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Abstract—Postural synergies of the hand have been widely pro-
posed in the literature, but only a few attempts were made to visu-
alize temporal postural synergies, i.e., profiles of postural synergies
varying over time. This paper aims to derive temporal postural syn-
ergies from kinematic synergies extracted from joint angular ve-
locity profiles of rapid grasping movements. The rapid movements
constrain the kinematic synergies to combine instantaneously, and
thus, the movements can be approximated by a weighted sum-
mation of synchronous synergies. After being extracted by using
singular value decomposition, the synchronous kinematic synergies
were translated into temporal postural synergies, which revealed
strategies of enslaving, metacarpal flexion for larger movements,
and hierarchical recruitment of joints, adapted by subjects while
grasping.

Index Terms—Brain–computer interface (BCI), grasping, kine-
matic synergies, postural synergies, rehabilitation, virtual reality.

I. INTRODUCTION

THE CONCEPT of synergies (in Greek synergos means
working together) received the first numerical representa-

tion as a possible solution to the DOF problem by Bernstein [1].
Although synergies were originally defined by Bernstein as
high-level control of kinematic parameters, different definitions
of synergies exist and the term has been generalized to indi-
cate the common patterns observed in the behaviors of muscles,
joints, forces, actions, etc. Synergies in hand movements espe-
cially present a complex optimization problem as to how the
central nervous system (CNS) controls the hand with over 25
DOF [2]. However, the CNS handles all the movements effort-
lessly, and at the same time, dexterously. Endeavoring to solve
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the DOF problem, many researchers have proposed numerous
concepts of synergies, which are as follows.

1) Postural synergies: Researchers found that the entire act
of grasp can be described by a small number of dominant
postures, which were defined as postural synergies [3]–[8].

2) Kinematic synergies: Studies in [9] and [10] expressed the
angular velocities of finger joints as linear combinations
of a small number of kinematic synergies, which were also
angular velocities of finger joints, but were extracted from
a large set of natural movements. Kinematic synergies
are not limited to hand movements. d’Avella et al. [11]
reported that kinematic synergies were found in tracking
7-DOF arm movements.

3) Dynamic synergies: Dynamic synergies were defined as
stable correlations between joint torques that were found
during precision grip movements in [9]. In addition to
synergies proposed in postures, kinematics, and dynamics,
which are of relevance to the current study, synergies were
also proposed in muscle activities [11].

In this paper, we consider both kinematic synergies (which are
shared spatiotemporal patterns in the joint angular velocity pro-
files of hand movements [10]) and temporal postural synergies
(which present shared patterns of postural variations over time).
This paper undertakes two tasks. The first task is to investigate
rapid hand movements to extract kinematic synergies. Based on
a convolutive-mixture model for generation of hand movements
(see Section II-A), we propose that a kinematic synergy is the
production of impulse responses of a set of filters that character-
ize the related neural–biomechanical structures responsible for
the movement of finger joints in response to a command impulse
(see Section II-A). Based on this model, synchronous synergies
can be computed from rapid grasping tasks using singular value
decomposition (SVD). This is different from the method used
in our previous study [10], which iteratively searched for both
the shaping and timing of kinematic synergies simultaneously.
In this paper, we concentrate on determining the morphology of
kinematic synergies. In the future, the obtained synergies will
be used as templates to decompose the hand movements, to
show how the kinematic synergies are recruited in movement
generation.

The second task of this paper is to translate the obtained kine-
matic synergies into temporal postural synergies. This method
for computing temporal postural synergies can be applied to
brain–computer interface (BCI) and rehabilitation. Eigenpos-
tures or postural synergies were reported to have physiological
and anatomical significances [4], [8]. In [12] and [13], it was
proposed that motor disabilities in individuals with stroke might
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be due to missing synergies found in unimpaired individuals.
Study of the synergies in normal subjects and comparing them
with synergies in individuals with movement disorders will have
significant contribution to rehabilitation. By training in virtual
environments and by graphical visualization of temporal postu-
ral synergies, if lacking synergies are learnt by individuals with
motor disabilities, it might be possible to bring them back to nor-
mal motor behaviors. Virtual reality environments are already
under use for rehabilitation of individuals with motor disabilities
due to stroke [13]. Such virtual platforms for rehabilitation can
be greatly enhanced with the addition of graphical visualization
of temporal postural synergies.

With the advent of virtual reality in recent years, postural syn-
ergies have been extensively explored, but only a few attempts
were made to visualize postural synergies across time [3], [5],
[8]. Many matrix factorization methods such as principal com-
ponent analysis (PCA), SVD, and linear discriminant analy-
sis (LDA) have been used to obtain a few dominant postures
over a wide range of postures collected during reach-and-grasp
experiments. But, these were all static postures. The earlier at-
tempts [4], [5], [8] were limited to estimation by extrapolation of
eigenpostures or PC postures. In [8], postural variation across
time was obtained, but was estimated by adding a weighted
component of variation to a mean posture. In [4] and [5], simi-
lar computations were carried out. In contrast, temporal postural
synergies presented in this paper are not static postures, but are
postural variation patterns observed across time.

The rest of this paper is organized as follows. Section II
presents a summary of methods, which include descriptions for
1) a convolutive-mixture model of movement generation, and
how this model is used to interpret rapid hand movements as
superpositions of synchronous kinematic synergies; 2) the ma-
terials used in the human experiment; 3) the procedure of the
experiment; and 4) our proposed algorithm for extraction of
kinematic synergy and calculation of temporal postural syner-
gies. Section III shows the results of the human experiment and
data analysis. Section IV presents a discussion on the results
and significance of our study. The last section is the conclusion.

II. METHODS

A. Model

Following [14], we model the angular velocities of finger
joints as convolutive mixtures of some command signals rep-
resented by impulse trains (see Fig. 1). Let us start with the
simplest case where a command signal contains only a single
impulse. Such an impulse originates in the higher level neural
system, then activates some circuits in the lower level neural
system, and finally, stimulates certain biomechanical structures.
This process creates a stereotyped angular change at the finger
joints of the hand. We can view this process as the activation of
a kinematic synergy in hand movements [see Fig. 1(a)], which is
similar to the production of impulse responses of a set of filters
(or synergy generators). The output of each filter corresponds to
the movement of a specific finger joint. We assume that all the
filters are linear finite-impulse response (FIR) filters. Under such
an assumption, when the command signal is a train of impulses,

Fig. 1. Convolutive-mixture model for hand movement generation. (a) A
kinematic synergy can be viewed as impulse responses of a set of filters
that summarize the related neural–biomechanical structures triggering finger
joint movements in response to an impulse in the higher level neural system.
(b) A movement profile of the hand can be modeled as convolutive mixtures of
command impulses passing through the corresponding filters or synergy gener-
ators [14]. (c) A rapid movement is achieved as a weighted sum of synchronous
synergies.

a movement profile of the hand can be expressed as the su-
perposition of the impulse responses of the command impulses
passing through the corresponding filters residing in the neu-
ral system and connected biomechanical system [see Fig. 1(b)].
Although the neuromuscular system is nonlinear, considering a
linear approximation might give useful insight of the system.
Moreover, it has been suggested that motor behavior of verte-
brates can be well approximated by linear combination of tiny
modules of movement called movement primitives [15], [16].

Based on the aforementioned model, a kinematic synergy
can be depicted as impulse responses of a set of filters, denoted
by sj (t) ≡ [sj

1(t), . . . , s
j
n (t)]′ for the jth synergy, where ′ rep-

resents transpose and n is the total number of the considered
joints of the hand. When the jth synergy is activated at time tj1
with amplitude cj1 (in other words, the jth synergy generator
is activated by an impulse with amplitude cj1 at time tj1) [see
Fig. 1(a)], a hand movement is generated with the following
angular velocity profile:

v(t) = cj1sj (t − tj1)

where v(t) denotes [v1(t), . . . , vn (t)]′ and vi(t) (i = 1, . . . , n)
represents the angular velocity of the ith joint of the hand at time
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t. When the jth synergy generator is activated by a command
signal cj (t) containing a train of impulses, with amplitudes cjk

at times tjk [k = 1, . . . , Kj ; Kj is the total number of impulses
in cj (t)], the angular velocity profile of the finger joints becomes

v(t) = (cj ∗ sj )(t) =
Kj∑
k=1

cjksj (t − tjk )

where ∗ represents convolution. The aforementioned equation
can also be written as follows:

vi(t) =
Kj∑
k=1

cjk sj
i (t − tjk ), i = 1, . . . , n.

When more than one synergies are considered [see Fig. 1(b)],
our model can be expressed by the following equation:

v(t) =
m∑

j=1

(cj ∗ sj )(t)

=
m∑

j=1

Kj∑
k=1

cjksj (t − tjk ) (1)

or

vi(t) =
m∑

j=1

Kj∑
k=1

cjk sj
i (t − tjk ), i = 1, . . . , n

where m is the total number of synergies under consideration. A
similar model was successfully used in the extraction of sources
of tremor from hand joint movements of patients with movement
disorders [14].

Compared with the time-varying synergy model proposed in
our previous work [10], the current model (1) allows repeti-
tive uses of synergies in a single movement. Although this is
physiologically more plausible, the decomposition of synergies
becomes more difficult from computational point of view. We
need to determine not only the shapes of the synergies, but also
their onset times, amplitudes, and number of recruitments in the
movement. Instead of iteratively adjusting both the shaping and
timing of the synergies simultaneously, we propose to take two
steps. The first step is to determine the morphology of synergies,
and the second step is to use the obtained synergies as templates
or basis functions to decompose the hand movements. In this
paper, we concentrate on the first step by investigating rapid
movements, and in another manuscript, we study the second
step based on l1 minimization [17].

In this paper, we only consider rapid grasps. We asked the
human subjects to perform the rapid grasps imitating as though
reacting to instantaneous impulses descending from the CNS
(see Section II-C). We assume that these rapid movements min-
imize the reaction times and constrain the synergies to combine
almost instantaneously, i.e., all impulses from the CNS arrive at
the filters or synergy generators at approximately the same time
[see Fig. 1(c)]. Thus, a rapid movement can be achieved as a
weighted summation of synchronous synergies, as expressed in

the following equation:

v(t) =
m∑

j=1

cj0sj (t − t0) (2)

where the impulses of cj (t), j = 1, . . . , m, occur at the same
time t0 , but may have different amplitude cj0 .

We use superscript g (g = 1, 2, . . .) in vg (t) to distinguish
angular velocity profiles of different grasping tasks. If we shift
all vg (t) in time such that the movement onset times coincide
with t = 0, then the time of impulses t0 in vg (t) should be the
same for all g, but the amplitudes of impulses, denoted as cg

j0 ,
may be different for different g. Therefore, for grasping task g,
(3) can be rewritten as follows:

vg (t) =
m∑

j=1

cg
j0s

j (t − t0) (3)

or

vg
i (t) =

m∑
j=1

cg
j0s

j
i (t − t0), i = 1, . . . , n. (4)

Section II-D will show how to use SVD to extract the syn-
chronous kinematic synergies, precisely, sj (t − t0), a shifted
version of sj (t).

B. Materials

In the experiment, we used a CyberGlove [18] equipped with
22 sensors that captured hand movements at a maximum fre-
quency of 86 Hz. For the purpose of reducing computational
burden, we only considered 15 of the sensors, which measure
the angles of the carpometacarpal (CMC), metacarpophalangeal
(MCP), and interphalangeal (IP) joints of the thumb and the
MCP, proximal interphalangeal (PIP), and distal interphalangeal
(DIP) joints of the other four fingers. These 15 joints can cap-
ture most characteristics of the hand in grasping tasks. We used
several objects of different shapes (spheres, circular discs, rect-
angles, pentagons, nuts, and bolts) and different dimensions
(spheres: 1–5 cm in radius, discs: 2–10 cm in radius, rectangles
and pentagons: 1–3 cm each side, nuts and bolts: 2–5 cm in
length) in the grasping tasks. We selected these objects based
on two strategies: one was using different shapes, and the other
was gradually increasing sizes of similar shaped objects. Some
similar-shaped objects were intentionally used to observe trends
in grasping movements.

C. Experiment

An experiment consisted of tasks of grasping the objects of
various shapes and sizes. During the experiment, the subject
was in a seated position, resting his/her right hand at a corner
of a table before the start of a grasping task. We used computer-
generated beeps to signal start and stop times of a task. In each
task, the subject grasped the object placed on the table upon
hearing the start beep and held it until the stop beep. We asked
the subject to perform the grasp rapidly (as though reacting to
instantaneous impulses descending from the CNS). Each task
lasted for 1.6 s, although the actual movement lasted for less
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Fig. 2. Sample of movement profile (finger-joint angular velocity profile).
Onset and end of movements are marked in the figure. T, thumb; I, index finger;
M, middle finger; R, ring finger; and P, pinky finger; CMC, carpometacarpal
joint; MCP, metacarpophalangeal joint; IP, interphalangeal joint; PIP, proximal
interphalangeal joint; DIP, distal interphalangeal joint.

than half a second. Duration of 1.6 s was used in order to make
sure that all subjects complete the movement successfully. It also
helped the subjects, who had delayed responses after the beep.
Throughout the experiment, we used the CyberGlove to record
joint angles. We first asked each subject to perform 40 rapid
grasping tasks, which formed the training data used to obtain
synergies. After a short recess of about 3–4 min, we collected 20
more tasks by picking 20 objects in a random order, irrespective
of their shapes and sizes. These 20 tasks formed the testing
data. The 20 objects in these testing tasks were different from
the objects used in training. A total of five human subjects (four
male and one female, aged between 20 and 30 years, and healthy
without neurological disorders) were tested in this experiment.
All these subjects were informed about the nature of the study
and signed institutionally approved consent forms.

D. Analysis

First, we calculated angular velocities from the joint angle
profiles collected in the experiment (see Fig. 2, for example).
We truncated the entire profile to preserve only the relevant pro-
jectile movement—about 0.45 s or 39 samples under a sampling
rate of 86 Hz.

Second, we constructed an angular velocity matrix X for
each subject. As shown in Fig. 3, angular velocity profiles of the
15 joints corresponding to one object were cascaded, and each
row of the angular velocity matrix represented one movement

Fig. 3. Angular velocity matrix. (a) Cascading angular velocity profiles of
15 joints to form a row of the anuglar velocity matrix. (b) Each row of the
angular velocity matrix represents a grasping task. This is a transformation of
the (left) initial posture (left) to (right) final posture). In each row, the angular
velocity profiles of 15 joints are separated by dotted red lines. Five such tasks
are depicted here.

in time. The matrix had 40 rows and 39 × 15 = 585 columns

X =




v1
1 (1) · · · v1

1 (39) · · · v1
15(1) · · · v1

15(39)
...

...
...

...
...

...
...

vg
1 (1) · · · vg

1 (39) · · · vg
15(1) · · · vg

15(39)
...

...
...

...
...

...
...

v40
1 (1) · · · v40

1 (39) · · · v40
15 (1) · · · v40

15 (39)




(5)
where vg

i (t) represents the angular velocity of joint i (i =
1, . . . , 15) at time t (t = 1, . . . , 39) in the gth grasping task
(g = 1, . . . , 40). Each row of the matrix X connects a start pos-
ture to an end posture. The velocity projectile describes the
transformation from the start posture to the end posture. For a
subject, as all movements started from the same hand posture,
we can say that each row of the angular velocity matrix corre-
sponds to one specific end posture. Note that in PCA and SVD,
the data matrix is often arranged such that columns represent
individual data samples, but in our case, it is the rows of ma-
trix X that represent individual measurements—we have simply
performed a transpose.

Third, we performed SVD on the angular velocity matrix X
of each subject. We wrote X as follows:

X = UΣY (6)

where U is a 40-by-40 matrix with orthonormal columns (U ′U
equals an identity matrix), Y is a 40-by-585 matrix with or-
thonormal rows (Y Y ′ equals an identity matrix), and Σ is a 40-
by-40 diagonal matrix denoted by diag{λ1 , λ2 , . . . , λ40} with
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λ1 ≥ λ2 ≥ · · · ≥ λ40 ≥ 0. For convenience of analysis in this
paper, we used the aforementioned form of SVD (see [19, p.
44]), which is different from the standard form of SVD (where
Y is square and Σ is of the same dimensions as X). We can
approximate X by another matrix X̃ with reduced rank r by
replacing Σ with diag{λ1 , . . . , λr , 0, . . . , 0}. We can write the
approximation matrix X̃ in a more compact form

X̃ = Ur diag{λ1 , . . . , λr}Yr (7)

where Ur is a 40-by-r matrix containing the first r columns of
U and Yr is a r-by-585 matrix containing the first r rows of Y .
Introducing a new symbol W = Ur diag{λ1 , . . . , λr}, we have

X ≈ X̃ = WYr . (8)

Then, we call each row of Yr as a PC and W as the weight
matrix.

Fourth, we derived the kinematic synergies. We named the
elements of Yr in a way similar to (5)

Yr ≡




y1
1 (1) · · · y1

1 (39) · · · y1
15(1) · · · y1

15(39)
...

...
...

...
...

...
...

yr
1 (1) · · · yr

1 (39) · · · yr
15(1) · · · yr

15(39)




(9)
and named the elements of W in the following way:

W =




w1
1 · · · w1

r
...

. . .
...

wg
1 · · · wg

r
...

. . .
...

w40
1 · · · w40

r




. (10)

According to (8), we can approximate each row of X by a linear
combination of the r PCs. According to (8), (5), (9), and (10),
we have

vg
i (t) ≈

r∑
j=1

wg
j yj

i (t) (11)

for i = 1, . . . , 15, g = 1, . . . , 40, and t = 1, . . . , 39.
Since (11) has been written in the form of (4), we have found

a solution to the synergy-extraction problem: The angular ve-
locity profiles [obtained by rearranging all joints rowwise for
the PCs—the reverse process of Fig. 3(a)]




yj
1(1) · · · yj

1(39)
yj

2(1) · · · yj
2(39)

· · · · · · · · ·
yj

15(1) · · · yj
15(39)


 , j = 1, . . . , r

can be viewed as a set of candidates of the kinematic synergies.
These kinematic synergies can serve as “building blocks” to
reconstruct joint angular velocity profiles of hand movements
[see (8) and (11)].

A comprehensive approach to decide r, the number of PCs
or kinematic synergies, which are enough to reconstruct the
testing postures, is presented in the next section. By linearly
combining these synergies, 20 testing tasks were reconstructed.
As we know the synergies and testing movement profiles, a

Fig. 4. Fraction of variance accounted by increasing number of PCs. Error
bars indicate the standard deviation across subjects.

least-squares method (pinv in MATLAB) was used to find the
optimal linear combination of the kinematic synergies, which
can reconstruct the testing movement profiles.

Fifth, we derived the temporal postural synergies from the
kinematic synergies by integrating the angular velocity profiles
of these kinematic synergies at the 15 joints from the initial
posture.

III. RESULTS

A typical task profile containing the velocity projectile is
shown in Fig. 2. Note that the angular velocity profiles may
have both positive and negative values corresponding to flexion
and extension of a finger joint, respectively. It was observed
that grasping tasks with different shaped objects often exhibited
different patterns of joint coordination in the angular velocity
profiles, while similar shaped objects of different sizes obtained
similar patterns, but differed in amplitudes in the angular veloc-
ity profiles.

In the extraction of kinematic synergies or PCs using SVD, on
average the first PC accounted for 56% of the total variance for
all the five subjects. The first and second PCs together accounted
for 82% of the total variance. In order to determine how many
PCs would suffice to account for the variance of the entire
training data, a PC-variation chart was plotted in Fig. 4. Error
bars indicate standard deviation across the five subjects. Beyond
six PCs, there was not much appreciable contribution of higher
order PCs in the total variance. Note that this, by itself, might
not be sufficient evidence to decide on the number of PCs or
kinematic synergies. Another criterion used to determine the
number of synergies is based on reconstruction errors (discussed
later).

Angular velocity profiles of six kinematic synergies obtained
for Subject 1 are depicted in Fig. 5. Across the rows are the 15
joints corresponding to the five fingers (three for each). These
synergies show that peak velocities of the grasp occurred at the
middle of the task. This reflects acceleration at the beginning
of the task, which was generally open loop. It was followed by
deceleration caused due error feedback from sensory and motor
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Fig. 5. Six kinematic synergies (39 samples at 86 Hz). Each synergy is about
0.45 s in duration.

systems while reaching the precise position of object, and finally
closing of the grasp.

Given the initial posture, the temporal variation of postures
along each kinematic synergy can be calculated via integration.
A set of six such temporal postural synergies obtained from
Subject 1 are depicted in Fig. 6. In the figure, four postures
are snapshots at 25%, 50%, 75%, and 100% of the task times,
respectively. End posture of each synergy indicates the contri-
bution of synergy in a particular type of grasp. End postures of
the six synergies for the remaining four subjects are shown in
Fig. 7. As all the subjects performed tasks on the same train-
ing objects, there were similarities in synergies adapted, among
the subjects. First two and last two synergies were very similar
across all the subjects. The end postures of the third and fourth
synergies were not the same for all the subjects although there
were some similarities.

By linearly combining the synergies, for each subject 20
grasping tasks that comprise the testing data were reconstructed.
One of the reconstructions is shown in Fig. 8. As clearly evident,
the reconstruction was reasonably accurate using six synergies
in the following task. The reconstruction errors in other cases
can be seen in the reconstruction error plot illustrated in Fig. 9.
The reconstruction errors were calculated for each subject and

Fig. 6. Postural synergies of Subject 1. Each row corresponds to the temporal
profile of one synergy. Each posture is a snapshot taken at discrete time steps
(as indicated at the bottom of the figure) of the task. Synergies are arranged in
the order of their significance with the first row (first synergy) being the most
significant to the last row (last synergy) being the least significant. Note that
end postures of the top two synergies are closed fists.

Fig. 7. Postural synergies of Subjects 2–5. Each row corresponds to the end
postures of six different synergies (denoted S1, . . . , S6) for one subject in the
decreasing order of their significance from left to right. End postures (rather
than detailed temporal postures) for Subjects 2–5 are shown here.

each task for various numbers of PCs by
∑15

i=1
∑39

t=1 [vg
i (t) − v̂g

i (t)]2∑15
i=1

∑39
t=1 vg

i (t)2

where v̂g
i (t) (t = 1, . . . , 39) is the angular velocity profile of

task g and finger joint i (i = 1, . . . , 15) reconstructed using a
given number of PCs. Note that the aforementioned reconstruc-
tion error is not a direct measure of the approximation error
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Fig. 8. Joint angular velocity profile of a grasping task (in black) is recon-
structed (in red) by using six synergies for Subject 3.

Fig. 9. Reconstruction error. The graph illustrates the gradual decrease in
the reconstruction error while recruiting more synergies. Error bars indicate
the standard deviation across subjects. This can also be used as a measure of
calculating sufficient number of PCs.

(quadratic difference between the original and reconstructed
angular velocity profiles), but expressed as a ratio between this
approximation error and the size (also in quadratic sense) of
the original angular velocity profiles. The error bars in Fig. 9
indicate standard deviation across subjects averaged across 20
testing tasks. The number of PCs versus reconstruction error
plot also helps in determining the number of PCs. Although it is
up to one’s discretion about how many PCs can be considered to
account for appreciable reconstruction, in our case six synergies
were proved as sufficient for reconstruction of the testing tasks.

IV. DISCUSSION

In this paper, kinematic synergies, and thereafter, tempo-
ral postural synergies were obtained based on a convolutive-

mixture model for generation of hand movements. The model
was reduced to a linear combination of synchronous synergies
in rapid grasping tasks. The importance of these simple and
higher level models lies in their instant applications in robotics,
prosthetics, and rehabilitation. As these models are computa-
tionally inexpensive, they can be readily adapted for real-time
applications in controlling prosthetic arms and hands with mul-
tiple DOF. Currently, such models are very much needed for
rehabilitation and restoration of hand functions. For instance,
single neuron recordings, made from monkey’s motor cortex,
have been used in decoding arm movement [20]. In such ex-
periments, where only a few neurocommand signals and end
kinematics are available, these high-level models will prove to
be significantly helpful in predicting higher DOF with a few
command signals.

The following anatomical insights were obtained from the
temporal postural synergies. In Fig. 6, for the third, fourth, and
fifth synergies in this subject, index finger acts as a master in
leading the movement and rest of the fingers follow it as slaves.
This concept has been observed previously and called enslav-
ing [2]. Such biomechanical constraints can greatly reduce the
complexity involved in controlling prosthetic hands. From the
end postures in Figs. 6 and 7, it is clearly evident that no syn-
ergy is redundant and that they are all unique. The first synergy
is a close fist. The second synergy can be used in tasks like
holding a dice, the third synergy in holding small spheres, the
fourth in holding cylindrical rods, the fifth in holding precision
pinches, and the sixth in holding larger spheres/objects. In all of
these synergies, as the size of the grasping object decreases, the
flexion at metacarpal joints increases. In the first two synergies,
the metacarpal flexion was dominant when compared to other
synergies and gradually reduced for other synergies. Also, for
major movements only MCP joints were involved. For precision
movements after major movements, proximal and distal joints
were recruited. This can be witnessed in the fifth synergy, sug-
gesting hierarchical recruitment of joints. Similar findings will
be reported in [17].

Temporal postural synergies play an important role in un-
derstanding the physiological aspects of the movement. Bio-
logically inspired synergies have already taken an important
place in prosthetics [21], [22]. In such technologically advanc-
ing scenarios, dominant static postures are by themselves not
significant, unless they are supplied by the temporal information
of how they can be achieved by collective coordination in dif-
ferent joints. In Fig. 6, the advantage of presenting the postural
variation across time can be greatly appreciated. It is important
to note here that intermediate postures may seem significant, but
may not be physiologically meaningful. This implies that domi-
nant static postures proposed earlier need not have physiological
meaning. For example, in Fig. 6, intermediate posture at 50%
time of the first synergy is almost similar to the end posture of
the fourth synergy. Although the first synergy is aimed to grasp a
tiny object, e.g., pearl, its intermediate posture looks very much
like the fourth synergy that is targeted at grasping an object like
cylindrical rod. Temporal postural synergies eliminate this am-
biguity, as they supply the postural information across the time
line of entire reach and grasp.
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Not all people use the same set of strategies while grasping.
Some studies considered common postural patterns across sub-
jects, as synergies [8]. This leads us to a question, should all
people use the same postural patterns and should these postural
patterns be called synergies? Athletes, calligraphers, artists, and
musicians have very sophisticated set of skills in hands, which
can adapt to complex movements very easily, what to speak of
day to day movements. Moreover, it was observed in [23] that
fine finger movements improve over time and reflect the devel-
opment of specialized neural connections in spinal cord. In such
cases, synergies used by skilled professionals need not be the
same as average class of people. The absence of common trends
among different people does not mean the absence of synergies,
but it means that people are adapting to a different set of syner-
gies. Some synergies are innate, which might be common, but
some are adaptive [24], as per the changes in environment.

The recruitment of these synergies implied that the synergy
corresponding to full flexion had higher weight across all sub-
jects. In all subjects, it was observed that on average the first
synergy was also the synergy, which is mostly used in all the
testing grasps. Note that the synergies were placed based on
their contribution to the variance accounted in the testing data.
The fact that the first synergy involved full flexion for all the
subjects is in agreement with neurophysiology of movement.
Next, in the order were the third, fourth, and fifth synergies,
which were not the same for all subjects. Note that in the linear
combinations of synergies to reconstruct testing grasps, nega-
tive coefficients were obtained for some synergies. What this
means is by using the first synergy for full flexion and simulta-
neously, using the other synergies in opposite direction would
inhibit the movement and enable the subject to achieve a range
of various postures. This degree of inhibition can be controlled
by the magnitude of the coefficients in the linear combination.
This can be correlated to agonist and antagonist muscles acting
simultaneously in opposite directions causing forward move-
ment and at the same time deceleration by negative velocities to
control the movement of hand in different tasks.

V. CONCLUSION

Kinematic synergies of the hand were extracted from a set of
rapid grasping movements based on a simplified convolutive-
mixture model for generation of hand movements. Carefully
designed rapid grasping tasks enabled synchronous kinematic
synergies to be obtained by SVD. The kinematic synergies were
then translated into temporal postural synergies, which revealed
interesting strategies of finger coordination. In this paper, we
concentrated on determining the morphology of kinematic syn-
ergies in rapid hand movements, and in our future study, we will
use the obtained synergies as templates to decompose the hand
movements, so as to understand how the kinematic synergies
are recruited in movement generation.
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