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Abstract—A performance analysis of Multiple-Sensor-System(MSS) on
a compressive sensing(CS)[1] w.r.t. the per-sensor-measurements(PSM) is
studied. In the proposed MSS, sensors make measurements using CS
and the decoder jointly recover signals from them. We obtain the upper
bound on the recovery failure probability for given K-sparse signals,
derive the relationship between PSM and the number of sensors(S) for
the recovery. We examine the effect of SNR and S for the recovery. We
use the concept of joint typicality proposed by Shannon[6]. We shows
that PSM converges to the sparsity(K) as S increases for given K-sparse
signals. Theoretical result is consistent with [3][4][5].

Index Terms—Compressive Sensing, Multiple Sensor System. Joint
Recovery.

I. INTRODUCTION AND MOTIVATION

Multiple-Sensor-System (MSS) deploys many sensors to a limited
region and uses them to measure the signal from a common infor-
mation source in different locations. In MSS, high resolution signal
can be obtained as many sensors are used to measure a common
phenomenon from many places. However, the coverage areas of sen-
sors may significantly overlap with each other as they are distributed
in a limited region. This causes redundancy in the measurement
signal. The transmission of the redundant signal to the fusion center
is a significant communication costs. There is tradeoff between the
resolution and the redundancy on the number of sensors. To work on
this tradeoff relationship, we use the idea of the compressive sensing
[1]. CS reduces the number of measurements while it recovers the
signal perfectly. Using this technique, it is possible to reduce the
redundancy and obtain high resolution simultaneously by reducing
the per-sensor-measurements (PSM).

To investigate our problem, we propose to use an information
theoretic tool, the concept of Jointly Typicality [6]. It was also used
by Akcakaya and Tarokh [2] for the single sensor case. Using this
tool, we can derive the upper bound on the failure probability as a
function of PSM, the number of sensors, the sparsity and the noise
variance.

Clearly, the MSS problem is different from a single sensor system
in many aspects. For an appropriate modification of the tool for MSS
problem, we should consider these differences. One big difference is
the signal correlation among the sensors. For a successful extension,
we use the inter-signal correlation in the system model and the
decoder also takes advantage of this signal correlation for a signal
recovery. To make the correlation model, we assume that each sensor
has the same sparsity and shares the same support set which is the
set of indices for the non-zero elements. Obviously, in the recovery,
the decoder using this prior information gains benefits.

II. THEOREMS

Theorem 1: Let the rank of Fs,J be K for each s and J be any
candidate set, M > K, σ2 = min(

∑
i∈I\J xs(i)

2) over s, and
δ > 0. Then, P{Fail|x} converges to zero as the number of sensors
increases.

Theorem 2: Let the rank of Fs,J be K for each s and J be any
candidate set, M > K, σ2 = min(

∑
i∈I\J xs(i)

2) over s, δ > 0,

Si be the number of sensors of the ith MSS, σ2
i be the noise variance

of the ith MSS and P1{Fail|x} ≤ γ. If the noise variance increases,
i.e.,σ2

1 < σ2
2 , then, the sufficient condition for P2{Fail|x} ≤ γ is
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We note that f(x) = log(1 + x) − x, g(x) = log(x) − x + 1,

σ2
min,i ≡ min(

∑
j∈I\J xs(j)

2) + σ2
i over s and J , J denotes any

subset with size K expect for I and I denotes the set whose entries
are corresponding to indices of the nonzero elements in signal. All
theorems will be explained in the next section.

III. CONTRIBUTIONS AND CONCLUSIONS

We use the described correlation model with noisy observation.
First, we have found how many per-sensor-measurements (PSM) are
needed for successful recovery in the MSS problem. As the number
of sensors increases, how does PSM change? There is a limit we have
found. We will show this behavior and will show how PSM depends
on the sparsity. We have Theorem 1 that the infimum of PSM is the
sparsity obtained as the number of sensors increases. Different from
the results in [3], [4], [5], the work of ours gives analytical results.
Our analysis works for a small number of sensors as well. Second, we
have shown that the decoder which uses the prior information obtains
benefit in terms of the Signal to Noise Ratio (SNR). Specifically,
Theorem 2 tells us how the required SNR decreases as the number
of sensors changes.
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