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Abstract
Motor imagery (MI)-based brain–computer interface systems (BCIs) normally use a powerful
spatial filtering and classification method to maximize their performance. The common spatial
pattern (CSP) algorithm is a widely used spatial filtering method for MI-based BCIs. In this
work, we propose a new sparse representation-based classification (SRC) scheme for
MI-based BCI applications. Sensorimotor rhythms are extracted from electroencephalograms
and used for classification. The proposed SRC method utilizes the frequency band power and
CSP algorithm to extract features for classification. We analyzed the performance of the new
method using experimental datasets. The results showed that the SRC scheme provides highly
accurate classification results, which were better than those obtained using the well-known
linear discriminant analysis classification method. The enhancement of the proposed method
in terms of the classification accuracy was verified using cross-validation and a statistical
paired t-test (p < 0.001).

(Some figures may appear in colour only in the online journal)

1. Introduction

Brain–computer interface systems (BCIs) can provide a new
communication and control channel between the user’s brain
and an external device, such as a computer or prosthetic device.
Electroencephalogram (EEG) signals noninvasively capture
the brain waves generated by brain activity. These can be
recorded using a set of sensitive electrodes placed on the scalp.
These signals can then be mapped to different commands after
a series of sophisticated signal processing procedures, such as
feature extraction and the classification of the measured EEG
signals. Thus, a subject can control a computer application
by intentionally generating different EEG patterns. The use of
BCIs can be an additional means to the brain’s normal output
pathways, such as the peripheral nerves and muscles of the
body [1].

EEG-based BCIs widely use two methods to obtain EEG
signals: P300 [2, 3] and the motor imagery (MI)-based BCI
[4–7]. In P300, distinctive EEG signals are usually obtained

from the parietal and occipital areas after 300 ms of a visual
stimulus when the subject is paying attention to a specific
target. A possible visual stimulus might involve staring at
the blinking rows and columns in a matrix of letters [3].
In this study, we focused on MI-based BCIs, which use
sensorimotor rhythms (SMRs), such as the Mu and/or Beta
rhythms; these rhythms can be recorded on the scalp over
the sensorimotor cortex area. A widely used feature in MI-
based BCIs is event-related desynchronization (ERD) [4].
A significant decrease in the power level of SMRs can be
observed on the contralateral hemisphere during the unilateral
imagination of hand movements [6]. The different patterns
present in EEG signals are detected and used for BCI control.

Sparse representation-based classification (SRC) has
received much attention recently in the pattern recognition
field [8–10]. The sparse representation problem involves
finding the most compact representation of a given signal,
where the representation is expressed as a linear combination
of columns in an overcomplete dictionary matrix. The idea of
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sparse representation has been used in compressive sensing
(CS) theory [11–13]. CS theory suggests that many natural
signals can be represented as sparse signals on a certain basis.
A sparsely representable signal can be compressively sampled,
and the number of compressed samples required for the perfect
recovery of the original signal is smaller than that required
under the conventional Shannon–Nyquist sampling theory.

Sparse representation can be used for signal classification
when compact description of a test signal is produced using a
set of training signals incorporated in the dictionary [8]. This
SRC method has been widely used, and its high classification
accuracy has been demonstrated in various applications, such
as face recognition [9] and speech recognition [10].

The EEG signals acquired from scalp electrodes are
usually very noisy and show a non-stationary characteristic.
They contain signals from non-interesting physiological
activities (e.g. electromyograms (EMGs)), the sensor noise
present in any electrical system and environmental noise (e.g.
power lines). Thus, the use of powerful signal processing and
classification techniques plays a critical role. In addition, raw
EEG scalp potentials have poor spatial resolution because
of the volume conduction effect [14]. In MI-based BCIs,
an electrode placed on the scalp measures the EEG signals
generated not only from the motor cortex area but also from
other cortical regions. Thus, it is important to isolate the
MI signals from the others. Spatial filtering is a technique
that is used to extract localized information from a set
of measured EEG signals derived from multiple electrodes.
MI-based BCIs use SMR features that are generated directly
from the sensorimotor cortex, which means that the use
of spatial filtering is essential [17, 18]. Well-known spatial
filtering methods include the Laplacian, common average
reference [15] and common spatial pattern (CSP) method
[16, 17].

In this work, we apply a SRC method to EEG-based MI
BCIs. To the best of our knowledge, the proposed method is a
novel classification method for this application. We use a band
power approach that involves extracting the power information
from the signal for the SMRs [18]. In SRC, the design
of a good dictionary matrix is critical, or the performance
will be poor. We provide a detailed design procedure for
constructing the dictionary matrix. To maximize the benefit
of sparse representation, we propose to use CSP filtering and
preprocess the raw training signals to construct the columns
of the dictionary. This was a critical step for increasing the
classification accuracy with this new approach.

We note that there are some related works [31–33]
in the BCI application. The authors in [31], for example,
use sparse representation as a source separation method at
the preprocessing stage to enhance the efficiency of feature
extraction. The authors in [32], on the other hand, aim at
enforcing a sparsity condition on the selection of spatial filter
coefficients, by adding a sparsity-regularization term in the
CSP optimization problem. They have shown that this sparse
spatial filtering enhances classification accuracy to a certain
degree. In [33], the authors aim at detecting the vigilance state
of a subject, and use an L1-based sparse representation of EEG
signals. Compared to these works, our work here provides a

principled approach to design an efficient sparse representation
dictionary. Furthermore, detailed discussion on why and how
the SRC method works better than the conventional linear
discriminant analysis (LDA) method is provided in our paper.

The remainder of this paper is organized as follows. In
section 2, the EEG datasets and experimental procedure are
described. In section 3, we first outline the preprocessing
and CSP filtering procedures and then introduce the proposed
methods. Section 4 presents the experimental results. There
are discussions and conclusions at the end of this paper.

2. Experimental procedure and dataset

In this section, we describe the information in the datasets used
for evaluating the performance of the proposed method. We
also discuss the BCI experimental procedure for each dataset.

2.1. EEG datasets

In this study, we used two different datasets. The first was
the INFONET dataset obtained from our own MI-based BCI
experiment. The other was the Berlin dataset downloaded from
the website of BCI competition III (dataset IVa) [19]. The main
difference between the two datasets was that they used different
numbers of EEG channels and had different sizes (i.e. numbers
of total trials). The Berlin dataset contained more trials, i.e. 80
for the INFONET dataset and 140 for the Berlin dataset per
class. The number of EEG electrodes used to collect data was
also different, i.e. 16 for the INFONET dataset and 118 for the
Berlin dataset. Testing using these two different datasets, one
of which is widely known, facilitated objective comparison
between the different classifiers.

2.1.1. INFONET dataset. This dataset consisted of five
different datasets obtained from five healthy subjects
(five males, average age = 22 and SD = 6.85). They were all
novice subjects in BCI experiments. There were two classes,
i.e. the left- and right-hand motor imaginary movements.
In this experiment, we used 16 EEG channels. The EEG
signals were recorded from active electrodes in a cap (with
the earlobe used as the reference) based on the international
10/20 standard. In our experiment, we used a g.EEGcap and
g.ACTIVE electrodes made by G. Tec Inc. and a PZ3 amplifier
from Tucker-Davis Technologies. We used a sampling rate of
256 samples s−1 with a band-pass filter of 1–100 Hz and a
notch filter of 60 Hz. Figure 1 shows the electrode positions
used for our dataset.

In our BCI experiments, the subjects were seated in
a comfortable chair and asked to watch a monitor screen.
Figure 2 shows the time procedure for one trial. At the
beginning of each run, a ‘Left Hand’ or ‘Right Hand’ letter
instruction randomly appeared for 4 s at the center of the
screen. Then, subjects imagined a left- or right-hand movement
after the instruction was given, i.e. repeated fist clenching.
This was followed by a rest period of 3 s. One run consisted of
40 trials, i.e. 20 left- and 20 right-hand trials. With all subjects,
we conducted six runs that consisted of two runs with real
movements and four runs with imaginary movements. We used
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Figure 1. 16-channel EEG electrode positions used for INFONET
dataset.

Figure 2. One trial time procedure for INFONET dataset.

only the imaginary data trials for further signal processing. To
suppress electrooculogram (EOG) artifacts, the subjects were
instructed not to blink or move their eyes during the instruction
period. During the rest period, they could blink freely but were
not allowed to move their body.

2.1.2. Berlin dataset. The Berlin dataset was produced in
the BCI competition and is widely used in the BCI field
for the analysis of EEG signal processing. It contains five
datasets recorded from five different healthy subjects (aa, al,
av, aw, and ay). The subjects followed the same procedure as
the BCI experiment with three classes, i.e. left-hand, right-
hand and right-foot MI movements. However, only the data
corresponding to the right hand (R) and right foot (F) were
used for analysis. These datasets only contain data from the
four initial sessions without feedback. The data were recorded
using BrainAmp amplifiers and a 128-channel Ag/AgCl
electrode cap from ECI. 118 EEG channels were measured at
the positions of the extended international 10/20 system. The
exact electrode positions are provided in the data file [19]. The
signals were band-pass filtered between 0.05 and 200 Hz and
then digitized at 1000 Hz. The signals were downsampled to
100 Hz for offline analysis by the Berlin research team.

Figure 3 shows a timed trial procedure for the Berlin
dataset. The subjects were seated in a comfortable chair with
their arms resting on armrests. Visual cues were provided for
3.5 s that indicated the appropriate motor imagery the subject
should perform, i.e. left hand, right hand, or right foot. The
presentation of target cues alternated with periods of random
length, i.e. 1.75–2.25 s, in which the subject could relax. Each
of the five datasets consists of 140 trials for each class.

Figure 3. One trial time procedure for Berlin dataset.

3. Methods

In this study, we used CSP filtering to design the dictionary
matrix of the SRC method. CSP filtering is used to distinguish
between the features of two different classes of signals. In
our method, the CSP filtering was used to preprocess the
two classes of EEG training signals and the columns of the
dictionary matrix were made of the CSP filtered signals.
Thus the generated dictionary matrix became incoherent, i.e.
columns from different classes are uncorrelated (details will
be given briefly later in section 3.2.2). This was a crucial step
in our proposed method. When a dictionary is incoherent, a
test signal from one particular class can be predominantly
represented by the columns of the same class. The uncertainty
principle (UP) [29] in the sparse representation theory dictates
that a signal cannot be sparsely represented in both classes
simultaneously. This phenomenon intensifies as the degree of
incoherence of the dictionary increases. We used this UP as
the underlying principle in our design.

In this section, we explain the proposed method. Figure 4
shows the entire procedure, including the CSP filtering and
classification steps. With the goal of providing a detailed
explanation of how CSP filtering is incorporated into the SRC
method, the principle of CSP filtering is briefly reviewed.
We also outline the conventional CSP filtering-based LDA
classification method to allow a comparison with the proposed
method.

3.1. Preprocessing and CSP filtering

After the EEG data acquisition, we performed data
segmentation for further analysis. We used 1–2 s time samples
after the cue appeared in all of the experimental trials. To
reduce the interference from other sources such as EOGs and
EMGs, we used a band-pass filter with a passband of 8–15 Hz.
We applied CSP filtering. CSP is a widely used and powerful
signal processing technique that is suitable for two classes
(conditions) of multi-channel EEG-based BCIs [17, 20]. To
distinguish features, CSP filters maximize the variance of the
spatially filtered signals for one class while minimizing it for
the other class.

Here, we explain how to apply CSP filtering to the
INFONET dataset. Let X ∈ R

C×T be a segment of EEG
signals, where C is the number of EEG channels. In the
INFONET dataset, C is 16 and T is the number of sampled
time points collected in all of the trials for a single subject.
In this study, we used 1 s data samples (256 samples). We
had two classes of EEG training trials, each collected in a
matrix, XR ∈ R

C×T and XL ∈ R
C×T , corresponding to the
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Figure 4. Proposed SRC scheme. We designed dictionary A using CSP filter W and the band power. To find coefficient vector x, we used
the L1 minimization tool for test signal y.

right- and left-hand motor imaginary movements, respectively.
Using the optimization procedure given below, we estimated
the set of CSP filters stored in the filter matrix, W ∈ R

C×C [17].
Thus, we initially found a vector, w, satisfying the following
optimization problem:

max
w

(
wTCRw
wTCLw

)
. (1)

Equation (1) leads to the minimization problem given below:

min
w

(
−wTCRw

)
subject to wTCLw = 1, (2)

where we define CR = XRXR
T and CL = XLXL

T . Using
the Lagrangian method, we derive the following equation
from (2):

L(w, λ) = −wTCRw + λ(wTCLw − 1). (3)

Taking the derivative of (3) and setting it equal to zero,
∂

∂w L(w, λ) = −CRw + λCLw = 0, we have

CRw = λCLw. (4)

Thus, the optimization problem in (1) can be solved as a
generalized eigenvalue problem in (4). Using (4), we derive
the objective function (1) as follows:

max
w

(
wTCRw
wTCLw

)
= max

w

(
wT λCLw
wTCLw

)
= max

w
λ. (5)

Finally, w is an eigenvector corresponding to the largest
eigenvalue. The eigenvalues of (4) are the roots of the
characteristic equation, i.e. |CR − λCL|det = 0, and the
eigenvector for each λ is the corresponding w, obtained by
solving (CR − λCL) w = 0. w maximizes the variance for
the signals of the right-hand class, while at the same time
minimizing it for the signals of the left-hand class. Note that
this property produces the maximum incoherence between the
two classes. We will discuss this in section 3.2.2. We used
16 EEG channels in the INFONET dataset. Thus, we had
16 eigenvalues and eigenvectors. The CSP filter matrix, W,
consists of column vectors, wi ∈ R

C(i = 1, 2, . . . ,C) where
C = 16. The second and later components are derived from
the rest of the eigenvectors. Namely, we obtain all of the other

eigenvectors, wi, i = 2, . . . ,C, corresponding to the second
largest to the smallest eigenvalue. The eigenvalues are indexed
from 1 to C in decreasing order. We call each column vector wi

of W a spatial filter. Of these, we used 2n CSP filters, n � 8 for
C = 16. The first n columns and the last n columns of W were
selected as the 2n CSP filters. The filter w16, corresponding
to the smallest eigenvalue, gave exactly the opposite effect
to the first filter, w1. Thus, it minimized the variance of the
data for the right-hand class while maximizing that of the
left-hand class. Finally, we produced the CSP filtering matrix,
WCSP ∈ R

C×2n, as follows:

WCSP = [w1, . . . , wn, wC−n+1, wC]. (6)

Selecting the best number of filters, n, depended on the number
of training trials and the subject. Given two classes of EEG
training trials, XR ∈ R

C×T and XL ∈ R
C×T , we defined the

CSP filtered signals as follows:

XCSP
R ∈ R

2n×T :=WT
CSPXR,

XCSP
L ∈ R

2n×T :=WT
CSPXL.

(7)

Figure 5 shows eight CSP filters that correspond to the
four largest and four smallest eigenvalues of subject A from
the INFONET dataset. These filters were used to project the
original EEG signal matrix in (7) into the 2n × T space.

The color in figure 5 denotes the significance of the
corresponding channels. For example, the red color indicates
the highest significance. Let us take the upper-left picture as
an example, which is for the first filter w1. It is noticeable
that there is a strong focus, a red dot, on the position of
the C4 electrode in this case. Imaginary movement of a
hand causes an ERD feature in the contralateral hemisphere.
Namely, with a left-hand imaginary movement, a signal feature
appears on the C4 electrode, while with a right-hand imaginary,
it appears on the C3 electrode. Hand motor functions are
controlled in a motor cortex region of the brain on which
the C3 and C4 electrodes are placed. This contralateral
manifestation of imaginary hand movements is a well-known
neurophysiological phenomenon [4, 5]. From this discussion,
it is clear that the first CSP filter amplifies the signal feature
from the left-hand imaginary movement at the C4 electrode,
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Figure 5. Color coded mapping of magnitudes of the coefficients of a filter, say wi whose index i is indicated at the top of each figure. CSP
filters are computed from the right-hand and the left-hand imaginary movement signals of subject A in INFONET dataset. The color map is
projected onto the scalp.

while the last CSP filter does the one from the right-hand
imaginary movement.

3.2. Proposed SRC method

In this section, we describe the design of the dictionary matrix
using CSP filtering and the frequency band power of SMRs.
We also give a detailed description of how our proposed linear
sparse representation model performed as a classification tool
for BCI application.

3.2.1. Feature extraction and dictionary design. An
important physiological issue in the MI-based BCI field is
that the SMRs include the Mu (8–14 Hz) and Beta (14–24 Hz)
frequency bands, which are closely related to limb movements.
The power of specific frequency bands (so-called band power)
is a widely used feature in Graz BCI systems [4–7]. In this
study, the power of the CSP filtered signal, i.e. the second
moment of each row of XCSP

R and XCSP
L , is the band power

from 8 to 15 Hz. We fixed the frequency range for all of
the subjects at 8 to 15 Hz to simplify the comparison. This
frequency band was not optimally chosen and may depend on
the subject.

An important step when applying the SRC method to the
BCIs was the design of an appropriate dictionary matrix, A.
Figure 6 shows how this was performed. Let Nt be the total
number of training signals for each class, i. That is, i = L for
the left-hand, i = R for the right-hand. We define a component
dictionary matrix Ai = [ai,1, ai,2, . . . , ai,Nt ] for each class
i where each column vector ai, j ∈ R

m×1, j = 1, 2, . . . , Nt ,
having dimension m = 2n is obtained by concatenating the
number of 2n SMR band power features, i.e. 2n sum of
frequency power from 8 to 15 Hz. Here, 2n was the number of
CSP filters. The same procedure was repeated for the left-hand
and right-hand classes. By concatenating the two matrices, we
formed the complete dictionary, A: = [AL; AR] as shown in
figure 6, where the dimension was m × 2Nt .

3.2.2. Incoherent dictionary using CSP filter. In this
subsection, we discuss why the CSP filtering method is a good

Figure 6. Dictionary design for the proposed SRC method. Each
element of the dictionary is the band power from 8 to 15 Hz. Each
column is obtained from a training trial for a separate class. The
number of rows in the dictionary represents the number of CSP
filters (i.e. feature dimensions).

technique to use for the design of the dictionary matrix. We
also demonstrate how CSP filtering can be used to maximize
the incoherence between the two classes in the dictionary.

The coherence measures the correlation between the two
component dictionaries defined in the following way:

M(AL, AR)
�= max{ | 〈aL, j, aR,k〉 | : j, k = 1, 2, . . . , Nt}. (8)

The vector aL, j is the jth column of AL; similarly, aR,k is
the kth column of AR. The notation

〈
aL, j, aR,k

〉
denotes the

inner product of two vectors. We call M the measure of mutual
coherence of the two component dictionaries; when M is small,
we say that the complete dictionary is incoherent [29]. As we
have mentioned already in the first paragraph of this section,
an incoherent dictionary promotes the sparse representation of
the test signal under the L1 minimization (see theorem 1 of
[30]). As will be discussed in section 5, being able to sparsely
represent a test signal in turn helps in boosting the classification
accuracy of the proposed method.

Recall that we use the CSP filtering method. The CSP
filter maximizes the variance of the spatially filtered signals
for one class, while minimizing it for the other class. Figure 7
shows a two-dimensional example illustrating the effect of
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(a) (b)

Figure 7. Example of CSP filtering effect: (a) before CSP filtering; (b) after CSP filtering.

Figure 8. Linear sparse representation model.

CSP filtering and its relation to incoherence. Two classes of
samples are expressed by the blue circles and red squares.
Figure 7(a) shows the distribution of the samples before CSP
filtering. Figure 7(b) shows the distribution of the samples
after CSP filtering. In (b), the horizontal axis is w1, which is
an eigenvector corresponding to the largest eigenvalue. The
vertical axis is w16, which is an eigenvector corresponding to
the smallest eigenvalue. This w1 has the property that after the
samples are projected onto w1, the variance of the projected
samples for the left class (blue circles) is maximized, while
the variance of the projected samples for the right class (red
squares) is simultaneously minimized. In addition, w16 does
exactly the reverse of w1. Using the effect of the CSP filter, we
simultaneously form maximally uncorrelated feature vectors
between the two classes (see also figure 6 in [17]). Thus, if we
calculate and compare the mutual coherence, M, between the
two classes, before and after applying the CSP filtering, surely
the mutual coherence after the filtering (figure 7(b)) is smaller.

3.2.3. Linear sparse representation model. In this section,
we introduce our sparse representation model based on EEG
training and test signals. We also demonstrate how this model
works using an example. Figure 8 shows the proposed linear
sparse representation model. First, we obtained the test signal,

y, using the same procedure used to obtain the columns of
dictionary A. Thus, a test signal was transformed into a vector,
y ∈ R

m×1, via the processes of CSP filtering and band power
computation. Thus, the dimension of y was the same as the
dimension of the columns in dictionary A. This test signal, y,
can be sparsely represented as a linear combination of some
columns from A:

y =
∑

i=L,R

xi,1ai,1 + xi,2ai,2 + · · · + xi,nt ai,Nt , (9)

where xi, j ∈ R, j = 1, 2, . . . , Nt are scalar coefficients. We
represent this using a matrix algebraic form:

y = Ax, (10)

where x = [xL,1, xL,2, . . . , xL,Nt xR,1, xR,2, . . . , xR,Nt ]
T ∈ R

2×Nt .
In this study, we assume a no-noise model for our sparse
representation in equation (10). In figure 8, the test signal y
of class R can be represented as the linear combination of the
training signals of class R.

yR = AxR ∈ R
m×1, (11)

where xR = [0, . . . , 0, aR,1, aR,2, . . . , aR,Nt ]
T ∈ R

2Nt is a
coefficient vector whose elements are zero, except for some
elements that are associated with the test signals of class R.
The sparse representation of test signal y is produced when the
number of non-zero coefficients of x is much smaller than Nt

[11]. It is useful to include as many training signals as possible.

3.2.4. Sparse representation by L1 minimization. Our sparse
representation model in figure 8 shows that the number of
total training signals was 2Nt , which was much larger than the
number of CSP filters (m = 2n). Thus, the linear equation (11)
is under-determined (m < 2Nt ). This problem can be solved
using L0 norm minimization:

min ‖x‖0 subject to y = Ax. (12)

The L0 norm is equivalent to the number of non-zero
components in vector x, by definition. This involves a
combinatorial search. Therefore, solving this L0 norm
minimization problem is an NP-hard problem. However, recent
studies in CS theory have shown that signal reconstruction

6
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(a) (b)

Figure 9. L1 and L2 norm minimization.

is conducted using an L1 minimization technique [11–13].
This is a suboptimal and relaxed approach to the optimal but
intractable L0 minimization. The L1 norm minimization, given
below, as one of the big surprises in CS theory, finds the exact
sparse solution in polynomial time if sufficient samples are
available [21],

min ‖x‖1 subject to y = Ax, (13)

unlike the conventional L2 norm minimization given below:

min ‖x‖2 subject to y = Ax. (14)

Figure 9 shows a two-dimensional example of why the L1
norm minimization finds the sparse solution efficiently, unlike
the L2 norm minimization [12]. In figure 9, the black line
represents the set of all feasible solutions. From the definition
of the norm, the L2 and L1 norms can be individually
represented as vectors on the surface of the circle and rhombus
in (a) and (b), respectively. Using the L2 norm minimization
in (14), when the L2 ball (circle) is grown in an equidistant
manner, we can find the minimum L2 ball, which touches the
feasible set first. As shown in (a), the L2 ball finds the non-
sparse point, x̂, which lies in the two-dimensional non-zero
space. Similarly, in (b), the L1 ball finds the sparse point, x,
which lies on the vertical axis.

There are many L1 minimization algorithms. In this
study, we used a standard linear programming method called
basis pursuit [22]. The ‘SolveBP’ function implements the
basis pursuit method available in SparseLab, which is a
free MATLAB software package [23]. This function solves
equation (13) by reducing it to a linear program using an
optimization technique such as the primal-dual log-barrier
algorithm.

3.2.5. Sparse representation-based classification. In an ideal
case, the L1 minimization solution of the linear equation (11),
such as xR, should only have non-zero coefficients in the lower
half, which corresponds to the columns of the right-hand class.
However, the EEG signals are very noisy and non-stationary
in MI-based BCIs. Thus, non-zero coefficients may appear in
the indices that correspond to the columns of another left-
hand class. To make use of the sparse representation results
in classification, we need to specify a classification rule. One
method is simply to count the number of non-zero coefficients
in vector x. Another method is to compute the energy of the
coefficients, i.e.

Class(y) = arg max
i=L,R

‖xi‖2. (15)

An additional effective classification rule is to use the residuals,
which was introduced in [9]. We used this method as the
classification rule in this study. To explain this rule, it is useful
to introduce a utility function. For each class i, we define its
characteristic function δi(·)R2Nt → R

2Nt , which picks up only
the coefficients associated with class i, while nullifying the
coefficients of the other class. Thus, for x ∈ R

2Nt , δR(x) ∈ R
2Nt

is a vector that is obtained by nulling all of the elements of x
that are associated with the left-hand class. We can obtain the
residual norm for the right-hand class:

rR(y):=‖y − AδR(x)‖2. (16)

Similarly, the residual norm, rL(y), for the left class can be
obtained for a given test vector, y. The classification rule is
given by

Class(y) = arg min
i

ri(y). (17)

We determine the class, i, that has the minimum residual norm.

3.3. Linear discriminant analysis

To provide a fair comparison between the SRC and LDA
(also known as Fisher’s LDA) classification methods, we aim
to explain how the LDA classification method works when
CSP filtering is incorporated. LDA is widely used as a linear
classification method in the BCI field [28], e.g. see [17] for
MI-based and [27] for P300-based BCIs. The LDA approach
introduced by Fisher aimed to find the optimal direction, wL,
to project data upon and maximize Fisher’s ratio [20, 25]:

J(wL) = wL
T SBwL

wL
T SwwL

, (18)

where SB and Sw are called the between-class scatter
matrix and within-class scatter matrix, respectively, which are
obtained as follows:

SB = (m2 − m1)(m2 − m1)
T

and

Sw =
∑

i

(x − mi)(x − mi)
T , (19)

where x is the input feature vector and mi is the group mean
of the feature vectors in class i. We used the band power
of the CSP filtered signals as a feature vector, x, which was
exactly the same feature used in the proposed SRC scheme
(see section 3.2 and figure 6).

4. Results

In this section, we present the classification results with the
proposed SRC method using the two datasets, INFONET and
Berlin, as described in section 2. We also compare the results
achieved with the SRC and the LDA methods. To evaluate
the average classification accuracy using limited size datasets,
we used the statistical leave-one-out (LOO) cross-validation
method with the same total number of data trials for each
subject [26].

Table 1 shows the classification accuracy for the
INFONET dataset. There were a total of 160 trial signals
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(a) (b)

Figure 10. Classification accuracy (%) per subject with different number of CSP filters for Berlin dataset. (a) Classification accuracies for
subjects al, aw and av. The solid lines represent SRC results and the dashed lines represent LDA results. (b) Classification accuracies for
subjects ay and aa.

Table 1. Classification accuracy (correct recognition rate (%) =
[correct number of assessments/total number of assessments
(160)] × 100) with INFONET dataset for two different SRC and
LDA classification methods.

Subject SRC accuracy (%) LDA accuracy (%)

A 95.63 93.13
B 63.75 61.87
C 68.14 67.50
D 80 76.25
E 71.25 68.12
Mean (SD) 75.75 (12.60) 73.37 (12.18)

for each subject. In each assessment using the LOO cross-
validation method, one trial signal out of the 160 trial signals
was selected as the test signal, and the remainder (159 trial
signals) were used as the training signals to produce the
columns of the dictionary. This assessment is repeated for
each trial signal. Thus, there were 160 assessments for each
subject. We used the first and last CSP filters to produce the
feature vectors and dictionary, i.e. n = 1 in (6), for subjects
A, B and C, whereas we used four filters, n = 2, for subjects
D and E. The number of CSP filters to use was determined
empirically. We will return to this discussion in section 5.2.
The results in table 1 show that the proposed SRC scheme
delivered enhanced classification accuracy compared with the
conventional LDA method for all of the subjects.

To further evaluate the SRC method, we extended our
validation to the Berlin dataset (see section 2.1.1). This dataset
was acquired from five subjects using 118 EEG channels.
Table 2 shows the results of comparisons using this dataset.
We used a total of 280 trial signals and the LOO method for all
of the subjects. With this dataset, the number of available CSP
filters was 118. We selected the number of CSP filters based
on our experimental results in figure 10. Figure 10 shows the
classification accuracy (%) of SRC and LDA as a function of

Table 2. Comparison of the SRC and the LDA methods in terms of
classification accuracy (%) with Berlin dataset.

Subject SRC accuracy (%) LDA accuracy (%)

al 98.93 96.43
ay 100 97.14
aw 95.71 95.36
aa 97.86 94.64
av 91.79 87.86
Mean (SD) 96.85 (3.25) 94.29 (3.72)

the number of CSP filters for each subject. Figure 10(a) shows
the results of subjects al, aw and av. The solid line represents
the SRC accuracy and the dashed line represents the LDA
accuracy. Figure 10(b) shows the results of subjects ay and aa.
We compute the average accuracy of the 160 trials expressed
in figure 10 using the LOO cross-validation method. As can
be seen in these figures, there was no significant increase
in accuracy when more than 32 CSP filters were used for
both SRC and LDA methods. Thus, we used 32 CSP filters
for feature extraction, which corresponded to the 16 largest
and the 16 smallest eigenvalues. However, figure 10 shows
that for each selection on the number of CSP filters, SRC
performs better than LDA does with few exceptions. Thus, it
can be said that SRC has better classification accuracy than
LDA regardless of the number of CSP filters in figure 10.
To investigate the statistical significance of the observed
accuracies in figure 10, we performed a paired t-test for each
subject. The obtained p-value of the t-test was less than 0.05 for
all subjects, which indicates that the difference was significant.

Table 2 indicates that the proposed SRC scheme delivered
higher average classification accuracy (96.85%) than the LDA
method (94.29%). Moreover, for subject ay, the accuracy was
100%. Thus, the proposed SRC method had consistently higher
classification accuracy than the LDA method in both datasets.
We also performed a paired t-test on both datasets in tables 1

8
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Figure 11. Example of LDA and SRC results when the test signal is easy to classify. (a) The two-dimensional scatter plot using two CSP
filters (n = 1) of subject A from the INFONET dataset. Here, the x-axis represents the band power of the signal projected to the first CSP
filter and the y-axis represents the last CSP filter. (b) Coefficient vector x recovered using the same test signal as in (a). The central vertical
line in (b) indicates the boundary between the two classes. Here, the x- and y-axes represent the index and recovered coefficient of x,
respectively.

and 2. The obtained p-value was less than 0.001, which means
that the difference was statistically significant.

An important issue for online BCI applications is the speed
of the algorithm, as well as the classification accuracy. We
compared the execution times of the algorithms. SRC and
LDA took similar times to complete the classification job. The
average difference between the execution times was negligible
with the same computer and software (using MATLAB),
i.e. LDA took 129.78 s and SRC took 129.99 s. This small
difference is negligible.

5. Discussion

5.1. Why does SRC outperform LDA?

SRC is stronger than LDA as a classification tool. Both SRC
and LDA work very well when the classification task is easy.
However, SRC does better when the classification task is
difficult such as in the ‘gray’ region. For easy exposition,
we use two-dimensional signal sets (two CSP filters) obtained
from subject A of INFONET dataset.

Let us consider an easy classification task first. Figure 11
shows that both LDA and SRC work well in this case. Locate
the square shown in figure 11(a). It indicates a left class signal
chosen as the test signal in this example. Note that it is located
very far—thus an easy classification task—from the cloud
of right class training signals, which are plotted as circles.
The square is located above the decision line. Thus, the LDA
method correctly classifies the test signal as a left class signal.
We now consider the same test signal shown in (a) for the SRC
method. Figure 11(b) shows the recovered coefficient vector,
x, in equation (13) using the L1 minimization method. SRC

searches for a parsimonious representation of the test signal,
the linear combination of a small number of training signals.
The sparse representation is enforced by the L1 minimization
routine. It is well known that L1 minimization is good at finding
the sparsest representation among all feasible representations.
In figure 11(b), the vertical line at the center indicates the
boundary between the two classes. Thus, the part to the left
of the boundary indicates the left class and the part to the
right corresponds to the right class. Note that the coefficients
belonging to the right class are all close to zero. In this case,
the characteristic function δR(x) in (16) is close to zero as well.
Thus, the residual norm for the right class in (16) is as large as
the norm of the test signal. Moreover, it is easy to see that that
of the left class should be somewhat smaller than this. Thus,
the minimal residual norm classification criterion (17) decides
that the test signal belongs to the left class.

Let us now consider a difficult case. Even though we use
CSP filtering, for some trials, the physiological features are
very similar to each other. Therefore, a ‘gray’ region exists
where the two clouds of training signals are intermixed, and
classification is difficult. This region is indicated by the dotted
circle shown in figure 12(a). With LDA, a single decision line
is drawn from the training signal set, but this line does not
exactly divide the two classes of signals clearly, as indicated
in (a). In (a), suppose the square inside the dotted circle is the
test signal, a signal belonging to the left class. In this particular
case, the test signal is located below the decision line, and LDA
wrongly classifies it as the right class. This is an example of a
misclassification by LDA.

On the other hand, figure 12(b) shows the result of the
SRC method, the coefficient vector, x, obtained from the L1
minimization routine. The test signal is the same as in (a). The
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Figure 12. Example of LDA and SRC results when the test signal is difficult to classify. (a) A two-dimensional scatter plot using two CSP
filters (n = 1) for subject A from the INFONET dataset. The dotted circle indicates the ‘gray’ region. (b) Coefficient vector x recovered
using the same test signal as in (a).

test signal is located inside the dotted circle, which shows that
the physiological features of that signal are difficult to classify.
Note that the SRC method classifies it correctly as left class.
This is what differentiates SRC from LDA.

The SRC method continues to work even in the ‘gray’
area where classification is difficult. LDA relies only on a
single decision line. Once it is drawn, it is the only measure
considered in classifying a test signal. In contrast, SRC aims
to find a linear combination of a small number of training
signals that can account for the given test signal with a sparse
representation of the test signal. This sparse representation is
enforced by the L1 minimization routine. It is known that L1
minimization using its key characteristic is good at finding the
sparsest representation among many feasible representations.
In addition, the dictionary matrix is incoherently designed.
Therefore, there is a chance that the test signal will receive
heavier representation with the correct class of training signals
than with the wrong class. We mentioned that an incoherent
dictionary has an intriguing relation with the UP in the
sparse representation theory [29] at the start of section 3.
Shedding light using UP on the class selecting property of
L1 minimization results given in this subsection, we note the
following: under L1 minimization a test signal does not yield
a parsimonious representation with the training signals from
both component dictionaries simultaneously, but does yield a
partial representation from a selected component dictionary
so as to bring forth as sparse an overall representation as
possible.

The job of any classifier for test signals within the gray
region is not easy. SRC is not an exception in this sense. It
is also possible to find test signals for which LDA makes the
correct decision while SRC does not. Figures 13(a) and (b)
show such an example. Find the right test signal located in the
gray region. It is under the decision line. Thus, LDA classifies

it as right class, which is correct. Per the L1 minimization
result of figure 13(b), however, SRC classifies it as left class,
which is an error. Note that SRC still makes a parsimonious
representation, even in this case where the decision is
wrong.

On the one hand, SRC results for a test signal within the
gray region are intermixed with successes and failures. In the
case of LDA, on the other hand, all the left class test signals
below the decision line lead to 100% classification failures.

5.2. Selecting number of CSP filters

In section 3.2, we used CSP filtering to produce the columns of
the dictionary matrix, A. The number of rows in the dictionary
was the same as the number of CSP filters used. It is known
that using two or three CSP filters from both ends of the
eigenvectors is usually appropriate [17]. However, there is
no exact method for selecting the appropriate number of
CSP filters. The literature suggests heuristics that determine
the number of CSP filters based on experience and visual
inspection [24]. One lesson we could glean from the literature
is that the use of too many CSP filters could produce the
problem of classifier overfitting. Namely, a classifier could
become overfitted to the transient part of the training set and,
in such a case, it might not work well with a test signal [17].
For example, with subject aa in the Berlin dataset, we used
118 EEG channels, and 140 training signals were available for
each class. In this case, our experiment showed that the best
classification accuracy was achieved with 32 (n = 16 in (6))
CSP filters.

In the meantime, it should be noted that there is a
fundamental limitation on the size of the dictionary with L1
minimization [12]. The number of rows in the dictionary, i.e.
the number of linear equations in the sparse representation,
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Figure 13. Example of LDA and SRC results when LDA classifies correctly while SRC does not. (a) A two-dimensional scatter plot using
two CSP filters (n = 1) for subject A from the INFONET dataset. The dotted circle indicates the ‘gray’ region. (b) Coefficient vector x
recovered using the same test signal as in (a).

(a) (b)

Figure 14. Coefficient vector x corresponding to the right-hand test signal of subject al from Berlin dataset. (a) 32 CSP filters and (b) 118
CSP filters were used to produce the dictionary. The central vertical line indicates the boundary between the right-hand and right-foot
training signals.

should be larger than or equal to the number of unknown non-
zero elements of vector x in (10). Therefore, in the proposed
SRC method, the number of rows in the dictionary should
be carefully selected to strike a balance between avoiding the
overfitting problem and satisfying the fundamental limitation.

Figure 14 shows an example of coefficient vector x.
Figures 14(a) and (b) were acquired using 32 and 118 CSP
filters for subject al in the Berlin dataset, respectively. We
can see that (a) provided a sparser representation than (b). In
addition, (a) gave a higher classification accuracy than (b).
We observe that the non-sparse result of (b) was obtained
when all 118 CSP filters were used. In the above discussion,

we also observed that the use of excessive CSP filters could
lead to the classifier overfitting problem. While no direct and
precise connection can be made in this work, it is interesting
to note that an intriguing relationship might exist between the
non-sparse representation result and the classifier overfitting
problem when too many filters are used.

6. Conclusions

In this study, we applied the idea of sparse representation to
the field of BCIs and proposed a new classification method that
delivered good performance for an MI-based BCI application.
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We used the well-known band power feature to utilize the
ERD concept, which is the most widely used physiological
feature in MI-based BCIs. This method required a well-
designed dictionary matrix. We proposed a new procedure
in which a CSP filtering technique is incorporated to produce
the dictionary. We referred to this new classification system as
the SRC method in this paper. To validate the SRC method,
we applied it not only to an INFONET dataset that we
obtained in our laboratory but also to the publicly available
Berlin dataset. In addition, we compared the proposed method
with one of the well-known classification methods, the LDA
classification method. The results indicated that the proposed
SRC scheme delivers classification accuracy higher than that
of the LDA method. We noted that an incoherently designed
dictionary, together with the use of L1 minimization, makes
SRC competitive as a classification tool.
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