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Abstract

We propose a new sparse representation based classification (SRC) method for the motor
imagery based Brain Computer Interface (BCI) system. For the success of SRC method,
construction of a good dictionary matrix is critical. We provide a method based on common
spatial pattern (CSP). The performance of the proposed method has been evaluated over the
motor imagery data sets collected from five subjects. We observe that the proposed method
gives higher classification accuracy results than the linear discriminant analysis (LDA) method
does, one of the well-known classification methods for BCI systems.

1 Introduction

BCI system provides a new communication and control channel between people who have severe
motor disabilities and an external device without any muscle movements. Many researchers have
developed BCI systems using EEG signals. EEG signals can be easily acquired from the scalp;
but they are very noisy and show nonstationary characteristics. Thus, powerful preprocessing
methods are used for EEG signals such as the principal component analysis (PCA), the indepen-
dent component analysis (ICA) and the common spatial pattern (CSP). Widely used classification
methods in the EEG based BCI field have been adopted from the pattern recognition community,
including the linear discriminant analysis (LDA) and the support vector machine (SVM).

In this paper, we aim to develop a new sparse representation based classification (SRC) method
for the motor imagery based BCI system. The central problem of the sparse representation theory
aims to search for the most compact representation of a given signal in terms of linear combina-
tion of atoms in an overcomplete dictionary[1]. When compact description of seemingly complex
signals becomes possible, it can be used for a number of applications including noise reduction,
dimensionality reduction, and pattern recognition. The sparse representation is achieved by the
ell-1 minimization which is a suboptimal but closely attains the sparsest solution within a polyno-
mial time if enough number of observation samples have been obtained. This ell-1 minimization
approach can be utilized as a sparse representation tool in this paper for the classification pur-
pose. For the success of this SRC method, construction of a good dictionary matrix is critical.
We provide a method based on the CSP.

2 Methods

2.1 Experiment

In this study, we use data sets of BCI Competition III (Data set IVa)[2] which were recorded
from five subjects. Subjects have taken the same procedure of a BCI experiment in which there
are three classes, left and right hand, right foot of motor imagery movements. However, only
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data corresponding to right hand ’R’ and right foot ’F’ were provided for analysis. The data
recording was made using BrainAmp amplifiers and a 128 channel Ag/AgCl electrode cap from
ECI. 118 EEG channels were measured at positions of the extended international 10/20-system.
Signals were band-pass filtered between 0.05 and 200Hz and then digitized at 1000Hz. For off line
analysis signals were downsampled to 100Hz.

2.2 Preprocessing

We take a data segmentation for following analysis. We use 1000∼2000ms of signal samples (100
samples) after the Cue has been presented. Next, to eliminate the noise that is not related with
sensorimotor rhythms (SMRs), we use a band-pass filter with 8∼15Hz cut off frequency.

To reduce the dimension of feature vector and make distinguishable features, we use the CSP
method. CSP is a powerful signal processing technique that has been successfully applied for
EEG-based BCIs[3].

Let X ∈ RC×T be a segment of EEG signals where C is the number of EEG channels. In this
study, C is 118, and T is the number of sampled time points collected in all the trials. We use 100
samples (one second). We have two classes of EEG training trials XR ∈ RC×T and XF ∈ RC×T

each corresponding to the Right hand and Foot movement. Using the CSP method, we can obtain
the CSP filters W ∈ RC×C . We call each column vector wi ∈ RC(i = 1, 2, ..., C) of W a spatial
filter. Among them, we use nCSP filters from the front and another set from the back. Then,
we can make this as the CSP filtering matrix W ∈ RC×2n, i.e., W := [w1, ...,wn,wC−n+1,wC ].
Given the two classes of EEG training signals, we can define the CSP filtered signals, i.e.,

XR ∈ R2n×T := W
T
XR, XF ∈ R2n×T := W

T
XF (1)

Next, we compute FFT of each set of T = 100 samples. Because the sampling rate is 100
samples/sec, the frequency resolution is 1 Hz. We then compute the frequency power of the Mu
band (8∼15Hz). Thus, there are Nf = 8 columns in each matrix. They are:

XR(f) ∈ R2n×Nf , XF (f) ∈ R2n×Nf (2)

2.3 Linear Sparse Representation Model

Let Nt be the number of total training signals for each class i = R,F . We define the dictionary
matrix Ai = [ai,1,ai,2, ...,ai,Nt

] for i = R,F where each column vector a ∈ Rm×1 having dimension
m = 2n×Nf is obtained by concatenating the 2n rows of XR(f) and taking the transpose. Let’s call
this vectorization. The same procedure is repeated for the right foot part, XF (f). By combining
the two matrices, we form the complete dictionary, A := [AR;AF ]. Thus, the dimension of A is
m× 2Nt. We apply the same procedure done to obtain the columns of the dictionary to the test
signal. That is, the test signal is transformed to a vector b ∈ Rm×1 through the CSP filtering,
FFT, and vectorization. Thus, the dimesion of b is the same as the dimension of the columns of
the dictionary A. Then, this test signal b can be sparsely represented as a linear combination of
some columns of A:

b =
∑

i=R,F

xi,1ai,1 + xi,2ai,2 + · · ·+ xi,ntai,Nt (3)

where xi,j ∈ R, j = 1, 2, ..., Nt are scalar coefficients. Then, we can represent this as a matrix
algebraic form:

b = Ax (4)

where x = [xR,1, xR,2, ..., xR,Nt
xF,1, xF,2, ..., xF,Nt

]T ∈ R2·Nt .

2



# of CSP filter al ay aw aa av
2 × 1 96.64 89.64 80.35 85.71 60.71
2 × 2 96.42 90.71 86.78 85.35 66.42
2 × 3 97.85 93.57 86.07 87.14 68.57
2 × 4 97.85 95.71 90.00 92.50 67.50
2 × 5 98.92 95.71 92.14 92.14 71.07
2 × 6 97.50 95.71 89.64 90.71 77.50

Table 1: Classification accuracy of SRC with different number of CSP filters

Figure 1: Average accuracy of SRC with different number of training signals

2.4 Sparse Representation by ell-1 Minimization

We have the number of total training signals 2Nt which is larger than the number of frequency
power(m = 2n × Nf ). The more trials, the larger the dictionary, and thus the better the sparse
representation result will be. The column size is larger than the row size of the dictionary A.
Thus, the the linear equation(4) is under-determined(m < 2Nt). Recent studies in the Compressed
Sensing theory have shown that the ell-1 norm minimization, given below, can solve this under-
determined system well in polynomial time [4]: min ‖x‖1 subject to b = Ax. In this paper, we
use the basis pursuit method, one of the standard linear programming methods.

2.5 Sparse Representation based Classification

After solving the ell-1 minimization problem, the nonzero elements of x must be corresponding to
the column of class i. Because the EEG signals are very noisy, the nonzero elements may appear in
the indices corresponding to the column of another class. To make use of the sparse representation
result, in a classification problem, we introduce the characteristic function δ[5]. For each class i,
we define its characteristic function δi : R2Nt → R2Nt which selects the coefficients associated with
class i. For x ∈ R2Nt , δi(x) ∈ R2Nt is a new vector which is obtained by nulling all the elements of
x that are associated with the other class. Then we can obtain the residuals ri(b) := ‖b−Aδi(x)‖2
for R and F . Then, the classification rule is given by: class(b) = arg min

i
ri(b). Thus, we determine

the class i that has the minimum residuals.

3 Results and Discussion

We have analyzed five data sets, which have the same 140 trials for each class. We use the
statistical k-fold cross-validation method to evaluate the average performance of the classifiers.
Table 1 shows the classification accuracy of SRC with different number of CSP filters. Here, we
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Classification Method al ay aw aa av Mean Std.
LDA 92.50 92.50 91.07 91.07 63.92 86.21 12.48
SRC 98.92 95.71 92.14 92.14 71.07 90.00 10.95

∗ P = 0.0428 < 0.05 (Using paired T-test)

Table 2: Classification accuracy of SRC and LDA

use 139 training signals for each class (leave-one-out). From these results, we choose the most
important 10(2×5) CSP filters among 118.

Figure 1 shows the classification accuracy of SRC method when we use the 10 CSP filters.
The SRC method shows good performance, especially when the number of training signals is
large enough. We compare the classification accuracies of the LDA and the SRC method. Table 2
shows the comparison results when we use the leave-one-out method. In the LDA classification, we
also use the CSP filtering, the FFT to extract features. For all subjects, we use the same 8∼15Hz
frequency power, number of CSP filters (10) and time sample (1000∼2000ms). The results indicate
that the accuracy of the SRC is better than that of the LDA method. It is statistically improved
with the level of p which is less than 0.05, however, more datasets will be helpful for solid conclusion
and it is currently under the investigation.

4 Conclusion

We have applied the idea of sparse representation as a new classification method to the motor
imagery based BCI. The sparse representation method needs a well-designed dictionary matrix
constructed from the training data. We use the CSP filtering and the FFT to produce the columns
of the dictionary matrix. We have evaluated the proposed method over the BCI competition data
sets. We observe that the performance of the proposed method is very satisfactory when the
number of training signals is large enough. We have compared with the conventional approach
such as LDA method, which is well known for the BCI system. For all subjects, our proposed
method shows better classification accuracy than LDA method.
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