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Performance Analysis on LDPC-Coded Systems
over Quasi-Static (MIMO) Fading Channels
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Abstract—In this paper, we derive closed form upper bounds
on the error probability of low-density parity-check (LDPC)
coded modulation schemes operating on quasi-static fading
channels. The bounds are obtained from the so-called Fano-
Gallager’s tight bounding techniques, and can be readily cal-
culated when the distance spectrum of the code is available. In
deriving the bounds for multiple-input multiple-output (MIMO)
systems, we assume the LDPC code is concatenated with the
orthogonal space-time block code as an inner code. We obtain
an equivalent single-input single-output (SISO) channel model for
this concatenated coded-modulation system. The upper bounds
derived here indicate good matches with simulation results of a
complete transceiver system over Rayleigh and Rician MIMO
fading channels in which the iterative detection and decoding
algorithm is employed at the receiver.

Index Terms—Tight union bounds, LDPC codes, space-time
block code, MIMO systems, quasi-static fading channels.

I. INTRODUCTION

DURING the past several years, much research effort has
been spent on the prediction of the error performance for

turbo- and LDPC-coded systems with the maximum likelihood
(ML) decoding assumption. This interest has been motivated
by the splendid error correction performance of turbo-like
codes which comes very close to the theoretical limit for a
large block size. In a region close to the capacity limit, it
has been known that the usual union bound is loose. Thus,
the demand has been very high for finding tight performance
bounds that would continuously be useful in this region.
Fulfilling this need, there has been a series of substantial
progress made recently [1], [2], [3], [4], [5], [6] in the context
of single-input single-output channels. They are variations on
the so-called Fano-Gallager bounding method, also known
as the limit-before-averaging bounding technique, which was
originally introduced by Fano [7] and then further developed
by Gallager for analyses on LDPC codes operating over the
additive white Gaussian noise (AWGN) channel [8]. A recent
semi-tutorial paper by Shamai and Sason [6] summarizes this
family of tight bounding techniques such as the Duman-Salehi
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bound [9], the Divsalar bound [3], and the Shulman-Feder
bound [10], and provides a taxonomy of bounding methods
showing how they are related to one another.

In this paper, we are interested in extending the Fano-
Gallager framework to space-time transmission of LDPC-
coded multi-level modulation over multiple-input multiple-
output channels. The Fano-Gallager bounding technique starts
with the following simple decomposition:

Pr(error) = Pr(f ∈ �) Pr(error|f ∈ �)
+ Pr(f ∈ �̄) Pr(error|f ∈ �̄)

≤ Pr(f ∈ �) Pr(error|f ∈ �) + Pr(f ∈ �̄), (1)

where f is a utility function, called the Fano-Gallager tilting
measure, of performance-related random variables such as the
additive white Gaussian noise and the multiplicative channel
fading gain. � is a utility region defined in the received signal
space and �̄ is its complement. The upper bound in the third
line is trivially obtained for Pr(error|f ∈ �̄) ≤ 1. A further
upper bound can be obtained by applying the conventional
union bound on the conditional error probability Pr(error|f ∈
�). These utility function and region are the vehicles utilized
to obtain tight upper bounds.

Depending on how tight a bound we want, from very simple
to very complicated utility function and region can be used,
as we examine previous bounding results in the literature.
Consider the received signal y over an AWGN channel,

y = αx0 + w, (2)

where x0 is the modulated signal for the all-zero binary
codeword c0, α is the unit channel gain, and w is the AWGN
noise. Divsalar [3] defines the utility region � to be a hyper-
dimensional sphere and takes the approach of optimizing the
radius and the location of the sphere. Since the region is a
rather simple sphere, the bound is obtained in a closed form.
However, we note that this bound is not tight and it is even
greater than 1 in the low signal-to-noise ratio (SNR) region. A
tight bounding technique can take a rather complicated form.
For example, the analyses in [4] focus on the case of fast
fading channels, i.e., assume an independent fading gain α in
(2) for each channel-symbol. In this case, the utility function
and the region depend both on the noise w and the fading
gain α. A full blown application of the Fano-Gallager tilting
measure technique was taken and it became very complex
and cumbersome to evaluate the bound with at least three
parameters to be optimized numerically.

There are a small number of previous works on bounds
for quasi-static fading channels. In [11], Stefanov and
Duman make use of the limit-before-averaging technique,

0090-6778/08$25.00 c© 2008 IEEE

Authorized licensed use limited to: Kwangju Institute of Science and Technology. Downloaded on February 17, 2009 at 03:35 from IEEE Xplore.  Restrictions apply.



ZHANG and LEE: PERFORMANCE ANALYSIS ON LDPC-CODED SYSTEMS OVER QUASI-STATIC (MIMO) FADING CHANNELS 2081

Pr(error|α) ≤ min{1, union bound}, for space-time trellis
coded MIMO systems. Since the utility region cannot be
easily identified for a general MIMO channel, an averaging
operation over channel realizations is included in their final
expression which again needs to be evaluated numerically. In
[12], Vatta, Montosi, and Babich use a further upper bound
based on the classical inequality of min{1, union bound} ≤
min0≤ρ≤1( union bound)ρ, for the analysis on the turbo-
coded SISO system. Again, the final upper bound expression
is rather complex and should be numerically evaluated and
optimized over the parameter ρ. This is mainly because the
exponent ρ prevents the exchange of the summation operation
within the union bound and the average operation over channel
fading.

In this paper, we aim to obtain a simple yet effective
approach which does not leave any parameter to be optimized
numerically and strike a balance between the tightness and
the complexity. This will help us tackle the more complicated
situation we have. Namely, our aim is to obtain tight bounds
for LDPC-code modulated multi-level space-time transmission
over MIMO channels. We select the utility function and region
so as to distinguish between “high” and “low” instantaneous
SNR events. With a certain threshold value α∗, we define
{f ∈ �} := {α ≥ α∗}. In the high SNR case, the
conventional union bound is used; in the low SNR situation,
the trivial bound is used, i.e.,

Pr(error) ≤ Pr(α ≥ α∗)
∑

c′ �=c0

P (c0 → c′ |α ≥ α∗ )

+ Pr(α < α∗), (3)

where the summand is the pairwise error probability from c0

to any other codeword c′ conditioned on f ∈ �. Namely, we
take f ∈ �̄ as an “outage” event in which the fading gain is
smaller than the threshold. It is worth noting that this approach
has been independently taken by Bouzekri and Miller in [13]
and Stefanov and Duman in [14] to find tight bounds for the
analysis of turbo-coded modulation signals over quasi-static
fading channels. However, it should be noted that other than
this similarity, our work is independent and more broadly
defined and provides a different set of unique contributions.

In [14], the authors consider a general MIMO system. Due
to the difficulty caused by this generality, the final expressions
of the union bound can only be expressed in multiple integrals
over MIMO fading channels. In contrast, we focus on STBC
coded MIMO system and obtain a closed form upper bound
without any numerical integral for fading (the final expression
has a single integral, but it is for the Craig’s identity of the
Gaussian Q function). In addition, different from the codeword
enumerating method in [14], [15], [16]], what’s proposed
in this paper is a new and simple combinatorial method to
identify the cardinality of a set of codewords which lead to
the same pairwise error probability. Further discussion on this
difference can be found in Section III.

Other contributions of this paper can be summarized as fol-
lows. First, instead of the turbo-coded binary modulation over
Rayleigh channels in [13], our work (Proposition 2) formulates
the Fano-Gallager bounding technique in the more general
context such that the bounds can be obtained for multilevel
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Fig. 1. Coded modulation system over quasi-static fading channel.

signal constellations and for any fading distributions. We ob-
tain the results for both Rayleigh and Rician channels. Second,
utilizing Shannon’s classical idea of performance averaging
over an ensemble of codes, we develop a statistical property of
the ensemble of LDPC codes and identify the set of codewords
that lead to an identical pairwise error probability, see section
III. This contributes to a concise expression of the upper bound
and a systematic approach to evaluating the threshold value
α∗, especially for transmission schemes involving multi-level
modulation. Our results in this paper are mainly for ensembles
of LDPC codes but the general framework can be extendable
to other linear block codes that satisfy Proposition 1, including
the turbo codes. Third, we make use of the equivalent SISO
channel model for orthogonal space-time block coded systems
and have the upper bound extended to any orthogonal space-
time block coded modulation system. Fourth, we employ the
Craig’s identity of the Gaussian Q-function instead of its
Chernoff bound to pursue the tightness of the overall bound.
Roughly, the use of the Craig’s identity improves the bound
by about 1 dB in SNR.

The rest of this paper is organized as follows. In Section II,
we introduce the system of interest. The statistical property
of an ensemble of LDPC codes is developed in Section
III. Section IV describes the bounding technique with which
upper bounds are derived with closed forms for the SISO
system. Section V extends the approach to the MIMO system
with inner orthogonal space-time block coding. Section VI
discusses the evaluation method of the derived upper bound.
Section VII presents simulation results to verify the tightness
of the bound. Finally, we make a summary in Section VI.

II. SYSTEM OF INTEREST

Consider the single-input single-output transmission system
illustrated in Fig. 1. A sequence u of K information bits
is encoded into an LDPC codeword c of length L. The
modulator adopts a constellation of size Q (Q = 2Kb , Kb

is a positive integer), and its signal points are denoted by
a0, a1, . . . , aQ−1. The modulated signal vector x of c therefore
has T = L/Kb components, each of which is selected from
the set A = {a0, a1, . . . , aQ−1}. It is transmitted over the
channel that can be modeled as follows:

yt =
√

Esαxt + wt, (t = 1, 2, . . ., T ), (4)

where Es is the average symbol energy at the transmit antenna;
xt is the t-th component of the transmitted signal vector x
and yt is the corresponding received signal; wt denotes the
independent complex additive white Gaussian noise with zero
mean and variance N0/2 per dimension. The fading gain α,
sampled according to a certain probability density function, is
assumed to be known at the receiver. It is fixed during a block
of T channel uses and varies independently from one block to
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another (quasi-static fading channel). In the case of a Rician
channel, the probability density function of the magnitude of
fading gain α is given by,

p(α) = 2αe−(α2+Kr)I0(2α
√

Kr), α > 0 (5)

where I0(x) = 1
π

∫ π

0
ex cos θdθ is the zero-th order modified

Bessel function of the first kind, and Kr is the Rician factor
which indicates the relative strength of the direct and scattered
components of the received signal.

III. STATISTICAL PROPERTY OF AN ENSEMBLE OF LDPC
CODES

In this paper, we are concerned with the error performance
of LDPC-coded modulation systems, averaged over an ensem-
ble of LDPC codes that is specified by three fixed parameters:
block length L, variable- and check-node degree distributions
[17]. Note that this can be used to define an ensemble for
either regular [8] or irregular LDPC codes [17]. Assume each
code Csel in the ensemble C is selected for use with an equal
probability, i.e.,

Pr (Csel is selected ) = |C|−1
, ∀Csel ∈ C, (6)

where | · | denotes the cardinality of a set. Denote the average
distance spectrum of an ensemble as {Ah} in which Ah, the
number of codewords of Hamming weight h in one code, is
obtained as the average over the ensemble. Then, we have the
following statistical property statements for the ensemble.

Proposition 1: If Ah > 0 for a certain h, each of the
(
L
h

)
distinct binary sequences of length L and Hamming weight h
is a valid codeword in a certain fixed number Nh of codes in
the ensemble. Thus, the probability of each of these sequences
appearing in the randomly selected code Csel is equal.

Proof: The proof is given in Appendix A.
A sketch of ideas is given here. Instead of the ensemble

of codes, we equivalently consider the ensemble of parity-
check matrices for the set of codes. The key idea is then to
show the closure of the ensemble of parity-check matrices
under column permutations. We note that any column per-
mutation of one parity-check matrix generates another one
in the same ensemble. Namely, column permutation does not
affect the three specified parameters in a particular ensemble.
The ensemble of these matrices is thus closed under column
permutations. Accordingly, any permutation of a codeword in
one code generates a codeword in another code of the same
ensemble. Notice that each of the binary sequences of weight h
can be regarded as permutation of one another. The statements
in Proposition 1 are then readily available.

Indeed, the closure will hold as well for the ensemble of
randomly interleaved turbo codes (or any other linear block
codes). Thus, the proposition and the analysis scheme in this
paper could be applicable to turbo codes as well. In this paper,
however, we will stay focused on the analysis of LDPC coded
systems due to space limitation.

Proposition 1 will be useful for calculating the number of
codewords which lead to the same pairwise error probability
in the union bound analysis.

Consider any codeword c of length L. It can be alternatively
regarded as a serial concatenation of T binary strings, where

each binary string has length Kb, i.e. Kb = L/T , and is to be
mapped onto a signal point in the Q-ary constellation. Denote
the Q = 2Kb possible distinct binary strings as b0, b1, . . . ,
bQ−1, their Hamming weight as w0, w1, . . . , wQ−1, and the
numbers of their appearance within a single codeword c as
δ0, δ1, . . . , δQ−1, respectively. For example, δi is the number
of appearances of string bi in a single codeword. Since there
are T strings in a codeword, its maximum value is T and
minimum is 0; the sum of all these numbers should be equal
to T . Namely, we have

δi ∈ {0, 1, . . . , T} and
Q−1∑
i=0

δi = T. (7)

Now, the problem is to find the average number Ah,δ of
the codewords in a code that have the same vector δ =
(δ0, δ1, . . . , δQ−1). Let’s call this appearance vector. Then,
we collect all appearance vectors that have the same Hamming
weight h = Σiδiwi in to a set denoted as Ωh.

According to Proposition 1 and resorting to simple com-
binatorial methods, the probability that any codeword ch of
Hamming weight h has an appearance vector δ is given by

Pr (ch has a metric δ |ch is of weight h )

=
(

L

h

)−1(
T

δ0, δ1, . . . , δQ−1

)
=: Pδ|h , (8)

where
( ∑

xi

x0,x1,···xn−1

)
= (

∑
xi)!∏
xi!

denotes the multinomial coef-
ficient. Hence, the average number Ah,δ is obtained as

Ah,δ = AhPδ|h = Ah

(
L

h

)−1(
T

δ0, δ1, . . . , δQ−1

)
. (9)

As expected, we can verify that
∑

δ∈Ωh
Pδ|h = 1 and∑

δ∈Ωh
Ah,δ = Ah, where Ωh denotes the set of all possible

δ’s leading to the same Hamming weight h,

Ωh :=

{
δ

∣∣∣∣∣δi ∈ {0, 1, ..., T} ,

Q−1∑
i=0

δi = T,

Q−1∑
i=0

δiwi = h

}
.

(10)
It should be noted that all codeword pairs that have the
same appearance vector δ produce an identical pairwise error
probability, and there are Ah,δ number of pairs on the average.
Thus, we call Ah,δ the distance spectral component for weight
h and the appearance vector δ. We use the distance spectrum
{Ah,δ} to obtain the union bound.

Before proceeding with the union bound analysis, it is
worth a brief comparison between our codeword enumerating
method and the method developed by Duman and Salehi
[15], [16]. Their method is also about calculating the set of
codewords which result in the same Euclidean distance. The
method is applied to the turbo codes while it is applicable to
any linear codes whose weight enumerating function (WEF)
is given. The turbo code is a concatenation of convolutional
codes. Thus, the average distance spectrum of the turbo code
can be calculated using the WEFs of constituent convolutional
codes via the so-called uniform interleaver technique devel-
oped by Benedetto and Montorsi [18]. The number f̄(n) of
error sequences of the error type n is calculated where n is the
vector of numbers ni,j , the number of errors with type (i, j) – i
message bit errors and j parity bit errors. Then, for each type, a

Authorized licensed use limited to: Kwangju Institute of Science and Technology. Downloaded on February 17, 2009 at 03:35 from IEEE Xplore.  Restrictions apply.



ZHANG and LEE: PERFORMANCE ANALYSIS ON LDPC-CODED SYSTEMS OVER QUASI-STATIC (MIMO) FADING CHANNELS 2083

probability mass function (PMF) (see P [D2
n = Δ2

n,j ] on page
514 in [15]) is calculated where each “mass point” corresponds
to the same PEP. The product of f̄(n) and the PMF takes the
similar role of the distance spectrum Ah,δ of this paper. Both
f̄(n) and PMF should be calculated specifically for different
MIMO modulation schemes assuming that all channel symbol
errors are independent with each other. One consequence is
that they are able to consider any arbitrary codewords as the
transmitted codeword. However, this method is quite complex
and difficult to evaluate, and thus the union bound is evaluated
in a truncation which is the sum of first several pairwise error
terms. This might be acceptable for a high SNR case but not
good in general, especially for obtaining a tight union bound
targeted in this paper.

In our case, being independent of constellations a distance
spectral component Ah,δ can be obtained relatively easily
based on the simple combinatorial method discussed in this
section, as long as the size of constellation Q and the distance
spectrum {Ah} of the LDPC codes are given. Our method,
however, relies on a further upper bound (will be discussed in
Section IV).

IV. UPPER BOUNDS FOR SISO SYSTEMS

In this section, we make use of Fano-Galager’s bounding
technique to obtain closed-form upper bounds on the error
probability for the LDPC-coded SISO system over quasi-static
fading channels. Since the probability of making an error is
conditioned on the fading gain α, we may express the word
error probability as

Pw =
∫ ∞

0

Pr(word error|α)p(α)dα. (11)

For a certain realization of the fading gain α, the conditional
probability Pr(word error|α) can be upper-bounded by the
conventional union bound,

Pr(word error|α) = Ec

[
Pw|c
] ≤ Ec

⎡
⎣∑

c′ �=c

Pr(c → c′ |α )

⎤
⎦ ,

(12)
where Ec[·] is the expectation over the equiprobable selection
of codeword c for transmission; Pw|c is the error probability
conditioned on the transmission of c; and Pr(c → c′|α)
denotes the pairwise error probability between c and any other
codeword c′ in the code. Suppose c and c′ are modulated onto
x and x′, respectively. We have

P (c → c′ |α ) ≤ Q

(
d (x, x′)/2√

N0/2

)
, (13)

where Q(·) is the Gaussian Q-function, d(x, x′) is the Eu-
clidean distance between x and x′,

d2(x, x′) = α2Es

T∑
t=1

|xt − x′
t|2, (14)

and xt and x′
t are the tth components of x and x′, respectively.

We note that, for a given constellation and a map, the
Euclidean distance profile, {d(x, x′)|∀x′ �= x}, is generally
not the same for different modulated signal vectors x, although

the profile of the Hamming distance, {dH(c, c′)|∀c′ �= c},
is the same for any LDPC codeword c since the code is
linear. Thus, the average operation over c in (12) can not be
removed by merely assuming a certain codeword, say the all-
zero codeword, is transmitted. This imposes a difficulty on
the exact evaluation of the right hand side of (12). We deal
with this problem in the following manner. Suppose the error
probability Pw|c̃ conditioned on a certain transmit codeword
c̃ is worse than the average performance, i.e.,

Ec

[
Pw|c
] ≤ Pw|c̃. (15)

Then, the union bound on Pw|c̃ can serve as a further upper
bound on the average performance.

It is reasonable to postulate that one such codeword would
be the one that is close to the mass-center of the hyper-
constellation AT , where A is the Q-ary alphabet. This makes
sense for most practical modulation schemes, such as the
phase-shift keying (PSK) and the quadrature amplitude mod-
ulation (QAM) constellations. This conjecture is in fact true
for all equal energy constellations and for many Q-ary QAM
constellations. A theorem is developed in this paper which
establishes the validity of the further upper bound approach.
The proof is given in Appendix B. We offer a sufficiency
condition to the theorem with which one can verify in a
systematic manner whether the further upper bound is valid
or not for a given constellation with a constellation map. Our
results indicate that the further upper bound is indeed valid for
many constellations such as Q-ary QAM for Q = 4, 8, 16, 64,
256, 1024, all Q-ary ASK, and all Q-ary PSK. Unfortunately,
the test can not verify if the upper bound is valid for Q-ary
QAM for Q = 32, 128, 512.

Thus, we proceed with two assumptions that (i) the trans-
mitted signal x is mapped from the all-zero codeword c0, i.e.,
x = (a0, a0, . . . , a0), and (ii) the channel symbol, a0 ∈ A, is
selected to be the one closest to the origin (or more precisely,
it can be any channel symbol that satisfies the sufficiency test
in Appendix B).

Now proceeding with the derivation of bound, suppose c′

has appearance vector δ = (δ0, δ1, . . . , δQ−1). A codeword
has T binary strings. Each element δi indicates the number of
binary string bi in T strings. Namely, the appearance vector
can tell how many times each channel symbol ai appears in
x′. Therefore we have∑

c′ �=c0

P (c0 → c′ |α )

≤
∑

c′ �=c0

Q

⎛
⎝α

√√√√ Es

2N0

T∑
t=1

|xt − x′
t|2
⎞
⎠

=
L∑

h=1

∑
δ∈Ωh

Ah,δQ

⎛
⎝α

√√√√ Es

2N0

Q−1∑
i=0

δi |a0 − ai|2
⎞
⎠

=: φw(α), (16)

where in the second step we re-enumerate all codewords
c′ �= c0 according to their Hamming weight h and appearance
vector δ, and the argument of the Gaussian Q function is
accordingly rewritten based on the associated appearance
vector δ. As we recall, Ah,δ denotes the number of codewords
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that have the same appearance vector δ and it can be easily
calculated according to (9) once the distance spectrum {Ah}
of the binary code is available.

On the other hand, note that φw(α) (α ≥ 0) is a strictly
monotone function decreasing from φw(0) = 1

2ΣhAh to
φw(∞) = 0. In practice, we have φw(0) ≥ 1 ≥ δw since it
equals one half of the codebook size (any practical codebook
has at least two codewords).

The conventional union bound is useful only when the
instantaneous SNR is high. It becomes meaningless, resulting
in a bound greater than 1, at the low instantaneous SNR region.
In this case, a straightforward bound is

Pr(word error|α) ≤ 1. (17)

Since both (16) and the unit 1 are upper bounds on
the conditional error probability, i.e., Pr(word error|α) ≤
min{1, φw(α)}, a tight bound can be obtained as

Pw|0 ≤
∫ ∞

0

min {1, φw(α)} p(α)dα

=
∫ α∗

0

p(α)dα +
∫ ∞

α∗
φw(α)p(α)dα, (18)

where α∗ is the unique solution to the equation φw(α) = 1,
i.e.,

φw(α) (19)

=
L∑

h=1

∑
δ∈Ωh

Ah,δQ

⎛
⎝α

√√√√ Es

2N0

Q−1∑
i=0

δi |a0 − ai|2
⎞
⎠

= 1,

for α ≥ 0.
The second line of (18) follows from the fact that φw(α) for

α ≥ 0 is a monotone decreasing function with φw(0) ≥ 1. A
systematic method for the evaluation of (19) will be discussed
later in Section VI.

To summarize the result compactly, we have the following
proposition.

Proposition 2: For an LDPC-coded modulation system
over a single-input single-output quasi-static fading channel
with multiplicative gain α and additive white Gaussian noise,
an upper bound on the word error probability is given by

Pw|0 ≤
∫ α∗

0

p(α)dα+
∫ ∞

α∗
φw(α)p(α)dα =: P 1

w+P 2
w, (20)

where α∗ is the unique solution of (19). Furthermore, for all
constellations that satisfy the sufficiency test in Appendix B,
the right hand side of (20) also serves as an upper bound for
the word error probability, i.e.,

Pw ≤ P 1
w + P 2

w. (21)

Proof: The first part has been proved throughout our
discussion in (17) and (18). The proof of the second part is
given in Appendix B.

The bound in (20) is essentially a formal statement of the
bound in (3) we consider in the introduction. It may not be
further tightened by applying the 1965 Gallager bounding

technique or other variations in [6] which are developed from
an original formula

Pr(word error |α) ≤ (φw(α))ρ , for 0 ≤ ρ ≤ 1. (22)

This is clear considering that min {1, φw(α)} ≤
min0≤ρ≤1 (φw(α))ρ. An expression similar to (20) was ob-
tained in [13] by applying the limit-before-averaging technique
to binary modulation systems over Rayleigh fading channels.
However, a systematic approach to find the optimal α∗ (i.e.,
the h0 in [13]) was not discussed. The value of the optimal
fading level α∗ is universal for all orders and classes of fading
channels, and thus should be determined only once for a
given constellation (recall the argument inside the Gaussian
Q-function in (19)). Once we find the optimal solution α∗ per
constellation, we only need to re-scale it for different SNR.
See Section VI for detailed discussions.

As a special case of Proposition 2, we can derive the
bound for Rician channels. Again, we provide the results in
the following proposition. For this, we define F (x|2m, s2) =
1−Qm(s,

√
x) is the cumulative density function of the non-

central chi-square distribution with 2m degrees of freedom
and a non-centrality parameter s2, Qm(a, b) is the m-th order
Marcum Q function

Qm (a, b) =
1

am−1

∫ ∞

b

xme−(x2+a2)/2Im−1(ax)dx, (23)

where Ik(x) denotes the k-th order modified Bessel function
of the first kind, i.e., Ik(x) = 1

π

∫ π

0 ex cos θ cos kθdθ, and for
compact notation, we use a utility variable gδ,θ defined as

gδ,θ
Δ=

Es

4N0 sin2 θ

Q−1∑
i=0

δi |a0 − ai|2 + 1. (24)

Proposition 3: For an LDPC-coded modulation system
over a Rician distributed quasi-static fading channel with
multiplicative gain α and additive Gaussian noise, the first
of the two probability terms on the right hand side of (20) is
given by

P 1
w = F

(
2α∗2 |2, 2Kr

)
= 1 − Q1

(√
2Kr,

√
2α∗
)

, (25)

and the second one given at the top of next page:
Proof: See Appendix C for proof.

Eq. (25) is the outage probability for Rician channels. Eq. (26)
is the union bound conditioned upon fading gain. Substituting
(25) and (26) into (20), we obtain an upper bound on the word
error probability

Pw ≤ 1 − Q1

(√
2Kr,

√
2α∗
)

+
L∑

h=1

∑
δ∈Ωh

Ah,δ

π
(27)

·
∫ π/2

0

gδ,θe
−Kr(1−gδ,θ)Q1

(√
2gδ,θKr,

√
2

gδ,θ
α∗
)

dθ.

In the case of Rayleigh channels, the upper bound reduces to

Pw ≤ 1−e−α∗2
+

L∑
h=1

∑
δ∈Ωh

Ah,δ

π

∫ π/2

0

g−1
δ,θe−gδ,θα∗2

dθ, (28)
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P 2
w =

L∑
h=1

∑
δ∈Ωh

Ah,δ

π

∫ π/2

0

e−Kr(1−1/gδ,θ)

gδ,θ

[
1 − F

(
2gδ,θα

∗2
∣∣∣∣2,

2
gδ,θ

Kr

)]
dθ

=
L∑

h=1

∑
δ∈Ωh

Ah,δ

π

∫ π/2

0

e−Kr(1−1/gδ,θ)

gδ,θ
Q1

(√
2

gδ,θ
Kr,
√

2gδ,θα
∗
)

dθ. (26)

by setting Kr = 0 in (27) and resorting to the property of the
Marcum Q function

Qm (0, b) =
Γ
(
m, b2

/
2
)

Γ (m)
= e−b2/2

m−1∑
k=0

(
b2
/
2
)k

k!
, (29)

where Γ(m) and Γ(m,x) are the complete and incomplete
Gamma Functions, respectively.

The bound obtained above is based on the Craig’s identity
of Gaussian Q function and thus involves a finite range
integral in the final expression. We can remove the integral
operation in (27) and (28) by using the Chernoff bound,
Q(x) ≤ 1

2 exp(−x2/2), on the Gaussian Q function. That
is, similar to (28), we have

Pw ≤ 1 − e−α∗2
+

L∑
h=1

∑
δ∈Ωh

Ah,δg
−1
δ e−gδα∗2

, (30)

where gδ = Es

4N0

∑Q−1
i=0 δi |a0 − ai|2 + 1. Note that this leads

to a bound looser than (28).
We next move on to the bit error performance of the system.

An upper bound similar to (17) can be considered for the bit
error probability

Pr(bit error |α) ≤ 1
2
. (31)

On the other hand, as shown in [3], a union bound on the bit
error probability can be obtained by replacing Ah in (16) and
(9) with A′

h,

A′
h =

K∑
ω=1

ω

K
Aω,h, (32)

where Aω,h is the number of the codewords with input weight
ω and output weight h. For the ensemble of codes that satisfies
Proposition 1, (32) can be simplified as (See Appendix D)

A′
h =

h

L
Ah. (33)

Thus, we make the following proposition on the bit error
performance.

Proposition 4: The upper bounds presented in Propositions
2 and 3 can be applied to the bit error case by respectively re-
placing Ah with A′

h in (33) and calculating the corresponding
α∗ according to (19).

Proof: See proof of (33) in Appendix D and this propo-
sition is obvious.

V. UPPER BOUNDS FOR MIMO SYSTEMS WITH OSTBC

In this section, we are interested in applying the techniques
developed so far to MIMO channels. Namely, the transmission
of LDPC code concatenated with the orthogonal space-time
block code (OSTBC) [19][20] over quasi-static MIMO fading
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Fig. 2. Concatenated coding modulation system and iterative decoder.

channel is considered. The feature of OSTBC we utilize here,
other than its capability of achieving full transmit diversity, is
its capability of transforming the quasi-static MIMO channels
into an equivalent SISO channel. The structure of the OSTBC
allows a simple linear processing on the received signal which
enables us to decouple the effect of MIMO coupling done on
the constituent channel-symbols of each OSTBC codeword.
As a result, the joint maximum likelihood detection of channel
symbols in each OSTBC codeword can be transformed into the
separate detection of each component channel symbol without
loss of optimality. This point was originally introduced by
Alamouti [21], and later noted and used in [19], [20], [22],
[23].

Previous treatments on this subject were not clearly done,
however, perhaps because it was not the main focus of these
papers. For example, equivalent SISO channels were obtained
explicitly for equal energy constellations such as PSK signals
but not for constellations with unequal energy signal points
such as the multilevel QAM constellations. Thus, we will
spend some time discussing how to modify the previous
procedures and obtain equivalent SISO channels even for
unequal energy constellations. Hence, the bounding technique
developed for SISO systems in the previous section can be
applied to the MIMO systems without any restriction to signal
constellations.

Let us consider an M -transmit, N -receive MIMO system.
The concatenation of OSTBC with the LDPC-coded modu-
lation system is illustrated in Fig. 2. The space-time block
codeword is expressed in an M × Ts transmission matrix S,
each entry of which is a linear combination of a group of Ks

input symbols xk and their conjugates x∗
k (k = 1, 2, . . . Ks).

In order to achieve full transmit diversity, the signal matrix S
is constructed based on the orthogonality design criterion [19],
[20]. The signal matrix S is transmitted across the M transmit
antennas Ts channel uses. The channel can be modeled as1

R =
√

EsHS + W, (34)

where Es is the average symbol energy at each transmit
antenna, R ={rn,t} is the received N × Ts signal matrix,W
={wn,t} is the N ×Ts complex white Gaussian noise matrix,

1The channel model in [19] can be expressed in a form of R = SH +W .
Thus, the transmission matrix S in this paper can be regarded as the transpose
of that in [19] ignoring the coefficient

√
Es.
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each entry of which has zero mean and variance N0, H is the
N × M channel matrix known at the receiver and its (n,m)-
th entry, αn,m, represents the independent fading gain from
the m−th transmit antenna to the n−th receive antenna. The
channel matrix is assumed to be fixed during a block of one
LDPC codeword transmission, and varies independently from
one block to another.

The ML detection of this system can be efficiently con-
ducted by a series of linear processing operations on the
received signal. For this, one may consider the Alamouti code
[21] and the OSTBC with real orthogonal designs in [19] as
specific examples.

We now state the proposition first and discuss the rationale
after.

Proposition 5: A single-input single-output channel model
which is equivalent to the system (34) under the maximum
likelihood detection criterion is given by

yk =
√

Esαstxk + wk, (35)

where wk is the independent, complex white Gaussian noise
with zero-mean and variance N0, and αst is the channel fading
which is given by

αst :=

(
N∑

n=1

M∑
m=1

|αn,m|2
)1/2

. (36)

Proof: Without loss of generality, we will consider the
case of Alamouti code over 2 × 2 MIMO channels [21] for
brevity of discussion. The other OSTBC cases can be treated
in a similar manner.

We will start out by briefly introducing the key arguments
made in [19]-[21] which show the equivalent SISO channel
model good only for equal energy constellations. We will then
identify our approach that brings them into the general SISO
channel model good for any constellation.

Assuming the perfect channel state information is avail-
able, the receiver calculates the maximum likelihood decision
metric,

∑
t

∑
n |rn,t −

∑
m αn,mŝm,t|2 over all hypothetical

codewords Ŝ = {ŝm,t} and decides in favor of the codeword
that minimizes the metric. As shown in [19]-[21], the mini-
mization of the ML metric can be done equivalently (without
loss of optimality) by minimizing Ks individual metrics

(α2
st − 1)

∣∣∣√Esx̂k

∣∣∣2 +
∣∣∣y′

k −
√

Esx̂k

∣∣∣2 , (37)

for k = 1, 2, · · · , Ks, where x̂k is the hypothetical symbol
coded into Ŝ, y′

k is a linear combination of the receive signals
rn,t, and αst defined in (36) can be regarded as a constant for
the channel is known at the receiver.

As a special case of (37), the ML decision metric for
Alamouti scheme over 2 × 2 MIMO channels is given by

(α2
st − 1)

∣∣∣√Esx̂k

∣∣∣2 +
∣∣∣y′

k −
√

Esx̂k

∣∣∣2 . (38)

This is what was obtained in [21] (Eq. 17 there), by replacing
their notations, s̃k, sk, and α2

0 + · · · + α2
3, with our y′

k,√
Esx̂k, and α2

st respectively. Note that the receive signal y′
k

is expressed as

y′
k = α2

st

√
Esx̂k + w′

k, (39)

where w′
k represents the noise term in [21] (Eq. 16), which

is independent, additive white Gaussian distributed with zero
mean and variance α2

stN0. As noted in [21], the first term
in (38) can be ignored in the ML decision for equal-energy
modulations, say PSK. This leads to an equivalent SISO
channel whose ML metric is the second term in (38), i.e., the
squared Euclidean distance between the hypothetical transmit
signal

√
Esx̂k and the receive signal y′

k. Thus, following
the discussion of these previous contributions, the equivalent
channel looks valid only for equal energy signals.

At this point, we introduce our simple manipulation to
the problem which leads to the equivalent SISO channel
good for any arbitrary signal constellation. Let us add a term(
α−2

st − 1
) |y′

k|2 to (38) and obtain∣∣∣α−1
st y′

k −
√

Esαstx̂k

∣∣∣2 , (40)

which is equivalent to (38) under ML hypothesis testing since
the added term is free of the hypothetical candidate x̂k . Note
that this operation is applicable to any OSTBCs in general by
utilizing their orthogonality structure. Denote yk = α−1

st y′
k and

wk = α−1
st w′

k. Then, we can rewrite (39) with the variables
of the SISO channel model given in (35) with ML metric
expressed as (40), ∣∣∣yk −

√
Esαstx̂k

∣∣∣2 . (41)

This completes the proof.
Note that the result obtained till now is applicable to the

Alamouti code or the OSTBC with real orthogonal designs.
This can be easily extended to the OSTBC with complex-
valued orthogonal designs, such as those formulated by (37)–
(40) in [19]. Take (37) and (38) in [19] as examples. The
linear processing of ML detection is to minimize each of the
Ks individual decision metric [20]

(2α2
st − 1)

∣∣√Esx̂k

∣∣2 +
∣∣yk −√

Esx̂k

∣∣2 , k = 1, 2, . . . ,
Ks.

Recall the expression of (37) for real-valued orthogonal
design. By simply setting αst =

√
2αst and we can make

the equivalent SISO channel (35) work for complex valued
cases.

Based on the equivalent SISO channel, the bounding frame-
work developed in the previous section can be applied to
the MIMO fading channels. The key and only difference is
that the fading gain in (35) is a higher-order non-central chi-
square distribution. We have the upper bound on the error
performance as follows:

Proposition 6: For M -transmit N -receive MIMO Rician
fading channels, an upper bound on the word error probability
using the OSTBC is given by (20) with P 1

w

P 1
w = F

(
2α∗2 |2MN, 2MNKr

)
(42)

= 1 − QMN

(√
2MNKr,

√
2α∗
)

,

and P 2
w given as the equation given at the top of next page.

A similar upper bound can be obtained for the bit error
probability by respectively replacing Ah with A′

h and calcu-
lating the corresponding α∗ according to (19).

Proof: See Appendix C.
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P 2
w =
∑L

h=1

∑
δ∈Ωh

Ah,δ

π

∫ π/2

0
e
−MNKr(1−1/gδ,θ)

gMN
δ,θ

(
1 − F

(
2gδ,θα

∗2
∣∣∣2MN, 2

gδ,θ
MNKr

))
dθ

=
∑L

h=1

∑
δ∈Ωh

Ah,δ

π

∫ π/2

0
e
−MNKr(1−1/gδ,θ)

gMN
δ,θ

QMN

(√
2

gδ,θ
MNKr,

√
2gδ,θα

∗
)

dθ.
(43)

Similar to the SISO case in (30), the expression of the
upper bound can be simplified for Rayleigh MIMO channels
as follows:

Pw ≤ 1 − e−α∗2
MN−1∑

k=0

α∗2k

k!
+

L∑
h=1

∑
δ∈Ωh

Ah,δ

π

·
∫ π/2

0

g−MN
δ,θ e−gδ,θα∗2

MN−1∑
k=0

1
k!
(
gδ,θα

∗2)kdθ. (44)

If the Chernoff bound on the Gaussian Q function is applied,
(44) can be further upper bounded by

Pw ≤ 1 − e−α∗2
MN−1∑

k=0

α∗2k

k!
(45)

+
L∑

h=1

∑
δ∈Ωh

Ah,δg
−MN
δ e−gδα∗2

MN−1∑
k=0

1
k!
(
gδα

∗2)k.

It is worth noting that the evaluation of these upper bounds
is not as difficult as imaginable at the first look. The optimal
threshold value α∗, the cardinality Ah,δ and the utility variable
gδ are calculated only once without regard to the order of
fading and SNR. In addition, the integral due to the use of
Craig’s identity is taken for a smooth function over a finite
range interval, and thus can be easily evaluated via numerical
methods.

VI. DISCUSSIONS

In the previous sections, we have derived tight upper bounds
for transmission of LDPC-code concatenated with OSTBCs
operating over quasi-static MIMO fading channels. The upper
bound can be evaluated by solving (19) for the optimal
threshold α∗ and then calculating the two error terms in (42)
and (43). In this section, we briefly discuss the complexity
involved in the evaluation of the upper bound.

The first is the step involved in finding the optimal α∗. As
mentioned earlier, the optimal α∗ can be obtained regardless
of channel fading distributions. Thus, the good news is that it
needs to be calculated only once for a given signal constel-
lation. From observation of the argument of the Gaussian Q-
function in (19), we can find the optimal value at Es/N0 = 1,
say α∗

0dB, and then re-scale it, i.e., α∗ = α∗
0dB/

√
Es/N0, for

different Es/N0 values. To solve (19), we can make use of
the monotonic property of the function φw(α). The primary
difficulty in finding the optimal threshold lies in the evaluation
of φw(α) at each α. The summation operation over δ ∈ Ωh is
rather cumbersome as the cardinality of the set Ωh tends to be
very large. For this, we make use of the polynomial expansion
idea proposed in [24]. That is, by making use of the Craig’s
identity [25] of the Gaussian Q function (we can do this with
the Chernoff bound as well),

Q(x) =
1
π

∫ π/2

0

exp
( −x2

2 sin2 θ

)
dθ, (46)

and by substituting the expression of Ah,δ in (9), we can
rewrite (19) as

1
π

∫ π/2

0

L∑
h=1

(
L
h

)−1

Ahϕhdθ = 1, (47)

where

ϕh
Δ=
∑

δ∈Ωh

(
T
δ0, δ1, ..., δQ−1

)Q−1∏
i=0

βδi

i , (48)

and

βi
Δ= exp

(
−Esα

2 |a0 − ai|2
4N0 sin2 θ

)
.

It can be proved [24] (see Appendix A) that ϕh’s are the
coefficients of a polynomial expansion(

J−1∑
i=0

βiz
wi

)T

=
L∑

h=0

ϕhzh, (49)

where wj , as defined in section III, is the Hamming weight
of the bit string bi that is mapped to the constellation point
ai. It is worth noting that the polynomial expansion method is
originally proposed in [24] for performance analyses on fast
Rician fading MIMO channels. Its applicability in the context
of this paper lies in the fact that the left hand side of (19) or
(47) is indeed a union bound for an AWGN channel (i.e., a
quasi-static fading channel with fixed channel gain α), which
in turn can be regarded as a special case of the fast Rician
fading channel with factor Kr = ∞.

Second, the other difficulty may lie in the numerical eval-
uation of the Marcum Q function in (23) because the routine
is numerically sensitive. We take the approach of using the
series representation of the Marcum Q function such as

Qm (a, b) = e−(a2+b2)/2
+∞∑

k=1−m

(a

b

)k

Ik(ab), (50)

which can be truncated at k = 50 without losing much
precision [26]. Interested readers are referred to [27] (see Ch.
4.2) for other evaluation methods.

VII. RESULTS

We compare the derived ML upper bounds with the simu-
lation results of a complete, practical transceiver system over
quasi-static Rician fading channel. The bounds are evaluated
for the ensemble of Galager’s (3000, 3, 6) LDPC codes [8].
The distance spectrum of the ensemble is calculated according
to [28].

In simulations, the receiver is assumed to know the chan-
nel exactly and employ an iterative detection and decoding
algorithm as illustrated in Fig. 3. While interested readers are
referred to [29] for detailed explanations on a similar example,
we sketch the iterative algorithm as follows. The detector
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Fig. 3. Iterative detection and decoding algorithm. LD1 and LD2 are the
posteriori LLRs (log-likelihood ratios) from the detector and the decoder,
respectively. LE1 and LE2 are the corresponding extrinsic information, and
are treated as the prior information, LA2 and LA1, at the detector and the
decoder, respectively.

Fig. 4. Error performance of the (3000, 3, 6) LDPC coded 4PSK modulation
over quasi-static SISO Rician fading channels. In order of error performance at
high SNR, the three pairs of bound-simulation curves in each plot correspond
to the cases in which the Rician factor Kr equals 0, 5, and 20, respectively.

takes channel observations and the a priori information LA1

to compute the new a posteriori information LD1 on each
coded bit. The difference, LE1 =LD1−LA1, is referred to as
“extrinsic” message and is forward to the decoder as the a
priori input, LA2. Then, the decoder generates the a posteriori
information LD2, and feedbacks the corresponding extrinsic
information LE2 = LD2− LE1 as a priori knowledge to the
detector. This complete a single iteration of messages between
the detector and the decoder. We call this super-iteration
as compared to the decoder’s own iteration which we call
internal-iteration of the decoder. In our simulation, we use
three super and ten internal-iterations.

To average the performance of the code ensemble, we ran-
domly generate 5,000 LDPC codes and use each of them for
ten codeword transmissions; the error probability is averaged
over 50,000 randomly selected transmit codewords. For fair
comparison, the error performance is plotted with respect to
the normalized SNR,

Eb

N0
:=

(1 + Kr)EsM N

N0Rt
, (51)

where (1 + Kr) is the average value of squared magnitude of
the fading gain and Rt is the transmission rate of the system
in information bits/channel use.

We first verify the effectiveness of the upper bounds for the
coded system over SISO fading channel. As shown in Fig.
4, the bound on the word error probability indicates a good

Fig. 5. Error performance of the LDPC (3000, 3, 6) coded 4PSK modulation
over quasi-static MIMO Rician fading channels. In order of error performance
at high SNR, the two pairs of bound-simulation curves in each plot correspond
to the cases in which the Rician factor Kr equals 0 and 5, respectively.

Fig. 6. Error performance of the LDPC (3000, 3, 6) coded 8QAM modulation
over quasi-static MIMO Rician fading channels. In order of error performance
at high SNR, the two pairs of bound-simulation curves in each plot correspond
to the cases in which the Rician factor Kr equals 0 and 5, respectively.

match with the simulation result for different Rician channels.
The SNR difference between the bit error probabilities and
the corresponding upper bounds is about 2 - 4 dB, a relatively
large deviation compared to that of the word error case. It
is interesting to observe that the error probability decreases
faster as the Rician factor increases from zero, five to twenty.
This is of no surprise since a Rician channel converges to an
AWGN channel as the Rician factor goes to infinity. The final
SNR gap as Rician factor goes up is thus expected to be about
1.5 dB, as reported for AWGN channels in the literature [6].

The performance of the concatenated MIMO system is
illustrated in Fig. 5 and Fig. 6 for 4PSK and 8QAM mod-
ulation, respectively. In the case of 2-by-2 MIMO system,
we adopt the Alamouti scheme as the inner space-time block
code. The derived bounds are about 2.5 dB away from the
simulation results. The difference decreases to 1.5 dB for the
system with four transmit and four receive antennas, where
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the orthogonal space-time block code in [19], (see Eq. 38)
is adopted. Also note that, in all investigated scenarios, the
bound becomes tighter when the channel has a larger Rician
factor and therefore stiffer an error curve is. Hence, the derived
upper bounds will be useful to benchmark the performance of
the turbo-iterative algorithm, especially when the system has
more transmit and receive antennas and operates over channels
with large Rician factors.

VIII. CONCLUSION

We have presented an error performance bounding approach
for quasi-static fading channels. Under the proposed approach,
the Fano-Gallager bounding technique is formulated in a
manner that divides the range of the fading gain into two
disjoint regions. The critical fading level which is optimally
selected at each average SNR divides the two regions. The pro-
posed approach seems to overcome the excessive codeword-
multiplicity problem in conventional union bounds and works
well for different channels and coded modulation scenarios.
For applications in MIMO systems, we show that a linear pro-
cessing technique can be applied which effectively transforms
the MIMO system into an equivalent SISO system regardless
of constellations. We note that this technique enables us,
by leveraging on the bounding technique developed for the
SISO systems, to obtain tight closed-form bounds for the
concatenated MIMO systems.

APPENDIX A
PROOF OF PROPOSITION 1

Instead of an ensemble of LDPC code, it is easy for us
to equivalently consider the ensemble H of the corresponding
parity-check matrices.

Ah > 0 means that at least one codeword, say ch, of
Hamming weight h exists in certain codes in the ensemble.
Assume c′h to be any arbitrary permutation of ch. That is,
c′h = π(ch), where π(·) is the pattern of the associated column
permutation. Denote H1 and H2 as the sets of all parity-check
matrices in H that ch and c′h satisfy, respectively; i.e.,

H1 :=
{
H
∣∣H ∈ H, HcT

h = 0
}

and H2 :={
H
∣∣H ∈ H, Hc′Th = 0

}
. (53)

The cardinality, Nh := Δ|H1|, of H1 is nonzero. Note that
there is a one-to-one correspondence between H1 and H2; i.e.,

H2 = {π(H) |H ∈ H1 } , (52)

considering that H ∈ H implies π(H) ∈ H and vice versa (any
arbitrary column permutation of a parity-check matrix does not
change the variable- and the check-node degree distributions).

Therefore, |H2| = |H1| = Nh. Since each of the

(
L
h

)
binary sequences of Hamming weight h can be regarded as a
permutation of ch, the first statement of the theorem is proved.
With the assumption of equiprobable selection of codes in (6),
the probability of each of these sequences appearing in the
randomly selected code Xsel is equal; i.e.,

Pr (ch ∈ Csel) = Nh/|C|. (53)

APPENDIX B
PROOF OF PROPOSITIONS 2 (THE SECOND STATEMENT)

In this section, we prove that, given a sufficiency condition
satisfied, the general union bound averaged over the transmis-
sion of all possible codewords can be further upper bounded
by a simpler bound which is based merely on the transmission
of the all zero codeword.

The union bound for a given fading channel coefficient α
can be written as

Pr(word error |α) = Ec

[
Pw|c
]

r

≤ Ec

⎡
⎣∑

c′ �=c

Pr(x(c) → x′(c′) |α )

⎤
⎦ , (54)

where x(c) and x′(c′) denote the respective modulated code-
words of c and c′ transmitted over antennas. For simplicity,
we set α = 1 since it does not affect the derivations below.

We want to find a codeword c̃ which has the worse-than-
average pairwise error performance, i.e.,

Ec

[
Pw|c
] ≤ Pw|c̃. (55)

Our aim is to prove that, given a sufficiency condition satisfied,
a codeword c̃ whose modulated sequence is of the form x̃ =
(a0 a0 · · · a0) satisfies the inequality of (55).

To state the result first, a theorem with a sufficiency
condition is developed which establishes the validity of the
further upper bound (55). The sufficiency condition provides
a simple, systematic way to verify if a constellation contains
such a channel symbol a0 which makes the further upper
bound valid. Our results indicate that such a further upper
bound can be established for a number of constellations such
as Q-ary QAM for Q = 4, 8, 16, 64, 256, 1024, all Q-ary
ASK, and all Q-ary PSK. Unfortunately, we have not been
able to show that the method holds for Q-ary QAM for Q =
32, 128, 512.

Development of the Theorem

While the precise condition will be given later on in
(63), in a loose sense, a0 could be selected from among
the so-called mass center points within a constellation A =
{a0, a1, · · · , aQ−1} that satisfy the following inequality

1
Q

Q−1∑
i=0

Q−1∑
j=0

|ai − aj|2 ≥
Q−1∑
j=0

|a0 − aj |2. (56)

In general, there are multiple such symbols, a0 ∈ A, which
satisfy (56). Among them, we note that, the symbol that
maximizes the right hand side of (56) can be selected for
a tight further upper bound.

The condition (56) can be rewritten as

Q−1∑
i=0

Q−1∑
j=0

|ai − aj |2 ≥ Q

Q−1∑
j=0

|a0 − aj |2. (57)

There are Q2 magnitude square terms on each side of (57).
We can make a couple of observations:

1) On the left hand side (LHS) of (57), the Q2 summands
constitutes every possible basic building block in the
Euclidean distance d(x̃, x) for any pair of codewords.
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Fig. 7. A Gray labeled 4-ASK constellation

They cover every possible case for every possible pair
of codewords.

2) On the right hand side (RHS) of (57), there are only Q
distinct summands, but each is summed Q times; and
thus, RHS also has Q2 summands. These summands
are the basic building blocks of the Euclidean distance
d(x̃, x) between x̃ = (a0 a0 · · · a0) and any other
codeword x.

We now define a number of useful structures for the
development of the theorem. To make our definitions more
clearly understandable, we provide examples for a simple 4-
ASK constellation along the way. We assume the minimum
distance of 4-ASK constellation is 1, i.e., |a0 − a2| = 1.
As shown in Fig. 7, 4-ASK constellation is labeled with the
channel symbol index i and its binary string (which is the
natural map on the index i). We note that an index pair comes
with its unique Euclidean distance (ED) as well as Hamming
distance (HD). For example, a symbol pair (a1, a3), or simply
an index pair (1, 3), comes with ED of 3 and HD of 1, for
the 4-ASK constellation.

Each summand in (57) can be identified by its index pair.
A summand is an index pair which again comes with its
Euclidean and Hamming distance. In fact, a quadruplet is
formed – a summand, an index pair, ED and HD. In either
side of (57), we can put these Q2 quadruplets into an ordered
sequence of quadruplets, first based on HD and then on ED.

Definition (Hamming Distance Profile, HDP) We order the
Q2 quadruplets in the ascending order of Hamming distances
from which we can obtain two sequences of Hamming dis-
tances, one for the RHS (called wR) and the other for LHS
(called wL), and refer to these two vectors as the right and the
left Hamming distance profile respectively. In fact, we notice
that wR = wL. But we will keep both notations for clarity.

In what follow, we use w0 := wR so as to explicitly denote
the relationship of the right Hamming distance profile with the
reference codeword x̃ = (a0 a0 · · · a0). This will not cause
any confusion.

For the example of 4-ASK constellation. There are Q2 = 42

summands. Each Hamming distance profile is a vector of size
Q2,

wL = w0 = (0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2) . (58)

We now sort the obtained quadruplet sequence one more time.
Notice that the two sequences of quadruplets are already in
the ascending order of Hamming distances. This time we want
to arrange them in the ascending order of Euclidean distance,
but this re-ordering is done only amongst those indexes whose
Hamming distances are the same. Thus, this does not affect
the order in terms of Hamming distance. Thus, wL = w0

both remain to be the same as (58). We refer to the resulting

sequences of Euclidean distance squares as the Euclidean
distance profiles (EDP).

Definition (Right Euclidean Distance Profile) For the
quadruplet sequence of the RHS of (57), we sort it first in
the ascending order of Hamming distance, and second re-order
those with the same Hamming distance in the ascending order
of Euclidean distance. We call the resulting EDP the right
Euclidean Distance Profile, i.e.,

DR =
[
|a0 − a00 |2, |a0 − a01 |2, · · · ,

∣∣∣a0 − a0Q2−1

∣∣∣2] .

(59)
where the index 0p, p = 0, 1, · · · , Q2 − 1, can be found.

Definition (Left Euclidean Distance Profile) For the quadru-
plet sequence of the LHS of (57), we sort it first in the
ascending order of Hamming distance, and second re-order
those with the same Hamming distance in the ascending order
of Euclidean distance. We call the resulting EDP the left
Euclidean Distance Profile, i.e.,

DL :=
[
|ai0 − aj0 |2, |ai1 − aj1 |2, · · · ,

∣∣∣aiQ2−1
− ajQ2−1

∣∣∣2] ,

(60)
where the index pairs (ip, jp), p = 0, 1, · · · , Q2 − 1, can be
found.

Similar to notation for w0, we use D0 := DR to explicitly
denote the relationship of the right Euclidean distance profile
with the reference codeword x̃ = (a0 a0 · · · a0).

Now again consider the 4-ASK constellation. The right and
left EDPs are

D0 = (0 0 0 0 1 1 1 1 1 1 1 1 22 22 22 22), (61)

and

DL = (0 0 0 0 1 1 1 1 1 1 32 32 22 22 22 22) (62)

respectively. Note that DL is not in the ascending order
of Euclidean distance. The 10th and 11th elements are for
the index pairs (ip, jp) = (2, 3) or (3, 2), whose Ham-
ming distance is 1 and whose Euclidean distance square is
|a3 − a2|2 = 32. This is the consequence of our ordering
procedure that the Hamming distance takes the priority in
ordering and the Euclidean distance the second. The ordering
based on Euclidean distance was done only among those
indexes which have the same Hamming distance.

We note that DLin (62) is greater than or equal to D0 in the
element-by-element manner, i.e., DL�D0. We will show that
DL�D0 together with wL = w0 constitutes a sufficiency
condition to the theorem which guarantees the validity of
the further upper bound in (55). Namely, the upper bound
conditioned on the transmission of x̃ = (a0 a0 · · · a0) is a
valid further upper bound to the union bound averaged over the
transmission of all possible codewords. Thus, for a particular
alphabet A and a selection a0 ∈ A, a testing if DL�D0 with
wL = w0 is true or not, can be done to validate the upper
bound. If the sufficiency condition is not met, the further upper
bound cannot be corroborated.

A Sufficiency Test: Given a constellation A and a constel-
lation mapping which labels the constellation points, we say
that the constellation together with the mapping satisfy the
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sufficiency test to the Theorem if the constellation contains a
channel symbol a0 ∈ A that satisfies DL�D0, i.e.,[

|ai0 − aj0 |2 , |ai1 − aj1 |2, · · · ,
∣∣∣aiQ2−1

− ajQ2−1

∣∣∣2]

�
[
|a0 − a00 |2, |a0 − a01 |2, · · · ,

∣∣∣a0 − a0Q2−1

∣∣∣2] , (63)

which comes with the identical right and left HDPs, wL = w0.
Such a channel symbol a0 ∈ A is usually found among those
satisfying the following

1
Q

Q−1∑
i=0

Q−1∑
j=0

|ai − aj |2 ≥
Q−1∑
j=0

|a0 − aj |2. (64)

In fact, when (63) is met, (64) is always met.
Theorem 7: For a constellation A and a constellation map

which satisfy the sufficiency test, the union bound based on the
transmission of the all zero codeword whose all-zero binary
string of length log2(Q) is mapped to the channel symbol a0

is greater than or equal to the union bound averaged over
all codeword transmission. Equality is achieved when the
sufficiency test is met with equality. Namely, the following
inequality holds

L∑
h=1

∑
δL∈Ωh

Ah,δL
Q

⎛
⎝
√√√√ Es

2N0

Q2−1∑
p=0

δip,jp

∣∣aip − ajp

∣∣2
⎞
⎠

≤
L∑

h=1

∑
δR∈Ω′

h

Ah,δR
Q

⎛
⎝
√√√√ Es

2N0

Q2−1∑
p=0

δ0,0p

∣∣a0 − a0p

∣∣2
⎞
⎠, (65)

where δip,jp ∈ {0, 1, 2, · · · , T } represents the num-

ber of Euclidean distance squares
∣∣aip − ajp

∣∣2 in the
Euclidean distance square d2(x̃, x) of any two code-
words; δL := (δi0,j0 δi1,j1 · · · δiQ2−1,jQ2−1

) and δR :=
(δ0,00 δ0,01 · · · δ0,0Q2−1

) are the respective collections of δip,jp

and δ0,0p ; Ωh and Ω′
h are the respective sets of δL and δR that

correspond to a Hamming distance h:

Ωh :=

⎧⎨
⎩δL

∣∣∣∣∣∣δip,ip ∈ {0, 1, · · · , T},
Q2−1∑
p=0

δip,ip = T, wLδL = h

⎫⎬
⎭ ,

(66)

Ω′
h :=

⎧⎨
⎩δR

∣∣∣∣∣∣δ0,0p ∈ {0, 1, · · · , T},
Q2−1∑
p=0

δ0,0p = T,w0δR = h

⎫⎬
⎭ .

(67)

and Ah,δL
= Ah

(
L
h

)−1( T
δL

)
and Ah,δR

= Ah

(
L
h

)−1( T
δR

)
are

the corresponding distance spectra.
Proof: The LHS of (65) is the general union bound

averaged over the transmission of all possible codewords. This
union bound is obtained by summing all pairwise error prob-
abilities between the transmitted codeword c and any other
codeword c′. Similar to analysis in Section III, the pairwise
error probability between c and c′ is solely determined by
the appearance vector δL := (δi0,j0 δi1,j1 · · · δiQ2−1,jQ2−1

)
between them. Thus, we can partition the codebook according
to the appearance vector δL between a codeword and c. This
is indeed a further decomposition of the codebook in addition
to the partition based on the Hamming distance between
any codeword and c. The summation on the LHS of (65) is

thus taken with respect to the Hamming distance h and the
appearance vectors δL ∈ Ωh which correspond to the same
h.

The RHS of (65) is the union bound of error performance
conditioned on the transmission of x̃ = (a0 a0 · · · a0). This
is a special case of the LHS and thus the analysis on the LHS
applies. We note that the δL is indeed a dummy variable in
the definition of Ωh in (66) . In addition, we have wL = w0;
and thus, the set Ωh on the LHS of (65) is the same as the
set Ω′

h on the RHS. In other words, we can consider δL = δR

in the calculation on both sides. As the result, the sufficiency
condition DL�D0 leads to DLδL ≥ DRδR, i.e.,

Q2−1∑
p=0

δip,jp

∣∣aip − ajp

∣∣2 ≥
Q2−1∑
p=0

δ0,0p

∣∣a0 − a0p

∣∣2. (68)

From (68), we can write, after multiplying both sides by Es

2N0
,

Q

⎛
⎝
√√√√ Es

2N0

Q2−1∑
p=0

δip,jp

∣∣aip − ajp

∣∣2
⎞
⎠

≤ Q

⎛
⎝
√√√√ Es

2N0

Q2−1∑
p=0

δ0,0p

∣∣a0 − a0p

∣∣2
⎞
⎠ . (69)

In addition, given δL = δR, the distance spectrum is the same
on both sides of (65), i.e., Ah,δL

= Ah,δR
. By multiplying

Ah,δL
= Ah,δR

to both sides of (69) and summing over all h
and δ, we have

L∑
h=1

∑
δL∈Ωh

Ah,δL
Q

⎛
⎝
√√√√ Es

2N0

Q2−1∑
p=0

δip,jp

∣∣aip − ajp

∣∣2
⎞
⎠

≤
L∑

h=1

∑
δR∈Ω′

h

Ah,δR
Q

⎛
⎝
√√√√ Es

2N0

Q2−1∑
j=0

δ0,0j

∣∣a0 − a0j

∣∣2
⎞
⎠ .

(70)

The L.H.S. is the general union bound averaged over the
transmission of every codeword while the R.H.S. is the union
bound conditioned on the transmission of x̃ = (a0 a0 · · · a0).

We note that the RHS of (70) is equal to (16) (with α = 1
of course). Note that there are only Q distinct terms among the
Q2 summands under the square root on the RHS of (70). We
treated them to be Q2 distinct summands in order to have the
set partition structure comparable to the LHS of (70) which
have Q2 distinct summands. This was needed for the proof
of the Theorem. Now, it is trivial to show that the partitioned
sets can be grouped together to form an expression of (16).

Discussion

Several examples would clarify the Theorem. First, we note
that every equi-energy constellation satisfies the sufficiency
test with equality. Thus, for equi-energy constellations such
as 4-QAM and Q-ary PSK, the theorem holds with equality.
In addition, the theorem holds for the 4-ASK we have been
using as an example since the sufficiency test is met. For a
systematic search, we wrote a MATLAB program and per-
formed a search on constellations which satisfy the sufficiency
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TABLE I
MODULATION SCHEME AND SATISFACTION PERCENTAGE

Modulation Scheme Percentage of elements that satisfy DL�DR

32 QAM 1016/1024 (99.22%)
128 QAM 16288/16384 (99.41 %)
512 QAM 261136/262144 (99.62%)

test, especially for Q-ary QAM. The constellations that satisfy
the test are found to be Q = 4, 8, 16, 64, 256, 1024. The
constellation that do not satisfy the sufficiency test are Q =
32, 128, and 512. The percentage of elements in the EDP
vector pairs which do not satisfy DL�D0 with w0 = wL is
usually very small as Table I indicates.

Discussion of the reason why some of the constellations,
such as 32-QAM and 128 QAM, do not pass the sufficiency
test is beyond the scope of this paper. One observation we
could report in this paper, however, is that these constellations
with the Gray constellation map, have a few points at the edge
of constellation whose Hamming distance is greater than 1
while being only a minimum Euclidean distance away from
each other. These are the points that violate the sufficiency
test.

APPENDIX C
PROOF OF PROPOSITIONS 3 & 6

First, we note that Proposition 3 can be regarded as a special
case of Proposition 6 by setting M = N = 1. We next prove
the latter by making use of the equivalent SISO channel model
of (35).

For simplicity, we introduce a new random variable β =
2α2

st which follows the non-central chi-squared distribution
with 2MN degrees of freedom and non-centrality parameter
2MNKr. According to [30], Eq. 2-1-118], the probability
distribution function of β is given by

pβ(β) =
1
2

(
β

2MNKr

)(MN−1)/2

· e−β+2MNKr
2 IMN−1(

√
2βMNKr). (71)

Therefore, from (20) we have

P 1
w =
∫ 2α̂2

0

pβ(β)dβ = F
(
2α̂2 |2MN, 2MNKr

)
= 1 − QMN

(√
2MNKr,

√
2α̂
)

. (72)

The probability term P 2
w is obtained by substituting (71)

into its definition in (20) and then resorting to the Craig’s
identity of the Gaussian Q function in (46). Detailed derivation
is presented as follows at the top of next page, where the
third equation is obtained by resorting to the expression
of Gaussian Q function in (46) and setting g := gδ,θ =

Es

4N0 sin2 θ

∑Q−1
i=0 δi |a0 − ai|2 + 1, and the fourth step follows

from the integration by substitution, x = gβ.

APPENDIX D
PROOF OF EQUATION (33)

Consider the ensemble of LDPC codes in Section III. Each
LDPC code maps K information bits into a codeword of

length L. Denote the generating matrix of the code as G;
we can find its equivalent, systematic form Gs = (P : IK)
by Gauss-Jordan elimination, where P is the K × (L − K)
resultant matrix, and IK is the K × K identity matrix.
Therefore, the last K bits of each codeword are exactly the
repetition of the information bits. For any codeword with
input weight ω and output weight h, the weights of its first
L−K bits and last K bits are h−ω and ω, respectively. For
simplicity, we denote this weight pair h − ω, ω) as a metric
of the codeword.

Similar to the approach in Section III, we resort to Proposi-
tion 1 and obtain the probability that any codeword cof weight
h has a metric (h − ω, ω) as follows,

Pr (c has a metric (h − ω, ω) |c is of weight h )

=
(

L

h

)−1(
L − K

h − ω

)(
K

ω

)
=: P(h−ω,ω)|h. (74)

The average number Aω,h of the codewords of metric (h−ω,
ω) in one code is therefore given by

Aω,h = AhP(h−ω,ω)|h = Ah

(
L

h

)−1(
L − K

h − ω

)(
K

ω

)
. (75)

By simple manipulation, we have from (32) that

A′
h =

K∑
ω=1

ω

K
Aω,h = Ah

(
L

h

)−1 K∑
ω=1

(
L − K

h − ω

)(
K

ω

)

= Ah

(
L − 1
h − 1

)−1 K∑
ω=1

(
L − K

h − ω

)(
K − 1
ω − 1

)
=

h

L
Ah. (76)
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