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Union Bounds on Coded Modulation Systems over
Fast Fading MIMO Channels

Jingqiao Zhang, Student Member, IEEE and Heung-No Lee, Member, IEEE

Abstract— Novel closed-form upper bounds on the error per-
formance of coded modulation systems over fast-fading multi-
input multi-output (MIMO) channels are obtained for two
different space-time schemes: direct transmission and orthogonal
space-time block codes. The concept of the distance spectrum for
associated space-time codes is developed and used to derive the
bounds which can be calculated readily through polynomial ex-
pansion. Comparison of the bounds for the two systems indicates
the performance of direct transmission is superior. Comparison
with simulation results shows that the bounds are tight and useful
for benchmarking the practical iterative decoding process.

Index Terms— Upper bounds, distance spectrum, LDPC code,
space-time code, MIMO systems.

I. INTRODUCTION

LDPC and turbo codes are known to provide near-capacity
error performance at moderate to large block sizes. Due

to the huge population size of these codes and the lack of
information on the code structure, other than the distance spec-
trum, their error-performance measures rarely admit a closed-
form expression. A variety of different bounding techniques
have been proposed to predict error performance for a number
of different classes of channels, such as AWGN channels
[1], single-input single-output (SISO) fading channels [2],
and quasi-static fading MIMO channels [3], [4]. However,
performance bounding for LDPC and turbo-coded systems
over fast fading MIMO channels remains an open problem.

While LDPC and turbo codes can provide a significant
coding gain, the space-time block codes with orthogonal
designs (OSTBC) [5], [6] have the unique advantage of
providing the maximum diversity gain for the MIMO channels
at a fixed rate. Therefore, it is of interest to investigate the
error performance of concatenated transmission schemes in
which the LDPC or turbo code is used as an outer code
and concatenated with an inner code: either an OSTBC or
a direct transmission (i.e., the serial to parallel conversion
of modulated symbols without having an explicit space-time
coding done). In this paper, we analyze the error performance
of these coded modulation systems over fast fading MIMO
channels. The distance spectrum of the associated space-time
codes are calculated for each scheme. The derived maximum
likelihood (ML) upper bounds are in closed forms, requiring
only the distance spectrum of outer codes as the input.

The rest of the paper is organized as follows. Section II
describes the transmission schemes. Section III derives the
upper bounds based on the distance spectrum. In section IV,
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Fig. 1. System model for transmission scheme I.
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Fig. 2. System model for transmission scheme II.

simulation results are provided and the effectiveness of the
bounds is verified. Finally, we make a conclusion in section
V.

II. SYSTEM OF INTEREST

Consider the MIMO system with M -transmit and N -receive
antennas. We are interested in the two transmission schemes
that are illustrated in Fig. 1 and Fig. 2. In Scheme I, the
information message u is encoded into a codeword of length L,
say ch = (ch,1, ch,2, ..., ch,L). We assume L to be a multiple of
M , L/M = T , for convenience. The modulated codeword is
formed by the bit-to-symbol and serial-to-parallel operations.
Hence, one [M × T ] space-time block word is obtained as⎛

⎜⎜⎜⎝
c′h,1 c′h,M+1 · · · c′h,L−M+1

c′h,2 c′h,M+2 · · · c′h,L−M+2

· · · · · · . . . · · ·
c′h,M c′h,2M · · · c′h,L

⎞
⎟⎟⎟⎠ , (1)

where the binary modulation for each entry is obtained by
c′h,i = 1−2ch,i (i.e., bit 0 → “+1” and bit 1→ “-1”). When the
[M × T ] block of channel-symbols (1) is directly transmitted
over the antenna array in T channel uses without any further
explicit channel-encoding, we will call this [M × T ] block
the associated space-time (AST)-I codeword. Clearly, we note
that the outer code and the AST-I code have a one-to-one
correspondence, and so do their respective ensembles.

In addition to the operations above, Scheme II further
encodes the AST-I codeword by the OSTBC [6]. Taking M=2
as an example, the coding scheme is the Alamouti scheme,(

ca

cb

)
⇒

(
ca −c∗b
cb c∗a

)
. (2)

Then, the associated space-time block is given by(
c′h,1 −c′∗h,2 c′h,3 −c′∗h,4 · · · c′h,L−1 −c′∗h,L

c′h,2 c′∗h,1 c′h,4 c′∗h,3 · · · c′h,L c′∗h,L−1

)
, (3)
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which is transmitted over T ′ = L channel uses. Let us
call this the AST-II codeword. Note that from the repetitive
characteristics of OSTBC each leading column of sub-blocks
in the AST-II codeword is identical to each column of the
AST-I codeword, and the rest (M − 1) columns in each sub-
block are repetitions of the leading column with operations
such as permutation, negation, and conjugation.

Assume that an arbitrary AST codeword x of the form (1)
or (3) is transmitted over the antennas. The receive signal yn

t

at the nth antenna at the time instant t can be expressed as

yn
t =

√
ρs

M∑
m=1

αn,m(t)xm,t + zn
t , t = 1, 2, . . . , T, (4)

where ρs = ρbR/M and ρb = Eb/No; R is the transmission
rate in information bits per channel use; Eb is the information
bit energy; No/2 is the two-sided power spectral density of
the white Gaussian noise present at the receiver; xm,t denotes
the mth row and tth column element of x; zn

t denotes the
independent complex additive white Gaussian noises with zero
mean and variance 0.5 per dimension; and αn,m(t) denotes the
independent Rayleigh fading gain from the mth transmit to the
nth receive antenna during the tth channel use.

III. ERROR PERFORMANCE ANALYSIS

In this section, we consider a class of outer codes and
develop a set of statistical properties which renders the error
performance analysis.

A. Outer Codes of Interest

First, we consider an ensemble of LDPC codes whose
parity-check matrices are defined by a set of three fixed
parameters: block length, variable- and check-node degree
distributions [7] (i.e., the column- and row-weights for regular
code [8]). It is clear under column permutation the set is
closed: any column permutation of a particular parity-check
matrix drawn randomly from the ensemble produces another
matrix in the same ensemble. Accordingly, the permutation of
a codeword in one codebook exists as a codeword in another
codebook. Define Ch as the set of all the codewords with the
same Hamming weight h. Note that each codeword in Ch can
be regarded as the permutation of another. If each codebook
(or the parity-check matrix) is selected equi-probably from
the ensemble, the following statistical properties shall hold
for each codeword in Ch:

Property I: The probability of one codeword in Ch belong-
ing to the selected codebook is identical for every codeword
in Ch.

Property II: The probability of the ith bit, bi, in any code-
word in Ch taking either 0 or 1 is identical for i = 1, 2, . . . , L
and is given by P (bi = 1) = h

L and P (bi = 0) = L−h
L .

Property II actually holds for a class of outer codes,
including turbo codes and fully random block codes. For
simplicity, we consider the LDPC code as an outer code in
this paper, although the same analysis can be applied to any
code satisfying Property II.

B. Pairwise Error Probability

For a fast Rayleigh fading channel, the maximum likelihood
decoding pairwise error probability for any two space-time
codewords x and x′ is given by Tarokh in [9],

P (x → x′) ≤
T∏

t=1

(
1 + |xt − x′

t|2
ρs

4

)−N

, (5)

where xt and x′
t are the tth columns of x and x′, respectively.

Although MIMO channels are generally not symmetrical,
it is interesting to note that the right hand side of (5) is
symmetrical for any BPSK-modulated AST codeword. Thus,
we can use the assumption that the all-zero LDPC codeword
is transmitted for the derivation of upper bounds.

C. Distance Spectrum of AST

The product terms in (5) have at most M + 1 different
values since |xt − x′

t|2 = 4m with m = 0, 1, ...,M . Denote
x0 as the AST codeword mapped from the all-zero LDPC
codeword. The entries in x0 are thus all “+1” if AST-I is
concerned. For any AST codeword, let δm denote the number
of its columns each of which has exactly m differences with
the corresponding column of x0. Let us name the collection of
these column weights the column weight distribution (CWD),
δ := (δ0, δ1, ..., δM ). It should be noted that the column weight
distribution determines the pairwise error probability. Denote
χδ as the set of all AST codewords with a particular column
weight distribution δ. Then, we can express the pairwise error
probability between x0 and any codeword xδ in χδ as

P (x0 → xδ) ≤
M∏

m=0

(1 + mρs)
−δmN

, (6)

by arranging groups of like product-terms in (5) into a power
term with respect to m. That is, there are δm product terms
with the same value

∣∣x0,t − xδ,t

∣∣2 = 4m.
Consider the distance spectrum of AST-I first. Denote χh

as the image of Ch in the AST-I code. It can be decomposed
into disjoint subsets χδ, each of which is composed of all
the AST-I codewords with the same CWD δ. Accordingly, the
pre-image Cδ of χδ forms a decomposition of Ch. Namely, we
have Cδ

⋂ Cδ′ = ∅, for δ �= δ′ and Ch =
⋃

δ∈Ωh
Cδ where

Ωh :=

{
δ

∣∣∣∣∣δm∈{0, 1, . . . , T} ,

M∑
m=0

δm =T ,

M∑
m=0

mδm =h

}
. (7)

The cardinalities of χδ and Cδ are the same; i.e.,
∣∣χδ

∣∣ =∣∣Cδ

∣∣. Therefore, the distance spectrum of AST-I can be ob-
tained by focusing on Cδ and computing the probability ph(δ)
with which a randomly selected LDPC codeword in Ch is
contained in its subset Cδ. Let us define Aδ :=

∣∣Cδ

∣∣ =
∣∣χδ

∣∣ and
Ah := |Ch|. Applying Property II to the set Ch and resorting to
a repeated application of combinatorial techniques, we obtain

Aδ = |Ch| ph(δ)=Ah

(
L

h

)−1(
T

δ0,δ1, · · ·, δM

) M∏
m=0

(
M

m

)δm

, (8)

where
( ∑

xi

x1,x2,··· ,xn

)
denotes the multinomial coefficients.

D. Error Performance of the Transmission Scheme I

The union bound to word error probability can be obtained
by summing up the pairwise error probabilities. Based on (6)
and (8), we have

Pw ≤
L∑

h=1

∑
δ∈Ωh

AδP
(
x0 → xδ

)
=

L∑
h=1

(
L

h

)−1

Ahφh, (9)
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Fig. 3. ML upper bounds vs. simulation results. LDPC (3000, 3, 4) and
LDPC (1500, 3, 6) are used for scheme I and scheme II, respectively.

where φh :=
∑

δ∈Ωh

(
T

δ0,δ1, ··· ,δM

) ∏M
m=0 βδm

m and βm :=(
M
m

)
(1 + mρs)

−N .
At first glance, φh seems complex and not easily com-

putable since the cardinality of Ωh is large. Resorting to the
polynomial expansion (

∑M
m=0 βmxm)T , however, it can be

readily obtained. Recalling the definition of Ωh in (7), we
note (

M∑
m=0

βmxm

)T

=
L∑

h=0

φhxh. (10)

The bit error probability of the coded bits is obtained by

Pb ≤
L∑

h=1

h

L

(
L

h

)−1

Ahφh. (11)

In practice, it serves as a good approximation, if not exact, of
the bit error probability of the information bits.

E. Error Performance of the Transmission Scheme II

As mentioned in the last section, the columns of an AST-II
codeword can be regarded as repetitions of the columns of
the corresponding AST-I codeword; thus operations such as
permutation, negation, and conjugation can be ignored for the
purpose of computing the column weight distribution. Define
χ′

δ as the collection of all the AST-II codewords xδ with the
same column weight distribution δ. The distance spectrum of
AST-II is then given by

A′
δ :=

∣∣∣χ′
δ

∣∣∣=A δ
M

=Ah

(
L

h

)−1( T ′
M

δ0
M , δ1

M , · · ·, δM

M

) M∏
m=0

(
M

m

)δm

M
,(12)

for δ ∈Ω′
h (h = 1, 2, . . . , L) which is defined analogously to

(7) as

Ω′
h =:

{
δ

∣∣∣∣∣δm

M
∈
{
0,1, . . .,

T ′

M

}
,

M∑
m=0

δm

M
=

T ′

M
,

M∑
m=0

m
δm

M
=h

}
.

(13)
Similar to (11), the bit error probability of Scheme II is

P ′
b ≤

L∑
h=1

h

L

(
L

h

)−1

Ahφ′
h, (14)

where φ′
h :=

∑
δ∈Ω′

h

( T ′/M
δ0/M ,δ1/M ,··· ,δM/M

) ∏M
m=0 β

′ δm

M
m

and β′
m :=

(
M
m

)
(1 + mρs)

−MN . By the same reasoning, φ′
h

can be obtained by

(
M∑

m=0

β′
mxm

)T ′/M

=
L∑

h=0

φ′
hxh. (15)

IV. RESULTS

The comparison of derived upper bounds and simulation
results is illustrated in Fig. 3. We use the sum-product iterative
decoding algorithm with fifty iterations. For meaningful com-
parison, the Gallager’s (3000, 3, 4) and (1500, 3, 6) codes [8]
are used for Scheme I and II respectively. Alamouti code and
the one in [6, Eq. (3.46)] are adopted as OSTBC in Scheme
II for M = 2 and M = 4, respectively. The transmission rate
of Scheme II is therefore the same as that of Scheme I when
M = 2 or a half of that when M = 4. The bounds for Scheme
I indicate good matches with the simulation results. They are a
little loose for Scheme II, but with differences always less than
0.5 dB. As expected, OSTBC does not improve performance
much in the fast fading case where the diversity order is
already sufficient. In fact, it performs no better than the direct
transmission, even when M = 4 in which case its transmission
rate is only a half of the direct transmission. The higher error
floor for Scheme II seems due to the larger population of low-
weight codewords in the (1500, 3, 6) code compared with the
(3000, 3, 4) code.

V. CONCLUSION

In this paper, we proposed upper bounds on the error
performance of coded modulation systems over fast fading
MIMO channels. These upper bounds are used to compare
two space-time transmission schemes: direct transmission and
orthogonal space-time block codes. Surprisingly, the direct
transmission scheme has been shown to be better in both
simulations and bounds than space-time block coding for fast
fading MIMO channels. This implies that the coding rate
should be better spent at the outer code instead of at the inner
space-time block code for robust performance.
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