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Abstract— We aim to mathematically obtain the probability of 

recovery failure in distributed sensing and sampling for a 

Multiple Sensor System (MSS). In this system, sensors take 

samples while compressing the signal with linear projection 

operations using the idea of compressive sensing (CS) [1]. In 

particular, we show that a bound for per-sensor measurements 

(PSM), the number of compressed measurements required at 

each sensor for good signal recovery. Our focus is to see how 

PSM behaves as the number of sensors increases based on the 

failure probability. Using the idea of Joint Typicality [2][3], we 

show that PSM converges to the sparsity as the number of 

sensors increases. 
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I.  INTRODUCTION 

Multiple Sensor System (MSS) occurs in many application 

domains as the system in which many sensors are densely 

distributed in a limited region. In MSS, each sensor takes the 

samples on the relevant signals such as 

temperature/humidity/wind variations. The resolution of MSS 

is highly related with the number of sensors. It means that if we 

use many sensors, resolution increases. However, the downside 

may happen. It is that the coverage area for each sensor may be 

significantly overlapped and as the results, there may exist a 

huge amount of redundancy in the sensed data. Thus, there 

exists a trade off as we have to choose between the resolution 

and redundancy. 

Meanwhile, the Compressive Sensing (CS) is an emerging 

field. It offers the new paradigm. CS is capable of combining 

the sampling and the compression operation into a single step 

[1]. CS exploits the prior knowledge that a naturally occurring 

signal has a sparse representation in some transform domain 

and is compressible. In the CS framework, the signal can be 

reconstructed by linear programming methods such as simplex 

method, interior point method and so on with the number of 

signal samples taken at a rate smaller than the Nyquist. This 

number is about   log /O K N K , where K is the number of 

nonzero elements in the sensed signal and N is the signal length.  

The CS approach provides the following advantage. The 

time required to obtaining signal samples and the amount of 

computations required for the compression operation of stored 

signal samples can be significantly reduced since sampling and 

compression are performed simultaneously.  

Applying this CS framework to MSS may offer a good 

solution in terms of power, processing time and so on. In the 

context of MSS, the central receiver gathers all compressed 

measurements and applies a joint recovery algorithm to 

reconstruct each signal. The central receiver may obtain 

benefits since theses compressed measurements taken from 

different sensors may exhibit inter-sensor correlation. With the 

exploitation of the inter-sensor correlation, per-sensor 

measurements (PSM), the number of compressed 

measurements required at each sensor for good signal recovery, 

can be reduced. We aim to investigate how PSM changes as the 

number of sensors increases. For this goal, we propose to use 

an information theoretic approach.  

We achieve our goal by deriving the probability of recovery 

failure as the function of PSM, the number of sensors, and the 

sparsity. An information theoretic idea, called the joint 

typicality [3], is used in Akçakaya and Tarokh [2] for the 

compressive sensing context, whose work is for single sensor 

problem. We use the joint typicality to analyze MSS, and show 

that PSM converges to the sparsity as the number of sensors 

increases. 

The rest of this paper is organized as follows. In Section 2, 

the system model is described. The main result is described in 

Section 3; numerical result is described in Section 4; 

conclusion and future works are described in Section 5. 

II. SYSTEM MODEL 

In MSS, there are S  sensors distributed in the limited 

region, each observing a signal of its own. Let the sensed 

signal at each sensor be 
N

s x  where s  denotes the sensor 

index, i.e., {1,2, , }.s S  The signal at each sensor is 

a K sparse signal with the sparsity equaling .K  

We introduce the notation of support set which is defined as  

   supp { | 0},s si i x x  

where  supp {1,2,..., }s N x is the set of indices 

corresponding to non-zero elements of .sx  We assume that all 

support sets are the same. It means that indices corresponding 

to nonzero elements of signal are the same at each sensor and 

all sensors have the same sparsity. This is a reasonable 



assumption when each sensor independently observes a single 

sparse signal representing a globally occurring original signal 

pattern. An independent observation obtained at each sensor 

deployed at different locations within the site makes the values 

of the sparse signal different attenuations, caused by different 

signal propagation paths. Compressed measurements made at 

each sensor are then sent to the joint receiver. The joint 

receiver makes a noisy measurement of the compressed signal 

sy from the s
th

 sensor which can be expressed as 

  ,s s s r y n  (1) 

where sy denotes the clean measurements, 

i.e., s s sy F x and M
s n is the additive observation noise, 

elements of the sn are i.i.d Gaussian with zero-mean and 

variance 2.n  The elements of sF are i.i.d. Gaussian samples 

with zero-mean and a fixed variance with one. Each signal has 

the same sparsity ,K i.e.,
0

.s Kx  The noise sn and the 

sensing matrix sF are mutually independent. Now, we consider 

the performance metric for the estimation. 

 

Definition of Proposed Error Metric: Let ˆ
sx be the 

recovered signal for sensor .s Then, the proposed error-metric 

(PEM) is defined: 
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where ( ) is the indicator function. It is useful to note that 

PEM is 1 when all the recovered signals are correct. Otherwise 

it is zero. 

 

Definition of Decoder: For PEM, we consider the average 

probability of error for all 
sF matrices whose elements follow 

the normal Gaussian distribution. 

     ˆPr Pr , , 0Afailure p x S E x  

The average probability of error is expectation over error 

event for PEM. Now, we say the decoder can recover signal 

reliably if  Pr 0failure  as S  if .M K  

We also define an utility index set , i.e., {1,2,..., }N . 

Similar to , the maximum size of is .K The number of 

elements in the intersection of and varies from 0 to 

1.K   We define  s if  the i
th

 column of .sF We define two 

sub-matrices based on .sF  A sub-matrix ,sF is constructed by 

collecting the set of column vectors of sF corresponding to the 

indices of .  Likewise, a sub-matrix ,sF is obtained from 

collecting the column vectors of sF corresponding to the 

indices of .  Finally, we define AO as the orthogonal 

projection matrix  
1

T T


AO A A A A and AQ as the 

projection matrix which is defined as . A AQ I O  

 

Definition of Jointly Typical Event: We define a 

  jointly typical event  , ,E r  i.e., ( , )E r { r and are 

  jointly typical} for all {1,2,..., }N with  

,K which is given by 

      ,

2
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Probability of Jointly Typical Event: If all column vectors 

of ,sF  are mutually independent for all sensors, all noises are 

mutually independent, and for some 0,   we can find 

0 1   as we increase S and M that satisfies the following 

inequality 

  Pr ( , ) 1 .E  r  (4) 

Before we introduce our main result, we provide two 

probabilities.   

 

The received signal r  is jointly typical with the correct 

index set : Let all column vectors of ,sF
 
be linearly 

independent. Then, r and  are   jointly typical with 

probability 
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This probability is the failure probability with the support set. 

Similar, we define another failure probability with the 

incorrect set.  

 

The received signal r  is jointly typical with an incorrect 

index set : Let all column vectors of ,sF for all sensors be 

linearly independent. Then, r and are   jointly typical 

with probability 
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Detail proofs and explanations of them are described in [4].  

III. MAIN RESULT 

Theorem: For any 
2( )

0n

M

M K 



  and Gaussian 

measurement matrix 
sF  and with PEM given as 

(2),  Pr 0failure 
 
as S  if .M K  

 

Proof: The proof is described in [4].   

This Theorem states that PSM can be reduced to K+1 when 

the number of sensors increases.  

IV. NUMERICAL RESULT 

In this section, we provide a numerical result. It shows that 

PSM can be reduced to K+1. According to a Figure 1, we 

easily notice that PSM is getting smaller while the number of 

sensors increases. 

V. CONCLUSIONS AND FUTURE WORKS 

We have shown that PSM converges to the sparsity of the 

sensed signal when the number of sensors is sufficiently large. 

In addition, we have observed that the required SNR decreases 

as the number of sensors increases for fixed PSM, which will 

be discussed in details [4]. For further work, it would be 

interesting to mathematically express the required PSM for a 

fixed S and design a possible recovery algorithm approaching 

the analysis results of this paper. Furthermore, we aim to 

consider other models such that each sensor may have different 

support sets.  
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Figure 1. Parameters are as follows. The signal length is 50; the number 

of nonzero elements in each signal is 5; S denotes the number of sensors; 

the noise variance is 0.0001. PSM decreases as the number of sensors 

increases.  
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