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Abstract—We provide an analytical and network-systematic framework
to characterize the self-similar, fractal scaling phenomenon which is be-
lieved to be ubiquitously present in modern high speed data network traf-
fic. We show that the self-similar network traffic is due mainly to the use
of closed-loop flow control at the transport layers, such as the use of the
classes of protocols from the TCP family. For in-depth investigation on the
subject, we inject synthetically generated application-level traffic which is
completely short-range traffic, into a very simple network simulated with
NS2.0, and examine the influence of different parameters of a TCP algo-
rithm on a variety of different fractal scaling behaviors observed at the
packet-level traffic traversing a link in the simulated network. We provide
a very simple–but intuitive–mathematical explanation of the observed phe-
nomenon using the shot-noise processes. Specifically, different kernel fil-
ters of the shot-noise are constructed to model the behavior of the window
processcwnd in different stages of the congestion avoidance algorithms em-
ployed in a TCP algorithm. With the use ofexponential-law shot-noise pro-
cess, for example, we indicate that thecwnd process in theslow start phase
results in a unique scaling behavior from RTT to a finer time scale, having
a scaling slope of� � �. From RTT to a coarse time-scale, the more con-
ventional fractal scaling behavior with the Hurst parameter less than 1.0 is
observed; we compare this with therectangular-pareto shot noise process.

Keywords—Shot-noise process, self-similar processes, long-range depen-
dence, heavy-tailed distribution, pareto distribution, TCP congestion con-
trols, and traffic characterization and modeling.

I. INTRODUCTION

�
INCE the salient discovery by Leland, Taqqu and Willinger
[1] of a self-similar or fractal-like scaling phenomenon on

the measured Ethernet LAN traffic, numerous empirical studies
have been conducted based on high-speed and high-resolution
network traffic measurements on a variety of different commu-
nications networks. This new discovery about network traffic
has directly impacted the practice of network engineers in a va-
riety of different ways, such as in developing more appropriate
traffic models, in designing different traffic control functions,
in evaluating the performance of a network, and in finding the
capacity regions of a network. Before we attempt to accom-
plish these engineering objectives, we feel that it is a prereq-
uisite to investigate the underlying causes more carefully and
develop a more network-systematic understanding of the frac-
tal scaling behavior marked in the trace data. Accordingly, we
attempt to investigate why the network traffic displays fractal-
like scaling behaviors over a broad range of time-scales, from a
variety of perspectives which have not been considered in pre-
vious studies. These previous studies may include those works
largely based on the following two major propositions: the su-
perposition of heavy-tailed On/Off processes and the multifrac-
tal processes [1][2][3][4][5][6]. The scaling analysis for these

works was performed mostly on a ”live” traffic, collected off
of a real network in operation. The other group of works may
include those in [7][8][9] in which the traces analyzed were col-
lected also from a simulated network using the Network Sim-
ulator(NS). With this ”active observation” approach of investi-
gating the underlying scaling behavior, we attempt to ascertain
our novel proposition that the fundamental cause of data net-
work traffic being self-similar is attributable more to the closed-
loop congestion control and avoidance algorithms employed at
the transport layer, such as the use of transport control protocols
(TCP), than to the workload traffic being heavy-tailed in file-size
distribution as has been widely believed.

A. Contributions

We introduce the use of the shot-noise process which helps
construct an organized network-systematic traffic analysis and
observation framework. We adopt the approach of active ob-
servation and conduct scaling analysis based on simulated net-
work traces. Unlike previous works, the impact of TCP win-
dow mechanism on the fractal scaling phenomenon of the simu-
lated traces are quantitatively explained, as well as qualitatively,
in one-on-one comparisons with different versions of the shot
noise process. Particularly, we attempt to provide a complete
layout of fractal scaling mechanism in the data network traces,
starting from the application-level traffic and all the way down
to the packet-level aggregate traffic. We start with modeling the
source (workload) traffic at the application layer, which is de-
signed to have short-range correlation (in fact it is memoryless
process). This short-range traffic will be injected into each of the
TCP Senders in the simulated network. Many of the TCP flows
are multiplexed at the router to which a bottleneck link is con-
nected. Then, the scaling analysis is performed using the packet
trace files collected off of the link. The scaling properties of the
traces are compared with those of shot-noise processes which
are excited by exactly the same workload traffic. Thus, the spec-
trum analysis of the packet traces can be directly compared with
that of the shot-noise processes. This novel framework enables
us to examine the influences of many different parameters, in-
volved in shaping the overall spectral shape of the traces, in-
cluding those in the workload level traffic, the transport layer,
the network multiplexer, and in a TCP algorithm, and provides
a more complete and systematic explanation of different scaling
behaviors observed in the packet traces.

For NS2.0 simulation, we use a very simple network (see Fig.
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1; detailed explanation will be followed in simulation section)
with a single bottleneck link to reduce the number of scenar-
ios with different combination of parameters to be simulated.
Our focus will be placed on investigating the impact of two bot-
tle neck parameters ��� and ���. The simplicity of simulation
configuration greatly helps us to illustrate and compare the scal-
ing behavior with the power spectrum of the shot-noise. From

G1

H1

H2

H3

H-N

1HGD
1HGC

HG NC −
HG ND −

21D
21C

2B

G2 Clients

Fig. 1. One link configuration

the experiments, we produced the following list of novel contri-
butions. First, we show that the TCP algorithm at the slow start
phase brings about a unique scaling behavior over the range of
time-scales from the time-scales of a packet transmission time
�� to those of capacity with the parameter � of 1.5 1. The
cause is analyzed with the use of exponential-law shot noise. It
is due to the slow start phase of TCP in which the window-size
����, the number of packets TCP sends without a reception
of an ACK, grows exponentially. This unique scaling behav-
ior would disappear at the time-scale above RTT since the size
of the packet stream cannot be increased more than the size of
�	
	��� (more explanation in section IV.). The spectrum analy-
sis of exponential-law shot-noise process provides the reason of
having the parameter � � ���. Second, we identify the second
unique scaling region, from RTT to a higher time-scale (become
more specific in section IV.), in which region the parameter � is
again 1.5. This scaling behavior and the slope can be accounted
for with the use of the rectangular-law shot noise. Third, we
find that the more conventional fractal scaling behavior having
the parameter ��� � � � ���, immediately follows the second
scaling region. To explain this, we use the rectangular-pareto
shot noise process. Lastly, we show in general that the net-
work parameters, the TCP parameters, the distribution of source
traffic–all are actively involved in making a particular scaling
behavior observable at a particular time-scale. This contradicts
the previous statement made by Park [7] and Feldmann [9] that

�In this paper, we follow the sample spectrum definition of the ���� noise
with � � ���

�
[10]. Thus, except for ��� � � � ���–in which case the

parameter � is the same as the Hurst parameter and the process is stationary
so that we can safely define the autocorrelation function (from the use of the
Wiener-Kinchine theorem) and the fractal dimension � � � � �–the use of
parameter � in this paper merely points to the scaling slope � by the linear
relationship.

details of network does not affect the self-similarity of the net-
work traffic.

B. organization

This paper is organized as follows. We omit explanation on
TCP algorithms due to limited spaces and refer to [11]. Section
II discusses the shot-noise process. In Section III, we discuss
the distribution of response size to be used in making the source
traffic in our NS2.0 simulations. Section IV provides NS2.0
simulations and discuss the results. Section V is the conclusion
of the paper.

II. SHOT NOISE PROCESSES

In this section, we briefly discuss a few mathematical analysis
results from shot-noise theory to facilitate better understanding
of scaling behavior marked in traces. We first discuss the shot-
noise process as a network-systematic model. We then discuss
the three kernel filters and their power spectral densities. Finally,
we discuss the limitations of shot-noises as a complete network
systematic model.

A. Network-systematic model

We define the shot-noise process ���� as a weighted and fil-
tered Poisson process

���� ��

��
����

������ ��� (1)

where
� �� is a homogeneous Poisson point process with rate �,
� �� is an independent identically distributed (i.i.d.) random
process,and is a weight assigned to each arrival,
� ���� is a linear time invariant kernel filter of the process.
This definition of the shot-noise process may be used to con-
struct a structured network-systematic model to explain the user-
level source traffic incoming to the network as well as the aggre-
gate packet-level network traffic, and serves as the mathematical
counterpart of the simulation using NS. In the following we ad-
dress the shot-noise model from the perspectives of first source
traffic, and then, aggregate traffic.

A.1 Source traffic perspectives

First, we propose a homogeneous Poisson arrival process to
model the application level, session arrivals. At the application-
or user-level the arrivals, the ”weak law of small numbers” or
”law of rare events” still holds for a number of independent
users, and thus Poisson convergence follows. Specifically, in
NS2.0 simulations, we have a total of � TCP Senders. First,
the arrivals are generated according to the definition of Poisson
process. And then, each arrival is assigned to a TCP Sender,
uniform-randomly selected from � ; Each selection is indepen-
dent of any other selection.

Second, each arrival is modulated by a weight �� which de-
notes the size of a single response associated with the arrival of a
single application session or a single user. The random variable
�� is independent, identically distributed. We will discuss the
distribution of �� more in section III. With these two, the source
traffic model is completed. It should be noted that the source
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traffic process is memoryless due to Poisson arrivals as well as
to ��� ��, and thus it is a short-range process. The source traffic
process ���� can be defined as the weighted train of impulses

���� ��

��
����

��Æ��� ��� (2)

where Æ��� denotes the Dirac delta function. Now with �� � �
for all �, we have the followings. The expected value of the
process is

���� � �� (3)

This follows from taking the derivative of the expected value of
the Poisson count process ��. This can be easily follows from
the fundamental theorem for any linear system which states that
the linear operations are commutative–the expectation operation
and differentiation are commutative. The autocorrelation func-
tion is given as follows

����� � �� � �Æ���� (4)

The Fourier transform of ����� gives the power spectral density

����� � ��Æ��� � �� (5)

A.2 Aggregate traffic perspective

In this research, a set of kernels ���� will be used to give
coarse imitations of the variation of window size cwnd in a sin-
gle TCP session. As explained in [11], the cwnd process follows
a set of rules provided in a particular TCP algorithm, exhibiting
difference behaviours in a different phase of a TCP. In this re-
search, in order to simplify our tasks, we shall only attempt to
imitate the ���� process within the congestion avoidance re-
gion of a TCP with the use of three kernel filters. That is, ����
will model the ���� process of a TCP (TCP Reno is used in this
paper) when it is poised in one of the following three situations:
� slow start, using the exponential-law kernel
� after ���� reached the maximum window size or the
�	
	��� (defined in section IV) of the bottleneck link, using
the use of the rectangular-law kernel
� many TCP Senders in competition, each with the Pareto dis-
tributed workload, using the rectangular-pareto kernel

The three kernel filters will be discussed in the following sub-
section, where the impulse and frequency responses of the filters
are described. It should be noted that the frequency response of
the filter determines the overall shape of the power spectrum of
the shot-noise. For instance, the power spectral density �����

2

of the shot-noise (1) can be obtained from

����� � ����� ������
� (6)

� �������Æ��� � � ������� � (7)

In addition, the mean and variance of the shot-noise process
can be computed as

������� � ������

� �

�

������� and (8)

� 	������� � � 	����
���

� �

�

�������� (9)

�We should note that (6) applies only when the autocorrelation function of the
shot-noise process exists, because (5) is obtained from the Fourier transform of
the autocorrelation function.

B. Three kernel filters and their power spectrums

We now discuss our three kernel filters, the exponential, the
rectangular-deterministic and the rectangular-pareto kernels and
their power spectral densities. Exponential-law kernel is to
model the operation of the window ���� during the slow start
phase of the TCP. Rectangular-law kernel is to model the be-
havior of the window ���� after it reaches its maximum bound,
������ or �	
	��� (see further explanation in section IV.).
The rectangular-pareto shot-noise is to model the aggregate pro-
cess when the distribution of file size is heavy tailed. Accord-
ingly, it should be noted that, we are targeting different regions
of time-scales for each filter, which should become more clear
with simulation examples in section IV.

B.1 Exponential-law kernel

The exponential-law kernel is defined as

����� �� 	�������� (10)

where � is the half-power frequency and ���� denotes the unit
step function. We should note that if we let

� ��
 �!�	

���
� (11)

then ����� � 
�
�

�		 , which may represent the number of pack-
ets a TCP sender can transport for the duration of a single round
trip time within the slow start phase (assuming a constant ���
for convenience of analysis). The filter’s frequency response can
be obtained from the Laplace transform evaluated at � � "
#� ,

����� �
�

"
#� � �
� (12)

and thus the power spectrum of the filter is

�������
�
�

�

�#��� � ��
� (13)

Then, we have the following results
�

������� � �$� (14)

�

� 	������� �
�


�
(15)

�

����� �
��

��
Æ��� �

�

�� � �#���
(16)

�

��
���� �
�


%
	���� � (17)

The exponential-law shost noise (ELSN) will become very use-
ful to be compared with the wavelet spectrum analysis results of
the traces at the region of time-scales of the slow start. In gen-
eral, ELSN does not possess a ��� frequency spectrum. In fact,
the kernel ����� is a low-pass filter as shown in Fig. 2. However,
when the value of half-power frequency � �� 
#� � � is small
relative to the length of the trace, the low-frequency region of
the flat-response may not be resolved with the spectrum anal-
ysis on a discrete-time sequence, due to the limited length of
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the sequence. In such a case, what we would observe may be
the transition region only (ascending linearly in log-log scale),
which extends from the minimum time-scale to the maximum
time-scale–the length of the trace. This sample spectrum would
be looking like a ��� spectrum. In Fig.2, for example, when
� � ��� rad/sec, what we observe is the sample spectrum of
��� with & � 
, which corresponds to � � ���.

B.2 Rectangular-determinstic kernel

We now consider the rectangular-law kernel,

���� �� ����� ���� � �� (18)

where � denotes the length of the rectangular pulse. This filter
may be useful to model the TCP window process after ����
is grown to the maximum allowed window size ������ or the
�	
	��� of the link.

The Laplace transform of ���� is �� � 	���� �� . Evaluating

at � � "
#� , we have ���� � � � 	����	 ������	 �
��	

. Then, the
power spectrum of the rectangular pulse is

������
�
� � �� ������	 �

��	
��� (19)

It is to be noted that (a) the envelop of the power spectrum de-
cays as ��� with & � 
�� and that (b) the width �

	
of the main

lobe shrinks as the length of the pulse � increases. From the
second observation, it follows that as the length of the pulse �
increases, ��� behavior is extended toward the lower and lower
frequencies. In section IV., this rectangular-law shot noise pro-
cess will be compared with the network traces collected off of a
bottleneck link in which a TCP sender takes a prolonged traffic
ON-time to complete the transport of a response either due to a
limited window size and interruption of other TCP traffic or due
simply to a very large response size .

B.3 Rectangular-Pareto kernel

The kernel of the rectangular-pareto shot noise process is de-
fined as

����� �� ����� ���� � �� (20)

where � is Pareto distributed with the probability density func-
tion

Pr�� � ��� ' ��� � %���
���� (21)

where � � % � 
 and �� ' �. The power spectral density
of the Rectangular-Pareto shot-noise can be obtained by taking
the expectation of ����� (6) with respect to ����, and can be
written as

����� � ��Æ�������������
� � ����������

��� (22)

Again the second term, ���������
��, determines the overall

shape of the power spectral density. Now we evaluate the in-
tegral to investigate the scaling slope in the frequency-domain.
Let’s use ���� � � �� to denote the rectangular window of size
�. Then, we have

���������
�� �

� �

�

���� � � ��Pr�� � ����

�

� �

�

� ��������
��

��%���
������

� ���%� �����%#$
�� �
#���������

(23)

where ���� denotes the complete Gamma function 3. Thus, we
have found the relationship between the Pareto parameter % and
the spectral scaling slope &, which is & � 
 � %. Then, using
the relationship � � �	�

� , we have the following relationship
between the parameter � and the Pareto parameter

� �
�� %



� (24)

where the parameter � � ����� ����–the Hurst parameter–for
% � ����� 
���. We should note that the same relationship be-
tween the Hurst parameter and the Parato parameter was ob-
tained from the limit theorem [1].

The Rectangular-Pareto shot-noise process will be useful to
explain the scaling behavior observed from the corresponding
time-scale of transporting �� (defined precisely in section III.)
and the larger time-scales.

C. Limitation of shot-noise as the complete model

It would be worthwhile to mention a couple of points on the
fundamental limitations of the shot-noise framework as a com-
plete model. First, the kernel filters are time-invariant and thus
cannot exactly model the dynamic, time-varying nature of the
TCP window processes. We settled for having three different
filters for there different operation regions. Second, the max-
imum traffic rate any aggregate traffic can reach is limited in
network traces, while it is unlimited for the shot-noise. For ex-
amples, the exponential-law shot noise will approach a Gaussian
in amplitude distribution as the Poisson driving rate � increases

beyond �$��, where �� ��
�
�
���������
�������

. For TCP traffic, when
� increases beyond a certain rate the aggregation of TCP flows
will create a network congestion and in effect each TCP will
reduce the traffic rate in accord with the feedback mechanism.
This time-varying nature of the TCP cannot be accurately cap-
tured with the proposed framework based on the time-invariant
filters. It should be noted that our purpose of using shot-noise is
not an attempt to model the TCP window process exactly, but to
study the fractal scaling behavior more systematically.

�Hint: Use 
���	� � ������
����

��
and

�
�

�
����	����	 � 	������ , � ��

�������� � � �
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III. GENERATION OF RESPONSE RANDOM VARIABLE ��

This section discusses the distribution of response data size
�� and the method to generate samples. It is perhaps well
known that the tail distribution of response size in bytes is
heavy-tailed, or more precisely pareto distributed with ��� �
% � 
��. For example, Crovella et al [12] report some of the re-
sponse data size distribution based on their collection at Boston
University, which consists mainly of file transfers with the esti-
mate of % close to 1.1. Willinger et al [13] also report the esti-
mates of %, 1.1 for FTP session sizes and 1.35 for HTTP session
sizes. Based on these findings, we have no doubt that the tail
distribution of response size is a Pareto with � � % � 
.

Figure 3 shows the complementary CDF of HTTP response
data size collected at UC Berkeley Web Trace 8468. It should be
noted that the upper figure uses a linear-log scale to emphasize
the distribution for small response sizes and about 90% of the
response is smaller than 10 Kbytes, whereas the second figure
shows a log-log plot and we can clearly see it follows the parato
distribution. The smallest value (� of the pareto reference curve
is determined as (� � �) 
���


� , where �% is estimated from the
least square curve fitting in the region of 
�� through 
��. From
this, we obtained �% � ���� and (� � 
���.

In this paper, we certainly use the pareto-tail distribution to
generate response samples of ��. We have chosen the mean
value, i.e. % � ��� for the generation of pareto ��. In addition,
we have also considered the followings: Firstly, we have noticed
that in general only 10% of the responses follows the heavy-
tailed distribution and the rest of 90% does not. For example,
consider the top figure of Fig.3, a linear-log plot emphasizing
the non-pareto region. It is noticeable that the empirical curve
significantly deviates from the pareto-reference. Since this im-
plies that about 90% of the responses are completed within the
slow start phase of a TCP connection, it might be beneficial to
carefully reflect the empirical distribution in generating the ran-
dom samples. Thus, we modified the pareto random variable
to create a new compound random number generator, named
�������. CCDF of downrnd is constructed from two differ-
ent distributions each of which has a separate domain of sup-
port. The first part is an exact copy of the empirical distri-
bution, from 0 up to ��, where �� denotes the response size
with *���� ' ��� � ���. The second part simply uses the
pareto random number generator with % � ���. Fig.4 verifies
the generator ������� where the complementary distribution
constructed from the histogram of 60,000 ������� samples is
compared with the pareto-reference.

Secondly, we have also noted that the distribution of FTP es-
sentially has the same shape as that of HTTP, but with a few
orders of magnitude larger in size. Thus, we modified �������
to generate the sample for FTP. The first part, up to ��, is gen-
erated by multiplying the empirical distribution of HTTP with
���, where � � �� 
� � � � is the order of magnitude shift. The sec-
ond part is created from the pareto with % � ���. Fig.5 shows
the verification of the method with two order of magnitude shift,
i.e.,� � 
.

Thirdly, we also created completely artificial distributions,
named skewed-HTTP and skewed-FTP, for the convenience of
investigating the impact of pareto tail distribution in response
size on fractal scaling of the network traffic. They were created
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basically by lumping all tail probabilities in the pareto region,
i.e. �� � ��, to ��. That is, Pr��� � ��� � ���.

IV. INVESTIGATION ON TRAFFIC SELF SIMILARITY

In this section, we discuss NS2.0 simulation results. It is our
intention to have simple experiments, and thus to stay intuitive.
We first provide some of simple rules of scaling analysis based
on the concept of sample spectrum, to effectively–but not rig-
orously, address the problem of having multiple distinct scaling
regions. We then move on to conduct some single shot anal-
ysis. The single shot experiments are designed to investigate
the impact of the slow start in TCP on the scaling behavior of
smaller time-scale regions, typically around a round trip time
(RTT) delay. The spectrum of a single shot shall make a good
comparison with the scaling laws observed in the exponential-
law shot noise. Finally, multiple-shot analysis will be given.
They are designed to investigate the larger time-scale behaviors
having a longer traces. From multiple-shots experiments, we
should be able to examine the causes of self-similar behavior
existing at the larger time-scales, which may be compared with
the rectangular-pareto shot noise processes.

A. Simulation Configuration

Fig.1 is the network configuration with a single bottleneck
link. We inject the systematic source traffic discussed in sec-
tion III.A, which is basically a Poisson request arrival process
with independent response sizes. Each of � TCP servers is con-
nected to a server node H�, � � �� � � � � � , each H� is connected
to the gateway router G1, and G1 connects all the flows to the
clients. We intend to observe the traffic flows from G1 to G2
from which we can collect the server-to-client traces, but not the
packet transitions from G2 to G1 which would be consisted only
of ACKs and requests. We want the simulation to be very simple
and thus we have the following simulation setup:
� Each of the links from H�, � � �� � � � � � , to G1 has the same
link speed and delay, to have a single RTT condition for all TCP
flows 4.
� The delay and link-speed from H� to G1 is set to have a zero
delay 0.0 sec and 10 Gbps respectively, for all �, � � �� � � � � � .
This is to ensure the link from G2 to G1 is the bottleneck.
� The buffer size at G1 for the outgoing link G1-G2 is set to
a very large value, i.e. 10,000 packets. This is to ensure no
packet drop so that the TCP is to be remained in the congestion
avoidance region throughout the duration of a simulation. Thus,
in this paper we will not deal with the TCP behavior in con-
gestion control phases such as time-out, fast retransmit and fast
recovery, which involves other feedback window mechanisms
and differs from what the three shot-noise filters discussed in
this paper can justify.
� The buffer employs drop-tail and FIFO rule.
� The link, G1-G2 is a duplex link and thus the up-stream traffic
from G2 to G1, mostly ACKs, do not interfere with the down
stream traffic.

In such simulation setup, we vary the following parameters:
� � the link-speed of G1-G2, (� �� ��� shown in the figure)

�It would be very interesting to investigate the effect of distributed RTTs as
it also has a high variability in the real Internet case. However it is beyond the
scope of this research effort.

� � the propagation delay of G1-G2, (� �� ��� shown in the
figure)
Before moving forward, we briefly introduce the notion of ca-
pacity, which is defined in this paper as,

�	
	��� [packets] �
��� [bits/sec]	 2D[sec]

�[bits/byte]	 ����[bytes/packet]
�

(25)
Thus, the capacity is twice the bandwidth-delay product (BDP)
� � � of the bottleneck link, expressed in the units of a packet.
BDP provides a measure of an ideal TCP window size, such as
how big the window size should be, to send the data at the max-
imum rate without causing the packets queued up at the buffer
of the bottleneck router. Then, what is the need of defining the
capacity? The �	
	��� provides the notion of the minimum
round trip delay of the link: It provides the measure of the time
duration in units of �� how long it takes to receive an ACK
from the instance a packet is sent. If the window size is greater
than the capacity, the link is fully occupied, such as serving the
stream of packets back to back. Later, we will observe a sharp
slope change in the wavelet power spectrum at the time-scale lo-
cated around the capacity. �	
	��� is also used as a handle to
either increase or decrease the level of contention among TCP
Senders. In multiple-shot analysis section, we fix the number of
TCP Senders and vary the size of capacity in two cases, small
capacity and large capacity.

B. Some clarification items on scaling analysis

The self-similar processes which have been more frequently
referred in the literature of traffic-engineering such as frac-
tional Gaussian, M/G/
, FARIMA, etc. are defined only for
��� � � � ���. On the other hand, we are about to observe
a couple of unusual scaling analysis results from the traces ob-
tained from simulation. They often indicate values of the param-
eter � greater than 1.0. In fact, it is possible to generate the sam-
ple path of a self-similar process which has the value of parame-
ter � outside the region ��� � � � ��� (for example see [14]),
using the frequency-domain approach [15]. These discrete-time
sample path of a self-similar process with any value of parame-
ter � can be well described by the more general class of � ��-
noise [16] where the power exponent & is related with the Hurst
parameter as,

� �
� � &



� (26)

It should be noted that for the non-stationary process with � '
��� the time-domain analysis tools which is based on the as-
sumption of stationary process does not work; the frequency
domain analysis tools such as the periodograms and wavelets
continue to work. Thus, we chose the basic spectrum analysis
tools developed by Avry and Veitch [17] with the choice of van-
ishing moment of 3.

We encounter traces having multiples of different scaling re-
gions each of which can be better described by a unique scaling-
slope. For this, we would like to introduce following clarifica-
tion items which is based on the concept of sample spectrum.
� Define the basic region of support: The smallest time shall be
the packet transmission time ��. The largest time shall be the
duration of the trace ��. Then we overcome the problems of
infrared and ultraviolet catastrophe.
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� Within the time-scale of �� to ��, there may be many distinct
scaling regions. We describe each of them with a certain region
of support and an associated scaling slope & or � .

C. Single-shot analysis

In this section, we want to focus on the small time-scale be-
havior of the traces, especially coupled with the slow start of
TCP. Every time a TCP starts a session, it must start with slow
start before moving into the next phase of congestion avoid-
ance or congestion control. In addition, as discussed in section
III, about 90 percent of responses in HTTP are involved with
the response size smaller than 10 packets and 1000 packets for
FTP. This implies that about 90 percent of the responses would
likely be completed within the phase of slow start. From the
shot-noise theory, we learned that the frequency characteristics
of the modulating window, the filter ����, determines the power
spectrum of the shot-noise process. They motivate us to char-
acterize the frequency response of the TCP window algorithm
within the slow start phase. We may investigate this by send-
ing one impulse, which is equivalent to a single transfer of a
fixed size response data. In order to examine consistency of our
proposition, we have varied the size of �	
	��� and the size of
the maximum bound on window size, window.

In order to facilitate a better understanding of the scaling anal-
ysis results, we now consider a spectrum analysis on the � ��
��	�� window process based on the Z-transform. Let us con-
sider a link serving a flow of a single shot in the slow start
phase. First, we choose a parameter * to denote the �	
	���
for the link. Now, let’s consider the number of packets that are
consecutively transmitted over the link. At the first round, the
TCP sender sends one packet and gets an ACK in * ��, at
which moment it sends 2 packets in two consecutive units of
time ��. Thus the link will be busy for two consecutive �� and
off for �* � 
���, and so on. Representing this operation in
Z-transform, using �� as one unit of discrete time we have

���� �

����
���

+��� �� +���

�� +��
� (27)

where  denotes the power exponent in response size �� as

�� � 
�	� � �� (28)

Fig. 6 is the results of Z-transform evaluated at + � 	�� for
* � �, and  � �� �� �, and �. We should note that the slope
parameter & increases to 
��, and thus � � ��� from (26), as  
increases to * and all the low-pass filter characteristics visible at
 � � disappears. This provides, together with the exponential-
law shot noise in section III., the necessary explanation of the
unique scaling behavior from the time-scale �� to �	
	��� hav-
ing the parameter � � ���. We will see this again with NS2.0
simulated traces.

We now discuss the NS-simulation results. For the first exper-
iment, the maximum allowed window size window was set to 20
packets. � � �Mbps and � � ��msec. Thus, �� � 
��msec
and capacity of the link is 45 packets. The response size �� of
a single shot is controlled by (28) with  � 
� �� � � �
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Fig. 6. Sample spectrum using the Z-transform of slow start shots, � � 
� �� �
and �, clockwise starting from the upper left figure, at capacity � �	

Fig. 7 shows the scaling analysis on the single shot trans-
portation of �� with  � �. The first figure indicates the evo-
lution of window size cwnd over time. At � � �, cwnd starts
with 1 packets. RTT is about 
��� � �
�msec. At the first
RTT delay, the TCP sender receives the first ACK for packet
number 1 and increases cwnd by 1. Thus, TCP sender sends
two packets. Around the second RTT delay, the TCP sender
receives two ACKs for packet number 1 and 2, and increases
cwnd to 3 and 4, each offset by ��. This process goes on un-
til cwnd reaches the maximum allowable window size, window
= 20. The second figure shows the wavelet transform results
of the ���� process. The third figure indicates the byte time-
series which is obtained by recording the total number of bytes
traversed the bottleneck link at every ��. This is obtained from
the two-column time-series, the first column of which denotes
the time-stamp of packet and the second denotes the number of
bytes of the packet which were received at ,
. Since each tick
represents one �� and every packet has the same size of 1000
bytes. The ordinate value of the time series should take only
two values, 0 or 1000. The fourth figure is the wavelet trans-
form of the byte time-series.

We first note that the cwnd process possesses almost the same
scaling characteristics as the byte time-series does. As in con-
vention, we estimate the parameter � from the scaling slope of
the wavelet power spectrum of the byte time-series. It should
be noted that as our analysis using the Z-transform indicated al-
ready, the fractal scaling with � � ��� is obtained again. In
fact, the ascending time-scales extends from - � � to - � �
with � � �����. Finally note that  �!��������� � ���
��,
which is around - � �.

Now, let us consider a larger response with  � �, i.e., a shot
with 255 packets to see the impact of a small ������ with a
longer time-series. At each RTT delay period, the window size
���� increases exponentially such as 1, 2, 4, 8 and 16, but the
increment stops when ���� reaches 20. This provides the rea-
son why the fractal scaling stops at - � � as shown in Fig. 8.

Next, we want to investigate the impact of having a larger
window = 256. We also increase capacity of the link by having
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Fig. 7. cwnd process, packet series and their wavelet transforms for � �
��msec, � � 
, ��� � Mbps

� � �
�msec and � � �Mbps. Thus, �	
	��� � ���. A sin-
gle shot with 511 packets,  � �, is now used. The third figure
of Fig. 9 clearly illustrates the operation of packet transports in
slow start such that at every 180 ticks the sender increases the
number of packets with a power of 2. Thus, we shall observe
the same scaling behavior with � � ��� as was clearly indi-
cated by the examples of Z-transform and the exponential-law
shot noise. It should be noted that since ������ ' �	
	���
in this case, capacity takes the limiting factor determining the
upper most time-scale at which the small scaling law stops, i.e.
around the time-scale of  �!
��	
	���� � ���. We clearly see
the extension of fractal scaling region having � � �����, upto
- � �. When we lower capacity by having � � �Mbps and
� � ��msec, we observe that the scaling law with � � ���
stops at - � 
 (Not presented in figures). After the slow start
phase, the link is 100 percent utilized serving the packets back
to back. Thus, the fractal scaling law disappears for - ' 
. This
is natural since the time-series becomes a constant rate process,
taking only one value of 1000 after the time instant at which
���� exceeds the value of �	
	���.

From the results of single-shot analysis, what we have learned
shall be clear such that .���������� �	
	���� determines the
upper most time-scale up to which, starting from the time-scale
of ��, the exponential-law scaling behavior with � � ��� pre-
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Fig. 8. cwnd process, packet series and their wavelet transforms for � �
��msec, � � �, ��� � Mbps, �� � ��� and ������ � ��

sides. Each of the single-shot traces obtained in this section
symbolizes the characteristic kernel ���� which determines the
PSD of a shot-noise. Thus, the characteristics of single-shot
spectrum shall translate exactly to the spectrum of multiple-shot
simulations which involves with multiple TCP connections and
large file transfers.

D. Multiple-shot analysis

Single-shot analysis reveals the scaling law at the small time-
scale, from �� to �	
	���. Multiple-shot analysis shall shed
lights on the scaling behavior at the larger time-scale. The char-
acteristic scaling signatures at the small time-scales shall be re-
mained to be the same in multiple-shot analysis as discussed.
The filter characteristics of slow start is basically a exponential-
law shot window. Thus, it will reveal the low-pass filter behav-
ior, as shown in Fig. 2, including the responses of low frequency
regions (or the larger time-scales of interest in this section) when
observed with a longer trace. Thus, it would not interfere much
with the self-similar scaling law at the large time-scales which
may be developing with multiples of TCP transfers with differ-
ent response sizes.

The source traffic is designed to be the same as that of the
shot-noise processes. TCP-request arrivals are modeled as Pois-
son process with rate �. The size of response �� will be gen-
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Fig. 9. cwnd process, packet series and their wavelet transforms for � �
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erated with the four different distributions, HTTP and FTP with
% � ���, and skewed HTTP and FTP developed in section III. It
is of convenient to define the offered loading factor /

/ ��
������

���$�
� (29)

where � is the arrival rate of the Poisson process: In simulation,
we use the sample mean, ���, instead of �����.

Thus, we vary the number of TCP flows, the TCP-request
arrival rate � and the distribution of �� for source traffic gen-
eration. In addition, we vary the �	
	��� of the network by
changing the link-speed � and the link-delay �. Throughout
this section, we fix window = 20 for convenience. In the Inter-
net, there may be a variety of different ������ sizes employed
by different versions of TCPs as well as by different users and
host machines. However, in this paper, we fix it to be 20 and
vary the �	
	��� of the bottleneck link since what we are in-
terested in is the relative ratio between the sizes of ������ and
the �	
	���, but not the precise numbers.

D.1 Small capacity Link

We now present the results for small capacity simulations
where ”small” implies the situation when the capacity is smaller
than window the maximum allowed window size, which we fix

it to be 20. We chose � � ��msec and � � 
��Mbps. Thus,
�	
	��� is 18.75 which is smaller than ������ � 
�.

First, the skewed FTP response size distribution is generated
with the shift � � 
. For this, we know that the maximum size
�� of the response is 1,620 in packets with 10% chance of being
selected in the skewed FTP. There are total of 100 counts of
arrivals, 10 arrivals for each TCP connection. The offered load
is 0.3457 with � � ��
���. Since ������ ' �	
	���, the
smallest possible completion time of transporting the maximum
response is 1,620 ��. Note that since  �!
���
�� � ����, we
expect to see a change of scaling law at - � �� or - � �
. This
is the case of rectangular-law shot noise discussed in section II,
which would has ��� spectrum behavior. That is & � 
 and
� � ��� from (26). In fact, Fig.10 indicates that the scaling
region with � � ��� extended up to - � ��, with a little break
at - � � which is also expected from single-shot analysis.
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Fig. 10. Small capacity simulation, � � ��, � � �msec, � � ���Mbps,
skewed FTP-profile with shift=1, 10 arrivals for each connection

The break is at the time-scale of 
� � �� which is compa-
rable to capacity=18.75. For scales with - ' ��, the scaling
curve starts to develop the low-pass filter characteristics. With
a longer simulation, it actually becomes one showing a flat re-
sponse beyond - ' ��. If we have the shift � � � so that the
maximum response size becomes 162, 
���, the scaling region
with � � ��� ends at - � �, and a flat response region domi-
nates the rest - ' �. Both of the simulations, the offered load
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were kept at the value of / � ������. When we change the value
of / to 0.0346, the same scaling behavior was observed such that
up to - � �� the trace show � � ���. This validates our ap-
proach of explanation the scaling law with the rectangular-law
shot noise.

When we switch back to the use of pareto-tail with % � ���,
the flat-spectrum region disappears. Instead, yet another scaling
region with slope � � ����� appears from - � �� to - � ��.
With the use of pareto-tail, a response of huge size is possible
with a non-negligible probability. Thus, the fractal scaling re-
gion tends to extend to the lower frequency regions, but with a
significantly reduced slope such as � � �, which we attempt to
explain the behavior by comparison with the rectangular-pareto
shot noise.

We now switch to the use of HTTP-distribution having the
pareto-tail with % � ���. Since HTTP-distribution starts the
pareto-tail at around the response size of 10 packets, we will
not observe a significant development of fractal scaling region
with � � ��� beyond - ' � unlike the case with the FTP-
distributions. Two simulations were conducted with (1) / �
������ and (2) 0.9332, and observed were the scaling behaviors
at the lower frequency. The simulation results for / � ������
is in Fig. 11. Note that hereafter, only the wavelet transforms
for ���� and the byte time-series are shown, the top and the
bottom respectively. At this relatively low traffic intensity, the
flat-frequency region starts to develop at a early time-scale as
shown. When we increase / � �����
, we observe a straight
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Fig. 11. Small capacity simulation, � � ��, � � �msec, � � ���Mbps,
HTTP-distr., 100 arrivals for each connection

scaling behavior with � � ����� extends throughout the entire
time-scales (Not shown in figures). This indicates that the con-
tention among TCP senders effectively enlarges the completion
time of a response. This will be emphasized by our next exper-
iment. We now use the skewed HTTP-profile. The result is in
Fig. 12. It should be noted that it again exhibits a fractal scaling
region extending from - � � to - � �� where the slope esti-
mate of the trace from - � � to - � �� gives � � �����. From
these experiments, it becomes very clear that the effective com-
pletion time, which depends on the network parameters and the
TCP parameters, plays the determining factor having a fractal
scaling region even without having the heavy-tail distribution in

response size.
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Fig. 12. Small capacity simulation, � � ��, � � �msec, � � ���Mbps,
Skewed HTTP-distr., 100 arrivals for each connection

D.2 Large Capacity Link

We summarize by applying what we have learned so far to
longer traces excited by many arrivals of responses. For this,
we increase �	
	��� of the link by having ��� � 
�Mbps and
��� � ��msec. This makes �	
	���=187.5, which is 
���. In
this setup, a break is expected at - � � for ������ � 
� and
another one at - � � for �	
	���. We use HTTP with pareto-
tail with % � ���. Thus, we expect there will be a single scaling
region for - ' �. We first investigate the trace obtained at a sim-
ulation with low traffic intensity, / � �����
. The shape of the
resulting spectrum is very similar to Fig.13, with the estimate of
� parameter from the packet-trace is 0.709. Fig.13 shows the
wavelet spectrum for / � ��
���. We note that the estimate
of the Hurst parameter is 0.903, which tends to get larger as /
increases.
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Fig. 13. Large capacity simulation, � � ��, � � �msec, � � ��Mbps,
HTTP-distr., 100 arrivals for each connection

Lastly, we increase the number of connections to � � �����,
which is about 53 times greater than the capacityand 1000 ar-
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rivals for each connection. The motivation for this experiments
is to observe the impact of contenting TCPs on scaling behavior.
We again have two loading conditions, / � ������ for one and
0.4010 for the other. As the results, we observe no noticeable
change in the scaling behavior as � being brought to a large
number. We again observed the impact of / in the change of
fractal scaling slope as was seen in previous experiments.

E. Summary statements

The following statements serve as a summary of what we have
learnt in section IV.
� The scaling region due to slow start is from �� to
.���������� �	
	����, having the parameter � of 1.5.
� From the time-scale of window to capacity, there exists a sep-
arate, blurred scaling region with a slope close to 1.0.
� For large response sizes such as the use of skewed FTP or
FTP, there exists another scaling region with � � ���, from the
time-scale of �	
	��� to that of maximum response size �� in
the skewed distribution (or the starting point of a Pareto-tail in
FTP-distribution).
� The pareto-tail region of response size is responsible for the
fractal scaling behavior toward the low frequency (or the larger
time-scales) having the parameter � generally less than 1.0.
� The reason for � ���� behavior at the lower frequencies, such
as for - '  �!���	
	���� in HTTP or for - '  �!����� de-
pends more on the closed-loop flow-control of a TCP, than the
source being heavy-tailed.
� The heavy-tailedness of response size is not the necessary
condition for trace to exhibit fractal scaling responses.

V. CONCLUSION

We illustrated with many NS2.0 simulations how the param-
eters of TCP algorithm such as ���� or ������, the different
phase of TCP such as slow start, and the network parameters
such as link-speed and link-delay, are inter-related to make in-
fluences on the variety of different self-similar scaling behaviors
observed in the network traffic. We showed that it is possible
for a single trace to display multiples of different scaling re-
gions with different scaling slopes. The range of each region
and the associated scaling slope were shown to be strongly as-
sociated with the key parameters described above. For example,
we showed that the slow start causes a unique scaling behavior,
characterized by � � ���, starting from the time-scale of ��

to that of min�������,�	
	����. For time-scales greater than
�	
	���, the transport of a large file, regardless of a specific
shape of the tail distribution, may cause the completion time
of a response to be enlarged, causing a significant extension of
the fractal scaling behavior–the �$� � behavior–toward the lower
and lower frequency. This is especially so when the incoming
source traffic rate is relatively higher. The operation of workload
transfer gets interrupted by the other on-going TCP traffic, and
thus the completion time of a response–the traffic ON period–
gets enlarged. The larger the original workload size is the higher
the chance is of getting more number of interruptions while be-
ing transported. Having said this, we can carefully conjecture a
newer proposition that the heavy-tailed parameter of the traffic
ON-period which actually determines the self-similarity of the
traffic can become greater than the original % of the workload

size distribution; this may explain why we observe the value of
parameter � significantly greater than ���

� when the link is very
busy.

In this paper, we have used a single round trip time setup by
having the exact same link speed and delay for all TCP connec-
tions. In practice, the distribution of RTTs for different flows
are highly likely to have high variation. The small time-scale
behavior studied in this paper for a single RTT setup might be
extended to explain the more complex phenomenon of multi-
fractal scaling law. That is, the multifractal phenomenon might
be explained with a superposition of multiples of unique scaling
laws related with each RTT for each connection.
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