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Abstract—In this paper, we investigate a market equilibrium in multi-channel sharing cognitive radio networks (CRNs): it is assumed
that every subchannel is orthogonally licensed to a single primary user (PU), and can be shared with multiple secondary users (SUs).
We model this sharing as a spectrum market where PUs offer SUs their subchannels with limiting the interference from SUs; the SUs
purchase the right to transmit over the subchannels while observing the inference limits set by the PUs and their budget constraints.
Moreover, we consider each SU limits the total interference that can be invoked from all other SUs, and assume that every transmitting
SU marks the interference charges to other transmitting SUs. The utility function of SU is defined as least achievable transmission rate,
and that of PU is given by the net profit. We define a market equilibrium in the context of extended Fisher model, and show that the
equilibrium is yielded by solving an optimization problem, Eisenberg-Gale convex program. In order to make the solutions of the convex
program meet the market equilibrium, we apply monotone-transformation to the utility function of each SU. Furthermore, we develop a
distributed algorithm that yields the stationary solutions asymptotically equivalent to the solutions given by the convex program.

Index Terms—Cognitive Radio Networks, Fisher Model, Market Equilibrium, Eisenberg-Gale Convex Program, Distributed Algorithm.
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1 INTRODUCTION

IN general markets, when the demand and supply
depend upon current price only, there exists an equi-

librium under certain conditions, called market equi-
librium, where (i) all the traders (i.e., suppliers and
consumers) can achieve maximum utilities at least in the
Pareto sense; (ii) the total demand for each commodity
is equal to the total supply of that commodity; (iii)
all the budgets possessed by the consumers are spent
completely [1].

Recently, market-based approaches have started being
deployed to various cognitive radio network (CRN) sce-
narios since the behaviors of the wireless users in CRN
can be cast easily into those of the traders in the general
market. Furthermore the market equilibria comply with
the key requirement of the CRN, i.e., spectral efficiency;
therefore lately the US Federal Communications Com-
mission (FCC) has employed policies and procedures
to bring spectrum trading into CRN, and analogous
regulatory efforts are commenced by EU [2], [3], [4].

In the market-based approaches for CRNs, spectra

• S. S. Byun is with the School of Information and Communications,
Gwangju Institute of Science and Technology, Gwangju, South Korea.
E-mail: ssbyun@gist.ac.kr

• I. Balasingham is with the Intervention Center, Rikshospitalet, Oslo
University Hospital, Oslo, Norway.
E-mail: ilangkob@medisin.uio.no

• A. V. Vasilakos is with the Department of Computer Science, University
of Western Macedonia, Kozani, Greece.
E-mail: vasilako@ath.forthnet.gr

• H. N. Lee is with the School of Information and Communications, Gwangju
Institute of Science and Technology, Gwangju, South Korea.
E-mail: heungno@gist.ac.kr

The initial version of this paper has been published in the Proceedings of
ACM MobiHoc 2011.

and interference are regarded as marketable products.
In words, primary users (PUs) offer the interference on
their licensed spectra to transmitting secondary users
(SUs)1 with collecting certain monetary rewards from
SUs; SUs purchase the offered interference on each
spectrum by adjusting their transmission powers. Fur-
thermore, every PU has a limitation in her production
(i.e., spectra and interference); meanwhile, every SU has
limited budget.

In this work, we consider a multi-channel sharing
CRN where the frequency range is divided into mul-
tiple subchannels, and each subchannel is orthogonally
licensed to a single PU. Each PU offers the interference
on her subchannels to SUs with limiting the interference
from the SUs; the SUs purchase the offered interference
observing their budget constraints and the interference
limits set by the PUs. Moreover, we reflect the inter-
ference among SUs to the spectrum market: every SU
limits the total interference from other SUs, and every
transmitting SU is required to pay charges for interfering
with other SUs. The utility function of SU is defined as
the least achievable transmission rate, and the utility of
PU is given by the net profit the PU makes.

During the history of market theory, there have been
lots of market models developed in accordance with
various market scenarios: for instance, Cournot model
for oligopoly, Stackelberg model considering leadership in
the production, Bertrand model for describing the fierce
competition among the sellers, and Edgeworth model con-
sidering a capacity-limited market2. In our work, we
apply the market model developed in [6] where the au-

1. Hereafter, SU implies transmitting SU.
2. Refer to [5] for the details.
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thors have extended Fisher model for a market consisting
of multi-sellers as well as multi-buyers, and divisible
goods. Considering concave utility functions for buyers
and linear utility functions for sellers, the authors have
proved that we can achieve an equilibrium that clears the
market by solving a convex optimization problem called
Eisenberg-Gale convex program. However, in our spectrum
market, the purchasing amount is restricted by other
buyers as well as sellers unlike the model in [6]: the
transmission rate of SU is restricted by the interference
limits defined by other SUs as well as PUs. In order to
derive an equilibrium with this restriction, the buyers
(i.e., SUs) should pay additional charges to other buyers.

Including the interference limit among SUs into the
market model in [6], we define the market equilibrium
such that the following conditions hold:

1) The transmission power vector yielded by the mar-
ket equilibrium maximizes the joint utility of SUs
in the Pareto sense satisfying the constraints of
budget, interference to PUs, and interference to
other SUs.

2) The transmission power vector yielded by the mar-
ket equilibrium maximizes the utility of every PU,
and completely consumes the interference exactly
up to the limits set by the PUs.

3) With the prices and charges yielded by the market
equilibrium, the sum of the initial budget pos-
sessed by all SUs equals the sum of the profits
made by all PUs plus the sum of the interference
charges gathered by all the SUs.

We model our spectrum market using the Eisenberg-
Gale convex program whose objective is to maximize
the joint utility function of all SUs, which is given by
log-sum-utility, over a convex region defined via a set of
linear constraints, and prove that the convex program
yields the equilibrium holding the above-mentioned
conditions. Meanwhile, this convex program becomes
Nash bargaining problem whose solution satisfies the weak
Pareto optimality, and its Lagrangian dual variables
turn out to be the prices and charges given by the
equilibrium. Furthermore we show that the equilibrium
satisfies the core stability of PUs. However, the utility
functions in the convex program should be concave and
homogeneous of degree one. Since we formulate the joint
utility function of all SUs as a concave function, we apply
a monotone-transformation that transforms a concave
function into an equivalent function that is homoge-
neous of degree one with maintaining the concavity.

In order to find the Lagrangian dual variables, we
should solve the system of the linear equations that
consist of the Karush-Kuhn-Tucker (KKT) optimality
conditions of the convex program. However, the system
is generally inconsistent, and which implies that it is
impossible to find the exact Lagrangian variables. For
this reason, we solve the system with a certain small
precision bound. In numerical experiments, we show
that approximate Lagrangian variables are found with

quite small precision error, and yield an approximate
equilibrium quite close to the exact one.

We also consider a distributed implementation for
solving the convex program, which enables PUs and
SUs to make their decisions autonomously as follows:
given the price of each channel, (i) each SU computes her
optimal transmission power vector using best response
dynamics; (ii) using linear dynamics, each PU updates
the price of her each subchannel in proportion to the
interference invoked from the SUs, and, meanwhile, each
SU updates the interference charge on each subchannel
in proportion to the interference invoked from all the
other SUs. (iii) repeat (i) and (ii) until the linear dynamics
become stationary. We show that the linear dynamics
are asymptotically stable with any initial points, and the
solutions yielded at the stable state is equivalent to
the solutions given by the convex program (i.e., market
equilibrium). By numerical evaluations, we illustrate the
market equilibrium given by the distributed algorithm
is quite close to the equilibrium yielded by the convex
program.

Recently, a distributed algorithm for finding the mar-
ket equilibrium in Fisher model has been studied in [7];
the authors have applied proportional response dynam-
ics and proved its convergence. To our best knowledge,
there is no previous work that has developed a dis-
tributed implementation for finding the equilibrium in
the extended model given in [6]. Furthermore, in this
paper, we consider the situation where the purchasing
amount is restricted by buyers (SUs) as well sellers
(PUs).

The rest of this paper is organized as follows: In
Section 2 we summarize some important characteristics
of the market model studied in [6], and survey some
recent market-based approaches for CRNs. In Section 3,
we give our spectrum market model. In Section 4, we
define the market equilibrium in our spectrum market.
In Section 5, we give the Eisenberg-Gale convex program
for our spectrum market, and investigate its properties.
In Section 6, we present the distributed algorithm for
solving the convex program, and analyze its stability
and asymptotic optimality. In Section 7, we give several
results of the numerical evaluations. Finally, we conclude
this paper in Section 8.

2 RELATED WORK

2.1 Market-based Approaches for CRNs

Recently, the market-based approach has been deployed
to CRNs by several research efforts.

Xing et al. [8] have considered a spectrum market
where different consumers evaluate the same supplier
differently according to their applications and locations.
Considering limited information, they have developed
price dynamics with a stochastic learning algorithm in
order to find the optimal price yielding maximum benefit
of the suppliers. However they have not addressed the
utility of the consumers.
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Hong et al. [9] have proposed a fully distributed
algorithm - no collaboration among SUs and PUs - that
achieves a market equilibrium in multi-channel sharing
CRN such that the supply of the spectrum equals to its
demand, and the network of SU is stable. They have
investigated and presented the convergence condition of
the algorithm in terms of the channel gain. Unlike other
approaches, they have considered the utilities of PUs as
well as SUs. However, they have not investigated the
social optimality of the market equilibrium.

Niyato et al. [10], [11] have modeled a multi-level
bandwidth sharing in CRN into an interrelated market.
They have proposed a price-demand decision algorithm
that guarantees the convergence to a market equilibrium
with which all the primary and secondary services are
satisfied. However, they have assumed that the price-
demand decision algorithm is directed by a central au-
thority in each level, and have not considered the way
of allocating the spectra to users in each level.

Xu et al. [12] have proposed a secondary network
where SUs trade among themselves their channels pur-
chased from PUs in the direction of asymptotic optimal
spectrum utilization. To this end, they have devised dy-
namic double auction mechanism that is conducted by a
centralized spectrum broker, and proved the truthfulness
and asymptotic efficiency in the total social welfare.

Li et al. [13] have addressed a spectrum auction
mechanism between SUs and spectrum owners without
any central auctioneer. They have deployed an iterative
matching algorithm that achieves the price set in core
where no SUs and spectrum owners can negotiate to
do better for both. However, they have assumed fixed
transmission power, and there is no consideration of the
market clearance.

In [14], the authors have handled a two-tier mar-
ket: spectrum contracts from a PU to SUs in Tier-1,
and spectrum redistribution among SUs to satisfy SUs
dynamic traffic demands in Tier-2. They have applied
Nash bargaining solution in Tier-1 market in order to
achieve the fairness between the utility of the PU and
the aggregate utility of all the SUs. For Tier-2 market,
they have deployed random matching and bilateral bar-
gaining. However, they have considered a single PU, and
have not addressed the market clearance.

Xie et al. [15] have addressed the spectrum trad-
ing between wireless users - that can be regarded as
SUs in a CRN - and a single price manager - that
can be regarded as a PU or spectrum broker in a
CRN, and investigated a market equilibrium where the
market clears, and the budgets of the wireless users
are completely consumed. Unlike our work, they have
addressed the actual interference among the wireless
users in the utility function. Then they have shown
that the market equilibrium is given by the solution
of a linear complementarity problem, and under the
symmetric channel gain and low-rank conditions, they
have proved that this problem becomes equivalent to
the problem of finding KKT points of a quadratic pro-

gram. Furthermore, they have developed a decentralized
tatonnement process that converges to the equilibrium.
However, they have not included the manager’s utility
in the market equilibrium. Moreover, the KKT points of
the quadratic program do not guarantee the optimality,
and due to this reason, it is not verified whether the
distributed algorithm (tatonnement process) converges
to the optimal solution even asymptotically.

Koutsopoulos et al. [16] have surveyed various action
mechanisms for spectrum allocation in CRN. They have
indicated that auction mechanisms (including double
auction mechanisms) involve a single seller and multiple
buyers, and have no interaction among buyers.

2.2 Brief of The Extended Market Model

Fisher model considers a market consisting of multibuy-
ers and divisible goods. In Fisher model, the budget for
each buyer and the amount of each commodity need
to be specified, and the utility functions of buyers are
assumed to be concave. Then the market equilibrium in
Fisher model is given by the price of each commodity
that yields optimal utilities of buyers at least in Pareto
sense and clears the market: there should be neither
surplus nor deficiency in any of the commodities and the
budgets [17]. In 1959, Eisenberg and Gale gave a convex
program for computing market equilibrium for Fisher
model of linear utility functions [18], and in 1961, Eisen-
berg generalized this to concave homogeneous functions
of degree one [19]. In 1954, Nobel laureates Arrow and
Debrue generalized Fisher model considering agents
who come to the market with initial endowments of
goods, and at any set of prices, want to sell all their
goods and buy optimal bundles at these prices. The
problem again is to find market clearing prices [20].

Jain et al. [6] have extended Fisher model consider-
ing the utilities that are homothetic, quasiconcave, and
homogeneous functions of arbitrary degree; they also
have included sellers’ utilities into their model. They
have applied the Eisenberg-Gale convex program with
the buyers’ utilities monotone-transformed. They show
that the equilibrium price, given by the Lagrangian
dual variables of the convex program, maximizes sellers’
utilities as well as buyers’ utilities, and clears the market.

In our work, we employ this extended model to our
spectrum market since it deals with the market where
the buyers are clearly distinguished from sellers, and
considers the utilities of sellers as well as those of
buyers. However, in our spectrum market, the purchas-
ing amount is restricted by other buyers as well as
sellers: that is, the amount of interference that can be
purchased by each SU is restricted by the interference
limits imposed by other SUs as well as PUs. In order to
derive an equilibrium with this restriction, we consider
that each buyer (i.e., SU) pays additional charges to all
the other buyers. Furthermore, we envisage a distributed
implementation of our market model.

We emphasize that the extended Fisher model is a
unique market model that enables the following con-
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PU 1 PU 2

Licensed to PU 1

Licensed to PU 2

Interference offered to SU 1

Subchannels

Interference offered to SU 2

Interference occupied by PU

SU 1 SU 2

Fig. 1. Multi-channel sharing model with 2 PUs, 2 SUs,
and 8 subchannels. Each subchannel is orthogonally
allocated to a single PU, and can be shared with all the
SUs unless the SUs invoke less interference than the PUs
can tolerate.

siderations altogether: (i) strictly distinguished multiple
sellers (PUs) from multiple buyers (SUs); (ii) guarantee of
Pareto optimality for SUs’ utility and the core-existence
for PUs’ utilities; (iii) guarantee of the market clearance;
(iv) distributed implementation with no central author-
ity; (v) providing the way of allocating the spectra to
SUs.

3 SPECTRUM MARKET MODEL

We consider a CRN where all the PUs and SUs are
located within a limited geographical region. Then we
address the spectral resource on the frequency domain
taking the multi-channel sharing into account - that is,
the whole frequency range is split into multiple subchan-
nels, and each subchannel can be shared by multiple
users. In this work, we premise that each subchannel
is exclusively licensed to a single PU; it however can be
shared with multiple SUs concurrently unless the SUs
invoke interference larger than certain limits. (Refer to
Fig. 1).

Applying a market concept to our CRN scenario, the
subchannels and interference are interpreted into the
types of commodity and the quantity of each commodity,
respectively. Upon the current prices, each SU decides
subchannels and the amount of interference she would
like to purchase; each PU updates the price on every her
subchannel according to the interference invoked from
the SUs.

Ideally, SUs’ utility function should reflect actual in-
terference from all the other SUs as well as interference
from PUs, which however makes the problem noncon-
vex if the utility function is given as Shannon capacity
[21]. Therefore, we consider the maximum allowable in-
terference and reflect it to the utility function; the utility

function is given by least achievable transmission rate.
Then we let SUs make and charge for every subchannel
- on which she is transmitting - in proportion to the
amount of interference from all the other SUs. Moreover
we assume that the maximum allowable interference is
given by a central authority in order to let SUs share the
interference fairly.

The price as well as the interference charge are marked
on every subchannel, and given as a price per unit
interference.

As a supplier in general market has a limitation on the
net supply of its commodity, we envisage that every PU
has a limitation on the interference she can offer to SUs
over every her subchannel. In addition, like consumers
in general markets, every SU cannot spend more budget
than she possesses on purchasing the interference from
the PUs and paying the interference charges to al the
other SUs.

Prior to giving the formal definition of the market
equilibrium, we define the following denotations:

• I: Set of transmitting SUs.
• L: Set of PUs, and we let m := |L|.
• J : Set of subchannels, and we let n := |J |
• ui : R

n
+ → R+: Utility function of SU i ∈ I.

• pi = [pi1, . . . , pin]
T : Transmission power vector of

SU i.
• pij : SU i’s transmission power on subchannel j ∈ J .
• Jl: Set of subchannels licensed to PU l ∈ L.
• vl : R

n → R: Utility function of PU l.
• πlj : Price marked by PU l on subchannel j.

• πl = [πl1, . . . , πln]
T

: Price vector of PU l.
• ηij : Interference charge decided by SU i on subchan-

nel j.
• ηi = [ηi1, . . . , ηin]

T
: Vector of interference charges

decided by SU i.
• ylj : Limit of allowable interference from all the SUs

to PU l on subchannel j.
• γij : Maximum allowable interference from all the

other SUs to SU i on subchannel j.

Now we develop the spectrum market model with the
following key considerations:

1) Each SU i ∈ I has a concave, scalable utility
function ui with respect to its transmission power
vector pi. In this paper, the utility of SU is defined
as the summation of least achievable rate on every
subchannel, that is,

ui (pi) =
∑

j∈J

Bj log2

(
1 +

pijGij

N0 + γij + Γij

)
(1)

where Bj is the bandwidth of subchannel j ∈ J ,
Gij is the channel gain on subchannel j between
SU i and its target, Γij is the interference invoked
from the PU who owns subchannel j to SU i, and
N0 is the thermal noise.

2) SUs cannot purchase the interference larger than
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the limits set by PUs. That is, ∀l ∈ L and ∀j ∈ Jl,
∑

i∈I

pijG
l
ij ≤ ylj (2)

where Gl
ij is the channel gain on subchannel j

between SU i and PU l. We assume that each
PU has a minimum QoS requirement and sets the
interference limit (i.e., ylj) in order that the QoS
may be guaranteed.

3) Each SU i has an initial endowment of budget
ei > 0, and the total budget spent on the purchase
of subchannels and the interference charges cannot
exceed ei.

4) Each PU l offers her subchannels, i.e., subchannels
in Jl, to SUs with price πlj , and its utility function
vl is defined as the net profit it makes, i.e.,

vl =
∑

i∈I

∑

j∈Jl

πljpijGij . (3)

5) In every SU, the total interference on subchannel j
from all the other SUs cannot exceed the maximum
allowable interference: ∀i ∈ I and ∀j ∈ J

∑

k∈I, 6=i

pkjG
i
kj ≤ γij (4)

where Gi
kj is the channel gain on subchannel j

between SU k and the target of SU i. In this paper,
we assume a symmetric channel gain among SUs:
that is, Gi

kj = Gk
ij where i 6= k.

The channel gain reflects the free space path loss
defined by Friis transmission equation [22]:

Gij =
gigkλ

2
j

(4π)
2
d2L

(5)

where gi is the transmitter antenna gain, gk is the receiver
antenna gain, d is the transmitter-receiver separation
distance in meters, L is the system loss factor not related
to propagation, and λj is the wavelength in meters
on subchannel j. Since the channel gain reflects the
wave length of each subchannel, the higher frequency
a subchannel has, the less amount of information a user
can transmit on it given a fixed transmission power and
subchannels with equal bandwidth [8]. In order to let
every subchannel have equal opportunity of being pur-
chased, we assume that the frequency range is divided
into subchannels in the way that every subchannel yields
similar transmission rate given a constant transmission
power and separate distance.

Additional assumptions are the following:

1) All PUs and SUs can access non-contiguous sub-
channels in parallel.

2) All SUs have the transmission power enough to
fully utilize the interference offered by PUs.

3) The spectrum trade occurs on every predefined
epoch, and all SUs perform their transmissions
ceaselessly during the epoch.

4) All PUs perform their transmission ceaselessly
without any changes in their transmission powers
during the epoch.

4 MARKET EQUILIBRIUM

Henceforth, we let ylj have a very large number for
all l ∈ L and j ∈ J but j /∈ Jl3. Based on the key
considerations mentioned in Section 3, we define the
equilibrium in the spectrum market following [6]: the
equilibrium is defined as a pair of a nonnegative price

vector π = [π1, . . . , πm]
T

and a vector of interference

charges η =
[
η1, . . . , η|I|

]T
at which there exists a trans-

mission power vector pi for each SU i such that the
following conditions hold:

1) The vector pi maximizes the utility of SU i given
her initial endowment of budget ei and the equi-
librium π and η, that is, pi maximizes ui over all
pi ∈ Rn

+ subject to
∑

l∈L

∑

j∈J

πljpijG
l
ij +

∑

j∈J

pij
∑

k∈I,k 6=i

ηkjG
k
ij ≤ ei, (6)

and constraint (4).
2) For each PU l, the vector pi maximizes the profit

vl subject to constraint (2).
3) The total interference offered by all PUs equals

the total interference consumed by all SUs, that is,∑

l∈L

∑

j∈J

ylj =
∑

i∈I

∑

l∈L

∑

j∈J

pijG
l
ij .

4) The sum of the initial budget possessed by SU
i equals the sum of the prices paid to all PUs
by SU i plus the sum of the interference charges
paid to all the other SUs by SU i, that is,

ei =
∑

l∈L

∑

j∈J

πljpijG
l
ij +

∑

j∈J

pij
∑

k∈I,k 6=i

ηkjG
k
ij .

Therefore, the market equilibrium in this model is also
known as market clearing equilibrium since it clears not
only all the commodities offered by suppliers but also
all the initial budget possessed by consumers; that is, it
clears all the budget possessed by SUs as well as all the
interference offered by PUs.

However, if SU’s maximum allowable interference, i.e.,
γij for any i and j, is set significantly small or null in
the worst case, the interference offered by PUs may not
be consumed entirely. Then the market clearance cannot
be guaranteed. We present this problem in section 5 in
detail.

5 EISENBERG-GALE CONVEX PROGRAM

In this section, we develop a convex program, called
Eisenberg-Gale convex program [6], [23], that yields the
market equilibrium defined in the previous section. The
convex program is to maximize the joint utility function

3. Over subchannels that a PU doesn’t own, we set the interference
limit very large numbers. Then we can drop the subscript l from Jl.
Surely, ∀j /∈ Jl, ylj doesn’t belong to the commodities of PU l.
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of all SUs given by log-sum-utility over a convex region
defined via a set of linear constraints.

The Eisenberg-Gale convex program can compute the
market equilibrium only when the utility functions are
homogeneous of degree one as well as concave. As
given in (1), the utility function is concave but not
homogeneous of degree one. Therefore, prior to pre-
senting the convex program, we give a formal method
of transforming a non-homogeneous function into an
equivalent function homogeneous of degree one.

5.1 Monotone-Transformation of the Utility Function

Most of all, we need the following definition [24]:

Definition 1: Given a function u : Rn
+ → R+:

1) u is strictly monotonic if for any p, p̄ ∈ Rn
+, p > p̄

implies that u (p) > u (p̄);
2) Let u be a strictly monotonic function. Then u is

homothetic if for any p, p̄ ∈ Rn
+ and any α > 0,

u (p) ≥ u (p̄) iff u (αp) ≥ u (αp̄);
3) u is homogeneous of degree one if for any p ∈ Rn

+ and
any α > 0, u (αp) = αu (p).

It is not difficult to check whether ui given by (1)
is continuous, strictly monotonic and homothetic, but
not homogeneous of degree one. Therefore we apply
a monotone-transformation [6] that preserves strict mono-
tonicity, concavity, and homotheticity. The monotone-
transformation is given by the following theorem:

Theorem 1: Let u : Rn
+ → R+ be a continuous, strict

monotonic, concave, homothetic function. Then there
is a monotone-transformation yielding a function f :
Rn

+ → R+ that is homogeneous of degree one, and
preserves continuity, strict monotonicity, concavity, and
homotheticity, and satisfies:

1) If u (p) = 0, then f (p) = 0.
2) If u (p) 6= 0, then there exists a unique α ∈ R+ such

that u (p/α) = 1, and f (p) = α.

Consequently, the monotone-transformation can be
done by finding α that satisfies the following nonlinear
equation:

u (p/α) = 1. (7)

5.2 Convex Program Yielding Market Equilibrium

By the monotone-transformation, we can transform ui

to fi that is homogeneous of degree one. Then we
develop the Eisenberg-Gale convex program that yields
the market equilibrium as follows:

maximize
∑

i∈I

ei ln (fi) (8)

subject to
∑

k∈I, 6=i

pkjG
i
kj ≤ γij , ∀i ∈ I and ∀j ∈ J ; (9)

∑

i∈I

pijG
l
ij ≤ ylj , ∀l ∈ L and ∀j ∈ J . (10)

As we have addressed in Section 4, if γij is set too
small, the market clearance cannot be guaranteed. Con-
sidering non-zero channel gains, we present the problem
in detail:

• In case γij = 0 for all i and j, all pij should be null.
Then, the conditions for the market equilibrium (i.e.,
3) and 4)) can never be met.

• In case γij for all i and j is non-zero, but it has
significantly small value, pij should have also small
value in order to meet the constraint given in (9).
Then the constraint (10) may not be tight always.
The tightness of the constraint (10) is one of the
condition for the market equilibrium, i.e., 3). If the
tightness of the constraint (10) is not met, the price
of the subchannels that are not entirely purchased
by SUs is given as zero according to the KKT
condition given in (15), and in turn the condition
4) may not hold either.

To prevent the above problem, we need to add the
following necessity condition for the existence of the
market equilibrium: every γij ∀i ∈ I and ∀j ∈ J is
non-zero and has a value that makes a solution vector
p satisfy

∑

i∈I

pijG
l
ij = ylj ∀l ∈ L and ∀j ∈ Jl, and

∑

k∈I, 6=i

pkjG
i
kj ≤ γij ∀i ∈ I and ∀j ∈ J always. Intuitively,

SUs will always utilize the available interference entirely
bounded by constraint (10) in order to maximize their
collaborative utility given in (8) if constraint (10) is set
tighter than constraint (9), and therefore the market
clearance can be guaranteed. As an instance, we consider
a spectrum market where the channel gains over all
SUs, PUs and channels have an identical value, i.e.,
identical Gl

ij and Gi
kj for all i, k ∈ I, j ∈ J , and l ∈ L.

Additionally we let γij = c and ylj = f for all i ∈ I,
j ∈ J , and l ∈ L. Then, if c ≥ f , constraint (10) over all
l and j becomes always tight to achieve the maximum
utility.

For all l and j /∈ Jl, we give a large value to ylj .
In this case, πlj should be zero to satisfy the optimality
condition given in (15), and this setting is reasonable.
Then we draw the following remark from the convex
program:

Remark 1: The solution of the above Eisenberg-Gale
convex program (henceforth, convex program) is of-
ten regarded as Nash bargaining solution [25] with zero
disagreement point. Therefore it has a unique solution
vector that satisfies Pareto optimality due to the strict
concavity of the objective function and linearity of the
constraints [26].

Let p̃ij denote the optimal solutions to the convex
program. Notice that fi (p̃i) > 0 for all i. Now we
have the following KKT optimality conditions with the
corresponding Lagrangian multipliers ηij and πlj :

∑

k∈I, 6=i

p̃kjG
i
kj ≤ γij , ∀i ∈ I and ∀j ∈ J , (13)
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p̃ij


 ei
fi (p̃i)

∂fi (p̃i)

∂pij
−
∑

l∈L

πljG
l
ij −

∑

k∈I,k 6=i

ηkjG
i
kj


 = 0, ∀i ∈ I and ∀j ∈ J (11)

ei
fi (p̃i)

∂fi (p̃i)

∂pij
−
∑

l∈L

πljG
l
ij −

∑

k∈I,k 6=i

ηkjG
i
kj ≤ 0, ∀i ∈ I and ∀j ∈ J (12)

∑

i∈I

p̃ijG
l
ij ≤ ylj , ∀l ∈ L and ∀j ∈ J , (14)

πlj

(
∑

i∈I

p̃ijG
l
ij − ylj

)
= 0, ∀l ∈ L and ∀j ∈ J , (15)

ηij



∑

k∈I, 6=i

p̃kjG
i
kj − γij


 = 0, ∀i ∈ I and ∀j ∈ J , (16)

and (11) and (12).
Subsequently, we establish the following linear pro-

gram for each PU l:

LP1:
maximize

∑

i∈I

∑

j∈J

πljpijG
l
ij (17)

subject to ∑

i∈I

pijG
l
ij ≤ ylj , ∀j ∈ J . (18)

We prove that πl and ηi is the equilibrium price, and p̃

is the optimal solution of LP1 as well. This proof begins
with Euler’s theorem [24]:

Theorem 2 (Euler’s theorem): Let f (p) be a homoge-
neous function of degree 1 on Rn

+. Then, for all p,

p1
∂f (p)

∂p1
+ p2

∂f (p)

∂p2
+ ...+ pn

∂f (p)

∂pn
= f (p) . (19)

Then the following core theorem holds:

Theorem 3: The optimal solution to the convex pro-
gram optimizes the utility of each SU i and the utility
of each PU l, and the Lagrangian multipliers, π and η,
are the equilibrium. In addition, the interference offered
by all PUs is entirely exhausted by SUs, and the initial
budget possessed by all SUs is fully spent and precisely
equals to the total profit earned by the PUs plus the total
interference charges. Namely, the market clears.

Proof: Summing (11) over j ∈ J , we get

∑

j∈J

ei
fi (p̃i)

∂fi (p̃i)

∂pij
p̃ij −

∑

j∈J

p̃ij
∑

l∈L

πljG
l
ij

−
∑

j∈J

p̃ij
∑

k∈I,k 6=i

ηkjG
i
kj = 0, ∀i ∈ I. (20)

By the Euler’s theorem, the first term in the left side
of (20) is reduced to ei simply. Then, since we assume
Gi

kj = Gk
ij , ∀i, k ∈ I and ∀j ∈ J where i 6= k,

ei =
∑

j∈J

p̃ij
∑

l∈L

πljG
l
ij

+
∑

j∈J

p̃ij
∑

k∈I,k 6=i

ηkjG
k
ij = 0, ∀i ∈ I, (21)

which implies that each SU spends her initial budget
completely under the equilibrium π and η. The first term
in the right side of (21) indicates the total price to be
paid to all PUs by SU i, and the second term indicates
the total interference charge to be paid to all other SUs
by SU i.

We next consider the dual program of LP1 for each
PU l with dual variables w:

LP2:
minimize

∑

j∈J

yljwlj (22)

subject to

wljG
l
ij = πljG

l
ij , ∀i ∈ I and ∀j ∈ J ; (23)

wlj ≥ 0, ∀j ∈ J . (24)

Let p̄ be the optimal solution of LP2. By the comple-
mentary slackness condition [27], the following equation
holds as well:

wlj

(
∑

i∈I

p̄ijG
l
ij − ylj

)
= 0, ∀l ∈ L and ∀j ∈ J . (25)

Assuming that Gl
ij 6= 0 for all i, j and l, (23) becomes

wlj = πlj . Thus,

πlj

(
∑

i∈I

p̄ijG
l
ij − ylj

)
= 0, ∀l ∈ L and ∀j ∈ J . (26)

We see that p̃ also satisfies (26), and thus it can be
the optimal solution of the LP2 as well. Hence, together
with Remark 1, we draw a conclusion that all the PUs
and SUs can achieve maximum utilities with respect to
the equilibrium π and η.

Finally we show that the market clears. Summing (21)
over all i ∈ I, we get

∑

i∈I

ei =
∑

i∈I

∑

j∈J

p̃ij
∑

l∈L

πljG
l
ij

+
∑

i∈I

∑

j∈J

p̃ij
∑

k∈I,k 6=i

ηkjG
k
ij , (27)

and by (15),
∑

i∈I

ei =
∑

j∈J

∑

l∈L

πljylj

+
∑

i∈I

∑

j∈J

p̃ij
∑

k∈I,k 6=i

ηkjG
k
ij . (28)

Eventually, we conclude that the equilibrium given by
the Lagrangian multipliers clears the market.
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The equilibrium can be computed by solving the sys-
tem of the linear equations (11), (12), (15), and (16) using
the optimal solutions of the convex program. It is known
that the system of the linear equations has a unique
solution if it is consistent [17]. However, the system
is normally inconsistent since there are more equations
than the unknown variables. Thus we need to provide
a certain precision bound on each linear equation in
order to achieve an approximate equilibrium at least.
The precision bound is dependent on the instance of the
problem such as the sizes of PUs, SUs, subchannels, and
non-zero solutions. In Section 7, we evaluate numerically
the quality of the solution varying the precision bound
given a CRN instance.

Besides, in order to solve the system of the linear
equations, we need to compute the partial derivatives
of the monotone-transformed function (required in (11)
and (12)), and it is given by the following lemma [6]:

Lemma 1: If we let f(p) = α, then the partial deriva-
tives to pj of f is given by

∂f (p)

∂pj
= α

∂u (p/α)/∂pj

∇u(p/α)Tp
. (29)

5.3 Core Stability of the Production Vector

In this section, we show that the solution p̃ yielded by
the convex program is in the core of NTU (nontransfer-
able utility) game in the context of cooperative game
theory [28].

In a cooperative game, the existence of non-empty
core guarantees that no player will break away from the
grand coaltion (i.e., the cooperation of all the players)
since the payoffs achieved by the cooperation within
any subcoalition are not larger than the payoff yielded
by the cooperation of the grand coalition. Therefore, if
the solution p̃ is in the core of the spectrum market, we
guarantee that no PU will leave this market.

Denoting the core of the spectrum market as C (V ),
the core of an NTU game is defined as:

Definition 2: For a S ⊆ L, let V (S) = {vl (p) : l ∈ S}.
Then the core of the spectrum market, C (V ) is defined
as the set of all undominated imputations, i.e., p̃ ∈ C (V ),
if and only if there is neither S ⊂ L, S 6= ∅, nor p such
that vl (p) > vl (p̃) for all l ∈ S.

Theorem 4: The solution vector p̃ of the convex pro-
gram belongs to C (V ).

Proof: In this proof, we apply the proof by contradic-
tion. Thus this proof begins with supposing p̃ /∈ C (V ).
Then there exists S ⊂ L, S 6= ∅, and some allocation p̂

such that

vl (p̂) > vl (p̃) (30)

for all l ∈ S. That is,
∑

j∈J

πlj

∑

i∈I

p̂ijG
l
ij >

∑

j∈J

πlj

∑

i∈I

p̃ijG
l
ij , ∀l ∈ S. (31)

Then, by (15),
∑

j∈J

πlj

∑

i∈I

p̂ijG
l
ij >

∑

j∈J

πljylj , ∀l ∈ S (32)

In order to satisfy (32), the following relation should be
satisfied in any l and j:

∑

i∈I

p̂ijG
l
ij >

∑

j∈J

ylj , ∀l ∈ S. (33)

However, the inequality (33) violates the constraint of
the total interference. This contradiction proves that p̃ is
undominated, and therefore belongs to C (V ).

Consequently, it is guaranteed that the interference
solutions given by the convex program let no PU break
away from the spectrum market.

6 DISTRIBUTED ALGORITHM

In this section, we develop a distributed approach whose
stationary point is asymptotically equivalent to the op-
timal solution given by the convex program.

6.1 The Algorithm

A natural class of dynamics in multiplayer noncoop-
erative system is the best-response dynamics where each
player updates her strategy to maximize her utility given
the strategies of other players [29]. In this algorithm, each
SU deploys the best response dynamics to maximize
her individual utility given the vectors of price and
interference charges. That is, the best response of SU i is
given by

βi (π, η) = arg
pi:s.t.(6)

max ei ln fi (pi) (34)

Accordingly, the algorithm with the best-response dy-
namics is given as follows:

1: Initialize π (0) and η (0);
2: t← 0;
3: loop
4: for each i ∈ I do
5: Find the best response βi (t) given π (t) and

η (t);
6: end for
7: for each l ∈ L and j ∈ J do
8: if j /∈ J then
9: πlj = 0;

10: else
11: Update the price such that

π̇lj = α

(
∑

i∈I

pij (t)G
l
ij − ylj

)+

πlj

; (35)

12: end if
13: end for
14: for each i ∈ I and j ∈ J do
15: if pij (t) = 0 then
16: ηij = 0;
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17: else
18: Adjust the interference charge by

η̇ij = α


 ∑

k∈I,k 6=i

pkj (t)G
l
kj − γij




+

ηij

(36)

19: end if
20: end for
21: if π̇lj < ǫ and η̇lj < ǫ for all l ∈ L and j ∈ J then
22: Terminate the loop;
23: else
24: t← t+ 1;
25: Continue the loop;
26: end if
27: end loop

In this algorithm, α and ǫ indicate the adjustment
speed of the linear dynamics and the termination con-
dition of the algorithm, respectively. If we set the ad-
justment speed too small, the algorithm requires more
iterations until it converges. On the other hand, setting
it too large can make the algorithm oscillate. There is
no formal way of finding an adequate value for the
adjustment speed except trial-and-error. In this paper,
an adequate adjustment speed is found by testing the
algorithm with various adjustment speed. (a)+b implies
max(a, 0) if b = 0, and equal to a if b > 0. In every
time t, by (34), each SU finds the transmission power
vector that is her best response to the current price
and interference charges. When each SU computes its
best response dynamics, she should know the amount
of interference from PUs as well as the channel gain to
her target. By (35), each PU updates the price on each
her subchannel according to the interference from all
SUs. By (36), each SU updates her interference charge
on each subchannel according to the interference from
other SUs. We note that PUs and SUs update their
interference charges with only the amount of interference
they observe. Then the price updated by each PU (i.e.,
π) is delivered to all SUs, and the price updated by each
SU (i.e., η) is delivered to other SUs. These price lists are
the only feedbacks that should be delivered.

6.2 Stability Analysis

In this subsection we prove the asymptotic stability of
the linear dynamics given by (35) and (36). To this end,
we develop the following theorem:

Theorem 5: The linear dynamics given by (35) and (36)
are globally asymptotically stable.

Proof: See Appendix A.

We see that, as the distributed algorithm proceeds,
SUs’ utilities approach to those yielded by the convex
program.

6.3 Investigation of Asymptotic Equivalence to the
Convex Program

We have shown the linear dynamics are asymptotically
stable. Then, assuming the system of the linear equations

(11), (12), (15), and (16) is consistent, we can prove that
the distributed algorithm yields the solutions asymptot-
ically equivalent to the solutions of the convex program.
That is, the solutions yielded at t =∞ is equivalent to the
solutions of the convex program. However, as discussed
in Section 5.2, it is not easy to validate the equivalence
because of the inconsistency in the system of the linear
equations. Nonetheless, by numerical experiments, we
illustrate that the utilities of SUs determined by the dis-
tributed algorithm are almost identical to those yielded
by the convex program in spite of the inconsistency, and
which will be explained in Section 7. We also show that
the equilibrium yielded by the distributed algorithm also
meets the KKT conditions within a small tolerance.

We give the following theorem:

Theorem 6: Postulating that the system of the linear
equations (11), (12), (15), and (16) are consistent, the
solutions and equilibrium obtained by the distributed
algorithm are asymptotically equivalent to those yielded
by the convex program and its KKT conditions.

Proof: We denote the best response of SU i at t =∞
as β̃i, the price made by PU l on subchannel j at t =∞
as π̃lj , and the interference charge made by SU i on
subchannel j at t = ∞ as η̃ij , then the KKT conditions
(37) ∼ (39) hold with Lagrangian multiplier κi ≥ 0.

∑

j∈J

∑

l∈L

π̃lj β̃ijG
l
ij +

∑

j∈J

β̃ij

∑

k∈I,k 6=i

η̃ljG
k
ij ≤ ei (40)

Summing (37) over all j ∈ J , we get (41), and, by
Euler’s theorem,

ei = κi


∑

j∈J

∑

l∈L

π̃lj β̃ijG
l
ij +

∑

j∈J

∑

k∈I,k 6=i

η̃lj β̃ijG
k
ij


 .

(42)
Substituting ei in (39) with (42), we get (43).
For all i ∈ I, at least one of p̃i should be non-zero in

order to make fi

(
β̃i

)
> 0. Moreover, due to the strict

monotonicity of fi, the partial derivatives of fi should
be always positive. Therefore at least one element of π̃
and η̃ should be non-zero in order to make (37) hold. We
also set all the channel gains non-zeros. Subsequently, in
order to make both (37) and (43) hold for all i, κi should
be 1. Then, the KKT condition (37) and (38) turn out
to be identical with (11) and (12), respectively, if we let

β̃i = p̃i for all i, π̃ = π, and η̃ = η.
Since the two linear dynamics (i.e., (35) and (36)) are

stable, there exist some l ∈ L and j ∈ J such that
∑

i∈I

β̃ij (t)G
l
ij = ylj (44)

if π̃lj > 0, or ∑

i∈I

β̃ij (t)G
l
ij < ylj (45)

if π̃lj = 0; in a similar way, there exist some i ∈ I and
j ∈ J such that

∑

k∈I,k 6=i

β̃ij (t)G
i
kj = γij (46)
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β̃ij


 ei

fi

(
β̃i

)
∂fi

(
β̃i

)

∂pij
− κi


∑

l∈L

π̃ljG
l
ij +

∑

k∈I,k 6=i

η̃ijG
k
ij




 = 0, ∀j ∈ J (37)

ei

fi

(
β̃i

)
∂fi

(
β̃i

)

∂pij
− κi


∑

l∈L

π̃ljG
l
ij +

∑

k∈I,k 6=i

η̃ijG
k
ij


 ≤ 0, ∀j ∈ J (38)

κi



∑

j∈J

β̃ij

∑

l∈L

π̃ljG
l
ij +

∑

j∈J

β̃ij

∑

k∈I,k 6=i

η̃ljG
k
ij − ei


 = 0 (39)

∑

j∈J

ei

fi

(
β̃i

)
∂fi

(
β̃i

)

∂pij
β̃ij = κi


∑

j∈J

∑

l∈L

π̃lj β̃ijG
l
ij +

∑

j∈J

∑

k∈I,k 6=i

η̃lj β̃ijG
k
ij


 (41)

if η̃ij > 0, and
∑

k∈I,k 6=i

β̃ij (t)G
i
kj < γij (47)

if η̃ij = 0. We notice that (44) and (45) are equivalent to
the KKT condition (13), and (46) and (47) are equivalent

to the KKT condition (16) if we let β̃i = p̃i for all i, π̃ = π,
and η̃ = η. Finally, (44) ∼ (47) satisfy both (13) and (14)

as well if we let β̃i = p̃i for all i.
For the reasons stated above, the stable solutions and

the equilibrium yielded by the distributed algorithm
satisfies the KKT condition of the convex program. Since
the equilibrium as well as the solutions of the convex

program are unique, we confirm β̃i = p̃i for all i, π̃ = π,
and η̃ = η. Consequently, we conclude that the solutions
and equilibrium yielded by the distributed algorithm are
asymptotically equivalent to those given by the convex
program and its KKT conditions.

7 NUMERICAL EVALUATIONS

7.1 Experimental Setup

We generate a CRN within a 500 × 500 square, and
consider the frequency range of 54-862 MHz TV band
following the IEEE 802.22 standard [30]. As mentioned
in Section 3, we divide the frequency range into sub-
channels in the way that every subchannel yields equal
transmission rate as possible given a constant trans-
mission power. We vary the sizes of SUs, PUs, and
subchannels according to the type of the experiment
we perform. Besides, we use Interior Point Optimizer
(IPOPT) [31] for solving the convex program and the
best response dynamics, and GNU Linear Programming
Kit (GLPK) [32] for solving the system of the linear
equations. Additional experimental parameters are the
following:

• ei: randomly chosen from (0, 1.0]
• ylj : ∀l ∈ L and ∀j ∈ Jl, 1e-08
• γij : ∀i ∈ I and ∀j ∈ J , 1e-08
• Initial πlj for the distributed algorithm: ∀l ∈ L and
∀j ∈ Jl, 6e06

• Initial ηij for the distributed algorithm: ∀i ∈ I and
∀j ∈ J , 6e06

• Antenna gain: 1.0 for both transmitter side and
receiver side

• System loss factor: 1.0
• Speed of light: 3e08 m/s
• Thermal noise: 1e-10
• PU’s transmission power: 0.1W for all PUs

7.2 Illustration of the Strict Monotonicity

First we illustrate the strict monotonicity of the
monotone-transformed utility function, i.e., fi. To this
end, we consider two subchannels and compute the
function values of fi varying the transmission power on
each subchannel. Fig. 2b shows the results. We plot also
the function values of the original utility function, i.e.,
ui in Fig. 2a. As shown in Fig. 2b, the function value in-
creases strictly monotonically as the transmission power
on each subchannel increases, and which illustrates the
strict monotonicity.

7.3 Illustration and Evaluation of Equilibrium Price

Next we measure the transition of the total interference
demand according to the change of the prices given by
PUs when the function (8) is maximized subject to the
budget constraint (i.e., (6)). For these experiments, we
locate 3 SUs and 2 PUs accommodating 2 subchannels4,
and ignore the limit of the interference from other SUs,
that is ignore (9). Thus all the budget possessed by
the SUs will be paid to the PUs. Setting ylj = 8e-08

4. We let each PU have one subchannel.
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κi (1− κi)



∑

j∈J

∑

l∈L

π̃lj β̃ijG
l
ij +

∑

j∈J

∑

k∈I,k 6=i

η̃lj β̃ijG
k
ij


 = 0 (43)
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Fig. 2. Illustrations of the strict monotonicity of ui and fi.
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Fig. 3. The transition of the total interference demand
according to the prices when we locate 3 SUs, 2 PUs,
and 8 subchannels. This figure also plots the equilibrium
point; the price pair given by the equilibrium point is the
equilibrium price.

for all l, j, the measured results are shown in Fig. 3,
and it is observed that the demand decreases as the
prices increase. By the definition, the equilibrium price
is obtained when the total interference demand equals
2×

∑
l,j

ylj , that is, 1.6e-07.

The next set of experiments are done in order to
evaluate the precision of the equilibrium price obtained
by solving the system of the linear equations (11) ∼
(16) under various precision bound. For this set of

Equilibrium 
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Fig. 4. The absolute gap between the initial budget of
each SU and her payment decided by the KKT conditions
of the convex program.

experiments, we locate 8 SUs and 8 PUs, and arrange 32
subchannels. Then we measure the absolute gap between
the initial budget and the payment of each SU under
three different precision bounds. Fig. 4 shows the results.
If the precision bound is made lower than 1.4508e-5, then
the system becomes inconsistent. As shown in the graph,
the absolute gaps are measured at most around 4.0e-4
with the smallest feasible precision bound.

7.4 Evaluation of the Distributed Algorithm

In this subsection, we illustrate the convergence process
of the distributed algorithm, and evaluate it in terms of
convergence speed and solution quality.

7.4.1 Illustration of the Convergence Process

First we illustrate the convergence process to the equi-
librium point with the distributed algorithm. In this
set of experiments, we consider 3 SUs, 3 PUs and 8
subchannels, and apply the constant adaptive size of
1e13. In Fig. 5, we plot the convergence trajectories as
the iteration proceeds. Each axis on each graph indicates
the utility of each SU (Fig. 5a), the utility of each PU (Fig.
5b), the total price gathered by each PU (Fig. 5c), and the
total interference charge gathered by each SU (Fig. 5d).
It is observed that, as the algorithm approaches to the
equilibrium point, the amount of update in each iteration
decreases, and which illustrates the asymptotic stability
of the algorithm.

7.4.2 Illustration of the Convergence Speed and the
Solution Quality

Next we evaluate the distributed algorithm in terms of
the convergence speed and the solution quality. In these
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Fig. 5. The trajectories of the transitions of the utilities of SUs and PUs, prices, and interference charges as the
distributed algorithm proceeds. We also plot the projection of each trajectory to the surfaces.
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Fig. 6. Graphical presentation of the number of iterations
with various termination conditions (that is, KKT error).
The solid green line indicates the optimal value of the
objective function yielded by the convex program.

experiments, 8 SUs and 8 PUs are located accommodat-
ing 32 subchannels. First we measure the number of iter-
ations required to reach the termination condition. Here
we define the termination condition as the errors in the
KKT optimality conditions. The results are shown in Fig.
6 where we plot the objective function value of (8) on ev-
ery iteration. In addition, the speed of adjustment is set
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Fig. 7. The comparison of SUs utility.

2e13. As shown in the graph, as the KKT error is larger,
the distributed algorithm converges faster. The function
value yielded by the convex program is 79.53536. With
KTT error of 1e-2, the algorithm terminates after 33 iter-
ations, and the value of the objective function measured
79.43998. With KKT error of 4e-3, the algorithm stops
at 188th iteration, and the value is measured 79.59514.
With KKT error of 2e-3, the algorithm terminates at 303rd
iteration with the function value of 79.53107. Therefore,
we notice the tradeoff between the convergence speed
and the solution quality.
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Fig. 8. The comparison of the absolute gaps between the
initial budget of each SU and her total payment.

Furthermore, we measure the utilities of the SUs ob-
tained by the distributed algorithm and those yielded
by the convex program. Fig. 7 plots the results. The
largest difference is measured around 3e6 at i6, but in
percentage, it is 0.67%.

We also measure the absolute gaps between the initial
budget of each SU and her payment yielded by the
distributed algorithm as we have done with the KKT
conditions of the convex program in Section 7.3. The
measured results are plotted in Fig. 8 together with
the results with the KKT conditions. We see that the
distributed algorithm yields larger gaps than the KKT
conditions, and the largest absolute gap is measured
3.69e-4 at most.

8 CONCLUDING REMARK

In this paper, we consider a market equilibrium in multi-
channel sharing CRN. PUs and SUs act as suppliers
and purchasers, respectively: PUs offer their subchannels
to SUs with bounding the total amount of interference
invoked from SUs transmissions, and SUs purchase the
offered subchannels observing their budget constraints
and the interference bounds given by the PUs. More-
over, we consider that each SU sets the constraint of
interference from other SUs. Accordingly, SUs pay the
interference charges to other SUs she interferes. The
utility functions of SUs and PUs are given as the least
achievable transmission rates and the net profits, respec-
tively.

The market equilibrium not only optimizes all traders’
(PUs and SUs) utilities but also achieves the mar-
ket clearance. We show that the market equilibrium
is yielded by solving the optimization problem called
Eisenberg-Gale convex program, and the equilibrium
price is given by the Lagrangian dual variables of the
convex program. The convex program yields the equilib-
rium only when the utility functions of SUs are homoge-
neous of degree one. Therefore, we apply a monotone-
transformation to SUs utility functions with maintaining
the strict monotonicity and concavity.

We also develop a distributed algorithm with which
the traders can reach the market equilibrium without any
central authority. However, it is impossible to yield the
exact equilibrium price since the system of the linear
equations - that are composed of the KKT conditions
of the convex program - are normally inconsistent, and
the convergence behavior of the distributed algorithm
is asymptotic. For these reasons, we provide the system
of the linear equations with a certain precision bound
that makes the system consistent, and give a termination
threshold to the distributed algorithm.

By the numerical experiments, we illustrate the strict
monotonicity of the monotone-transformed function,
and present graphically the existence of the equilib-
rium and the convergence process of the distributed
algorithm. We also measure the absolute errors in the
solutions and KKT conditions, which is yielded by the
precision bound in the system of the linear equations and
the asymptotic optimality of the distributed algorithm.
The measured results show that the solutions achieved
by the distributed algorithm are quite close to those of
the convex program.
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