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Abstract—In this paper, we consider a data collection 
network (DCN) system where sensors take samples and 
transmit them to a Fusion Center (FC). Signal correlation is 
modeled with signal sparseness. The number of compressed 
measurements which allows correct signal recovery at FC is 
investigated. This is done by studying the probability of 
signal recovery failure. The joint typical decoder (JT 
decoder) similar to the one proposed by Akcakaya and 
Tarokh is used to avoid dependence on particular choice of 
recovery routines. The following interesting results have 
been obtained: 1) The detection failure probability linearly 
converges to zero as the number of sensors increases. 2) The 
number of compressed measurements per sensor (PSM) 
needed for successful recovery converges to sparsity as the 
number of sensors increases. 

Keywords-Compressed Sensing, Joint Typicality, 
Distributed Source Coding, Distributed Compressed Sensing.  

I.  INTRODUCTION 
We consider a data collection network (DCN) system 

in which there are one signal fusion center (FC) and many 
sensors reporting to it. Sensors acquire signal samples 
independently and transmit acquired signal samples to FC. 
FC then intends to reconstruct each individual signal 
perfectly. The problem we aim to investigate here is how 
to utilize the signal correlation present in the acquired 
signals and reduce the traffic volume from sensors to FC. 
This type of questions frequently arise in wireless sensor 
networks where sensors operate drawing power from 
onboard batteries and thus saving power from unnecessary 
transmissions is of utmost importance. To deal with this 
type of problem, distributed source coding [1][2] has been 
studied in the past. 

Signals in the DCN system are often correlated with 
each other because sensors are usually deployed in a 
restricted region and put to observe a phenomenon 
globally occurring in the region. Sensors can utilize signal 
correlations and reduce the amount of traffic. The signal 
reconstruction unit at FC also notices the presence of 
signal correlation and utilizes this information in a joint 
signal reconstruction. As the result, the amount of traffic 
each sensor has to transmit is reduced. This is the main 
idea of distributed source coding. Recently, Duarte et al. 
[6] coined the term Distributed Compressed Sensing 
which means that distributed source coding is achieved 
via compressed sensing (CS) at each sensor. CS [3], as a 

new signal acquisition paradigm, is suitable for sensors 
with limited onboard resources such as power and storage 
element. 

In CS, signal correlation is modeled by signal 
sparseness. A signal N∈ℜx  is said to be sparse with 
sparsity 

0
K=x , where 

0
x  is the number of non-zero 

elements of x . A support set is the collection of indices of 
the non-zero elements of x . The more a signal is 
correlated, the smaller is the sparsity K . A sparse signal 
x , i.e., a correlated signal, can be compressively sampled, 
via a linear projection system, i.e., =y Fx  where 

M N×∈ℜF  is called the sensing matrix. Compression is 
said to be made when M N< . It is perhaps the most 
important and surprising fact in the CS theory that the 
unknown signal x  can be found uniquely from the 
compressed signal y  as long as a certain set of conditions 
on F  are satisfied [5]. 

For the DCN system, inter-sensor correlations exist 
between any two acquired signals. Inter-sensor 
correlations can be modeled by a portion of sensors 
having the same support set. Intra-sensor correlations, in 
contrast, are signal correlations that exist within a single 
sensor signal. Thus, the collection of signals acquired by a 
group of sensors contains inter- and intra-sensor 
correlations. A jointly sparse signal set can be defined to 
describe the signals in the collection. A good joint signal 
reconstruction at FC thus should be able to exploit both 
the inter- and intra-sensor correlations and have each 
sensor take a less number of compressed samples 
transmitted to FC. 

The main focus of this paper is to determine how 
many number of measurements per sensor (PSM) is 
needed for correct recovery of support of the jointly 
sparse signals, as the number of sensors increases. A 
jointly typical decoder (JT decoder) similar to the ones in 
[2][4] is used here for the DCN system so that a result 
which does not dependent upon any particular choice of 
recovery algorithms can be attained. We obtain an upper 
bound on the detection failure probability. We prove that 
the detection failure probability linearly converges to zero 
as the number of sensors increases, which show that PSM 
converges to sparsity as the number of sensors increases.  
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II. SYSTEM MODEL 
There are S sensors are distributed in a limited region. 

Each sensor compressively measures the signal coming to 
its way in the fashion of CS and transmits a set of 
acquired samples to FC. Let the original signal being 
acquired at the sth sensor be denoted as N

s ∈ℜx with 

0s K=x , { }1,2, ,s S∈  . The support set of sparse 
signal x  is defined as 

 ( ) ( ) ( ){ }: supp 0i x i= = ≠x x . 

We assume that each sparse signal has the same support 
set in this paper, i.e., ( ) ( )1 S= = =x x  . The 
compressed signal at each sensor is given as  

 s s s=y F x ,                                (1) 

where all the elements of M N
s

×∈ℜF  follow i.i.d. 
Gaussian distribution ( )0,1 . The matrix sF  denotes 
the sensing matrix of the sth sensor. All the compressed 
signals are transmitted to the FC via the AWGN channel. 
The received signal at FC is 

 s s s= +r y n ,                              (2) 

where all the elements of sn , the sth noise vector, follow 

i.i.d. Gaussian distribution, ( )2
noise0,σ . We assume that 

all the noise vectors and all the sensing matrices are 
mutually independent. For simplicity, we use 

1: S =  r r r , 1: S =  x x x , and 1: S =  n n n . 

Our signal model encompasses the signal models used 
in previous works [6],[7]. In the both works, the 
assumption that each sparse signal has the same support 
set is used. On the one hand, the model in Duarte et al. [6] 
contains no observation noise and thus is equivalent to our 
model (2) when all the noise vectors are ignored. On the 
other hand, the model in Tang and Nehorai [7] is obtained 
when all the sensing matrices are assumed to be the same 
in (1). 

III. JOINT TYPICAL (JT) DECODER AND EVENT 
In Akcakaya and Tarokh [4], a JT decoder is used to 

show that the number of measurements required for 
reliable support set detection is ( )( )logK N KΟ , a 
sufficient condition asymptotic to the signal length N. 
This JT decoder was inspired from the classic work of 
Shannon’s channel coding theorem. The JT decoder is a 
fictitious decoder defined on the rare occurrence of 
atypical detection error events. As the word “atypical” 
indicates, the probability of occurrence of such an event is 
small and in fact vanishes as the signal length increases 
due to the law of large numbers. Our JT decoder defined 
in this paper is slightly different from that of Akcakaya 
and Tarokh. This was done with an aim to streamline our 
analysis in such a way so as to better focus on our goal of 
investigating the impact of using multiple sensors on the 
number of measurements.  

Let us now formally introduce our joint typical (JT) 
decoder. It consists of two different parts: 1) the Support 
Set Detection (SSD) part and 2) the Signal Estimation (SE) 
part. The aim of SE is to compute all of the signal 
coefficients. It is well known that the task of the SE part is 
trivial once the support set is known. Namely, the most 
critical part of JT decoder is the SSD part. Motivated from 
this observation, we begin by defining the notion of δ −
Joint Typicality. 

 Definition 1: ( δ − Joint Typicality) We say that an 
M S×  matrix r  and an index set { }1,2, , N⊂   with 

K=  are δ − jointly typical if ( ),srank K=F   for all 
s  and  

 
( ) ( )

2
2

, noise ,s s

s

M K
SM M

σ
δ

−
− <∑

Q F r      (3) 

where ( ) ( ) 1T T−
= −Q F I F F F F  , 0δ >  and ( )T⋅  

represents the matrix transposition.  

Henceforth, we denote ( )E , ,δr   to mean that r  and  
  are a δ − jointly typical event. 

Let ( )E failureD  be the detection failure event. Then, 
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There are three kinds of decoding failures incorporated in 
(4). The first one ( )E , , Cδr   is to imply the case when 
the JT decoder makes failure not being able to declare that 
the correct support set is δ − jointly typical with the 
receive signal. In the second kind of events, i.e., 
( )E , ,δ≠r   , the JT decoder declares that an incorrect 

support set is δ − jointly typical with the receive signal. 
The third is the case when ( ),srank K<F   for some s in 
which (3) cannot even be defined. The possibility that 

( )( ),E srank K<F   occurs is very small. Hence, it can 
be ignored. 

IV. PROBABILITES OF THE FAILURE EVENTS 
Now, we aim to discuss the probability of the 

detection failure event. It is hard, we note, to obtain the 
exact detection failure probability due to dependency 
structure present amongst different error events. Hence, 
we turn to the union bound approach with which we have 
an upper bound on the probability 
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Obtaining exact expression for the probabilities such as

( ){ }Pr E , , cδr   and  ( ){ }Pr E , ,δr   in (5), is again 

difficult. Further upper bounding on both kinds of 
probabilities is made using the Chernoff bounds. In fact, it 
is exciting to find out that these upper bounds eventually 
came out tight enough to investigate the behavior of the 
detection failure probability and provided answers to the 
research questions poised in this paper.  

The two upper bounds are given below as Lemma 1 
and Lemma 2 respectively. The following notations 
become useful for representing both upper bounds: 

 ( )
' ' 2

, : exp 1
2

SM K

c
M Mp

M K
δ δ

− 
    = − × +    −    

 

     (6) 

and 

 ( )
( )2 2
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M
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M
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where { }2
noise, , , ,S M K δ σ= , 

{ }
( )2 2

min ,1, ,
min ss S

σ σ
∈

=


 , 

' 2
noiseδ δ σ=  and ( )22 2

, noises s
i

x iσ σ
∈

= +∑


.  

Lemma 1: Let an index set   be the correct support set 
and the rank of ,sF   be K  for all s . Then, for any 0δ > , 
we have 

 ( ){ } ( )Pr E , , 2 ,c
cpδ ≤r    .              (8) 

Lemma 2: Let an index set   be the one of the incorrect 
support sets, 0 K≤ <   and the rank of ,sF   be K  
for all s . Then, for any 0δ > , we have 

 ( ){ } ( )Pr E , , ,ipδ ≤r    .               (9) 

The detailed proofs for both lemmas are given in [10].  

V. RESULTS AND DISCUSSON 
In the next section, we will discuss asymptotic 

behavior of both ( ),cp    and ( ),ip    with respect 
to S in two propositions and summarize our main result 
in Theorem 1.  

Proposition 1: Let M K> , an index set   be the 
correct support set and the rank of ,sF   be K  for all s  

and 0δ > . Then,  ( ){ }Pr E , , cδr   linearly converges to 

zero with rate ( )* ,cp    as S  increases. 

Proposition 2: Let M K> , an index set   be one of the 
incorrect support sets and the rank of ,sF   be K  for all 

s , 0δ >  and 
{ }

( )22
noise 1, ,

min ss S i
x iσ

∈
∈

< ∑


 

. Then,  

( ){ }Pr E , ,δr   linearly converges to zero with rate 

( )* ,ip    as S  increases. 

In both propositions, we use { }* 2
noise: 1, , , ,S M K δ σ= = . 

The detailed proofs for both propositions are given in [10]. 

Now, we use both Proposition 1 and Proposition 2 to 
make Theorem 1. Clearly, each term in the right hand side 
of the upper bound in (5) can be further upper bounded by 

( )2 ,cp    and ( )
,

,
K

ip
≠ =∀
∑

  

   respectively using 

Lemma 1 and 2. Owing to Propositions 1 and 2, then, the 
upper bound converges linearly to zero as S  increases. 
Hence, the detection failure probability converges linearly 
to zero as S  increases. This result is established as 
Theorem 1. 

Theorem 1: Let M K> ,   be the correct support set,  
{ }1, , N⊂  with K=  and ≠  , all the ranks of 

,sF   and ,sF   be K  for all s , 0δ >  and 

{ }
( )22

noise 1, ,
min ss S i

x iσ
∈

∈

< ∑


 

. Then, ( ){ }Pr E failureD  linearly 

converges to zero with a rate, 

( ) ( )( )* * *max , , ,c ip p    , as S  increases. 

The detailed proof of the theorem is given in [10].  

Theorem 1 says that as long as the PSM M is greater 
than K, then by increasing the number of sensors the 
detection failure probability can be made to converge to 
zero. It is noted that for a fixed number of sensors the 
condition given here, viz. M K> , may not be sufficient 
for convergence.  Another line worthy of notice is that 
there is a condition on the minimal signal value included 
among the set of sufficient conditions.  

There are results similar to ours reported in the 
literature. Duarte et al. [6] proved and demonstrated that 
M  converges to 1K + . Difference to our work is that 
they did not consider the presence of noise. Tang and 
Nehorai [7] proved 2M K≥  for correct support set 
recovery from compressed signals obtained over an 
AWGN channel. It is mentioned in [7] that they can show 
that M  converges to 1K +  using Theorem 3 in their 
paper. From what is written in Theorem 3 of [7], however, 
it is difficult to draw 1M K≥ + , at least not at first hand. 
Davies and Eldar [8] designed a practical algorithm to 
recover K sparse signals from the MMV model, i.e., 
=y Fx , without considering noises. Their simulation 
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results showed that only 1K +  measurements per sensor 
are enough for good recovery as well. 

Although the JT decoder is not a practical decoder as 
an OSGA developed in [6], it has benefit as a performance 
analysis tool. It provides a benchmark independently 
usable of any practical recovery algorithms. For example, 
given the systems parameters, the behavior of detection 
failure probability of the DCN system can be studied 
immediately. 

VI. CONCLUSIONS 
The main focus of this paper was to investigate how 

many PSM is needed for almost perfect support set 
recovery, as the number of sensors increases, in DCN 
systems. For this objective, we obtained a series of upper 
bounds on the detection failure probability. Using them, 
we proved that the upper bound linearly converges to zero 
as S  increases in Theorem 1 and showed that PSM 
converges to sparsity as the number of sensors increases.  

Proofs for Theorem, propositions and lemmas are 
relegated to the technical report in [10]. 
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