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a b s t r a c t

We investigate the performance of regular systematic low-density generator matrix

(LDGM) codes under the majority rule based (MB) iterative decoding algorithm. We

derive a recursive form which can be used to extract the error performance of the code.

Based on the recursive expression, we derive a tight non-recursive lower bound. These

results can serve as efficient tools to evaluate the performance of the code for different

degrees.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Systematic low-density generator matrix (LDGM)
codes with moderate code length are of interest not only
because they can provide satisfying performance at
moderate block length while maintaining low encoding
and decoding complexities [1–4], but also because the
systematic form of LDGM codes makes the code useful in
new applications such as cooperative wireless multiple
access relay network [5] and joint source-channel encod-
ing systems [6].

In this paper, we are interested in the performance of
the majority rule based (MB) iterative decoding algorithm
for systematic LDGM codes. Although the MB algorithm is
based on hard-decision and thus its performance cannot
match those based on soft-decision, it has drawn
significant interest in the past owing to its simplicity
and low computation complexity, which allow fast
decoding [4,7–9].

We investigate the asymptotic performance of the code
consisting of regular systematic LDGM codes and the MB

iterative decoding algorithm. By assuming infinite block
length, we derive a recursive expression which predicts
both the threshold and error floor behaviors of the code.
Gallager has analyzed an MB iterative decoding for low-
density parity-check (LDPC) codes; we build our analysis
on systematic LDGM codes by extending his results
reported in [9]. Based on the recursive expression, we
further derive a non-recursive lower bound expression
which is simply a function of the degree of variable nodes.
We show that the bound is tight in simulation, and thus it
can be useful to quickly assess the performance of the
code for given degrees.

The rest of the paper is organized as follows. In
Section 2, we briefly introduce the systematic LDGM
codes and the majority rule based iterative decoding
algorithm. The recursive expression and the lower bound
expression are derived in Section 3. In Section 4, computer
simulation results and analysis results are compared and
discussion is provided. Finally, we make a conclusion in
Section 5.

2. Systematic LDGM codes and MB algorithm

Similar to the well known LDPC codes, systematic
LDGM codes can be represented by sparse matrices,
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see [10]. We briefly give the definition of systematic LDGM
codes, and then introduce the majority rule based iterative
decoding algorithm.

2.1. Systematic LDGM codes

Systematic LDGM codes are linear block codes with
parity check matrix H ¼ [P;I], where P is an (n�k) by k

sparse matrix and I is the (n�k) by (n�k) identity matrix.
The positive integer k denotes the number of input bits
and n denotes the number of output bits of a systematic
LDGM encoder. The matrix P of ones and zeros can be
generated at random. A systematic LDGM code will be
called regular if both the number of 1’s in column in the P
matrix and that in row stay fixed for all columns and rows.
Though irregularity can provide performance improve-
ment, regularity could lead to simplified modular im-
plementation in hardware realization. We will study the
regular version only in this paper. We denote the degree of
a variable node as dv, which is the number of ones in each
column in the P matrix. Similarly, the degree of a check
node, dc, represents the number of ones in each row
in the H matrix. The code can be completely specified
by a bipartite graph [11] consisting of check nodes and
variable nodes. Since a systematic codeword is composed
of message bits and parity-check bits, the variable
nodes can be further separated into message-bit variable

(MV) nodes and parity-check-bit variable (PV) nodes.
Based on the structure of the H matrix, the code rate R

of (dv, dc)-regular systematic LDGM codes is given as
R ¼ 1=ðdv=ðdc � 1Þ þ 1Þ.

It should be noticed that, when a code has a generator
matrix with rows of constant weight, the code contains
code words of the specified constant weight, and hence
the minimum distance of the code could have been
specified. In the case of regular systematic LDGM codes,
the minimum distance of the code is not larger than dv+1,
i.e., the weight of the rows of the generator matrix.

2.2. The majority-rule based iterative decoding algorithms

There are two steps in each iteration for the MB
iterative decoding algorithm. The first step is done in a
check node. The output binary message from the ith check
node, toward the jth of its dc variable nodes, is the result of
the XOR operation on the rest of dc�1 incoming binary
messages. That is, ci;j ¼ �Pdc�1

k¼1;ðkajÞðvk;jÞ, where the sum-
mation is done in modular-2 addition and vk,j is the binary
message from the kth variable to the ith check node. The
second step is done in a variable node at which the
majority rule is applied. Let fj, f j 2 f0;1g; denote the hard-
decision binary value of the received signal for the jth bit
transmission. The output binary message from the jth
variable node, toward the ith of its dv check nodes, is
obtained from the rest of dv�1 incoming messages, and is
given by

nj;i ¼
f̃ j if

Pdv�1

k¼1;ðkaiÞ
XORðf j; ck;jÞ

 !
� m;

f j o:w:

8>><
>>: (1)

That is, if m or more incoming messages are violated, then
the message vj,i is the complement of fj; otherwise, it
holds the value of fj. At the last iteration, the jth bit is
decoded to be f̃ j if ð

Pdv
k¼1XORðf j; ck;jÞÞ � m; otherwise, the

jth bit is decoded to be fj. In the algorithm, the weight m is
an integer between 0 and dv. The weight m needs to be
carefully chosen in each iteration as it affects the
performance of the MB iterative decoding algorithm.
From the above description, we note that the MB iterative
decoding algorithm is extremely simple.

3. Error performance analysis

In this section, we derive the recursive expression (2)
and the tight lower bound expression (11). These expres-
sions serve as efficient tools to extract the performance of
the codec for given degrees of systematic LDGM codes.

Due to the hard decision characteristic of the MB
decoding algorithm, we may assume all the coded bits are
transmitted through a binary symmetric channel with
error probability P0. Consider the error performance on an
MV node. Assume infinite code length and unfold the MB
iterative decoding onto a cycle free decoding tree. Then,
the error probability for the message on the MV node after
the ith iteration can be expressed by the recursive form

Piþ1 ¼ P0ð1� f ðm; PiÞÞ þ ð1� P0Þðgðm; PiÞÞ. (2)

where

f ðm; xÞ ¼
Xdv�1

l¼m

dv � 1

l

 !
1þ ð1� 2P0Þð1� 2xÞdc�2

2

 !l

� 1� ð1� 2P0Þð1� 2xÞdc�2

2

 !dv�1�l

(3)

and

gðm; xÞ ¼
Xdv�1

l¼m

dv � 1

l

 !
1� ð1� 2P0Þð1� 2xÞdc�2

2

 !l

� 1þ ð1� 2P0Þð1� 2xÞdc�2

2

 !dv�1�l

. (4)

The first term in (2) represents the probability of an event
that the MV node was in the error state originally and the
error correction mechanism of MB algorithm is not
triggered because less than m extrinsic messages, out of
dv�1 total, are in violation. Thus the error in the variable
node remains unchanged. The second term represents the
probability of an event that the MV node was in the
correct state but the error correction mechanism of MB
algorithm is falsely triggered—because of m or more
extrinsic messages in violation—and forces an error.

It is interesting to compare this recursion result (2) to
Gallager’s result on regular LDPC codes [9, p. 46]. The
difference is that we have ð1� 2P0Þð1� 2xÞdc�2 in the
recursion equation, instead of ð1� 2xÞdc�1. This belongs to
one of the characteristic results of the systematic LDGM
codes. It is caused by the one and only one connection
made by each PV node to the corresponding check node in
the bipartite graph. This causes the error floor effect in
systematic LDGM codes.
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For a given channel error probability P0, the weight m
and the degrees dv and dc determine the behavior of the
recursive process (2) and hence the error performance.
The optimal weight m which minimizes Pi+1 in (2) for the
ith iteration can be found by exhaustively searching for
the integer between 0 and dv, or by solving the smallest
integer m which satisfies the following inequality [9]:

1� P0

P0
� 1þ ð1� 2P0Þð1� 2PiÞdc�2

1� ð1� 2P0Þð1� 2PiÞdc�2

 !2m�dvþ1

. (5)

In the following, we derive the lower bound ex-
pression based on the recursive expression (2). Taking
the partial derivative of (2) with respect to Pi, we obtain

@Piþ1

@Pi
¼ �P0

@f

@Pi
þ ð1� P0Þ

@g

@Pi
, (6)

where

@f

@Pi
¼ dv � 1

m

� �
ðmxþ

m�1

x�
dv�1�m

Z�Þ (7)

and

@g

@Pi
¼ dv � 1

m

� �
ðmx�

m�1

xþ
dv�1�m

ZþÞ. (8)

In (7) and (8), the notations xþ; x�;Zþ; and Z� are defined
as xþ ¼ ð1þ ð1� 2P0Þð1� 2PiÞdc�2Þ=2, x� ¼ ð1� ð1�
2P0Þð1� 2PiÞdc�2Þ=2, Zþ ¼ ðdc � 2Þð1� 2PoÞð1� 2PiÞdc�3,
and Z� ¼ �ðdc � 2Þð1� 2PoÞð1� 2PiÞdc�3.

Without loss of generality, we may assume that P0 and
Pi are restricted in the interval [0, 0.5]. Then, we observe
that (6) is always non-negative, i.e., @Piþ1=@Pi � 0. This
shows that (2) is a monotone increasing function of Pi.
Therefore, by substituting Pi ¼ 0 into (2), we can obtain a
lower bound expression of Pi+1.

The weight m used in the lower bound expression can
be determined via (5). By substituting Pi ¼ 0 into (5), we
have

1� P0

P0
� 1þ ð1� 2P0Þ

1� ð1� 2P0Þ

� �2m�dvþ1

. (9)

If P0 is restricted within the interval [0, 0.5], then (1�P0)/
P0 is not less than 1. The inequality is satisfied if and only
if the exponent of the right hand side is greater than 1, i.e.,
2m� dv þ 1 � 1. The smallest integer that satisfies this
inequality is m ¼ dv=2

� �
, where �d e is the ceiling opera-

tion. Notice that, at the last iteration, the number of
available extrinsic messages for an MV node is dv, instead
of dv�1. Hence, we choose the weight m* for a given (dv,
dc) regular systematic LDGM as

m� ¼ dv þ 1

2

� �
. (10)

Therefore, the lower bound expression, which is only a
function of the degree of variable nodes dv, is given by

PLB ¼ P0 1�
Xdv
l¼m�

dv

l

 !l

ð1� P0ÞlðP0Þdv�l

0
@

1
A

þ ð1� P0Þ
Xdv
l¼m�

dv

l

 !l

ðP0Þlð1� P0Þdv�l

0
@

1
A. (11)

We note that the results (2) and (11) are based on
the cycle-free assumption, i.e., infinite code length.
Thus, they render the best performance for given
degrees of systematic LDGM codes. The tightness
of the lower bound is illustrated through simulation in
Section 4.

4. Simulation results and discussion

Assuming BPSK modulation over AWGN channels, the
error probability of the equivalent binary symmetric
channel (BSC) for the MB algorithm is obtained by
P0 ¼ 0:5erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
REb=N0

p	 

, where R is the code rate, Eb is

the energy per bit, and N0 is the one sided power spectral
density of the noise. We assess the best possible
performance of the code by using the recursion form (2)
in the following manner. While numerically evaluating
the recursion expression (2), we test out all the possible
choices of m in each iteration and then select the best
value of m that results in the lowest error probability at
the end of each iteration. In addition, we let a large
number of iterations (more than 50) to ensure the
convergence of the recursive form (2).

Fig. 1(a) shows the BER curves for rate half systematic
LDGM codes with degree (8, 9), (9, 10), (10, 11), (11, 12),
(12, 13), and (13, 14). Fig. 1(b) shows the BER curves for
rate around 1/3 systematic LDGM codes with degree (9,6),
(10,6), (11,6), and (11,7). The dashed curves in the figure
are obtained from the recursive method (2), whereas the
solid curves are obtained from the non-recursive lower
bound (11). We note that the lower bound is asymptoti-
cally tight with respect to channel signal to noise ratio
(SNR). This is expected because, at high SNR, Pi in (2) can
evolve to a value very close to zero, and hence the
assumption Pi ¼ 0 we made to derive the lower bound
becomes more valid. We also note that the lower bound
expression predicts the performance well in the entire
error floor region. Defining threshold as the SNR the
waterfall starts, moreover, we note that a code with small
degrees exhibits a high error floor but a small threshold;
whereas a code with large degrees shows a low error floor
but a larger threshold. Considering the trade-off relation
between the error floor and the threshold behavior, the
best degree dv for systematic LDGM codes under MB
iterative decoding algorithm can be selected. For example,
we may select it to be 10 based on our results. Systematic
LDGM codes with other degrees are not good, since they
exhibit either a high error floor or a large threshold. In
addition, we observe that, for rate half systematic LDGM
codes, the curves of (dv, dv+1) and (dv+1, dv+2) converge
asymptotically for even dv. This is one of the characteristic
behaviors of systematic LDGM codes which was also
reported in [2].

Fig. 2 shows the BER curves obtained from the Monte
Carlo computer simulation. Ten iterations are used in the
MB algorithm. Two randomly constructed (8, 9) and (9, 10)
systematic LDGM codes with length 6000 are used in
simulation.

To draw best threshold behavior while maintaining a
low error floor, we use the following strategy for selecting
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the weight m. Initially, we choose the weight mwhich has
the smallest threshold. This initial weight is used all the
way through the last iteration, and at the last iteration the
weight calculated from (10) is used to push down the
error floor. For the (8, 9) systematic LDGM code, the
weight of the smallest threshold is m ¼ 5 and the weight
calculated from (10) is also m ¼ 5. Hence, we select the
weight to be 5 throughout the iterations. For the (9, 10)
systematic LDGM codes, the weight of the smallest
threshold is m ¼ 6, whereas the weight calculated from
(10) is m ¼ 5. We choose m ¼ 6 for the iterations all the
way until the last one, and then choose m ¼ 5 for the last
iteration.

The simulation results show that both the (8, 9)
systematic LDGM code and the (9, 10) systematic LDGM
code not only can achieve the lower bound, but also can
achieve the thresholds. In other words, the derived
recursive expression and non-recursive lower bound are
tight and can successfully serve as efficient tools to access
the error performance of the codec.

5. Conclusion

Systematic LDGM codes and the majority-rule based
iterative decoding algorithm may be of interest for
communications system engineers because they render
simple encoding and decoding complexities. The codec
exhibits two eminent error performance behaviors, the
threshold and the error floor. We have provided the
analytic expression (2) for efficiently assessing the best
possible performance of the codec for given degrees of
systematic LDGM codes. Furthermore, a simple tight
lower bound expression (11) has been derived, which
can be readily evaluated once the degree of variable nodes
is given.
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