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Abstract—A novel suboptimal low-complexity equalization
and turbo-iterative decoding scheme is proposed in this paper.
The scheme is developed for multiple transmit- and multiple
receive-antenna systems operating over severe frequency-selective
fading intersymbol interference channels. The signal-processing
complexity may be of a concern for such systems. The com-
plexity of a full-search equalization grows in a power-law manner
( ), where denotes for -ary channel symbols,

the number of transmit-antennas, and the number of delay
channel taps. A low-complexity solution can be obtained by
pruning an equalizer tree. The two main operations include a
sphere list detection and a threshold-based tree-search. In the
operation of extracting extrinsic messages from the pruned tree,
a set of explored paths with different survival lengths poses a
fairness problem: a longer-lived path naturally builds a larger
discrepancy-metric than a shorter lived path does. A novel sur-
vival-length compensation-rule is devised so that all explored paths
with different survival lengths are utilized fairly in generating the
output message. Simulation results are obtained for multi-input
and multi-output systems equipped with four transmit and four
receive antennas. They indicate the performance of the receiver is
very robust.

Index Terms—Joint equalization and decoding, low-density
parity-check (LDPC) codes, maximum a posteriori (MAP),
multi-input and multi-output (MIMO) systems, reduced com-
plexity receiver, turbo-iteration.

I. INTRODUCTION

S INCE the landmark work by Telatar [1] and Foschini and
Gans [2] on the capacity of multi-input and multi-output

(MIMO) fading channels, design of wireless communication
systems utilizing multiple antennas at both the transmitter and
receiver sides, has become very important. A large body of pub-
lications are available today which propose a variety of different
system-design ideas in order to attain the promised capacity as
closely as possible. According to Zheng and Tse, [3], this ad-
ditional degree-of-freedom allowed by antenna multiplicity can
be utilized in achieving either a higher spectral-efficiency or a
higher diversity benefit.

When targeting for spectrum-efficiency improvement,
MIMO communication systems are anticipated to bring a ten to
twentyfold increase in channel capacities in spectrum-limited
joint tactical radio system (JTRS) bands over conventional
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single-input–single-output techniques [4]. In addition, this
improvement is intended for dynamic urban nonline-of-sight
multipath channel conditions, where the networked forces are
frequently deployed for carrying out tactical missions. Among
many design challenges for MIMO systems operating in such
environment, the most notable issue relevant to this paper is how
to design computationally efficient MIMO signal processing
algorithms while maintaining a robust receiver performance.
The appropriate size of an antenna-array is considered to be
four transmit and four receive antennas for a vehicle mounted
system.

The receiver studied in this paper uses a joint turbo-iter-
ative equalization and decoding scheme with a low-density
parity-check code (LDPCC) as the coding scheme. The turbo-it-
erative receiver paired with the powerful outer block code at
the transmitter for robust performance has a high potential for
achieving the optimal capacity-diversity tradeoff performance.
Several turbo-like code-based space–time coded modulation
systems have been reported in the literature and their perfor-
mances have been found to be robust [5]–[8]. However, for
higher spectral-efficiency (obtained by increasing the con-
stellation size) and for robust performance over intersymbol
interference (ISI) limited channels, a new receiver scheme
capable of handling the signal processing complexity is still in
great demand.

In [5], a low complexity decoding and equalization scheme
based on a novel signal separation and per-antenna turbo-equal-
ization receiver has been proposed. We notice, however, that
this per-antenna scheme still requires a large amount of com-
putations. The complexity, measured in terms of a number of
states in an ISI trellis as an example, increases exponentially fast
as the memory of the channel increases. The number of states
in the ISI trellis is , where denotes the -ary
signal symbols. The number of trellis-edges is . With the
per-antenna equalizer, the number of per-antenna trellis states
is only . Nevertheless, the complexity at the signal-sepa-
ration part remains as high as that of the full-complexity max-
imum a posteriori (MAP) algorithm, which is on the order of

.
In this paper, a low-complexity solution is approached

from the standpoint of a tree search. The optimal full-search
algorithm, such as the Viterbi algorithm and the Bahl–Cocke–
Jelinek–Raviv (BCJR) algorithm, runs on an ISI trellis. In
principle, both algorithms utilize the entire duration of a
received sequence and generate the final decision variables.
The underlying structure of these algorithms ensures that the
likelihoods of every possible sequence are utilized for the gen-
eration of the decision output, thus allowing for the selection of
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Fig. 1. Proposed transceiver systems over frequency-selective fading channels. Frequency-selective channels are modeled as a finite-impulse response filter with
[N �N ] matrix-valued taps. Input and output symbol vectors have dimensions [N �1] and [N �1], respectively. A gray constellation map is used at the BSM.
The receiver employs a superiterative receiver scheme in which the soft-in soft-output equalizer and the soft LDPCC decoder exchange the extrinsic information.

the best possible transmitted symbol sequence. The reduction
in signal-processing complexity in the proposed approach is
to be achieved by maintaining only a small subset of most
posterior-probable sequences by a tree pruning and is, thus,
suboptimal. These are the only sequences used in the generation
of the soft-output messages to be exchanged in turbo-iterative
fashion to the decoder.

For a high spectral-efficiency system such as the one targeted
in the JTRS MIMO system, the use of tree pruning alone would
be insufficient to reduce the computational cost. The ISI tree
is -ary. There are candidates which spawn from a
single survivor node. It is certainly not practical to explore all
of them, but it is sound to explore the most probable candidates.
The proposed tree search algorithm is, therefore, assisted with
the employment of a sphere list detection (SLD) algorithm [7],
[9] at the stage of node expansion. This strategy seems to make
good sense, but so far a design of a receiver based on such a
strategy and its performance evaluation have not been explored.

It should be noticed that the proposed tree search algorithm
makes forward moves only and is, thus, different from the well-
known Fano sequential search algorithm [10]. It is rather sim-
ilar to the -algorithm [11]. One of its novelties is the intro-
duction of a simple compensation rule. It provides a sense of
fairness among different survivor paths having different survival
lengths in the pruned tree. The longer a path stays alive, the more
probable the path is. However, when compared with a shorter
lived path, the distance metric of a longer lived path tends to be
larger than that of a shorter lived path. This is simply because
the longer path has more chances to build up distance. Two op-
tions can be considered here. One is to ignore all paths which do
not survive to the end. This is undesirable since all information
contained in such paths would be lost. The second option is to

compensate for the difference in length and incorporate every
explored path in generating soft-output messages. Note that the
distance metrics of explored paths which are calculated during
the path expansion phase can be saved.

The rest of this paper is organized as follows. In Section II,
baseband equivalent system descriptions will be given. In
Section III, we will discuss the pairwise error probability
for MIMO fading ISI channels. The discussion of pair-wise
error probability for low-density parity-check (LDPC) code
modulated signals will also be given. In Section IV, the
overall iterative equalization-decoding system is discussed.
In Section V, reduced-complexity equalization using the tree
search algorithm and the compensation rule is presented.
Sphere list detection is discussed in Section VI. In Section VII,
the simulation results for both uncoded and coded transmis-
sions are shown. In Section VIII, a short discussion on system
computational complexity is presented. Section IX contains the
conclusion.

II. BASEBAND EQUIVALENT SYSTEMS

The complete baseband-equivalent transceiver system is de-
picted in Fig. 1. We first describe the MIMO fading intersymbol
interference (ISI) channel model, followed by the transmitter
and the receiver operations.

As shown in Fig. 1, we use the tapped delay line (TDL) as an
input–output model to describe the MIMO frequency-selective
channel seen from the modulator (Mod) to the demodulator
(De-mod). Without loss of generality, the symbol-spaced sam-
pling at the demodulator output is assumed and, thus, the taps
are symbol spaced. The TDL channel model has channel taps
and each channel tap is a matrix, where is the
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number of transmitter antennas and the number of receiver
antennas. The channel is also modeled as a time-varying TDL
filter. Thus, is an matrix denoting the th tap,

, at the th symbol epoch in
the matrix-valued TDL channel-model.

The bits-to-symbol mapper (BSM) at the transmitter, shown
in Fig. 1, represents a symbol modulator which takes a string
of coded bits and maps it into a set of channel sym-
bols. The channel symbols can be stored in the
symbol vector . The element of each vector
is taken from the base digital constellation such as binary
phase-shift keying (BPSK) , 4-PSK , and

-ary quadrature amplitude modulation (QAM). Thus, the
BSM maps a string of total coded bits into a
vector-symbol at each time epoch . Each of the

coded bits at the th epoch is denoted as , for
; . The channel is used

times for a block transmission. Thus, we note that there are
a total of coded bits per block transmission.
We assume in this paper the length of the block code is

.
The receive symbols at the demodulator output can be

grouped into the receive symbol vector . Thus, the
MIMO relationship can be written as

(1)

where we have defined the following variables:

...
...

...

...
. . .

... (2)

In the second line in (1), is defined as the clean channel
output. In (2), , , denotes a channel symbol
at the th transmitter antenna. Thus, we have and

. The noise , , is a circularly sym-
metric complex Gaussian (CSCG) with zero mean and variance

, where is the one-sided power spectral density of the ad-
ditive white Gaussian noise. In addition, it is independent and
identically distributed for each and . Each denotes the
CSCG fading channel tap with zero mean and a certain variance
which can be set according to a multipath power-delay profile.
We use the uniform multipath power-delay profile, thus, the av-
erage power of a single tap is set to for all and

. The channel is independent and identically distributed
for each combination of transmitter and receiver pair and .
Moreover, on the same antenna, different delay taps are also
independently distributed from each other. Each fading tap is
time-varying whose rate of change can be set according to the
maximum Doppler fading rate .

For simulation, we need to generate as many as
number of independently fading taps. Virtually, any number
of independent time-varying channel tap processes can be
produced by a filtered Gaussian process method (FGPM). In
FGPM, a number of independently generated complex-valued
Gaussian random processes are filtered with a low-pass filter.
We take the approach of frequency-domain filtering using the
fast Fourier transform (FFT). The deterministic shape of the
low-pass filter can be set according to a desired Doppler power
spectrum on which the maximum Doppler frequency can be
defined (we use the Jakes outdoor Doppler spectrum [12]
throughout the paper). The bandwidth of the low-pass filter de-
termines the maximum Doppler shift. Finally, the time-varying
channel tap processes can be obtained by taking the inverse
FFT of the filtered Gaussian random sample paths. For further
information, interested readers may find it useful to refer to [13,
Ch. 5, p. 222]. Throughout the paper, we assume the channel
estimation is perfectly done at the receiver.

We assume the use of the outer LDPC code which drives the
BSM shown in Fig. 1. As mentioned earlier, the block length of
the code is chosen as . Then, by collecting

receive-symbol vectors into an overall receive-vector of
length , the input–output relationship can be written as
(3)

...

. . .
. . .

...

. . .
. . .

...

...
... (3)

or as

(4)

where denotes the overall channel matrix of size
.

We note that this coded modulation and decoding system
would achieve a maximum throughput of bits
per channel use where is the rate of the outer code.

III. PAIRWISE ERROR PROBABILITY

We derive the pairwise error probability averaged over the
frequency-selective independent fading channels. The primary
purpose of the derivation is to evaluate the order of diversity
achievable by the LDPC coded modulation system over the
fading channels. Due to the space–time transmission of the
coded bits as well as the frequency-selective channels, the
system is capable of exploiting signal-diversities available in
all space-, time-, and frequency-domains. This pairwise error
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result can be used in the calculation of maximum likelihood
union upper bounds [14].

The probability of transmitting a word and deciding in favor
of another word can be approximated by the Chernoff upper
bound

(5)

where is the overall Euclidean distance between
and . The distance can be rewritten as

(6)

(7)

where the superscript denotes the Hermitian (conjugate-
transpose) of a matrix (or a vector) and denotes the th
row—thus, a dimension of —of the th time epoch
and the th channel tap matrix. We use the error-vector

.
As approaches toward , we expect to see an “edge”

effect: the number of nonzero column entries in reduces
one-by-one to 1 from . This happens only near the end of the
block. We can make the representation to be as precise as we
want by defining and using a new variable, say for

and for
. However, this edge effect is negligible at

the perspective of the transmission of a whole block of length
. Thus, we will ignore this edge-effect in the sequel

and assume throughout all .
We note that the matrix is

Hermitian symmetric and, thus, can be diagonalized with non-
negative eigenvalues and unitary eigenvectors. That is, we can
find a unitary matrix and a real diagonal matrix such that

. It should be noted that this diagonalization
can be done for each .

Proceeding further with the distance (7), we have

(8)

(9)

(10)

For the purpose of continuing discussion, it is beneficial to
mention some properties of , and .

• , where is the
identity matrix. The columns of form a complete

basis of the dimensional space.
• The elements of the diagonal matrix are the eigen-

values of , which are nonnegative reals. Since the
rank of is either one or zero, all but a single eigen-
value—say the first one—are zeros. Depending on the

two vectors and , the value of the first eigenvalue is
either zero or . Denoting this first eigenvalue as

, we note that

when
o.w.

(11)

• The matrix and its eigenvalue are different with
respect to different .

• Note that the statistical property of the vector
remains the same as that of since is a unitary

transformation.
• Now, note that the term, , is a real-valued

random variable . Each is the
-random variable with two degrees of freedom with

mean .
Finally, the distance square can be written as

(12)

Thus, substituting (12) into (5), we obtain

(13)

assuming the channel taps are independent over time .
For the MIMO ISI fading channel, (12) is a general result

which can be used to approximate the error probability for any
given channel matrix . It should be noticed that (13) also in-
corporates the delay-diversity taps so that frequency-selective
diversity can be analyzed as well.

Now, with a further assumption of independence with respect
to each receiver antenna and each channel-delay tap, we note
that all and, thus, all for each and every combination
of indices , are independent and identically distributed. Every
element in the row vector , is a mutually independent and
complex Gaussian with variance and zero mean. Under this
set of conditions, the pairwise error ensemble averaged over the
channel can be written as

(14)

(15)

Comparing (15) with the pairwise error probability for
MIMO flat fading channels from [15], we notice that the
diversity order is improved by a factor of . This is expected
since the channel has independently fading delay taps. This
is in addition to the space diversity from the receiver an-
tennas. A similar result can be obtained also for the slow fading
channel which is beyond the scope of this paper and will not be
discussed.

Let denote the cardinality of the set of the first eigen-
values , such that

(16)
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Then, we note that the diversity order can be achieved
with a careful design of the outer code. For ,
(15) becomes

(17)

(18)

This leads to the Distance and Product criteria in [15] for rapidly
fading channels. In our case, the space–time coding block is a
simple modulation block (the BSM shown in Fig. 1) which maps
the binary coded-sequence into a symbol sequence. The binary
coded-sequence is the codewords of the outer LDPCC.

We use Gallager’s codes [16], [17] which is a linear block
code. An ensemble of a Gallager code can be
fully defined by its parity-check matrix in which there are

columns. denotes the Hamming weight of each column
and that of each row. The code-rate is .
A particular parity-check matrix is obtained randomly under
a given weight constraint. Similar to the turbo decoder, the
decoder of the LDPCC uses iterations to exchange soft log-like-
lihood-ratio (LLR) messages [16].

As can be hinted from (18), the minimum Hamming weight
of this linear code plays a key role in determining the

error performance of the MIMO system. For Gallager codes,
the minimum distance is proportional to the code length

[16], [17], where is a parameter set by a given
column weight and a row weight . In particular, from
[16, Th. 2.4] (or [17, Fig. 3]) we note that for an
ensemble, the probability of selecting a code whose minimum
distance is smaller than would be very small. In fact, it is
close to . For example, for the

ensemble. Thus, for
would be around 24; and that of a (4096, 3, 6) code is 94. The
probability of random selection of a code from the ensemble
with smaller than is, thus, for

and 10 , respectively.
Assuming and binary channel symbols

, we note that, in (18) ranges from
to . The former is the case when all differences between
a pair of codewords happens to occur consecutively. In other
words, the cardinality of the set
is . The latter refers to the case in which there is no
consecutive difference: Each and every coded-bit differ-
ence occurs sporadically across the entire block and, thus, there
is no single event with consecutive coded-bit differences.
Therefore, any nonzero in (15) is due to a single coded-bit
difference. From the discussion so far, we note that the diversity
order in the range of the minimum to the
maximum is anticipated for independently fading
channels.

IV. SUPERITERATIVE EQUALIZATION AND DECODING SYSTEM

In the receiver part shown in Fig. 1, the demodulated se-
quence of receive-signal vectors , ,
is feed-forwarded to the soft-in soft-out (SISO) sum-product

equalizer block. The equalizer generates soft-output messages
on the coded bits. The decoder takes the soft messages and runs
its own iterative message passing operation on the bipartite code
graph. After a certain number of iterations, the decoder gen-
erates a block of posterior log-likelihood ratios (LLRs) on the
coded bits and feeds them back to the equalizer. The equal-
izer takes the extrinsic part and runs the equalization operation
again. In this paper, we will refer to this iteration between the
decoder and the equalizer as the “superiteration.”

In a classical context, an equalizer is employed to mitigate
the intersymbol interference (ISI) which may be present in fre-
quency-selective channels. The outputs of the proposed equal-
izer, however, are the LLRs on the coded bits. Thus, one may
ask a question: what are the entities that are equalized? In fact,
there is nothing that is equalized. We will, however, continue
to use the term “equalizer” in this paper for the lack of a better
term.

The equalizer in fact takes the role of a SISO de-mapper. At
the transmitter, the BSM is used to map a string of coded bits
to a channel symbol vector. As mentioned in Section II, each
element of the vector is taken from the base digital-constella-
tion such as BPSK, 4-PSK, or -ary QAM. Thus, the BSM
maps a string of coded bits into a single-channel
symbol vector . Meanwhile, the equalizer takes a re-
ceived-signal vector and generates soft-output messages on
the coded bits per each . There-
fore, the equalizer is closer in its role as a soft-out de-mapper
which generates the soft messages on the coded bits by pro-
cessing the received-signal sequence. When operating in the su-
periteration mode, the equalizer also make use of the soft-input
messages (LLRs) generated from the decoder.

The process of superiteration can be elaborated now. As
shown in Fig. 1, the sequence of posterior LLRs is denoted
by . The extrinsic LLRs, de-
noted in a similar manner as , can be obtained by removing
the LLR’s from . That is

(19)

for . All LLRs discussed in this paper are on the
coded bits and, thus, the length of the LLR sequences is fixed
to be (which is the length of the LDPCC). As mentioned, we
assume throughout this paper without
loss of generality. The LDPCC decoder takes the sequence
as its input and generates the posterior LLR’s . The ex-
trinsic part is forwarded to the equalizer, which is obtained by

(20)

for . The equalizer utilizes the extrinsic LLR’s
as prior LLRs, and updates its output, say . This

completes a single cycle of superiteration. In the beginning of
the cycle, the sequence from the decoder is not available
and, thus, set to zero. In the next section, the generation of the
posterior equalizer output LLR’s will be discussed. We use
the standard message passing algorithm to generate the decoder
output posteriors [17]–[19].

After a certain number of superiterations, hard decisions are
made at the output of the decoder. A detailed design of a LDPC
encoder and an iterative decoder can be found in [16] and [20].



1018 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 5, MAY 2005

V. REDUCED COMPLEXITY EQUALIZER

The SISO equalizer is depicted in Fig. 1. As mentioned in
Section IV, the equalizer plays a role as a de-mapper which takes
the receive signal from the demodulator and generates the pos-
terior LLRs on the coded bits of length .
The sum-product algorithm is used at the equalizer to generate
the posterior LLRs. For optimal processing, this sum-product
algorithm should be applied to the full list of all possible can-
didates of space–time symbol sequences. For a low complexity
solution, it can be applied to a smaller subset of most probable
candidates. This section describes how to obtain this smaller set
and how to apply the sum-product algorithm to the set.

A -ary tree, , can be used as a model to track
all possible space–time symbol sequences of length . We
first describe the application of the sum-product algorithm on
the full tree for ease of explanation and then the sum-product
algorithm applied on a pruned tree.

A. Sum-Product Algorithm and the Distance Measure

Using the input–output relationship given in (4), the posterior
probability can be written as

(21)

where the definition of conditional probability, the Bayes’ the-
orem, and the assumption of white additive Gaussian noise are
used, respectively, in each line.

We note that the likelihood for each time epoch in (21) can
be obtained by

(22)

where a likelihood metric is defined for the quantity on the
left-hand side. In addition, the prior probabilities can
also be obtained. Recalling our BSM scheme shown in Fig. 1,
we note that there are number of coded bits associ-
ated with each . Further recalling our notation that the coded
bits at the th string are denoted by for ;

. Thus, the prior in (21) can be ob-
tained by

(23)

Recalling that the BSM block maps the string of
coded bits to a space-symbol vector at each symbol-epoch

, we obtain the prior probabilities on the coded bits from the
extrinsic message from the decoder such that

(24)

for , , and .
The posterior LLR for each coded bit, for

; ; , can be ob-
tained as

(25)

Note in (24) and (25) that there are a total of LLRs in ,
i.e., for ; ; and

. Defining an auxiliary index , i.e.,
and, thus, , we

note the LLRs given in (19) can be fully defined, i.e.,
.

For the purpose of the tree-pruning operation, we found it
useful to define the log version of the product algorithm. By
taking the log on both sides of (21), we have

(26)

(27)

For convenience, let us define as the cumulative measure of
a particular path, say the th and at a certain tree-depth . As
shown in Fig. 2, the survived paths are counted from the top of
the tree and indexed as Then, we have

(28)

where denotes the th branch metric of the th path. It can
be imagined that the tree will explode quickly. Therefore, the
idea of tree-pruning is used.

B. Pruning by Threshold Test and Applying the Sum-Product
on Survived Paths

A pruned tree is used in the sum-product algorithm to gen-
erate the posteriors, as given in (25). Depicted in Fig. 2, the bi-
nary tree is used for the purpose of illustration. As-
sociated with each path is a particular transmitted sequence of
symbol-vectors , or more directly the clean channel output

. Upon reception of the receive-signal vectors , the dis-
tance-metric (28) on each path can be computed.

We propose the use of a threshold-based tree pruning rule.
While expanding the tree in the forward direction, some low-
probability paths are not selected for inclusion into a list of sur-
vivor paths which are further explored. From the st epoch
to the th epoch, for example, a single survivor path is expanded
into candidates. Suppose the number of survivors at

is , thus, the total number of candidates at
may reach up to . We may use the SLD method
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Fig. 2. Illustration of tree-pruning with (Q = 2) binary tree. For MIMO settings, the tree is Q = M -ary.

at the expansion phase to further reduce the complexity. This
is discussed in detail in the next section. For each expanded
candidate path, the cumulative metric is updated. There are a
total of cumulative metrics at the th epoch. Thus, there
is a set of number of metric elements, i.e., , for

. The threshold-based rejection rule
can then be applied and is described as follows.

1) Find the path whose metric is the smallest and set its
metric value as .

2) Prune all paths whose accumulated metric is larger
than , where is a threshold value to be optimized.
(The optimal threshold value can be determined off-line
through simulations and before being used in practice.)

Now, suppose there is a set of sequences which have been
explored. For an optimal detection performance at a given com-
plexity (e.g., a fixed threshold value ), we desire to make use
of all the explored paths and their associated metrics in the
sum-product algorithm. Then, the posterior LLR in (25) can be
obtained as

(29)

where we define two mutually exclusive sets of explored paths
among the survivors whose length is at least . denotes the
set of explored paths with , and denotes the set
of explored paths with .

While using all of the explored paths is desirable, a problem
arises because of difference in path length—some paths are
pruned earlier than others. Thus, one must decide how to
fairly use these shorter paths in the sum-product algorithm for
calculation of the posteriors (29). Such short-lived paths tend
to have smaller distance metrics than longer lived paths do.
One naive solution is to truncate all the sequences used in the

summation phase at the same length. For example, one may
choose to utilize only the handful of paths which survive to
the last epoch. This option has the obvious disadvantage of not
making use of the potentially important information available
in some longer lived survivors. A more accurate and elaborate
solution is to devise and utilize a rule which compensates for
the difference in path lengths.

C. Compensation Part

As an integral part of the proposed transceiver system, a
turbo-iterative detection between the equalizer and the decoder
is desired. The quality of soft-output messages generated by
the equalizer in the sum-product algorithm (29) would improve
as the number of paths is increased. While making forward
movement, the equalizer generates a list of explored paths
along with their associated metrics which are used in making
the tree-pruning decision. The metric of the explored paths can
be saved for a later use in the sum-product algorithm generating
the posterior LLRs.

However, utilizing every explored path with different survivor
lengths in the sum-product algorithm poses a fairness problem.
As mentioned, a shorter lived path has a smaller metric than a
longer lived path does. A solution suggested in this paper is to
penalize each path pruned early in the process for its missing
tree sections. This can be accomplished by having a certain
amount of distance metric added to the cumulative-metric of the
path to compensate for the number of tree sections for which
the distance metric is not accumulated. In this paper, we pro-
pose a simple compensation rule in which the compensation
for the th section is calculated during the forward move-
ment and added to the cumulative metric of the path per each
missing branch in the sum-product algorithm. If a path is pruned
at , for example, a cumulative compensation

is added to those paths which have been
eliminated at .
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The following two principles of compensation can be stated
for a selection of .

• Fairness: must be large enough so that the compen-
sated path would be forced to drop out if it were put into
competition in the next time section.

• Tightness:) should be appropriately small so that the
pruned paths contribute in the sum-product algorithm as
equally as any surviving path does.

Now, a compensation rule can be devised. The result is stated
in the following lemma and theorem.

Lemma 1: Let and be the minimum forward-cumu-
lative distances at the -st and th tree sections, respec-
tively. Then, a compensation satisfying the following inequality:

(30)

for the th missing tree section is sufficient for fairness such that
if any path whose edge metric at the th epoch is greater than or
equal to the right-hand side, it is rejected by the threshold test.

A detailed proof is given in the Appendix.
We choose for tightness.
By considering a transmission block of length , Lemma 1

leads to the following compensation rule.
Theorem 1: For an explored path pruned at where

, a tightened compensation rule

(31)

is fair.
Proof: From repeated application of Lemma 1, we note

that

(32)

(33)

Note that any choice of overall compensation satisfying the
inequality is fair. By selecting , a tightened
compensation is obtained which is

.
It should be noted that: 1) the per-section compensation is

the same for all paths of the same survival length and that 2)
varies from one tree section to another because the minimum
forward distance varies from section-to-section.

The sum-product algorithm applied on the pruned-tree aug-
mented with the compensation rule would render a robust re-
ceiver capable of handling a modest MIMO system up to a cer-
tain order of modulation size and a certain number of transmit
antennas. In order to meet the high spectrum efficiency require-
ment set for future tactical military operations [4], it seems that
the number of transmitter/receiver antennas desired is at least
four and the constellation size may be selected up to 16 or even
64 QAM. We note that each individual survivor path is expanded
into a set of candidates. For , the number of can-
didates expanded from a single survivor is 16 ; if we
have and , the number is 64 10 .
It is not practical to consider all expandable paths. This moti-
vates us to consider the sphere list detection algorithm at the
tree-expansion phase. To only those selected candidates, the
threshold-based tree-pruning can be applied.

VI. SPHERE LIST DETECTION (SLD)

In the tree search operation, a survived node gets expanded
into a number of candidates in the next time section; and the ex-
panded paths are those candidates subject to the tree-pruning
threshold test. When the constellation-size, or the number of
transmit antennas—or both is large, the expansion step of the
tree-search algorithm becomes a problem. The number of can-
didates per survived path may become simply too large for
a system to handle. For this, we aim to augment the tree-search
algorithm with the introduction of the Fincke–Pohst path-ex-
pansion algorithm and attempt to reduce the number of candi-
dates to a manageable size (i.e., on the order of 100 candidates
per survivor on the average). Hochwald and Brink in [7] uti-
lized the Fincke–Pohst algorithm [9], referring to it as the SLD
algorithm, and demonstrated the robustness of the algorithms
for the turbo-iterative decoding and demodulation problem in
MIMO flat-fading channels. In [21], a class of the SLD algo-
rithms developed in the field of applied mathematics have been
investigated in the context of MIMO channels and a number of
low-complexity list generation methods have been devised. In
this paper, the Fincke–Pohst algorithm is applied for the MIMO
ISI fading channels. As will be discussed in detail later, this mar-
riage between the two algorithms works well.

SLD is applied at the expansion phase of the tree search rou-
tine. Note that each survivor node is the forefront of exploration
along a particular path. A path of a certain length, say , is
defined by the hypothetical channel symbol vectors stored
in the path. Each survivor node in the tree gets expanded into a
set of candidates of length . With SLD, only those candi-
dates within the sphere of a prechosen radius from the channel
output are to be expanded. Further note that the ISI channel has

-taps. A received signal vector at a particular time epoch de-
pends on previous channel symbol vectors. These previous
channel symbol vectors are stored in the path.

It is also useful to note that by using these channel symbol
vectors, the contribution of the previous symbols can be can-
celed out from the receiver vector. This is called the per-sur-
vivor processing technique. This cancellation is exact on the
correct path, while it causes a further distortion and subsequent
increases in the distance-measure of incorrect paths. As a con-
sequence, this per-survivor ISI cancellation helps increase the
number of candidates spawning from the correct path at the SLD
path expansion phase; while it increases the distance measure of
the candidates spawning from all incorrect paths, thus helping
to eliminate the offspring of incorrect paths from the survivor
lists much earlier.

For description of the cancellation step, we use to denote
the ISI-cancelled received signal of a certain path at the th
epoch

(34)

(35)

where denotes the hypothetical channel symbol vectors
stored in the path and denotes the cancellation error such
that . Note that on the
correct path.
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Fig. 3. Flowchart of the SLD.

A. Expansion of Each Survivor Using SLD

The aim of SLD is to generate a list of the most posterior-
probable candidates given the received signal. After the can-
cellation process (35), the likelihood function of a particular
symbol vector is determined by the Euclidean distance (since
the noise is Gaussian) such as

(36)

where is the received signal due only to the current input
vector . We use this distance measure to find the list. Every
possible signal vector which results in clean channel outputs

within a certain distance from should be selected and
stored into the list. With the Fincke–Pohst algorithm [9], we can
accomplish this task. This process of sphere list detection shown
in the flowchart in Fig. 3 starts with the unconstrained estimation
of . Hochwald and Brink [7] used the ML estimator

(37)

where denotes the set of the complex number. The ML esti-
mator requires the random channel matrix to be full rank.
If it is not a full rank matrix, the estimator is not well defined
and may incur a large estimation error. This motivates us to de-
vise and use a regularized estimator. We propose the minimum
mean-square estimator (MMSE)

(38)

which can be written as

(39)

where is the noise covariance matrix. With
the MMSE estimator , the distance criteria can be revised as

(40)

The second term in (40) is a constant with respect to different
. Thus, the SLD criteria to find every candidate can be

summarized as

(41)

where is the radius of the sphere. Using this criterion, the
Fincke–Pohst algorithm can be applied.

We use the Cholesky factorization on
, where is an upper triangular

matrix. Since the is a positive definite matrix
(the sum of two positive definite matrices is still positive defi-
nite), the upper triangular matrix always exists with all diag-
onal elements being positive real numbers. Therefore, (41) can
be written as

(42)
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Fig. 4. (N = 4,N = 4, and L = 3.) MIMO system with BPSK (M = 2)
modulation (no need for SLD). The threshold value for the tree search is T =
4:0.

It should be noticed that each th summand, ,
is nonnegative. The summation can be started from
(without loss of generality) and down. As soon as the partial sum
exceeds at a certain , we note that the total sum will be
bigger than . Therefore, we can stop immediately. There is
no need to proceed any further for all th summands, for .

Considering at , we can choose all candidates for
which satisfy

(43)

For each candidate , we may continue to choose a
candidate of by again using (42). Similarly, this
process can be continued until . It is possible that no can-
didate could be found. The process can be continued by going
one step back to the selection of , until some is found.
Fig. 3 shows the detailed flowchart of the proposed sphere list
detection process.

VII. SIMULATION RESULTS

Simulation experiments have been carried out to evaluate the
performance of the proposed transceiver system. Several repre-
sentative simulation results for ( , , and )
will be discussed in this section.

We let denote the normalized signal-to-noise ratio
(SNR) which is the SNR per information bit. Suppose
denote the SNR per received channel. Then, SNR is defined as

(44)

where denotes the rate of the outer code. In addition, the
Gray mapping from coded-bits to channel symbols is used.

A. Uncoded Results: MIMO System for BPSK/4-QAM
Modulations ( , )

Fig. 4 shows the performance of the proposed transceiver
system for uncoded BPSK modulation. Without utilizing SLD,

Fig. 5. (N = 4,N = 4, andL = 3.) MIMO system with 4-QAM (M = 4)
modulation. The threshold value T = 4:0. The search radius R in SLD is 5.5.

the tree-pruning algorithm, referred to as the -algorithm, with
threshold is applied. The bit-error rate (BER) curve is
drawn in comparison with the matched-filter bound (MFB) for
a ( , , and ) system [5]. It can be observed
from the BER curves that the diversity order of is
achieved. Since uncoded modulation is used, no transmit diver-
sity is achieved. An average number of around ten survivors is
required to obtain this performance. We note that the BER ob-
tained is within 2 dB of the ideal MFB.

The performance under 4-QAM system is shown in Fig. 5.
In this case, the full complexity trellis has

states on each of which a posterior probability is needed
to be calculated for each time epoch. Using the proposed tree
search methods, it has been observed that the average number
of candidate paths is around 20 at the output of the SLD rou-
tine and that of survivors in the tree-pruning algorithm is around
15. We note that the increase in computational complexity com-
pared with the BPSK case is negligible. The BER is shown to
be about 2 dB away from the MFB. In both cases, the channel
simulated was slow fading with the normalized Doppler fading
rate , where is the period of channel symbol.

B. Coded Results: MIMO System With LDPCC ( ,
)

We use the ( , , and ) Gallager code as
the LDPCC. For the simulation results given in this section, the
channel is simulated as fast fading with the normalized Doppler
fading rate . In addition, the threshold value has
been set to and the search radius of the SLD to .

We first evaluate the effectiveness of the compensation rule.
Without the compensation rule applied, the equalizer does not
have any other choice but to generate hard decision outputs. For
the most part of the tree sections, there is a single path. Only to-
ward the end of the tree, a number of candidates become avail-
able which can be used to formulate the soft-output messages.
With the hard-output from the equalizer, the decoder makes the
internal iteration for final decisions. There is no superiteration
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Fig. 6. BERs with hard- and soft-equalizer outputs.

in this case. With the use of compensation rule, however, the
equalizer can generate soft-output LLR messages which are uti-
lized to initialize the message passing decoder. It is interesting
to see the performance difference of these two schemes, which
is in fact illustrated in Fig. 6. With the hard output equalizer, we
note that, the LDPC decoder reaches 10 error rate at about
8.5 dB SNR. From the BER curves for the decoders using the
soft equalizer outputs, we notice that, the BER is improved by
about 1.0 dB.

As illustrated in Section IV and in (23) and (26), the equalizer
based on the compensation rule makes use of the LLRs gener-
ated from the decoder and, thus, a superiterative receiver opera-
tion between the equalizer and the decoder can take place. Fig. 7
shows the effect of superiterations. After three superiterations,
the error rate reaches 10 at around 7.2 dB.

As discussed in Section III, the upper bound on pairwise
error-probability (18) can be used to generate an error-perfor-
mance measure for the purpose of comparison with the simu-
lation results. For the ensemble of ( , , and

) LDPCCs, the exact calculation of the union bound for
MIMO fading channels [14] can be obtained. However, an ap-
proximated error performance based only on the minimum-dis-
tance is generated in this paper. It is an ensemble average of
all randomly selectable codes with a certain minimum distance.
For an (4096,4,8) LDPCC, for example, the minimum distance

is 256 [16]. The pairwise error (18) can be aver-
aged over an ensemble of channel symbol difference matrices

. Each vector can be generated from the bi-
nary sequence of weight which is randomly selected. For
each matrix, the distance set can be found in (18). This ap-
proximation is used as a comparison in Fig. 7.

VIII. SYSTEM COMPUTATIONAL COMPLEXITY ESTIMATION

In this section, the relationship between the computational
complexity and the system parameters is investigated. Analysis
of computational complexity can help us determine the data pro-
cessing speed required to obtain a particular performance re-
sult. For example, at a certain processing speed, a particular set
of affordable system parameters such as the search radius ,

Fig. 7. BERs in three superiterations.

the threshold , the size of modulation , and the numbers of
transmit and receive antennas, and can be selected.

In the SLD phase, given a dimension of channel
symbol vector without loss of generality, we may choose
to start the search from the th coordinate and work our way
down to the first one. Although most candidates searched would
not appear on the final list, each candidate explored incurs a
certain amount of computations. This overall operation of the
algorithm can be represented as a tree, as was proposed in [22]
and [23]. We may adopt and apply their mathematical frame-
work to the MIMO frequency-selective fading channel. In each
time epoch, instead of having a single path, a number of sur-
vivors are accepted, each of which leads to a certain amount of
computations in the SLD process. Then, the overall complexity

can be estimated by

where which represents the number of floating
point operations required for each candidate explored at the
level ; denotes the incomplete Gamma function in the

distribution which represents the probability of a particular
candidate having a distance less than ; denotes the number
of constellation points in the hyperspace with a distance of

in which the neighboring candidates have the unit distance.
Making use of Euler’s formula, can be computed for dif-
ferent base constellation sizes [22].

Fig. 8 shows the results for base constellation -QAM
with a different . Similar curves can be obtained for ,
64-QAM. In Fig. 8, the number of computations used in sys-
tems with different and is shown. For the same search
radius , the computational complexity increases as the number
of transmitter and receiver antennas increases as expected. In ad-
dition, for a particular system, increasing will lead to a higher
level of computational complexity as well. When the radius
reaches a certain limit, all constellation points are included in
the sphere. Thus, any further increase of will not increase the
computational complexity.
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Fig. 8. Computational complexity as a function of the sphere radiusR for the
base constellation S = 4-QAM. The SNR per transmit antenna is 10 dB.

IX. CONCLUSION

We have proposed a novel transmitter-receiver system de-
sign with a new reduced complexity tree search-based soft-input
soft-output equalization method which can be combined with
the graph decoder in a turbo-iterative manner. The simple but ef-
fective compensation rule allows the generation of more reliable
soft-output messages and contributes to a significant reduction
in the bit error rates. The proposed transmitter and receiver pair
may be useful for future communication systems requiring very
high spectrum efficiency operating over severely frequency-se-
lective multiple transmit and receive antenna systems. The sim-
ulation results show that the low-complexity scheme performs
robustly over the MIMO fading channels.

APPENDIX

In this section, we offer the proof of the compensation rule
(Lemma 1).

Proof: Without loss of generality, we may use Fig. 2 in the
proof paying particular attention to the last three tree sections of
the pruned tree. Let denote the minimum of the cumulative
metrics at the th tree section, i.e.,

(45)

where denotes the number of survivors at the th tree
section. As shown in Fig. 2, the pruned paths at a particular
are marked with “X.” Thus, at the th epoch, the zeroth and the
first path are pruned because their cumulative metrics and

are bigger than , where denotes a fixed constant for
the threshold value of the tree-pruning algorithm. We note that

since the zeroth and the first paths survived the threshold test
at , their, respectively, associated metrics and
should satisfy the following inequalities:,

Now, note that since all the offsprings of the zeroth node at
are pruned at the th section, the following inequality must be
satisfied:

(46)

where denotes the compensation applied to all paths
pruned at the th tree section.

On the other hand, we may write any cumulative metric sur-
vived at the th section can be written as , where

. Thus, we have

(47)

For instance, if , then .
Substituting (47) into (46), we obtain

(48)

Since , we have the following results:

(49)
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