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I. INTRODUCTION AND MOTIVATION

Compressive sensing (CS) have got attention as a promising signal
processing technique to reduce information rate of sparse signals
[1]. One line of CS related researches are to devise low complexity
recovery algorithms since the conventional L1-norm based recovery
algorithms still have high computational complexity for practical
applications. Recently, a few researchers have made an attempt to
apply probabilistic message passing (PMP) ideas to CS recovery [2],
[3] since PMP has provided a successful solution for low complexity
decoding while showing suboptimal performance in channel coding
problems, such as low-density parity check codes [4].

Motivated by such previous works, in this paper, we propose a
new least square estimation (LSE) based CS recovery algorithm by
applying PMP, called PMP-LSE. It is well known that CS recovery
is basically an underdetermined system and it can be reformed as
an overdetermined system with the support set information (SI).
Therefore, in the proposed algorithm, PMP undertakes to find the
SI of the signal to reform the recovery to an overdetermined case,
and then LSE completes the recovery using the SI. Mainly, PMP-
LSE has two strong benefits. First, PMP-LSE shows outstanding
performance with noisy measurements by removing the noise effect
from elements belonging to the non-support set. Second, PMP-LSE
prevents the recovery from diverging. Under certain conditions, PMP
based algorithms fails in the recovery due to divergence caused by a
large number of iterations. In the algorithm, however, the possibility
of the divergence highly decreases since PMP is only used to search
the SI with a few iterations.

II. PROBLEM SETUP

We consider a sparse signal x € R™ whose sparsity is character-
ized by ¢, named sparsity rate. With the sparsity rate g, each element
of x belongs to the support set denoted by S. Hence, |S| corresponds
to Binomial random variable with B(N, q). Let xs € R/S! denote
a vector consisting of nonzero elements belonging to S, and assume
that each element of xg follows Gaussian distribution with N(0, ¢2).
We also assume that the sensing matrix is a well-designed binary
matrix, e, ® € {0, 1}MXN, according to [5] such that the
measurements y € R™ are generated by y = ®x. Then, noisy
measurements z € R at the decoder are described as z = y + n,
where each element of n € R* is Gaussian noise with N(0,c2).

III. ALGORITHM

The algorithm is divided into two parts: PMP and LSE.
i) PMP: PMP consists of two kinds of probability calculations based
on Bayesian rule: Variable to check message (VCM, v;_,;) and check
to variable message (CVM, c;_,;) calculation where ¢ and j indicate
the index of elements of x and z, respectively.
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Fig. 1. MMSE performance of PMP-LSE (N=100,M=80,¢q=0.1,Niter=3)
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Here, [ is the number of iteration, ¢;; is the (7, %) th element of ®, L;
is the number of ones in jth row of ®, and C! is the normalization
constant for /[th VCM. And, * indicates the convolution operation.
At each iteration, PMP updates VCM and CVM by exchanging the
probabilistic messages among the elements of x and z. After a few
iterations, PMP distinguish the elements of the support set with a
certain threshold denoted by V.

ii) LSE: Once the SI is given, xg is easily estimated only using
the corresponding columns of &®, denoted by Pg, ie., xs =
(®L®s) ' ®Lz. By combining the SI and xs, PMP-LSE completes
to find the recovered signal X.

IV. NUMERICAL RESULTS

To demonstrate the performance, we simulated PMP-LSE with CS-
BP [2]. Figure 1 plots the MMSE per elements as a function of SNR
for variety of thresholds with three PMP iterations. Figure 1 shows
that PMP-LSE outperforms CS-BP notably in low SNR region. The
reason is that PMP-LSE prevents the corruption of zero elements
from the noise effect by pre-detecting the support set using PMP.
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