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Abstract- This paper extends previous works [11[21[3] in 
matched filter bounds and provides a theoretical calculation of de- 
tection probability of q-ary QAM signals transmitted over the di- 
versity reception and multipath fading IS1 channels. The matched 
filter bounds represent the best attainable detection performance of 
a particular system, which may or may not be realized with a prac- 
tical system. While an exact analytical expression of detection per- 
formance of a transceiver system is difficult to obtain for multipath 
fading IS1 channels, the matched filter bounds is relatively easy to 
obtain, provides many useful information, and gives a good compar- 
ison with the simulation results of realistic systems [5][q. 

Keywords-Matched filter bound, QAM modulation, equalization 
and diversity combining. 

I. INTRODUCTION 

ASED on the matched filter theory (see Chapter 6 B of [4]), the detection S N R  of any linearly filtered 
receive-signal is maximized if the matched filter, obtained 
assuming the receiver has the perfect knowledge of the 
filter, is applied to the received signal perturbed by the 
additive noise. In this paper, we use the matched filters 
to derive the symbol error probability of q-ary QAM sig- 
nals transmitted over the diversity reception and multipath 
fading IS1 channels; for the description of communication 
channel, see Fig.1. 

A complete system of a transceiver involves many dif- 
ferent function blocks, including a channel estimation and 
tracking, a synchronization, an adaptive diversity combin- 
ing and equalization, and possibly an adaptive sequence 
decision [5][6]. In such systems, an exact calculation 
of detection probability is difficult. Furthermore, the ap- 
proach may also dependent upon a particular selection of 
fading rate, detection and estimation conditions. Thus, 
most of times it is considered to be better off to perform 
simulation to obtain the exact detection performance of a 
system. Meanwhile, as an analytical tool to calculate link- 
budget requirement or as a tool to supportherify the sim- 
ulation results, a fundamental capacity calculation which 
can be computed relatively easily and applied regardless 
of any particular estimation and detection scheme is ex- 
tremely useful. 

Previous works in calculating the matched filter bounds 
on fading channels include Mazo [l], Clark et. a1 [2], 
Ling [3], Proakis [7], and Jakes [9]. In Jakes and 
Proakis, the matched filter bounds are derived for the 
maximal ratio combining receiver, where each of the re- 
ceive diversity-antennas in Fig.1 is assumed to be a sin- 
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gle tap Rayleigh fading. Mazo, Clark and Ling extended 
the results for multipath fading frequency-selective chan- 
nels with BPSK, 4-PSK or QPSK signaling. Summarizing 
their approaches, we note that there are three major steps. 
The first is to obtain the bit error or symbol error proba- 
bility (SEP) expression of a single and static channel. The 
second is to taking the expectation of the SEP over en- 
semble of the channel. This results in a well-known inte- 
gral form which involves an integral of error probability 
function over a gamma distribution. The gamma distri- 
bution represents the probability density function, denot- 
ing the probability of matched filter S N R  taking a par- 
ticular value. The third part is to generalize the second 
to diversity reception and fading IS1 channels. This part 
involves the use of eigenvalue decomposition to decorre- 
late the matched filter S N R .  The matched filter S N R  is 
the quadratic combination of correlated random variables, 
resulting from common transmit-shape filter, the matched 
filter operation and diversity combining, which add up all 
the available S N R  at each of the multipath components 
and diversity antennas. Eigenvalue decomposition pro- 
vides the tools to obtain decorrelated S N R  random vari- 
ables. Then, the rest is repeated application of the second 
part to each of the decorrelated S N R  random variables. 

The derivation of matched filter bounds in this paper 
follows the same general framework of above three steps. 
The major contribution of the paper includes that the 
matched filter bounds are obtained for q-ary QAM sig- 
nalling, where q = 4,16,64. In addition, the matched 
filter bounds are derived for fractionally-spaced channels 
with the diversity reception channels. Thus, with a spe- 
cific example of fractionally-spaced multipath-power de- 
lay profiles (MPDPs), one can readily obtain the matched 
filter bounds and compare with their computer-simulation 
results. 

Organization of the paper is as follows: Section 11. pro- 
vides system description. Section 111. describes the de- 
tailed derivation of matched filter bound. Section IV. dis- 
cusses three cases of interests. The three areas are 1) a 
single IS1 channel case, 2) maximal ratio combining case, 
and 3) receive diversity-channels, each of the channel be- 
ing ISI. Section V. provides concluding remarks. 

11. SYSTEM DESCRIPTION 
Fig. 1 describes the underlying channel and matched fil- 
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Fig. 1 .  Single-stot, diversity receive channel model, optimal matched 
filtering and combining, and detection at the ideal sampling point 

ter system. q-ary QAM symbols are generated and pulse- 
shaped by the transmit filter f ( t ) .  The transmitted signal 
propagates through the wireless channel and arrive to the 
space-diversity antennas at the receiver. The independent 
wireless channel is modeled as filters { bl (t) , 1 = 1, . . . , L }  . 
Upon receiving the signal, the optimal receiver performs 
matched filtering at each branch, samples at the optimum 
sampling time, and combines the samples from all the 
branches. The detection performance will be evaluated 
on the combined sample of the received signal. Before 
starting with the derivations, we shall describe some of 
the important assumptions we make in the derivation: 
1. Matched filter bound is based on a single-shot symbol 
transmission and detection, such that it avoids the diffi- 
culty of dealing with intersymbol interference. 
2. The matched filter theory applies also for the colored 
noise; however in this paper we assume that the noise is 
complex-valued white Gaussian. 
3. The channel is assumed to be time-invariant over the 
duration of the overall pulse, which includes the channel 
and the transmit shaping filter (and the anti-aliasing re- 
ceive filter). 
4. The transmit shaping filter is assumed to employ an 
excess bandwidth of less than loo%, and thus the chan- 
nel can be modeled as a half-symbol spaced finite impulse 
response filter without loss of any information. 
5. The half-spaced fading components of the channel are 
mutually uncorrelated, (i.e., the wide-sense stationary un- 
correlated scattering assumption[7]), 

A.  Single-shot system equation 

Based on the assumptions made, we first define the ba- 
sic equation of the receive signal for a single channel case. 
Cases can be generalized to multiple antennas and the re- 
sults will be discussed in IVB and 1V.C. The received sig- 
nal for a single-shot transmission of a pulse modulated by 
the information symbol 10 can be written as 

p = o  

where 
IO denotes the q-ary QAM symbol, 

bp denotes the p-th component of the half symbol- 
spaced finite impulse response (FIR) filter of the channel 
at a fixed instant of time, (we use N R  = 3 for illustration 
in this paper). 

From the assumption-5, we note that 

w J ; b p + Q }  = a ; w  =: $c(P) .  (2) 

Thus, we may define the results as the half-symbol spaced 
multi-path power delay profile (MPDP) $c(p) and note 
that a: denotes the average power of the p-th component. 

f ( t )  is a square root raised cosine filter, and F(u) de- 
notes the Fourier transform of f (t). 

CO 

F(w)  = 1, f(t)e~$J(-jUW (3) 

n(t) denotes the zero-mean, complex-valued additive 
white Gaussian noise with two-side power spectral den- 
sity NO. 

h(t)  denotes the compound channel response for 
- o o < t < o o  

Now consider the Fourier transform of h(t) ,  which is 
denoted as, 

NR-1 
H(U) := ~ { h ( t ) )  = F(U) bpezp(-jwp~B/2), 

p=o 

(4) 
where TB denotes the symbol-period. Then, the complex- 
conjugate H* (w )  can be written as 

N R - ~  
H*(u) = ~ * ( w )  b;exp(jwp~B/2). (5 )  

p=o 

Based on the matched filter theory [4], H*(w) is the op- 
timal filter that maximizes the detection SNR. Now ap- 
plying the matched filter response H* (U) to the received 
signal ~ ( t ) ,  we have the matched filtered signal which can 
be written in the Fourier transform domain as 

H*(w)X(w)  = H*(u)H(u)~o + H*(u)No. (6) 

The inverse Fouier transform of (6) provides the 
time-domain response of the matched filtered sig- 
nal. We now note that the power spectral density 
H*(w)H(w) is the channel and the inverse Fouier trans- 
form, & JrCO H* (w)H(w)ezp(jw.r)dw, the autocorrela- 
tion function is the channel impulse response, being Her- 
mitian symmetric around 7- = 0. Thus, by sampling the 
matched filtered output response at T = 0, we achieve the 
optimal matched filtering. 

B. Sampled, matched3lter output 

Now let's denote zs the receive signal sample at the op- 
timal sampling time T = 0. Then, for the detection of IO 
the foIlowing equation shall provide the sufficient statistic, 

where 
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A, denotes the value of zeroth lag of the autocorrelation 
channel. It is a random variable representing the instan- 
taneous energy of the cascade response h( t )  and can be 
written as, 

A, = - /w H*(w)H(w)ex i ( jw . r )b  
2n --M) 

l o o  
2n -m 

H*(w)H(w)dw = -  J 
I (8) NR-1 l o o  

2n -m 
= -  J F*(w)F(w)  biexP(jwPTB/2) 

p = o  Fig. 2. Receive-constellation for 64-QAM. where A,  denotes the in- 
NR-1 stantaneous channel gain, combining all the channel branches. 

X bqexp(- jwqT~/2)dw.  
q=o 

Due to the uncorrelated scattering assumption (Assump- 
tion 5), (8) can be written as 

NR-1 NR-1 
A, = bib,  

p=o q=o 

p=o q=o 
(9) 

where f r c ( t )  is the raised cosine filter response, 
10 denotes the transmitted q-ary QAM symbol, 

E{Io} = 0.0 and 

v8 denotes the matched filtered noise output sample at 
t = 0, 

(1 1) 
00 

w, = l m n ( . r ) h ( t  - 7)d.r 

Thus, w, has zero mean and VaT(v8) = NoAS. 

111. MATCHED FILTER BOUND CALCULATION 

A. Square-QAM symbol error probability 

In this section, the symbol error probability will be eval- 
uated for square QAM constellations, i.e. for even q. Re- 
ferring to Fig.2, we start with a summary of following re- 
lationships which shall be found useful for the discussion 
of materials in the sequel: 

The instantaneous signal to noise ratio is 

(14) 
where 7 is the instantaneous S N R ,  k = log2(&) 
the number of bits per symbol, 7 b  is the instantaneous 
SNR/bit. 

Then, the q-ary square-QAM symbol error probability 
at a particular channel gain A, = a, can be computed as 

(15) can be tightly upper-bounded by the first term, which 
is (16). We note that (16) is asymptotically efficient and 
very tight approximation of (15). Fig.3 shows how good 

I 
I 0 16 

"tu 

Fig. 3. Illustration of tight upper bound of the square QAM symbol error 
rate, an example with M = 64 

The average energy of the square-QAM constellation 
can be computed as, using (10) and the definition given in 
Fig.2 proximation for Pq(a) ,  i.e. 

the approximation is. In the sequel, we shall use the ap- 

dmin (a) 
Pq(a) M 2 (1 - f )  e r f c  ( ) . (16) 

(12) 2 J W  
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but using (14), (17) is 

Then, the approximation of the symbol error probability 
(16) can be written as 

Pq(a) = 2 ( 1 - - ; )er fc(J-) ’  (l9) 

or simply 

We shall use this approximation (20) to derive the aver- 
aged symbol error probability in the sequel. 

B. Average symbol error probability for square-QAM 

Now,the symbol error probability, averaged over the en- 
semble of the channel or equivalently that of A,, can be 
computed from 

pq(yb) = 1” Pq(a)Pr(A, = a)&, (21) 

where pq (yb) denotes the averaged symbol error probabil- 
ity of q-ary QAM system for the average input SNR which 
is defined as 

Thus, we need to know the distribution of the random vari- 
able A,. From (9), we may note that the random vari- 
able can be written as follows. We illustrate the case with 
NR = 3 without loss of generality: 

A, = (b;  bz b,*) 
b - 

f r c  (0) frcTB / 2 )  f r c (TB ) 
f r c ( - T B / 2 )  f r c ( 0 )  f r c ( T B / 2 ) )  (!:) . 

f r c ( T ~ )  f r c ( - T ~ / 2 )  f rc (0 )  
/ 

Y 

F , C  

(23) 

Denote the matrix in the middle as F,,, where frc( t )  
denote the raised cosine function. Now, we represent each 
of the fading channel tap as bi = a i p i ,  multiplication of an 
attenuation factor and the unit-variance, complex-valued 
Gaussian random variable pi. We now can write the chan- 
nel vector b as 

0 
b : = a p =  (T a2 i )  ( z i ) ,  (24) 

where E { p p H }  is a 3 x 3 identity matrix because pi,  i = 
1 , 2 , 3 ,  are assumed mutually uncorrelated. Using (24), 
(23) can now be rewritten, 

0 a 3  P3 

A, = bHF, ,b  = p H a H F r c a p  = pHGp, (25) 

where we have defined G := aHF,,a for the last equal- 
ity. It is important to note that for a fixed MF’DP, G is 
fixed. Also note that G is Hermitian symmetric. In addi- 
tion, since A, is the energy of the cascade filter (8) it is 
non-negative definite. For any non-negative definite Her- 
mitian symmetric matrix , there exist an orthonormal ma- 
trix such that 

G = QHAQ, (26) 

where A is a diagonal matrix with the diagonal elements, 
X 2 0,p = 1 , 2 , 3 ,  being the eigenvalues of the matrix G. 
Now rewriting (25) using (26) we have 

NR-1 
A, = P ~ G P  = P ~ Q ~ A Q ~  = p H ~ b  = ~,~ci,l~, 

(27) 
where we define p = Qp. Note that p p , p  = 1 , 2 , 3 ,  
are again mutually independent, complex-valued Gaus- 
sian random variables with zero-mean and unit-variance, 
and thus Xplbp12,p = 1 , 2 , 3 ,  are the X2-distributed ran- 
dom variables with the characteristic function -. 
Thus, the characteristic function of A, has the product 
form 

p = o  

NR . 

Iv. THREE CASES OF INTERESTS 

We now want to evaluate the average probability of 
symbol errors. For easy of illustration, we divide the tasks 
based on three cases of interests. The first is the case 
with a single, finite IS1 channel, and A, is to be repre- 
sented with NR distinctive eigenvalues. The second is the 
case with L-diversity antenna channels, having flat-fading 
channel at each antenna, and A, is to be represented with 
a single eigenvalue repeating L-times. The third is the 
case with a combination of the first two, and A, is to be 
represented with L-repeated set of NR-distinctive eigen- 
values. With an input of set of parameters for MPDPs, the 
shaping filter and averaged input SNR, the derivation in 
this section shall allow us to obtain the averaged, square- 
QAM symbol error probability as a function of averaged 
input SNR for any L. 

A. Distinct eigenvalues (no eigenvalues in multiplicity) 

pressed as 
When all the eigenvalues are distinct, (28) can be ex- 

where we have defined the weight of an individual random 
variable to be 

(30) 
NR 1 

=p  = I-J 9=1 1 - X q / X , ’  
p#n 
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We now write the probability density function for Ns 
which is the weighted sum of NR x2-distributed random 
variables. That is, 

B. Eigenvalues occurring in multiplicity 

L times, i.e. 
we now consider the with an eigenvalue repeating 

Now substituting (31) and (20) into (21) we have This case arises when we have equal gain, L independent 

Now define 

AS y := - 
2N0' 

diversity antennas. Then, (27) takes the expression 

L 

As = CXllPPl2, (40) 
p=l 

(32) where \PPI2 again are iid x2- distribution with zeo mean 
and unit variance. The distribution function for this case 
is P r { A s  = U }  = (,..il!Af~L-l. Then, the average 
symbol error probability is 

(33) 
roo 

then by the change of variable (32) can be rewritten pq(Tb) = Pq(a)Pr(As = a)da 

where we defined ip := &, p = 1 , .  . . , NR. Note that 
the weight terms np stays the same. Then, (34) becomes 

Then, by defining = k p  we have 

I . -I\ 

1 
X . LYL-' exP(-YlL)dY, 

We are now at the last step of computing the matched fil- 

out the relationship between the average SNR/bits and the 
eigenvalues: 

ter bound. For this, it shall be advantageous to straighten (L - 1)!X1 

where we again defined ip := A. Then, we obtain' 

Now, the following steps describe the procedure of how to 
compute the matched filter symbol error probability when 
the input parameters are the average SNR/bits Tb, the con- 
stellation size q, the multipath power delay profile and 
L = 1. 

Evaluate the eigenvalues {Xi, i = 1 , .  . . , NR} using the 
MPDP and the transmit shaping filter, as described in (23) 
to (27). 

Now determine the value of & for the given value of 
Tb and q by 

L-1 

k=O 
(43) 

where we defined R := Jm. 
Finally, we have following procedure to compute the 

averaged symbol error probability with the input param- 
eters of the average SNR/bits yb, the constellation size q 
and the number of equal gain antenna diversity L. 

Determine the value of for the given value of 7 b  and q 
bv 

(37) Compute & and a =  Jm 
Finally, substitute R into (43) to calculate the average 

1 37b log2 q -=  
2No 2(q - 1) xFo xa 

Calculate {Ai, i = 1, . . . , N R }  by evaluating symbol error probability 
The situation considered in this subsection is for when 

the channel at each diversity branch is modeled as a A. 2 - -  - XP (38) 
2NO 

Finally, substitute (38) into (35) to calculate the average yL-1 exp(-y/L)dy = 'using SoOD +fC (a) (L-l)!A'l 

(9) x;z; ( y + k )  (9) [7] symbol error probability. 
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single-tap Rayleigh fading and mutually independent. 
Then, the matched filter combiner becomes the well 
known maximal ratio combiner. Fig.4, Fig.5 and Fig.6 
are the matched filter bounds for q-QAM with L-diversity 
antennas, for q = 4,16,64 and L = 1,2,4,  repectively. 

Fig. 4. Matched filter bound SEP for 4-QAM transmission over L-flat 
fading channels 

Fig. 5. Matched filter bound SEP for 16-QAM Iransmission over L-flat 
fading channels 

Fig. 6. Matched filter bound SEP for 64-QAM transmission over L-flat 
fading channels 

As the order of diversity increases, we note that the 
matched filter bounds of fading channel approach the SER 
performance of the AWGN channels. 

C. Combination of distinctive and multiple poles 

We now consider the case where each channel is IS1 
channel. Now, the instantaneous channel gain can be writ- 

ten as 
L NR 

p=l p = o  
As = Xplb~12, (45) 

where bL are mutually independent, for p = 1,. . . , NR 
and I = 1 , .  . . , L are mutually independent, complex- 
valued Gaussian random number with zero-mean and 
unit-variance, and thus A, lbb I are iid X2-distributed ran- 
dom variables. Note that the MPDP stays the same for 
each of different antennas, and thus the same set of NR 
(distinct) eigenvalues should be repeating L times. Thus, 
the characteristic function becomes 

2 

Now, let's proceed with an example of L = 2 and NR = 
3. Using the method of partial fraction expansion (46) can 
be decomposed into 

- r 2 , P  ++ r1 ) ,  
v=l (1 - jVXp)2 - g ((1 - jVXp)2 1 - JVX, 

1 3 

(47) 
where I'.,. denotes the expansion coefficients from partial 
fraction operation. Then, the probability density function 
is 

aL-' exp( - . /Ap) 
+ r21p ( L -  1)!XpL ) . 

Then, the average symbol error probability is 

L L-1 L - l + p  
P 2 ( i p ) =  [93 cp=o ( p >((?>>" 

*j, -x, 
P -  2N, 

Finally, we have following steps to compute the aver- 
age probability, given the MPDP, the number of diversity 
channel L, the average SNR/bits yb and the constellation 
size q: 

Define the average SNR/bits (note, this is not the aver- 
age SNR/bits/channel), 

2q - 1 E{As} 2q - 1 2 q -  1 NR 

3k 2N0 3k 3k * 2No p=l 
E { Y }  = L- A, CJb = -- -- - 
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Evaluate the eigenvalues {Ap,p = 1 , .  . . , N R }  for a 
given L,  the MPDP and the transmit shaping filter (tak- 
ing the same approach as (23) to (27) 

Compute & with 

Evaluate A, 
(52) P - -  

Finally, substitute (52) into (49) to calculate the average 
symbol error probability 

Fig.7, Fig.8 and Fig.9 show the matched filter bounds 
for q-QAM transmission with L = 1,2,  for q = 4, 16, 
and 64 respectively, over the multipath fading frequency- 
selective channels. The multipath power delay profiles 
we used are MPDP-l= (0.7413,0.2343,0.0234) and 
MPDP-2= (0.66520.24470.0900). The normalized (in 
symbol-period) rms delay spreads of the two MPDPs are 
0 .2494T~ and 0.3257T~ respectively. We note from the 
SEP curves that the detection performance for MPDP-2 is 
about 1 to 2 dB better than that for MPDP-1. From this, 
we confirm a well known diversity effect of the wireless 
channel such that the larger the delay spread is the better 
the expected detection performance, due to inherent diver- 
sity benefit of the delay spread channel. 

V. CONCLUSIONS 

In this paper, we have derived analytical expressions 
for symbol error probability using the matched filter SNR 
for the square-QAM signals transmitted over the diversity 
frequency-selective channels. These theoretical bounds 
may not be attainable in reality due to the impractical as- 
sumptions made in deriving the bounds. Nonetheless, they 
provide invaluable information in designing the complex 
communication systems and serves as easy-to-compute 
analytical tools that can readily be compared with the sim- 
ulation results of practical transceiver schemes. Specifi- 
cally, we shall observe the exact relationship between the 
asymptotic slopes of SER curves and influences of differ- 
ent shapes of MPDPs. Future work include the extension 
of the matched filter bounds for trellis-coded modulation 
cases, which will be useful to be compared with the simu- 
lation results [ 81. 
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Fig. 7. Matched filter bound SEP for 4-QAM transmission over L- 
multipath fading IS1 channels 

Fig. 8. Matched filter bound SEP for 16-QAM transmission over L- 
multipath fading IS1 channels 

Fig. 9. Matched filter bound SEP for 64-QAM transmission over L- 
multipath fading IS1 channels 


