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Abstract—The number of measurements, M, sufficient for 
successful recovery via the L1 minimization is well known to be 

( )( )logM = O K N K [7] with Gaussian measurement matrices 

used for sensing K sparse signals of ambient dimension N . We 
aim to shed a light on the source of the ( )log N  factor, and see if 
the bound can be improved by considering it for simplest possible 
K-sparse signals--0/1 binary K  sparse signals. Previous work 
exists with which it is reasonable to expect reduction in the 
number of measurements when the signal has smaller degrees of 
freedom. We derive an upper bound on the probability that any 
set of K randomly selected Gaussian column vectors are mutually 
independent; we use this to find an upper bound on the 
probability that a Gaussian sensing matrix satisfies the restricted 
isometry condition. Using this result, a sufficient condition for 
good signal recovery is found. Surprisingly, the result remains 
the same, i.e., ( )( )logM = O K N K , which may suggest the 

( )log N  factor is generic for Gaussian measurements. 

Keywords-Compressive Sensing, Restricted Isometry Property, 
Binary Sparse Signal. 

I.  INTRODUCTION 
Recently, the field of compressive sensing[1][2][3] has 

received considerable attention by many researchers. This 
compressive sensing is a new sampling method in which a 
sparse signal specified in a high ambient dimension can be 
recovered from a measurement much lower in dimension 
compared to the ambient dimension. 

The data model in compressive sensing can be expressed as 
linear-system of equations. In fact, this linear model is an 
under-determined system. It is expressed as =y Ax , where 

M N×∈ℜA ( M N< ) , N∈ℜx  and M∈ℜy . The signal x in 
consideration is K-sparse signals, which means that the number 
of non-zero coefficients in the vector x  is only K  and 
K N . Since the data model in compressive sensing is 
under-determined, there may exist multiple x s which provide 
the same y . Among them, hence, a good criterion is aiming to 
seek the sparsest solution, i.e., one that minimizes the L0 norm 
of x , 

0
x , where 

0
x  denotes the number of non-zero 

elements in x . This is optimal but requires a combinatorial 
search. A suboptimal criterion, still good at promoting the 
sparseness in solution, is the L1 minimization. 

Candes and Tao [4] obtained uniqueness conditions for the 
L1 minimization. They introduced the notion of Restricted 
Isometry Property (RIP). It is designed to provide a measure 
how well a given sensing matrix preserve the energy of any K  
sparse signals. In other words, a sensing matrix A satisfying 
RIP for a certain K implies that any set of K or less columns of 
A must be independent. Candes and Tao used it to specify the 
uniqueness condition. For example, the L1 minimization 
always recovers the sparsest solution if the RIP condition is 
met for any 3K  sparse vectors. 

However, checking to see if a sensing matrix satisfies the 
RIP is combinatorial and thus is an NP-hard problem. Rather 
than checking RIP for a particular matrix, therefore, they 
consider it for an ensemble of random matrices. Namely, how 
many measurements M , for a given N, are needed to have 
satisfaction of RIP with a high probability? The general answer 
to this question is ( )( )logM O K N K= [7] when the matrices 
are made of i.i.d. Gaussian.  

Meanwhile, there are a group of recent results [10][11] 
which utilize the idea of classical parity checking and 
syndrome decoding methods (error locator polynomial or 
annihilating filters) for Reed-Solomon codes and obtains a 
result that 2K  measurements are enough to recover any K  
sparse signals. We make note of the fact that the number of 
measurements  does not have the ( )log N  factor. There could 
be many factors affecting this favorable result, such as a better 
sensing matrix (Vandermonde frame), a good signal recovery 
scheme, and the finite size alphabet for signals and matrices. 

In this paper, we aim to investigate the impact of the size of 
alphabet on the number of measurements needed for 
compressed sensing using Gaussian measurement matrices and 
recovery using the L1 minimization. To see the impact of the 
size of the alphabet, we assume the alphabet of the K  sparse 
signal is binary, the simplest. We investigate how many 
measurements M , for a given N , are needed for the Gaussian 
matrix to satisfy the Restricted Isometry Property with high 



 

 

probability. This question is interesting as it can shed a light 
how the alphabet size affects the number of measurements. 

It is reasonable to conjecture that the number of 
measurements can be reduced when the size of the alphabet is 
small. Bruckstein et. al said that the number of measurements 
can be reduced by adding the non-negative constraint on the 
K  sparse signal since the constraint leads to reduce the size of 
the feasible set of solutions. They obtained an improved 
uniqueness condition in [9]. 

The rest of this paper is organized as follows. In II, the 
background related to compressive sensing is described. A 
system model is given in III. We describe and prove our 
analytical results in IV. Conclusions and future work are 
described in V. 

II. BACKGROUND 

A. The L0 minimization and the L1 minimization 
The well known L0 and L1 minimization are defined as 

follows: 

 ( )0 0
min . .L s t =

x
x y Ax , (1) 

and  

 ( )1 1
min . .L s t =

x
x y Ax  (2) 

where M∈ℜy , M N×∈ℜA ( M N< ), N∈ℜx , 
0

K=x  and 

1 1

N
ii

x
=

= ∑x . 

Both algorithms give the sparsest solution. However, the L0 
minimization is NP hard. Instead of it, we use the L1 
minimization. 

B. The sufficient condition on the uniqueness of L1 
minimization  
Candes and Tao introduced the RIP constant in [4]. They 

used the RIP constant for guaranteeing the uniqueness of the 
L1 minimization. Definition of the RIP constant is as follows: 

Definition 1: Let A  be an M N×  matrix. Let K N  be 
an positive integer. Suppose that there exists a smallest 
constant ( )0,1Kδ ∈  such that A satisfies the following 
condition for every K  sparse signal x , 

 ( ) ( )2 2 2

2 2 2
1 1K Kδ δ− ≤ ≤ +x Ax x . (3) 

Then, the matrix A  is said to satisfy the K − restricted 
Isometry property with the RIP constant of order K , Kδ . 

It is well known that the L0 minimization has the unique 
K  sparse solution if ( )2 0,1Kδ ∈ [4]; the L1 minimization finds 

the unique K  sparse solution if 2 2 1Kδ < − [5]. Furthermore, 
any K  sparse signal is recovered by the L1 minimization if 

( )2 2 3 2 / 7 0.4531Kδ < − ≈ [6], a slight improvement from 
the result of Candes and Tao [5]. 

III. SYSTEM MODEL 

A. The binary K  sparse signal and notations. 
we define the binary K  sparse signal as follows: 

Definition 2: Let x  be the binary K  sparse signal. Then, 
1ix =  for ( )suppi∀ ∈ x , 0ix =  for ( )suppi∀ ∉ x . 

The major features of the binary K  sparse signal are that 
its squared L2 norm and L1 norm always have the value K  
and coefficients are either one or zero. 

We assume that the measurement matrix A  is randomly 
generated and its i,jth element follows i.i.d. Gaussian 
distribution with zero-mean and variance 1 M . The 
compressed measurement y  is obtained by the linear 
projection, i.e., =y Ax . Since x  is the binary K  sparse signal, 

[ ] [ ], 1 ,i i i Ky a a= + +   for i∀ , where ( ): supp= x . 

IV. ANALYSIS 
Now, we aim to obtain an probabilistic upper bound on 

event { }2 2 2

2 2 2
δ− ≥Ax x x  for the given parameters. 

Carefully seeing it, we notice that 2

2
Ax  is a  chi-square 

random variable. Hence, we first analyze this random variable. 
We note that we use [ ]⋅  and [ ]⋅  as the expectation and 
variance operation respectively. 

Lemma 1 and Lemma 2, which provide the mean and 
variance of 2

2
Ax  respectively, are to used to drive the upper 

bound on the probability of event { }2 2 2

2 2 2
δ− ≥Ax x x  in 

Lemma 3. The reason why we have interest in the mean and 
variance of 2

2
Ax  is that we utilize them to obtain the 

Chernoff bound [8] in Lemma 3.  

Lemma 1: Let A  be a Gaussian matrix, each element of 
which follows i.i.d. Gaussian distribution with zero-mean and 
variance 1 M . Let x  be the binary K  sparse signal. Then, 

2 2

2 2
  = Ax x . 

Proof: We write ,1

K
i i jj

y a
=

= ∑ . Hence, ( )2
2

,1

K
i i jj

y a
=

= ∑ . 

Now, we take the expectation operator with respect to the 
distribution of ,i ja . We have 2

iy K M  =  . Since the 

squared L2 norm of the vector y  is  2
1

M
ii

y
=∑ , 

2 2
2 1

M
ii

Ky M K
M=

    = = =     
∑y  . We know 2

2
x  is K  

due to Definition 3. Hence, 2 2

2 2
  = Ax x . Q.E.D. 



 

 

Using Lemma 1, we can rewrite 2 2 2

2 2 2
δ− ≥Ax x x  as 

2 2 2

2 2 2
δ − ≥ Ax Ax x . Next, we provide Lemma 2 for 

the variance of 2

2
Ax . 

Lemma 2: Let A  be a Gaussian matrix, each element of 
which follows i.i.d. Gaussian distribution with zero-mean and 
1 M  variance. Let x  be the binary K  sparse signal. Then, 

2 2
2

2K M  = Ax . 

Proof: From the definition of the variance, we have 

( ) ( ) 222 2 2 2 2
1 12 M My y y y    = + + − + +     

Ax     . Due to 

Lemma 1, we know ( ) 22 2
1 My y + +   is 2K . Hence, we 

only consider ( )22 2
1 My y + +  
  which can be expanded as 

( )2 2 2 2 2 2 4
1 2 1 3 12 M

M M ii
y y y y y y y−       + + + +       ∑    . iy  

is a Gaussian random variable with zero mean and variance 
K M . Hence, 2

1 K M  = y . 4
i  y  is just the fourth 

moment generating function of the random variable distributed 
as ( )0, K M . Therefore, 4 2 23i K M  = y . We drive 

 

( ) ( )
( )

( )

222 2 2 2 2
1 12

4 2 2 2
1 2

2 2
2

2 2

2 2
2

2

2

2

3 2
2

13 2
2

2

M M

M
ii

K

MK KM K
M M

M MK K K
M M
K
M

    = + + − + +     

   = + + −   

 
= × + − 

 
−

= + −

=

∑

y y y y y

y y y

 



  

 

. 

Q.E.D. 

Now, we know the mean and the variance of the random 
variable 2

2
Ax . In fact, the mean and the variance are easily 

obtained when we consider the random variable 2

2
Ax .  

Clearly, ,1 ,i i i Ky a a= + + , hence iy  becomes the Gaussian 
random variable with zero mean and variance K M . 
Therefore, 2

iy  becomes the chi-square random variable with  1 
degree of freedom, K M  mean and variance 2 22K M . 

Therefore, 2

2
Ax , which is 2

1

M
ii

y
=∑ , becomes the chi-square 

random variable with M  degree of freedom, K  mean and  
variance 22K M . It proves Lemma 1 and Lemma 2 again. 

We now have all information about the random variable 
2

2
Ax . Hence, we can exactly compute the probability of the 

event { }2 2 2

2 2 2
δ− ≥Ax x x . In this paper, we aim to obtain 

an upper bound on the probability. Lemma 3 provides it. 

Lemma 3: Let A  be a Gaussian matrix, each element of 
which follows i.i.d. Gaussian distribution with zero-mean and 
variance 1 M . Let x  be a binary K  sparse signal and 

( )0,1δ ∈ . Then, 

 ( ) ( )2 2 2
2

2 2 2
2exp 1

2

MMP δδ δ − ≥ ≤ − + 
 

Ax x x . (4) 

Proof: From the Chernoff bound[8] it is well known that  

( )( ) ( )( )( )2 2

2 2
1 exp 1P K t Kδ δ ≥ + ≤ − +  

Ax Ax  for 

0t > , where ( ) ( )2 2

2
exp 1 2 Mt tK M −  = −
 

Ax  since 

( )2exp ity    is ( ) 1 21 2tK M −−  for i∀ . Hence, we have 

 ( )( ) ( ) ( )
( )( )

2
2

2

1 2
1 :

exp 1

MtK M
P K f t

tK
δ

δ

−−
≥ + ≤ =

+
Ax . (5) 

Now, we aim to find the optimal t  such that ( ) 0f t t∂ ∂ = , to 

make the bound (5) be tight. The optimal t  is 
2 1
M
K

δ
δ

 
 + 

. By 

using it in (5), we first get the upper bound on the probability 
of event ( )2

2
1K δ≥ +Ax . That is 

 ( ) ( )2 2 2
2

2 2 2
exp 1

2

MMP δδ δ − ≥ ≤ − + 
 

Ax x x . (6) 

Similarly, we also consider the upper bound probability of the 
event ( )2

2
1K δ≤ −Ax . The upper bound probability is 

bounded by ( )( )( )2

2
exp 1t K δ − −  

Ax  for 0t < . That is 

 ( )( ) ( ) ( )
( )( )

2
2

2

1 2
1 :

exp 1

MtK M
P K g t

tK
δ

δ

−−
≥ − ≤ =

−
Ax . (7) 

We again find the optimal t  such that ( ) 0f t t∂ ∂ = . The 

optimal t  is 
2 1
M
K

δ
δ

 −  − 
. By using it in (7), we get  

 ( ) ( )2 2 2
2

2 2 2
exp 1

2

MMP δδ δ − ≤ − ≤ × − 
 

Ax x x . (8) 

In addition, it is easy to show that  

 ( ) ( )2 2exp 1 exp 1
2 2

M MM Mδ δδ δ   − + ≥ × −   
   

. 

Finally, the upper bound on the probability of the event 
2 2 2

2 2 2
δ− ≥Ax x x  is obtained as follows: 



 

 

 

( ) ( )
( )

( )

( )

( )

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

2 2 2

2

2

2

exp 1
2

exp 1
2

2exp 1
2

M

M

M

P P

P

M

M

M

δ δ

δ

δ δ

δ δ

δ δ

− ≥ = − ≥

+ − ≤ −

 ≤ − + 
 

 + × − 
 

 ≤ − + 
 

Ax x x Ax x x

Ax x x

. (9) 

It completes the proof of Lemma.  

Q.E.D. 

Lemma 3 provides the upper bound on the probability of 
the event that a certain K  column vectors of the matrix A  
does not become independent.  

Our goal is to make the matrix A  satisfies K − restricted 
isometry property with the RIP constant δ . Hence, we need to 
make sure that all possible binary K  sparse signals satisfy the 
RIP for a given matrix A . Due to all the possible cases, the 
number of measurements can increase. Theorem 1 provides the 
bound on the number of measurements. 

Theorem 1: Let A  be a Gaussian matrix, each element of 
which follows i.i.d. Gaussian distribution with zero-mean and 
variance 1 M . Let x  be the binary K  sparse signal 
and ( )0,1δ ∈ . Then, the matrix A  satisfies K − restricted 
isometry property with the RIP constant δ  if  

 ( )
( )

2 log
log 1

K eN K
M

δ δ
<

− +
, (10) 

as K →∞  or N →∞ . 

Proof: From Lemma 3, we know the upper bound probability 
of the event  2 2 2

2 2 2
δ− ≥Ax x x  for the one binary K  

sparse signal. Since the number of binary K  sparse signals is 

( )N
K , the probability of event  2 2 2

2 2 2
δ− ≥Ax x x  for any 

binary K  sparse signals is bounded by  

 

( )

( ) ( )

( )( ) ( )

2

2

2exp 1
2

2 exp 1
2

2exp log 1 log
2

M

MK

N M
K

MeN K

M K eN K

δ δ

δ δ

δ δ

   ≤ − +   
  

 ≤ − + 
 

 ≤ − − + + 
 

. (11) 

From (11), we notice that ( )2 2 2

2 2 2
P δ− ≥Ax x x  goes to 

zero exponentially fast as a function of M  if 
( )
( )

2 log
log 1

K eN K
M

δ δ
<

− +
. Hence, we now can say that the matrix 

A  satisfies K − restricted isometry property with the  δ  if 
sufficiently large  ( )( )logM K N K= Ο .  

Q.E.D. 

We remind that the L0 minimization gives the unique K  
sparse solution if ( )2 0,1Kδ ∈ . Using this fact, we can say that 

if ( )6.7 logK eN K M< , the L0 minimization uniquely gives 
the K  sparse signal with high probability. 

Before we connect Theorem 1 with the L1 uniqueness, we 
introduce a Corollary. That is the matrix A  satisfies (3) with 
high probability. 

Corollary 1: Let A  be a Gaussian matrix, each element of 
which follows i.i.d. Gaussian distribution with zero-mean and 
1 M  variance. Let x  be the binary K  sparse signal and 

( )0,1δ ∈ . Then, the matrix A  satisfies K − restricted 
isometry property with the RIP constant δ  with 1 ε−  
probability if 

 ( )
( ) ( )

2 log 1.3863 2log
log 1 log 1

K eN K
Mε

δ δ δ δ
−

+ ≤
− + − +

. (12) 

Proof: It is trivial to obtain from (11). Thus, we omit it. 

Finally, we connect both Corollary 1 and Theorem 1 with 
the uniqueness condition. As mentioned in the Background, the 
L1 minimization exactly recover the K  sparse signal if 

2 0.4531Kδ < . Hence, by letting 2 0.4531Kδ δ≤ <  in (12), 
then the L1 minimization can exactly recover the binary K  
sparse signal with 1 ε−  probability. A similar story is 
described in [7] 

V. CONCLUSION  
In this paper, we have obtained a sufficient condition on the 

number of measurements when the non-zero elements of the K-
sparse signal are taken from the binary set {0,1}. We have 
obtained in Lemmas 1 and 2 that the energy of the 
measurements 2

2
Ax  is the chi-square random variable with 

M  degrees of freedom, with mean K  and variance 22K M . 
Using this result, we obtained in Lemma 3 the upper bound on 
the probability of a large deviation event, i.e. violating the RIP 
condition{ }2 2 2

2 2 2
δ− ≥Ax x x ,  for a fixed binary K  sparse 

signal; the result is ( ) 222 1 MMe δ δ− + . Then, using the union 
bound,  we have obtained an upper bound on the probability 
that a Gaussian matrix A  with N columns fail to satisfy the 
RIP condition for each and every K sparse signal, which is 
given by ( ) ( )222 1 MM N

Ke δ δ− +  since there are ( )N

K  number of 
distinct binary K  sparse signals of length N. This gave the 
sufficient condition given in Theorem 1, which is still 

( )( )logO K N K .  

Our main result suggests that the size of the alphabet of the 
signal does not have a large impact in determining the order in 



 

 

the number of measurements. However, we notice that the 
( )log N  factor appears as the result of  the union bound taken 

in (11). So that, the ( )log N  factor maybe is reduced or 
removed if we obtain the tightest bound such the Gallager’s 
random coding bound[12].  

On a separate note, we may suppose using Vandermonde 
measurement matrices, instead of the Gaussian matrices, and 
apply the procedure given here. As pointed out in the 
introduction, the use of Vandermonde frames is one of the 
important factors in reducing the number of measurements. 
The reason is that they guarantee that any set of M  or less 
column vectors of an M N×  Vandermonde frame is linearly 
independent. Putting into the words of this paper, the 
probability of a large deviation event { }2 2 2

2 2 2
δ− ≥Ax x x  

is exactly zero as long as 2M K≥ ; thus, the union bound is 
still zero. Hence, the probability that the matrix satisfies (3) is 
exactly 1 as long as 2M K≥ .  
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