
234 IEEE COMMUNICATIONS LETTERS, VOL. 11, NO. 3, MARCH 2007

Performance Analysis of LDPC-Coded
Space-Time Modulation over MIMO Fading Channels

Jingqiao Zhang, Student Member, IEEE, and Heung-No Lee, Member, IEEE

Abstract— A closed-form upper bound on the error per-
formance is proposed for LDPC-coded space-time modulation
over MIMO block/slow fading channels based on the analysis
framework developed for the fast fading case. This follows from
the observation that the pairwise error probability (PEP) in all
these fading cases is determined by a certain metric of codewords,
with respect to which we can enumerate all distinct PEPs and
thus concisely formulate the union bound. Simulation results
indicate that the bound is useful to benchmark the performance
of iterative decoding and detection algorithms.

Index Terms— Maximum likelihood upper bounds, MIMO
systems, LDPC codes, space-time codes.

I. INTRODUCTION

UNION bound analysis has been used throughout the
history of the coding theory. There are many concise-

form union bound results and techniques which are mainly
for the AWGN and the single-input and single-output (SISO)
fading channels. In the light of capacity approaching turbo-like
codes, various tight union bounds have also been developed
for these channels [1]. These bounds can be easily applied
to multi-input multi-output (MIMO) systems if an equivalent
SISO channel model is available [2]. In a recent progress, the
union bound analysis is applied to trellis-coded space-time
MIMO modulations [3].

Low-density parity-check (LDPC) codes have been recently
proposed to drive space-time modulations in a concatenated
coding scheme for MIMO systems [4][5]. Currently, the error
performance of this system is generally evaluated by tedious
system simulation or by numerical techniques such as the
EXIT chart [5] and density evolution techniques [6]. While
these techniques are good and certainly appropriate for inves-
tigating the performance limits of iterative receivers with block
lengths approaching infinite, they may be less suitable for use
at a commonly used block length of up to few thousands.
In addition, it is curious to know how the performance of
the practical iterative decoding and detection receiver can be
compared with that of an ideal maximum likelihood receiver.

With such motivations, we investigate the use of union
bounds for the LDPC coded space-time modulation system in
this paper. We note that there have been no (tight) union bound
results for this system to date, to the best knowledge of the
authors. The concatenation of a long block code with a short
inner space-time code creates a rather new and interesting
codeword enumeration problem in the union-bound analysis.
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Fig. 1. MIMO system over fading channels.

In the sequel, we first give the system description. This
is followed by the presentation of our union-bound analysis
framework. The numerical evaluation of derived bounds is
then compared with system simulation results. Concluding
remarks are finally offered.

II. SYSTEM OF INTEREST

Consider the MIMO system with M -transmit and N -receive
antennas that is illustrated in Fig. 1. A sequence u of K
information bits is coded into an LDPC codeword c of length
L. The modulator adapts a constellation of size 2Kb ; thus its
output is a sequence of L/Kb symbols s. Each group of Q
symbols is thereafter encoded into one inner space-time (IST)
block S of size M × Ts. Assume L to be a multiple of QKb,
D = L/QKb, for convenience. Each codeword c is therefore
mapped onto an M ×DTs space-time word X = [S1, S2, . . . ,
SD] (i.e., a sequence of D IST blocks Sd), which is transmitted
over M antennas in T = DTs channel uses.

In corresponding to each IST block Sd in X, an N × Ts

receive signal Rd is obtained,

Rd =
√

ρsHdSd + Zd, d = 1, 2, . . . ,D, (1)

where ρs is the average symbol energy at each transmit
antenna, Zd is the N×Ts matrix of independent complex white
Gaussian noise with zero mean and variance N0, and Hd is
the N ×M channel matrix whose nth-row, mth-column entry
αd

n,m follows an independent, identical Ricean distribution
(Ricean factor KR). We refer to it as the fast, block, or
slow fading channel according to the following variation of
respective assumptions: let the channel matrix Hd remain fixed
within each channel use, within each IST block Sd, or within
the whole duration of the space-time word X, respectively,
while letting the channel vary independently from one channel
use, one IST block or one space-time word, to another.

III. UNION BOUND ANALYSIS FRAMEWORK

In this section, we first present our union-bound analysis
framework for the fast fading case. It will be extended to the
block and slow fading cases later.

The sketch of our idea behind this analysis framework is
given as follows. We first note that the pairwise error probabil-
ity (PEP) can be determined by a certain metric of codewords.
Identifying this metric and determining the average number
of codewords having such a metric in an LDPC code are
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two key steps in the analysis. Then, the union bound is
formulated by summing all distinct PEPs each of which is
weighted by the number of codewords that share the identical
metric. A brute-force enumeration and evaluation of these
PEPs is computationally intensive. We propose a polynomial-
expansion approach to avoid the brute-force enumeration for
the fast and block fading channels, and a compact form of
union bounds for each channel case is obtained.

Now, we move forward into details. There are J = 2QKb

distinct bit strings of length QKb, b(1), b(2), . . . , b(J), each
of which has a respective Hamming weight wj and is mapped
onto a distinct IST block S(j), for j = 1, 2, . . . , J . Assume
X = [S1, S2, . . . , SD] is composed of a number δj of S(j),
and thus c by a number δj of b(j). The vector δ := (δ1, δ2,
. . . , δJ) is considered as a metric of X or c. Thus, all LDPC
codewords of metric δ have the same weight h =

∑
δjwj .

Assume Ah as the average number of codewords of weight
h in one LDPC code. Based on the statistical property of the
ensemble of LDPC codes [7, Theorem 1], the average number
Ah,δ of LDPC codewords c (or space-time words X) that have
the same metric δ is given by

Ah,δ = Ah

[(
L

h

)−1(
D

δ1, δ2, ... δJ

)]
, (2)

for any δ ∈ Ωh,

Ωh =
{
δ
∣∣∣δj ∈{0, 1, . . . ,D},

∑
δj = D,

∑
δjwj = h

}
, (3)

where
( ∑

xi

x1,x2,···xn

)
= (

∑
xi)!∏
xi!

denotes the multinomial coeffi-
cient, and the bracketed term in (2) is indeed the probability
that a codeword of weight h has a metric δ.

An upper bound on the error performance can be obtained
by considering X∗ = [S(∗), S(∗), . . ., S(∗)] as the transmitted
space-time word if S(∗) is the worst IST word in the sense
that

S(∗) = arg max
S

J∑
j=1

P̄ IST (S → S(j)), (4)

where P̄ IST (S → S(j)) denotes the PEP between two IST
blocks S and S(j). Take the fast fading case as an example; the
PEP between X∗ and any codeword Xh,δ = [S1, S2, . . ., SD]
having a metric δ can be written into a product form [7]:

P (X∗ → Xh,δ) ≤
J∏

j=1

P̄ IST (S(∗) → S(j))δj =:
J∏

j=1

β
δj

j , (5)

which, at a given signal-to-noise ratio, is completely deter-
mined by the metric δ of Xh,δ . Thus, we have

Theorem 1: In the case of fast fading, a union upper bound
on the bit error probability of the system in Fig. 1 is given by

Pb ≤
L∑

h=1

h

L

∑
δ∈Ωh

Ah,δP (X∗ → Xh,δ) (6)

=
L∑

h=1

h

L

(
L

h

)−1

Ahφh, (7)

where φh’s are the coefficients of a polynomial expansion:(∑J

j=1
βjx

wj

)D

=
∑L

h=0
φhxh. (8)

The union bound on the right hand of (6) is merely a
summation of all distinct PEPs, each of which is weighted by

the number Ah,δ of codewords that have the identical metric
δ. This is because the PEP is determined by the metric δ. As
proved later, this property is satisfied in the block and slow
fading cases as well.

Furthermore, benefiting from the product form of the PEP in
(5), we can make use of (7) and (8) to evaluate the union bound
and the computation complexity merely lies in the polynomial
expansion (it is trivial to compute the PEP βj between two
IST codewords S(∗) and S(j)). As it will become clear below,
a similar product-form PEP exists in the case of block fading
and thus the polynomial-expansion method applies.

IV. ANALYSIS ON THE BLOCK FADING CASE

Consider the system in Fig. 1 which operates over block
fading channels. Conditioned on the channel realization H, the
PEP between any two space-time words X = [S1, S2, . . ., SD]
and X′ = [S′

1, S′
2, . . . , S′

D] is given by

P (X → X′|H) ≤ exp
(
−ρs

4
d2(X, X′ |H )

)
, (9)

where d2(X, X′|H) is the squared Euclidean distance between
X and X′ conditioned on H,

d2(X, X′|H )=
N∑

n=1

T∑
t=1

∣∣∣∣ M∑
m=1

αn,m(t)(Xm,t−X′
m,t)

∣∣∣∣
2

=
N∑

n=1

D∑
d=1

Ts∑
t=1

∣∣∣∣ M∑
m=1

αd
n,m(Sd;m,t − S′

d;m,t)
∣∣∣∣
2

,

(10)

where Xm,t and X′
m,t are the mth-row, tth-column elements

of X and X′, respectively, and αn,m(t) is the fading gain
from the mth transmit to the nth receive antenna during the
tth channel use. The second equality follows from the block
fading assumption, i.e., αn,m(t) = αd

n,m during the dth IST
block.

Using the pairwise error analysis framework in [8], or using
a moment generating function based approach, the pairwise
error probability (9) averaged over the Ricean block fading H
can be obtained as follows:

P (X→X′) ≤
D∏

d=1

N∏
n=1

M∏
m=1

1
1+ ρs

4 λd
m

exp
(
−KR

ρs
4 λd

m

1+ ρs
4 λd

m

)
=:

D∏
d=1

P̄ IST (Sd → S′
d),

(11)

where λd
m’s are the eigenvalues of Ad = (Sd−S′

d)(Sd−S′
d)

H .
According to (11), the PEP between X∗ = [S(∗), S(∗), . . .,

S(∗)] and any other space-time words Xh,δ = [S1, S2, . . . , SD]
of metric δ is given by

P
(
X∗ → Xh,δ

) ≤
D∏

d=1

P̄ IST (S(∗) → Sd)

=
J∏

j=1

P̄ IST (S(∗) → S(j))δj :=
J∏

j=1

β
δj

j ,
(12)

where the second line is obtained by grouping the like terms
under each power exponent δj and then defining βj as

βj =
N∏

n=1

M∏
m=1

1

1 + ρs

4 λ
(j)
m

exp

(
− KR

ρs

4 λ
(j)
m

1 + ρs

4 λ
(j)
m

)
, (13)

whereλ(j)
m ’s are the eigenvalues of A(j) = (S(∗)−S(j))(S(∗)−

S(j))H .
The PEP in (12) has the same product form as (5). The

union bound derived for the fast fading case is thus applicable.
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Fig. 2. Simulation results v.s. upper bounds. Scenario 1: M=N=4, 4PSK, the
space-time code in [9, Eq. (38)]; Scenario 2: M=N=2, 8PSK, Alamouti code.

Theorem 2: In the case of block fading, a union upper bound
on the bit error probability of the system in Fig. 1 is given by
(6) − (8).

V. ANALYSIS ON THE SLOW FADING CASE

In the case of slow fading, the channel matrix is fixed during
the transmission of an entire LDPC codeword. This is a special
case of block fading by considering the space-time word X
itself as a “super” IST block. Thus the PEP between X∗ and
Xh,δ can be obtained from (11) by setting D = 1, i.e.,

P (X∗→Xh,δ) ≤
N∏

n=1

M∏
m=1

1
1 + ρs

4 λm
exp

(
− KR

ρs

4 λm

1 + ρs

4 λm

)
,

(14)
whereλm’s are the eigenvalues ofA=(X∗−X′

h,δ)(X
∗−X′

h,δ)
H .

Lemma: The matrix A is solely determined by the metric δ
of Xh,δ., and so is the PEP of (14).

Proof: It is equivalent to showing that A1 = (X∗ − X1)
(X∗ − X1)H is equal to A2 = (X∗ − X2)( X∗ − X2)H if X1

and X2 have the same metric δ.
The same δ implies X1 and X2 can be regarded as a block

permutation of each other (the order of IST blocks within the
space-time word is changed). Hence, (X∗−X1) is a column
permutation of (X∗−X2), and we have A1 = A2. END

According to Lemma, the PEP of (14) is determined by the
metric δ. Thus, a union bound similar to (6) can be obtained:

Theorem 3: In the case of slow fading, a union upper bound
on the bit error probability of the system in Fig. 1 is given by

Pb≤
L∑

h=1

h

L

(
L

h

)−1

Ah

∑
δ∈Ωh

(
D

δ1,δ2,. . . ,δJ

)
P (X∗→Xh,δ).

(15)
Due to the lack of a product-form PEP, the union bound in
(15) cannot be simplified to the forms given in (7) and (8). A
straightforward method is to enumerate all elements δ in Ωh

and then calculate the summation in (15). This is a tedious task
we want to avoid, even for LDPC codes of moderate block
lengths; but we are not able to do so for this slow fading case.

VI. RESULTS

The derived upper bounds are compared with simulation
results in Fig. 2. Due to the space limit, we only present the

results for the most general block fading case. We consider
Gallager’s (3000, 3, 6) LDPC code [10] as the outer codes
to drive Alamouti code [11] or the space-time block code in
[9, Eq. (38)], as inner space-time schemes. In simulations,
the detector and the decoder exchange extrinsic information
during three iterations, while the LDPC decoder runs its own
message passing decoding operation [10] for twenty iterations.
To average the performance over the code ensemble, we
randomly generate 5,000 LDPC codes and use each of them
for ten codeword transmissions; i.e., the error probability is
averaged over 50,000 randomly selected transmit codewords.
As is shown, in both investigated scenarios, the SNR gap
between the bound and the simulation result is about 0.5 dB at
the waterfall region. Also, the bound has a good prediction on
the behavior of the error floor. These indicate that the bound is
promising to serve as a benchmarking tool for the performance
of the practical iterative decoding and detection receivers.

VII. CONCLUSION

In this paper, we present a union-bound analysis framework
for LDPC coded space-time MIMO modulation systems over
fading channels. Other than the fast fading case, we show the
applicability of the framework to the block and slow fading
cases. Referring to the recent development of upper bounds
for single-input single-output channels (see [1] and references
therein), we expect the union bound derived in this paper can
serve as a basis for potential tighter bounding techniques for
LDPC coded space-time MIMO modulation systems.
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