Z

S

ν
δ

ν λ

  
  

  ≠ ≤
∑

r  


, (29) 

where ( ) 2
3 noiseM K Mλ σ δ= − +  and 

( ) ( )2 2
3 ,2 3 ,exp 1 2

M K

s sZν ν σ
−

−
  = −   . For simplicity, we take 

the further upper bound on (29). That is 

 ( ){ } { }
( )( )

( )
3 ,21, ,

3 3

max exp
Pr E , ,

exp

S

ss S
Z

S

ν
δ

ν λ
∈

  
≠ ≤r  

 
. (30) 

Similar to both (26) and (27), we aim to find 3ν  such that 

{ }
( )( )

( )
3 ,21, ,

3 3 3

max exp
0

exp

S

ss S
Zd

d S

ν

ν ν λ
∈

  
=


. It is  

 
( ) 2

min
3 2

3min

1 1 0
2

M K σ
ν

λσ
 −

= − <  
 

, (31) 

thus, by using (31), (30) becomes 

 

( ){ }

( )
( )

2 2
noise
2 2
min min

2 2
noise min2

min

Pr E , ,

exp
2

: ,

M KS

i

M
M K

SM M K
M

p T

σ δδ
σ σ

σ σ δ
σ

−

 
≠ ≤ + − 

 − × − − +  
  

=

r  



, (32) 

where { }2
noise, , , ,T S M K δ σ= , 

{ }
( )2 2

min ,1, ,
min ss S

σ σ
∈

=


  ,    is 

one of the incorrect support set and ( ),ip T   appears in (7). It 
completes the proof of Lemma 2. 

B. Proof of Proposition 1 
First, we aim to show that ( ),cp T   converges to zero as 

S  increases. From (6), we get 

 

( ) ( )*

' ' 2

, ,

exp 1
2

S

c c

SM K

p T p T

M M
M K

δ δ
−

=

 
    = − × +    −     

 

, 

where { }2
noise, , , ,T S M K δ σ= , { }* 2

noise1, , , ,T S M K δ σ= =  and 
' 2

noiseδ δ σ= . If we prove that ( )*0 , 1cp T≤ < , then, 

( ),cp T   can converges to zero as S  increases. Obviously, 

( )*0 ,cp T<   is always true. Now, we aim to prove 

( )* , 1cp T < . By taking logarithm operator to both sides on 

( )* , 1cp T < , then we get 

 ( )log 1 t t+ < , (33) 

where 'M
M Kt δ
−= . It is obvious that (33) is true whenever     

0t > . Therefore, ( )* , 1cp T <  is always true for any positive 

t . It implies that ( ),cp T   must converge to zero as S  

increases. Finally, ( ){ }Pr E , , cδr   also converges to zero. 

Now, we examine the convergence rate of ( ),cp T  . It is 

 
( )
( )

( ) ( )
( ) ( )

*
1 *

, ,,
lim lim ,

, ,
c cc

cS S
c c

p T p Tp T
p T

p T p T→∞ →∞
= =

 


 
, (34) 

where { }2
noise, , , ,T S M K δ σ= , { }* 2

noise1, , , ,T S M K δ σ= =  and 

{ }2
1 noise1, , , ,T S M K δ σ= + . Furthermore, ( )*0 , 1cp T< <  . 

Therefore, ( ),cp T   linearly converges to zero with rate 

( )* ,cp T  . It finally implies that ( ){ }Pr E , , cδr   also 

linearly converges to zero with rate ( )* ,cp T  . It completes of 
the proof of Proposition 1. 



C. Proof of Proposition 2 
First, we aim to show that ( ),ip T   converges to zero as 

S  increases. From (7), we get 

( ) ( )

( )

*

2 2
noise min2

min

2 2
noise
2 2
min min

, ,

exp
2

S

i i

S

M K

p T p T

M M K
M

M
M K

σ σ δ
σ

σ δ
σ σ

−

=

  − − − +   
   

=  
  
× +  −   

 

, 

where { }2
noise, , , ,T S M K δ σ= , { }* 2

noise1, , , ,T S M K δ σ= = , 

{ }
( )2 2

min ,1, ,
min ss S

σ σ
∈

=


 ,  and ( )22 2
, noises s

i
x iσ σ

∈

= +∑


. If we 

prove that ( )*0 , 1ip T< < , then, ( )* ,ip T   can converges 

to zero as S  increases. Obviously, ( )*0 ,ip T<   is always 

true. Now, we aim to prove ( )* , 1ip T < . By taking 

logarithm operator to both sides on ( )* , 1ip T < , then we get 

 ( )log 1t t< − , (35) 

where 
2
noise
2 2
min min

M
M Kt σ δ

σ σ−= + . When either 1t >  or 0 1t< < , (35) 

is true. Regions on t  can be translated to regions on δ . They 
are  

 
( )( )2 2

min noise 0
M K

M

σ σ
δ

− −
> > , 

owing to ( )22 2
min noisemin ss i

x iσ σ
∈

 
= + 

 
∑
 

 and  

 
( )( )2 2

min noise0
M K

M

σ σ
δ

− −
< < . 

By combining two regions, finally we have  

 ( )
( )( )2 2

min noise0
M K

M

σ σ
δ δ

 − −
 > ≠
 
 

 . (36) 

We note that we only represent 0δ >  in Proposition 2 

because the probability that 
( )( )2 2

min noiseM K

M

σ σ
δ

− −
≠  occurs 

is very rare. Thus, we can say that ( )*0 , 1ip T< <  is true for  

0δ > . It implies that ( )* ,ip T   can converge to zero as S  

increases. ( ){ }Pr E , ,δ≠r    finally must converge to zero as 
S  increases as well. 

Now, we examine the convergence rate of ( )* ,ip T  . It is 

 
( )
( )

( ) ( )
( ) ( )

*
1 *

, ,,
lim lim ,

, ,
i ii

iS S
i i

p T p Tp T
p T

p T p T→∞ →∞
= =

 


 
, (37) 

where { }2
noise, , , ,T S M K δ σ= , { }* 2

noise1, , , ,T S M K δ σ= =  and 

{ }2
1 noise1, , , ,T S M K δ σ= + . Furthermore, ( )*0 , 1ip T< <  . 

Therefore, ( ),ip T   linearly converges to zero with rate 

( )* ,ip T  . It finally implies that ( ){ }Pr E , ,δ≠r    also 

linearly converges to zero with rate ( )* ,ip T  . It completes of 
the proof of Proposition 2.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 


