천해 수중음향채널 모델링을 위한 간단한 통합 알고리즘

전형원, 류정민, 이흥노* 광주과학기술원 정보통신공학부

{hyeongwon, jmryu, *heungno}@gist.ac.kr

A brief integrated algorithm for shallow underwater acoustic channel modeling

Jeon Hyeong Won, Ryu Jeong Min, Lee Heung No * School of Information and Communications, GIST

요 약

최근 수중음향채널에서의 신뢰성 있는 통신시스템 설계 연구의 필요성이 부각되고 있으며, 이를 위한 방법 중 하나로 보다 정확한 채널 모델링에 대한 연구가 이루어지고 있다. 본 논문에서는 신뢰성 있는 천해 수중음향채널 모델링을 위한 간단하고 통합적인 알고리즘을 제안하며, 이로써 얻은 결과에 대한 분석을 통하여 채널 특성을 파악해보았다.

I. 서 론

해양환경 및 해저자원에 대한 이용가치가 지속적으로 부각됨에 따라 이에 대한 연구 필요성이 고무되어가는 요즘, 환경 보호 관점과 맞물려 다중 수중센서를 이용한 해양환경 모니터링 또한 그 연구가치를 인정받고 연구 범위 및 활용분야를 확대해 나가고 있다 [1].

하지만 기하학적 구조, 수온, 음속, 염도 등과 같이 변화하는 환경적 요소의 영향을 받는 수중음향채널은 그 채널특성이 유동적이며 예측하기 쉽지 않기 때문에 수중 통신 기술 개발에 많은 어려움을 겪고 있다. 이러한 문제점을 극복하기 위한 하나의 해결책으로 보다 정확한 수중음향채널 모델링 기법 [2][3]이 연구되어 왔으나, 모델링을 위한 통합적인 알고리즘은 찾아보기 힘들었다. 따라서 본 논문에서는 채널 모델링에 필요한 여러 요소들을 간단한 방법을 통하여 산출, 활용하는 간단한 천해 수중음향채널 모델링 알고리즘을 제안하였다.

Ⅱ. 본론

천해 수중음향채널의 반사경로는 해면과 해저에서의 반사에 의해 그림 1. (a)와 같이 형성되며 (b)와 같이 첫 반사 위치(해면, 해저)와 총 반사 횟수(짝수, 홀수)에 따라 총 4 가지로 분류된다. 각각의 반사경로에 대한 주파수 응답(frequency response)은 다음과 같다 [2].

$$H_p(f) = \frac{\gamma_s^{n_{sp}} \cdot \gamma_b^{n_{bp}}(\theta_p)}{\sqrt{A(l_p, f)}}$$
(1)

식 (1)에서 f [kHz]는 반송 주파수를 의미하며 n_{sp} 와 n_{bp} 는 해면과 해저에서의 반사 횟수를, γ_s 와 γ_b 는 해면과 해저에서의 반사상수를 의미한다. 또한 l_p [m]와 θ_p [°]는 각 반사경로의 거리와 입사각(gazing angle)을 의미한다.

A(l_p, f)는 반사경로의 거리와 반송 주파수에 따른 신호 감쇄로써 다음의 Ⅱ. ii절에서 자세히 기술한다.

각각의 반사경로에 대한 임펄스 응답 $h_p(t)$ 은 주파수 응답 $H_p(f)$ 의 역푸리에 변환을 통해 얻어지며, 모든 반사 경로에 대해 중첩 시킴으로써 다음과 같이 채널 임펄스 응답(impulse response)으로 나타내어 질 수 있다 [2].

$$h(t) = \sum_{p} h_p (t - \tau_p)$$
⁽²⁾

여기서 $\tau_p = (l_p - l_0)/c$ 는 직접경로와 각 반사경로와의 도착 시간 차이다.

이 밖에도 각 반사경로에 대한 도플러 확산은 반송 주파수와 최대 해면 풍속, 입사각을 이용하여 다음과 같이 계산된다 [3].

 $f_p = (0.0175/c)f \cdot w^{3/2} \cdot \cos \theta_p \tag{3}$

i. 반사 계수 산출 방법

해면과 해저가 평평한 이상적인 채널인 경우, 음향파는 해면에서 π 의 위상변화와 함께 전반사(y_s=-1)된다. 반면 해저에서의 반사 계수는 다음과 같이 계산된다 [2].

$$\gamma_{b}(\theta_{p}) = \begin{cases} \frac{\rho_{b} \sin \theta_{p} - \rho \sqrt{(c/c_{b})^{2} - \cos^{2} \theta_{p}}}{\rho_{b} \sin \theta_{p} + \rho \sqrt{(c/c_{b})^{2} - \cos^{2} \theta_{p}}} & , \cos \theta_{p} \leq c/c_{b} \\ 1 & otherwise \end{cases}$$
(4)

식 (4)에서 ρ와 c는 일반적인 수중에서의 밀도와 음속을, ρ_b와 c_b는 해저에서의 밀도와 음속을 나타낸다. ρ와 c 는 각각 1,000 [g/m³]과 1,500 [m/s]를, ρ_h 와 c_h 는 1,800 [g/m³]과 1,300 [m/s]를 보편적인 값으로 지닌다.

ii. 신호 감쇄 산출 방법

식 (1)에서의 거리와 반송 주파수에 따른 신호 감쇄 A(l,, f)는 다음과 같이 계산된다 [2].

$$A(l_{p}, f) = A_{0} \cdot l_{p}^{k} \cdot (10^{\alpha(f)/10000})^{l_{p}}$$
(5)

$$a(f) = \begin{cases} 0.11 \frac{f^2}{1+f^2} + 44 \frac{f^2}{4100+f^2} + 2.75 \cdot 10^{-4} f^2 + 0.003, \ f \ge 0.4\\ 0.002 + 0.11 \frac{f^2}{1+f^2} + 0.011 f^2 \ , \ f < 0.4 \end{cases}$$
(6)

식 (5)에서 k 는 확산 계수(spreading factor)로 송신기의 진동형태에 따라 원통형의 방향성 확산이면 1 을, 구형의 전방향성 확산이면 2 를 계수 값으로 취하나, 현실적인 확산(practical spreading)의 경우 1.5 를 값으로 취한다.

iii. 반사경로 거리와 입사각 산출 방법

본 논문이 제안하는 알고리즘은 식 (5)의 계산에 있어 필요한 반사경로의 거리 l_a 를 식 (7)을 통하여 구하며, 삼각함수 공식을 통하여 입사각 θ_n=cos⁻¹(d/l_n) 또한 손쉽고 빠르게 구하였다. 이는 산란(scattering)을 고려하지 않은 해면과 해저가 평평한 이상적인 채널에서 적용될 수 있는 식이다. 세부적인 산란을 고려하지 않은 이와 같은 모델링 방법은 정확성 면에서 미세하게 떨어질 있으나, 대략적인 채널 특성을 빠르게 파악할 수 있다.

본 논문에서는 채널 환경 요소(수심 h [m], 거리 d [m], 해저로부터 송신기까지의 거리 a [m], 수신기까지의 거리 b [m])를 설정한 후, n 을 증가시키며 거리를 계산해 나간다. 여기서 n 은 고려되는 반사경로 그룹의 수로써, 각 그룹은 앞서 분류된 4 가지 종류의 반사경로로 구성되어 있다. n 을 증가시킬수록 많은 수의 다중경로에 대해 고려하게 되어 보다 정교한 채널 모델링을 하게 되지만, 분석의 복잡성 문제에 직면할 수 있다. 따라서 적정한 n 의 선택이 중요하다. 천해 수중음향채널의 특성을 충분히 반영하기 위해서는 최소 8 개의 다중 경로가 반영되어야 함을 알 수 있다 [4].

$$l_{p} = \begin{cases} \sqrt{d^{2} + (2h \cdot n - a - b)^{2}} & \text{if } p \in R \\ \sqrt{d^{2} + (2h \cdot n - a + b)^{2}} & \text{if } p \in V \\ \sqrt{d^{2} + (2h \cdot (n - 1) + a + b)^{2}} & \text{if } p \in B \\ \sqrt{d^{2} + (2h \cdot n + a - b)^{2}} & \text{if } p \in G \end{cases}, n = 1, 2, 3 \dots (7)$$

$$n_{sp} = \begin{cases} n + 1 \text{ if } p \in \{R, V, G\} \\ n & \text{if } p \in B \end{cases}, n_{bp} = \begin{cases} n + 1 \text{ if } p \in \{V, B, G\} \\ n & \text{if } p \in R \end{cases}$$
(8)

n

Ⅲ. 결론

본 논문은 채널 환경 요소를 h = 50, d = 1,000, a = 15, b = 45, f = 10 k, w = 10 으로 설정하였으며 그 외 요소는 A₀ = 1, k = 2 로 설정하였다. 또한 최대 n 을 3 으로 설정 하여 직접경로를 포함한 13 개의 다중경로를 고려함으로, 천해 수중음향 채널특성을 충분히 반영하기 위한 조건을 충족시켰다.

그림 2는 기술한 알고리즘에 의해 생성된 임펄스 응답 으로, 약 20 ms 이후의 탭은 큰 영향을 미치지 못함을 알 수 있다. 따라서 대략적 최대시간지연은 20 ms 이며, 채널의 상관대역폭은 50 Hz 임을 알 수 있다 [5]. 또한 cosθ, 를 1 로 가정했을 때, 최대 도플러 확산은 약 3.7 [Hz]로, 채널의 상관시간은 약 270 ms 이다 [5].

표 1. 채널 분석 결과

항 목	수 치
최대시간지연	20 ms
최대 도플러 확산	3.7 Hz
상관대역폭	50 Hz
상관시간	270 ms

ACKNOWLEDGMENT

0] 논문은 2009 년도 정부(교육과학기술부)의 한국연구재단의 지원을 재원으로 받아 수행된 해외우수연구기관유치사업 연구임(K20903001804-11E0100-00910).

이 논문은 2011 년도 정부 (교육과학기술부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (중견연구자-핵심연구사업, N0. 2011-0027682)

참 고 문 헌

- [1] I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater acoustic sensor networks: research challenges," Ad Hoc Networks Journal, Elsevier, vol. 3, Issue 3, pp. 257-279, Mar. 2005.
- [2] P. Qarabaqi and M. Stojanovic, "Statistical modeling of a shallow water acoustic communication channel," in Proc. Underwater Acoustic Measurements Conference, Nafplion, Greece, Jun. 2009.
- [3] M. Stojanovic, "Underwater Acoustic Communication," entry in Encyclopedia of Electrical and Electronics Engineering, John G. Webster, Ed., John Wiley & Sons, 1999, vol. 22, pp. 688-698.
- [4] Alenka G. Zajic, "Statistical Modeling of MIMO Mobile-to-Mobile Underwater Channels," IEEE Trans. on Vehicular Technology, vol. 60, no. 4, May 2011.
- [5] B. Sklar, Digital Communications: Fundamentals and Applications, 2nd Ed., Prentice Hall, 2001.