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Extraction of Sources of Tremor in Hand Movements
of Patients With Movement Disorders
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Abstract—This paper proposes an efficient method to acquire
sources of tremor in patients with movement disorders based on
blind source separation of convolutive mixtures. The extracted
sources indicated neural activities that might be generated in the
central nervous system. Four patients with essential tremor were
tested in a set of movement tasks. Subjects wore a data glove
that measured finger movements of the hand. The experimental
data were then fed to a convolutive-mixture model, which revealed
sources that imbibed in them the tremor frequency components
of 2–8 Hz. Time–frequency analysis of these sources might be of
potential help to clinicians to devise tasks that can manifest visible
tremor from patients.

Index Terms—Blind source separation, convolutive mixtures,
essential tremor (ET), time–frequency analysis (TFA).

I. INTRODUCTION

QUANTIFICATION of the tremor and the degree of sever-
ity of diseases with movement disorders like essential

tremor (ET) and Parkinson’s disease (PD) is one of the major
difficulties in clinical evaluation. At present, clinicians are lim-
ited by ordinal rating scales such as unified PD rating scale and
Fahn–Tolosa–Marin (FTM) tremor rating scale, because such
scales are more subjective and open to examiner’s interpreta-
tion. Researchers are shifting away from ordinal rating scales
and are evaluating tremor based on electromechanically mea-
sured parameters like stiffness, rigidity, etc. [1] by utilizing
computer-aided tools. The behavioral motor characteristics in
these movement disorders are infamously unpredictable, espe-
cially in advanced stages of the disease, and any contribution to
provide better performance would be appreciated by clinicians.

The current methods to measure tremor include accelerom-
etry, electromyography (EMG), computer tracking, tablets, in-
frared, video cameras, and laser transducers. Though all these
methods are better than Likert scale, which itself is suscepti-
ble to problems of sensitivity and reliability, several of them
have general drawbacks like bulky machinery (not portable)
and time-consuming procedures (e.g., 24- to 72-h-long EMG
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recordings). Moreover, it has been reported that acceleromet-
ric measurements, besides being 1-D, suffer from gravitational
artifacts [2], EMG provides only a loose measure of tremor
amplitude [3], and digitizing tablets are deficient in sensitiv-
ity to measure tremor [4]. Apart from the limitations, all the
aforementioned techniques are useful in specific environments
in which they are deployed.

In our study, we used a data glove to measure tremor. Data
gloves are precise and easy to use in measurement, as they are
wearable and assume the shape of the hand. (Note that hands
are affected in 95% of ET patients [5].) A similar concept has
been already tested previously in [6] where hand and finger
movements were precisely quantized using a VPL data glove
in chorea, myoclonus, and tremor. Data gloves have also been
used by us to measure postural and kinematic information for
hand movement analysis in normal subjects [7], [8].

Quantification of tremor has been achieved by numerical
methods such as spectral analysis and time–frequency anal-
ysis (TFA) [1], [9], [10]. However, these analyses were per-
formed directly on the experimentally recorded data. They might
not achieve optimal quantification of tremor, because tremor is
spread across parts of limbs, and at a single site of recording,
tremor might not be significant. Although ET is a central tremor
that originates from a central source, the tremor is distributed
across the limbs [5]. Different frequencies of tremor were ob-
served in different limbs [5], [10]. This variation might be due to
mechanics of limbs that accentuate tremor differently, although
the tremor originates from a single neural source. The distri-
bution of tremor makes it difficult to evaluate, measure, and
manage the tremor [5], [11]. In this paper, we base our anal-
ysis upon a modeled characteristic of tremor generation. We
propose to utilize a technique from the blind source separation
for convolutive mixtures to obtain sources of tremor from joint
movements of the hand. In contrast to previous methods, our
method attempts to isolate the sources of tremor from a raw
data of joint movements that contain tremor distributed across
multiple joints of the hand in different movement tasks. We be-
lieve that these sources will work as miniature windows to view
movement disorders.

II. METHODS

A. Model

We model the joint movements of the hand as convolutive
mixtures of source signals created in the central nervous system
(see Fig. 1). In our model, an impulse originated in the higher
level neural system evokes the activation of some circuits in the
lower level neural system, then stimulates certain biomechanical
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Fig. 1. Hypothesized model for generation of hand movement. (Top) Impulse
response of a filter. (Bottom) A movement profile of the hand can be modeled
as convolutive mixtures of source signals originated in the higher level neural
system passing through the corresponding filters residing in the lower level
neural system and connected biomechanical system.

structures, and eventually creates a stereotyped angular change
at each finger joint of the hand. This process can be simplified
to the production of an impulse response of a filter [see Fig. 1
(top)]. The filter characterizes the related neural–biomechanical
structures that trigger the movement of a specific finger joint in
response to an impulse in the higher level neural system. We
assume that all the filters are linear and their impulse responses
have finite durations. Thus, a movement profile of the hand can
be modeled as the superposition of the impulse responses of
some neural source signals (trains of impulses) passing through
the corresponding filters residing in the lower level neural sys-
tem and connected biomechanical system [see Fig. 1 (bottom)].
Although the neuromuscular system is nonlinear, considering a
linear approximation might give useful insight of the system.
Moreover, it has been suggested that motor behavior of verte-
brates can be well approximated by linear combination of tiny
modules of movement called movement primitives [12]. How-
ever, our model is mainly targeted at estimation of tremor and
cannot account for the characteristics and dynamics of the sys-
tem under some nonlinear conditions such as output saturation
(e.g., maximum force generation) and hysteresis (e.g., rigidity).

Our model can be expressed by the following equation:

yk (t) =
m∑

i=1

si ∗ fik (t), k = 1, . . . , n (1)

where “ ∗ ” represents convolution; yk (t) represents the angle
of the kth joint of the hand at time t, k ranges from 1 to n, and
n is the total number of the considered joints of the hand; si(t)
represents the time sequence of the ith source signal created in
the higher level neural system, i ranges from 1 to m, and m
is the total number of sources; and fik (·) represents the finite
impulse response of the filter through which the ith source acts
on the kth joint of the hand.

We will use the aforementioned model to extract sources of
tremor in hand movements of patients with ET. We assume that
in ET, the tremor sources and sources responsible for voluntary
movement control can be approximately viewed as independent

Fig. 2. Two tasks of subject 2 wearing CyberGlove: writing letter A (left)
and drawing Archimedes spiral (right). Tremor is witnessed while drawing the
spiral.

with each other. This assumption is supported by: 1) the relative
independence of ET from peripheral mechanical reflex mecha-
nisms [13] and 2) existence of central sources responsible only
for tremor. Studies have revealed cortical and thalamic involve-
ment in the generation of ET [14], occurrence of rest tremor
in ET [15], thalamic neuronal activity correlated with ET [16],
and a strong correlation between tremor in ET and cerebral
activity [17]. Although the severity of tremor may depend on
the effort to make a movement, the timing of the tremor can
be considered independent to that of the voluntary movement.
Therefore, it is a reasonable approximation that the tremor
sources are statistically independent of the sources for command
signals of movement control. Based on this, we can apply the
techniques for blind source separation of convolutive mixtures.

B. Experiment

Four subjects, two males (aged 42 and 70 years) and two
females (aged 40 and 71 years) with ET were tested in a series
of tasks. These subjects recorded 4, 3, 3, and 3 (on a scale of
4) on FTM tremor scales, respectively. All these subjects were
informed about the nature of the study and signed institutionally
approved consent forms. The experimental setup included a Cy-
berGlove for the right hand, equipped with 22 sensors that could
measure angles at all the finger joints of the hand at a sampling
frequency of 64 Hz. Subjects wore this data glove during all the
tasks of the experiment. Before the beginning of the experiment,
joint sensors were individually calibrated for each of the sub-
jects. Start and stop of the tasks were indicated to subjects by
system beeps. The tasks designed for these experimental pur-
poses were motivated by motor examination and daily activities.
Tasks included opening and closing the fist naturally, opening
and closing the fist at a faster rate, opening fist followed by
adduction of fingers followed by abduction of fingers followed
by closing the fist, repeating the previous task faster, finger
tapping, untying shoe laces, drawing Archimedes spiral, draw-
ing pentagon clockwise and then anticlockwise, drawing letter
A, reaching and grasping a cup on the table, and finally signing
signatures. Two of the tasks for subject 2 are illustrated in Fig. 2.
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Fig. 3. (Top) Four MCP-joint movement data (left), corresponding frequency spectra (middle), and time–frequency spectra (right) of subject 1. A color legend
with red (high power) to blue (low power) is provided at the bottom right corner. (Bottom) Sources obtained when BSSD was implemented for convolutive mixtures
(with major tremor in source 4) and corresponding frequency spectra and time–frequency spectra.

C. Data Analysis

We performed the following steps for data analysis.
First, CyberGlove through a PC interface measured the joint

angles during different tasks of the experiment. Data collected
from the data glove were processed in MATLAB to obtain joint
angles of the fingers of the hand.

Second, Fourier transforms of the time series of joint angles in
each task were calculated, and after a detailed perusal, only four
of the joints that contribute to major tremor were included for
further separation of tremor sources. Other joints were ignored
to save computation for blind source separation. An example of
four joints selected for subject 1 was shown in Fig. 3 (top). Note
that these selected joints were different for different subjects.
However, the joints included only metacarpophalangeal (MCP)
and proximal interphalangeal (PIP) joints. It was reported that
hand tremor was observed to be prominent in MCP and PIP
joints only [18]. Distal interphalangeal (DIP) joints were not
considered as their movements were dependent to a great ex-
tent on movements of their parent PIP joints. Moreover, it was
empirically observed in our analysis that including additional
joints did not account for significant improvement as the joints
selected already contained the major tremor component.

Third, all the tasks were cascaded to form a long sequence
of tasks, and this sequence was processed with an algorithm for
blind source separation of convolutive mixtures through defla-
tion (BSSD) by Castella et al. [19]. The algorithm was itera-
tive blind source separation using kurtosis real-valued contrast
function of cumulants. Kurtosis is a classic measure of non-
Gaussianity, and non-Gaussianity is used to indicate indepen-
dence [20]. The kurtosis contrast function allows us to extract
one non-Gaussian and independent source from the mixture at
a time. After one source is extracted, its contribution is sub-
tracted from the observations. This process (called deflation) is
repeated to extract all the sources. By using filters with finite
impulse response, the whole problem becomes finding a least
square solution to a linear regression problem [19].

So as to justify the independence among the extracted sources,
we calculated and compared the values of kurtosis for the
normalized source signals and joint angle profiles. The kur-
tosis of a normalized random variable y, where E{y} = 0 and
E{y2} = 1, is defined by E{y4} − 3(E{y2})2 = E{y4} − 3.
As just mentioned, kurtosis can indicate non-Gaussianity and
independence [20]. A larger absolute value of kurtosis of y im-
plies a higher non-Gaussianity of y. According to the central
limit theorem, a sum of independent random variables tends to
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TABLE I
KURTOSIS VALUES OF THE NORMALIZED JOINT ANGLE PROFILES AND

EXTRACTED SOURCE SIGNALS

have a probability distribution closer to Gaussian than any of
the original variables. In other words, an isolated independent
source signal tends to have higher non-Gaussianity than the
experimentally recorded data, which are mixtures of indepen-
dent source signals. Therefore, maximizing non-Gaussianity,
measured by the absolute value of kurtosis, has been used in
independent source separation [20].

Various filter lengths were tried, and best observed filter
length was used that revealed tremor synchronous with Fourier
transform of the experimental data. These filter lengths were ob-
tained based on the following criteria. A tiny finger movement,
evoked by an impulse from transcranial magnetic stimulation
(TMS), was about 200–300 ms [21]. At a sampling frequency
of 64 Hz, filter lengths about 12–18 will correspond to this
movement. Since a TMS impulse itself has nontrivial duration,
the movement evoked by a TMS impulse should last longer than
the movement triggered by an ideal impulse. Therefore, the filter
lengths that we used (typically 10–15 in length) were slightly
shorter than 12–18.

Fourth, TFA was performed. As a result of source separation,
for each subject, four sources were obtained from the experi-
mental observations. Of the four sources, only one source had
substantial component of tremor. The tremor-containing sources
were analyzed by fast Fourier transform (FFT) based TFA us-
ing the function spectrogram in MATLAB. For comparison,
TFA was also performed on the raw joint movement profiles.
A Hamming window of length 512 and a 512-point short-time
FFT were used as parameters.

III. RESULTS

An example of the joint movement profiles (subject 1) was
shown in Fig. 3 (top). To the left of the figure are joint movement
profiles of the MCP joints of the thumb and index, middle,
and ring fingers. In order to make the tremor more visible, the
frequency spectra of the same time domain series were plotted
in the middle column of Fig. 3 (top).

The processed data from MATLAB were streamed through
the algorithm of BSSD for convolutive mixtures. During the
deconvolution procedure, BSSD used filters that were typically
10–15 in length. For subject 1, using a filter length of 10, the
obtained sources were shown in Fig. 3 (bottom) along with the
frequency spectra. One can clearly witness the source exclu-
sively containing tremor [source 4 in Fig. 3 (bottom)]. Tremor
was better appreciated for BSSD when compared to direct spec-
tral analysis. To justify independence of the extracted sources,
kurtosis values were calculated for the normalized source sig-
nals and joint angle profiles (see Table I). The independence of
the tremor source (source 4) can be implied from its kurtosis

value (in bold), which is significantly greater than those of the
joint angle profiles.

Though analysis of frequency spectrum of the signals pro-
vided ready-to-view tremor, it may mislead as the signals are
assumed to be stationary. Therefore, in addition to spectral anal-
ysis, TFA was carried out for both the joint movement profiles
and the extracted sources, considering the signals as nonstation-
ary. The results were shown in the right column of Fig. 3. It
can be seen that TFA of the source signals (extracted using our
convolutive-mixture model) outperformed TFA done directly on
experimental recordings from the joint angle profiles.

In the case of the other three subjects, the extracted sources
were displayed in Fig. 4, and TFA implemented for tremor-
containing sources was shown in Fig. 5. The filter lengths used
for source extraction were 10 for subject 2, 15 for subject 3, and
10 for subject 4, respectively. As noticeably visible, the current
model of convolutive mixtures clearly extracted the sources con-
taining tremor. Multiple components of tremor were observed
for all the subjects. It is apparent from the TFA that the tremor
was relatively more active in some tasks. This variation can-
not be observed in the single frequency spectrum [see Fig. 5
(right)] obtained for the entire time series of a source. The vari-
ation of tremor seen over time can help clinicians devise better
tasks for the tremor to manifest. For instance, in all subjects,
dominant tremors were observed in finger tapping, opening and
closing the fist, and drawing Archimedes spiral.

IV. DISCUSSION

ET is accentuated by voluntary movement. The current model
of convolutive mixtures was able to extract tremor-containing
sources from voluntary movements of hand joints. Four sta-
tistically independent sources (per subject) were obtained, of
which one source was tremor-exclusive. As witnessed in Fig. 3,
tremor was better appreciated in the sources extracted using the
current model when compared (by using FFT and TFA) with
experimentally recorded data. Our method not only proved sig-
nificant in tremor detection, but also revealed the sources that
might indicate neural activities responsible for tremor generated
in the central nervous system. We do not claim that the other
sources without tremor are exactly the physiological sources for
the voluntary movement, but these sources are correlated to the
voluntary movement.

1) Multiple components of tremor: It is apparent from TFA
in Fig. 5 that extracted tremor for all the four subjects
had multiple frequency components. This might be due
to the sensory feedback that influences the central oscilla-
tors [22, Fig. 1]. We observed that subjects had difficulty
doing the tasks that needed ample visual guidance. For
example, in finger tapping, where subjects had to touch
all the fingers with thumb and repeat it as fast as possi-
ble, subjects faced difficulty though it appears effortless
for normal persons. Multiple components of tremor in ET
and other movement disorders were reported by [10]. In
multiple sclerosis, similar behavior was observed by [23]
where visual guidance was stated as a possible reason.
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Fig. 4. Four BSSD-extracted sources per subject for subject 2 (top), subject 3
(middle), and subject 4 (bottom). For each subject, the fourth source corresponds
to tremor. Frequency spectra are plotted to the right.

2) Physiological implications of impulse response: Note that
the average length of the selected filters for the four sub-
jects is 11.25 [=(10 + 10 + 15 + 10)/4], which implies
that the average duration of the impulse responses of these
filters is 11.25/64 × 1000 ms≈ 180 ms (sampling rate was
64 Hz). This suggests that a tiny submovement of the hand
should last for about 200 ms in response to an ideal im-
pulse in the higher level neural system. Compared with
a recent study by Gentner and Classen [21, Fig. 1(A)],

Fig. 5. TFA for all subjects. Corresponding Fourier transforms are shown on
the right side. Multiple components of tremor can be witnessed in all subjects.
A color legend with red (high power) to blue (low power) is provided.

our prediction of 200 ms is in the same order as 250 ms,
the approximate duration of the fastest hand movement
evoked by an impulse from TMS.

3) Convolutive versus instantaneous mixtures: In the cur-
rent model, joint movements are modeled as convolutive
mixtures. Can they also be modeled as instantaneous mix-
tures? To answer this, we carried out blind source sepa-
ration using independent component analysis (ICA). For
ICA, a FastICA algorithm (version 2.5) [24] was used.
The sources obtained for subject 1 by ICA were shown in
Fig. 6. Obviously, ICA outperformed the spectral analysis
done directly on the kinematic profiles of hand move-
ments. In the kinematic profiles, tremor can be seen in all
joints, but the tremor components were not prominent in
the motion of any one of these joints. ICA was able to
redistribute the tremor components in the source signals
such that the contrast of tremor was more significant in
one of the sources. However, ICA could not completely
draw out the tremor sources. In comparison, BSSD was
able to extract the tremor sources from other sources. One
can appreciate BSSD better as shown in Fig. 3—tremor is
more apparent in the BSSD-extracted source.

The advantage of modeling joint movements as con-
volutive mixtures over instantaneous mixtures can also
be supported by the kurtosis values (indicating indepen-
dence) calculated for source signals extracted by BSSD
and ICA, respectively. The kurtosis values of the four
source signals extracted by ICA were 1.76, 8.66, 3.65,
and 5.54, which are all significantly smaller than 23.9, the
kurtosis value of the tremor source extracted using BSSD.

ICA has been an efficient technique and been used to
separate experimental functional MRI (fMRI) in PD [25].
The effectiveness of ICA for fMRI data may be due to
the fact that the fMRI data directly reflect the neural
activities in the brain, which can be well approximated
by instantaneous mixtures of some independent source
signals. However, when these source signals mix together
after passing through the spinal cord and the peripheral
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Fig. 6. Sources obtained using ICA when modeled as instantaneous mixtures for subject 1 (with major tremor in source 4). Corresponding frequency spectra are
plotted in the middle column and time–frequency spectra to the right. Though better than direct spectral analysis [Fig. 3 (top)], ICA falls behind BSSD [comparing
with Fig. 3 (bottom)].

nervous and biomechanical structures, the approximation
of instantaneous mixture is no longer accurate, and thus
ICA does not work for this scenario. In contrast, BSSD
was effective to detect tremor sources and extract them
from hand movements, because it took into account the
dynamics of the peripheral structures and the possible
distortion of the source signals by these structures, as dis-
cussed in the model of Section II-A. Therefore, modeling
the movement profiles as convolutive mixtures resulted in
better extraction of tremor than as instantaneous mixtures.

4) Comparison with contemporary methods: Spectral anal-
ysis is popularized for quantification of tremor [5]. FFT-
based methods have been used frequently because they are
computationally inexpensive, but these methods assume
the input signals as stationary. Welch’s periodogram-based
method was used in [3], where power spectral density was
estimated for the entire task, ignoring temporal variation
of tremor within the task. Our method employing TFA
overcomes the aforementioned limitations, and the vari-
ation of tremor can be seen over time in TFA. TFA was
used previously by other investigators as well, but was
implemented directly on the experimentally recorded data
from muscle activities [10]. In contrast, our method per-
formed TFA on the tremor sources extracted from the raw
experimental data of joint movements. The advantage of
using our method was clearly evident in Fig. 3.

5) Correlation between tremor and voluntary movement: For
subject 1 (see Fig. 3), the tremor source had a low-
frequency component (0.3 Hz, correlated to finger tap-
ping) during the time period from 60 to 90 s. We separately
analyzed the finger tapping task by BSSD. As illustrated in
Fig. 7 (top), frequency spectra of joint movement profiles
indicated coexistence of frequencies due to task as well
as tremor in all joints. However, when processed through
BSSD, one can clearly appreciate the separation of task
frequency and tremor frequency in spectra of the second

Fig. 7. (Top) Four MCP-joint movement data (left) and corresponding fre-
quency spectra (right) of subject 1 during the finger tapping task. (Bottom)
Sources obtained when BSSD was implemented for convolutive mixtures (with
major tremor in source 3 and tapping movement in source 2) and corresponding
frequency spectra.
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and third sources, respectively [see Fig. 7 (bottom)]. Al-
though there was appreciable separation, task frequency
was not completely eliminated in the third source, which
corresponded to tremor. This implies that the tremor-
containing sources included components correlated with
voluntary movement. One possible reason is that the cur-
rent model requires the sources to be statistically indepen-
dent with each other. However, this cannot be completely
satisfied in ET where the amplitude of the tremor may
depend on the effort in achieving a task. The correlation
between the tremor and voluntary movement was previ-
ously observed by [26] and [27] in ET. Nevertheless, as
we mentioned in Section II-A, the timing of tremor can be
independent of the voluntary movement—as in the case
of rest tremor in ET [15].

V. CONCLUSION

Our method was based on a convolutive-mixture model of
tremor generation, and was able to attribute tremor to a cen-
tral source manifested across multiple joints of the hand. Com-
pact representation of sources of tremor, one per subject, was
extracted that contained the information of tremor variation
across a variety of movement tasks. Clinicians can appreci-
ate this method as this compact representation (a single source
of tremor) will ease the diagnosis of the tremor avoiding the
trouble of tediously going through numerous experimental data.
However, the current method is limited for clinical purposes
targeted at quantification of tremor and may not be applicable
for home-based rehabilitation as it is. The method presented
is also applicable to PD as there is evidence of neural sources
responsible for tremor. It is reported that in PD, central oscil-
lators are responsible for tremor generation [28]. The current
approach is to be extended over a large group of subjects with
various movement disorders. We view these as future scope of
this research.

ACKNOWLEDGMENT

The authors would like to thank the reviewers and editors for
their valued suggestions.

REFERENCES

[1] S. K. Patrick, A. A. Denington, M. J. A. Gauthier, D. M. Gillard, and
A. Prochazka, “Quantification of the UPDRS rigidity scale,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 9, no. 1, pp. 31–41, Mar. 2001.

[2] R. J. Elble, “Gravitational artifact in accelerometric measurements of
tremor,” Clin. Neurophysiol., vol. 116, no. 7, pp. 1638–1643, Jul. 2005.

[3] V. Rajaraman, D. Jack, S. Adamovich, W. Hening, J. Saged, and
H. Poizner, “A novel quantitative method for 3D measurement of Parkin-
sonian tremor,” Clin. Neurophysiol., vol. 111, no. 2, pp. 338–343, Feb.
2000.

[4] R. J. Elble, R. Sinha, and C. Higgins, “Quantification of tremor with a
digitizing tablet,” J. Neurosci. Methods, vol. 32, no. 3, pp. 193–198, Jun.
1990.

[5] K. E. Lyons, R. Pahwa, and Eds., Handbook of Essential Tremor and
Other Tremor Disorders. New York: Taylor & Francis, 2005.

[6] A. D. Will, D. J. Warner, G. W. Peterson, S. H. Price, E. J. Sale, and C. A.
L. Linda, “Quantitative analysis of tremor and chorea using the VPL data
glove,” Ann. Neurol., vol. 28, no. 2, p. 299, Aug. 1990.

[7] R. Vinjamuri, Z.-H. Mao, R. Sclabassi, and M. Sun, “Limitations of surface
EMG signals of extrinsic muscles in predicting postures of human hand,”
in Proc. 28th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2006, pp. 5491–
5494.

[8] R. Vinjamuri, Z.-H. Mao, R. Sclabassi, and M. Sun, “Time-varying syn-
ergies in velocity profiles of finger joints of the hand during reach and
grasp,” in Proc. 29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2007,
pp. 4846–4849.

[9] C. N. Riviere, S. G. Reich, and N. V. Thakor, “Adaptive Fourier modeling
of quantification of tremor,” J. Neurosci. Methods, vol. 74, no. 1, pp. 77–
87, Jun. 1997.

[10] P. E. O’Suilleabhain and J. Y. Matsumoto, “Time-frequency analysis of
tremors,” Brain, vol. 121, no. 11, pp. 2127–2134, Nov. 1998.

[11] A. Anouti and W. C. Koller, “Tremor disorders. Diagnosis and manage-
ment,” West J. Med., vol. 162, no. 6, pp. 510–513, Jun. 1995.

[12] T. Flash and B. Hochner, “Motor primitives in vertebrates and inverte-
brates,” Curr. Opin. Neurobiol., vol. 15, no. 6, pp. 660–666, Dec. 2005.

[13] G. Deuschl and R. J. Elble, “The pathophysiology of essential tremor,”
Neurology, vol. 54, no. 11, pp. S14–S20, 2000.

[14] J. Raethjen, R. B. Govindan, F. Kopper, M. Muthuramanan, and
G. Deuschl, “Cortical involvement in the generation of essential tremor,”
J. Neurophysiol., vol. 97, no. 5, pp. 3219–3228, May 2007.

[15] J. Shahed and J. Jankovic, “Exploring the relationship between essential
tremor and Parkinson’s disease,” Parkinsonism Relat. Disord., vol. 13,
no. 2, pp. 67–76, Mar. 2007.

[16] S. E. Hua, F. A. Lenz, T. A. Zirh, S. G. Reich, and P. M. Dougherty,
“Thalamic neuronal activity correlated with essential tremor,” J. Neurol.
Neurosurg. Psychiatry, vol. 64, no. 2, pp. 273–276, Feb. 1998.

[17] B. Hellwig, S. Haubler, B. Schelter, M. Lauk, B. Gushlbauer, J. Tim-
mer, and C. H. Lucking, “Tremor-correlated cortical activity in essential
tremor,” Lancet, vol. 357, no. 9255, pp. 519–523, Feb. 2001.

[18] A. Rajput, C. A. Robinson, and A. H. Rajput, “Essential tremor course
and disability: A clinicopathologic study of 20 cases,” Neurology, vol. 62,
no. 6, pp. 932–936, Mar. 2004.

[19] M. Castella, S. Rhioui, E. Moreau, and J.-C. Pesquet, “Quadratic higher-
order criteria for iterative blind separation of a MIMO convolutive mixture
of sources,” IEEE Trans. Signal Process., vol. 55, no. 1, pp. 218–232,
Jan. 2007.

[20] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis.
New York: Wiley, 2001.

[21] R. Gentner and J. Classen, “Modular organization of finger movements by
the human central nervous system,” Neuron, vol. 52, no. 4, pp. 731–742,
Nov. 2006.

[22] J. H. McAuley and C. D. Marsden, “Physiological and pathological
tremors and rhythmic central motor control,” Brain, vol. 123, no. 8,
pp. 1545–1567, Aug. 2000.

[23] X. Liu, C. Miall, T. Z. Aziz, J. A. Palace, P. N. Haggard, and J. F. Stein,
“Analysis of action tremor and impaired control of movement velocity in
multiple sclerosis during visually guided wrist-tracking tasks,” Movement
Disord., vol. 12, no. 6, pp. 992–999, Nov. 1997.

[24] H. Gavert, J. Hurri, J. Sarela, and A. Hyvarinen. (2005, Oct.). FastICA
version 2.5 [Online]. Available: http://www.cis.hut.fi/projects/ica/fastica/

[25] M. J. McKeown, Y.-J. Hu, and Z. J. Wang, “ICA denoising for event-
related fMRI studies,” in Proc. 27th Annu. Conf. IEEE Eng. Med. Biol.
Soc., 2005, pp. 157–161.

[26] B. Koster, G. Deuschl, L. J. Timmer, B. Guschlbauer, and C. H. Lucking,
“Essential tremor and cerebellar dysfunction: Abnormal ballistic move-
ments,” J. Neurol., Neurosurg. Psychiatry, vol. 73, no. 4, pp. 400–405,
Oct. 2002.

[27] S. E. Hua and F. A. Lenz, “Posture-related oscillations in human cerebellar
thalamus in essential tremor are enabled by voluntary motor circuits,” J.
Neurophysiol., vol. 93, no. 1, pp. 117–127, Jan. 2005.

[28] D. Plenz and S. T. Kital, “A basal ganglia pacemaker formed by the
subthalamic nucleus and external globus pallidus,” Nature, vol. 400,
no. 6745, pp. 677–682, Aug. 1999.

Ramana Vinjamuri (S’02–M’08) received the B.S.
degree in electrical and electronics engineering from
Kakatiya University, Warangal, India, in 2002, the
M.S. degree in electrical engineering (specialized in
bioinstrumentation) from Villanova University, Vil-
lanova, PA, in 2004, and the Ph.D. degree in electrical
engineering (specialized in dimensionality reduction
techniques in hand movements, prosthesis, robotics,
and virtual reality) from the University of Pittsburgh,
Pittsburgh, PA, in 2008.

He is currently a Postdoctoral Fellow in the De-
partment of Physical Medicine and Rehabilitation, University of Pittsburgh,
where he is engaged in the field of neural prosthesis through brain–computer
interface.

Authorized licensed use limited to: Kwangju Institute of Science and Technology. Downloaded on September 28, 2009 at 07:26 from IEEE Xplore.  Restrictions apply. 



56 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 13, NO. 1, JANUARY 2009

Donald J. Crammond received the B.Sc. (Hons.)
degree in physiology from the University of Glas-
gow, Glasgow, U.K., in 1980, and the Ph.D. degree in
neurophysiology (with majors in cortical neurophysi-
ology and motor control) from the School of Graduate
Studies, University of Toronto, Toronto, ON, Canada,
in 1988.

He is currently an Assistant Professor in the
Department of Neurological Surgery Center, Clini-
cal Neurophysiology, University of Pittsburgh, Pitts-
burgh, PA, and is Board-Certified in clinical neuro-

physiology. The goal of his research is to apply quantitative neurophysiological
techniques and motor control principles to the study of movement disorders in
various patient populations.

Douglas Kondziolka received the M.S. degree from
the Department of Behavioral Neuroscience, Univer-
sity of Pittsburgh, Pittsburgh, PA, in 1991, and the
M.D. degree from the University of Toronto, Toronto,
ON, Canada, in 1991, and a Fellowship in stereotac-
tic surgery and radiosurgery from the University of
Pittsburgh.

He is the Peter J. Jannetta Professor and the Vice-
Chairman of neurological surgery at the University
of Pittsburgh, Pittsburgh, PA. His clinical work and
research focus on stereotactic surgical applications,

particularly as they apply to functional restoration and minimal access surgery.
He directs the University of Pittsburgh Medical Center (UPMC) Movement Dis-
order Surgery program and serves as the Neuroscience Task Force Leader for
the McGowan Institute for Regenerative Medicine. He served as the principal
investigator of the first two clinical neurotransplantation trials for the care of
patients with stroke. He has authored or coauthored 332 articles published in
refereed journals, 186 book chapters and/or invited publications, and has edited
eight books. He has completed four randomized controlled trials.

Prof. Kondziolka was a two-time recipient of the Stephen Mahaley Award for
brain tumor clinical research from the Joint Section on Tumors of the American
Association of Neurological Surgeons (AANS)/Congress of Neurological Sur-
geons (CNS). He received the Lars Leksell Award from the World Federation
of Neurosurgical Societies. In 2004, he was honored as the Penfield Lecturer
of the Canadian Neurosurgical Society. In 2006, he received the Robert Florin
Award of the AANS for socioeconomic research, and in 2007, the AANS In-
tegra Foundation Award. In 2007, he received the Jacob Fabrikant Award from
the International Stereotactic Radiosurgery Society. He is the Past President of
the American Society for Stereotactic and Functional Neurosurgery, the Past
Chairman of the Joint Section on Stereotactic and Functional Neurosurgery of
the AANS/CNS, and the Past President of the International Stereotactic Radio-
surgery Society. In 2006–2007, he served as the President of the CNS.

Heung-No Lee was born in Choong-Nam, Korea.
He received the B.S., M.S., and Ph.D. degrees in elec-
trical engineering from the University of California,
Los Angeles (UCLA), in 1993, 1994, and 1999, re-
spectively.

From March 1999 to December 2001, he was
with the Network Analysis and Systems Department,
Information Science Laboratory, Hughes Research
Laboratories, Malibu, CA, where he led a number
of research projects as the principal investigator in-
cluding traffic modeling for tactical Internet (under

Defense Advanced Research Projects Agency (DARPA) Advanced Technology
Office (ATO) Adaptive Signal Processing and Networks (ASPEN) program),
future tactical networking system, capacity analysis for satellite networks using
realistic input traffic, and broadband wireless modem. In 2002, he joined the
Electrical Engineering Department, University of Pittsburgh, Pittsburgh, PA.
His current research interests include information and signal processing theo-
ries for wireless network and biomedical applications.

Zhi-Hong Mao (S’96–M’01) received the dual B.S.
degrees in automatic control and applied mathe-
matics and the M.Eng. degree in intelligent control
and pattern recognition from Tsinghua University,
Beijing, China, in 1995 and 1998, respectively, the
S.M. degree in aeronautics and astronautics from
Massachusetts Institute of Technology (MIT), Cam-
bridge, in 2000, and the Ph.D. degree in electrical and
medical engineering from the Harvard-MIT Division
of Health Sciences and Technology, Cambridge, in
2005.

He is currently an Assistant Professor in the Department of Electrical and
Computer Engineering and the Department of Bioengineering, University of
Pittsburgh, Pittsburgh, PA. His research interests include neural principles of
control and learning, human-centered control systems, and networked control
systems.

Authorized licensed use limited to: Kwangju Institute of Science and Technology. Downloaded on September 28, 2009 at 07:26 from IEEE Xplore.  Restrictions apply. 


