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Abstract—Due to its large number of degrees of freedom and ex-
tensive connection to the brain, the human hand has been used to
create channels of communication for a variety of human–machine
systems. However, a fundamental question about the hand channel
is still unanswered: what is its information capacity? This study
aims to provide quantitative indication of effectiveness of the hand
as a communication channel. We estimated that per gesture, the
thumb and the index finger may deliver at most 10 and 7 bits of in-
formation, respectively. Based on this, we derived an upper bound
for the information capacity of the hand in gesture-based commu-
nication: 150 b/s. Knowing this bound is critical to evaluating the
potential and limitation of the hand channel for various forms of
human–machine interactions.

Index Terms—Hand, human–machine systems, index finger,
information capacity, thumb.

I. INTRODUCTION

THE HANDS are the chief organs for human to manipu-
late the environment. Their large number of mechanical

degrees of freedom and massive connection to the neural sys-
tem offer us tremendous flexibility to perform the skilled finger
movements, ranging from the roughest to the finest, from wield-
ing a club to playing a musical instrument. Therefore, it is very
natural that the hands have been used not only to handle objects
but also to create channels of communication for a variety of
human-centered control systems. Hand gestures have been ap-
plied to control robotic systems, where motion commands such
as left, right, forward, and backward can be encoded by hand
gestures [1] (here, a hand gesture refers to a hand movement,
transitioning from one hand posture to another posture). The
hands have been proposed to trigger speech synthesizers that
allow nonvocal people to communicate [2]. Hand gestures have
also been considered to create interface devices that may replace
the conventional keyboard, mouse, and joystick with improved
naturalness, portability, and transmission speed [3].
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Although the hand offers an attractive channel of communi-
cation, a fundamental question about this channel is still unan-
swered: what is the information capacity of the hand in deliver-
ing control commands? Knowing this capacity will be critical to
evaluating the potential as well as limitation of the hand chan-
nel in human–machine interaction. The existing studies have
revealed some limited aspects of the information processing in
the hand. For example, it has been estimated that in a pinch
grip, the thumb and index finger together have an information
processing rate of about 4.5 b/s [4]; for a skilled pianist in per-
formance, the rate of information transmission from the visual
input to the output of finger movements is about 25 b/s [5], [6];
the typical and maximal rates of information transfer via Amer-
ican Sign Language (ASL) (visual reception) are about 22 and
53 b/s, respectively [7], [8]. However, there has been no estimate
on the information capacity of the hand in communication. This
study aims to provide such an estimate, which serves as a quanti-
tative indication of effectiveness of the hand as a communication
channel.

In terms of potential impacts, the study on the hand–channel
capacity can provide guidance for design of efficient and un-
ambiguous hand gesture vocabulary for human–machine inter-
action. The hand gesture vocabulary can be used in robotic
control [9], medical systems that serve doctors [10] and aged
or handicapped people [11], and navigation and manipulation
in virtual environments [12], just to name a few. Furthermore,
some neurological disorders, such as Parkinson’s disease, can
be diagnosed on the basis of the maximum information capacity
of the hand [13]. Knowing the information capacity of the hand,
we will be able to find out the percentage of this capacity that
humans use of their hands in normal conditions. On the basis
of the data obtained in normal conditions, we can potentially
diagnose some neurological disorders that affect the neural in-
formation processing for hand movements [13]. Finally, some
components of the methods proposed in this study can be ex-
tended to measure effectiveness of information transmission in
other human–machine and brain–machine interfaces.

II. METHODS

The capacity of the hand channel depends on the maximum
size of the message set encoded by hand postures (end postures
of gestures) that can be delivered from the brain to the hand
and can be reliably recognized. Here, we distinguish gestures
only by their end postures. Although there are an infinite num-
ber of postures that we can make with the hand, the size of a
message set is bounded. This is because a posture, when real-
ized by the hand, is usually not exactly the same as the desired
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Fig. 1. (a) Conceptual model of the “hand channel.” The channel input θ is
a set of parameters that characterize a posture (encoding a message) desired
by the brain; n represents the noise or error imposed to the channel; and the
channel output equals θ + n, which characterizes the actual posture realized
by the hand. (b) Nonoverlapping buffer regions (in a metric space of posture)
for messages encoded by postures. If a received posture falls inside the buffer
region of message (posture) θi , it implies that the posture sent by the brain is θi .
(c) More detailed model of the hand channel with control-theoretic interpretation
of the shaded area of (a). The model follows the neurocontrol architecture
described in [14]. The symbols nN , nM , and nS represent the noises or errors
originated in: 1) the neural circuits that create movement command signals;
2) the musculoskeletal system; and 3) the sensory feedback system, respectively.
In the steady state of gesture-making, the error in the channel output is mostly
contributed from nS .

posture generated in the brain but is “contaminated” by noises
and perturbations in the neural and biomechanical systems (see
Fig. 1). Thus, in a metric space (e.g., joint angle space) of hand
postures, we need to reserve a buffer region for a message and
assign every posture within this region to the given message
[see Fig. 1(b)]. Then, when this message is sent, there will be
a match error (or decision error) only if the received posture
falls outside the buffer region. The size of the buffer region is
expected to be sufficiently large so that the probability of match
error is small. In such a way, the intention of the brain can be
unambiguously read from the hand postures and transitions of
postures.

We aim to estimate two upper bounds, denoted by N1 and N2 ,
for the maximum numbers of messages that can be unambigu-
ously encoded by the postures of the thumb and the index finger,
respectively. Then, we will know that the thumb and the index
finger may deliver at most log2(N1) and log2(N2) bits of in-
formation per gesture. We followed the idea of “close packing”
and took two steps to estimate N1 and N2 . The first step was to
estimate the sizes of buffer regions in the joint angle space for
every possible combination of joints of the thumb/index finger
in posture-making. The second step was to estimate the max-
imum numbers of nonoverlapping buffer regions that can be
contained within the whole range of joint motion of the thumb
and the index finger, respectively.

A. Step 1 (Estimate Sizes of Buffer Regions)

We approximated a buffer region around a finger posture by
an ellipsoid, called joint error ellipsoid [15], which indicates
the potential joint angle error in the estimate of the given pos-

Fig. 2. (a) Joint error ellipsoid. A specific vector θ0 in the joint angle space
represents a set of joint angles (θ10 , . . . , θm 0 )′, where the prime and m repre-
sent transpose and the number of joints, respectively. For clarity, only two joint
angles are shown. The ellipsoid Eθ0 is an indication of the potential joint angle
errors in the estimate of θ0 , and can be derived from the spindle error ellipsoid.
The two intervals P10 and P20 are the projections of θ0 on the θ1 -axis and
θ2 -axis, respectively. (b) Spindle error ellipsoid. The vector l0 represents a set
of muscle lengths (l10 , . . . , ln 0 )′, which the neural system senses from the
muscle spindles and which corresponds to the joint angle vector θ0 . For clarity,
only three muscles are represented. Error in the estimate of l0 is characterized
by an ellipsoid El0 . (c) Estimation of the maximum number of unambiguous
hand postures. Consider a small range of hand motion illustrated by one of the
square regions in the plot, where the sizes of joint error ellipsoids are about
the same for all values of θ in the region (the sizes and orientations of joint
error ellipsoids in different regions may be different). The maximum number
of distinguishable hand postures within this range of motion is bounded above
by the ratio of the area of the square region to the area of a typical joint error
ellipsoid in the region.

ture by the neural system. A joint error ellipsoid is a region
surrounding a specific vector (or combination) of joint angles
θ0 in the hyperspace of the joint angles [see Fig. 2(a)]. The
sizes of the joint error ellipsoids satisfy the following condition:
two postures, represented by θ1 and θ2 , respectively, can be
sensed by the neural system to be two different postures if the
two surrounding ellipsoids Eθ1 and Eθ2 do not overlap; other-
wise, they cannot be reliably distinguished by the neural system
during reproduction of these two postures from the memory.

Why can we approximate a buffer region with a joint error
ellipsoid? From a control-theoretic perspective, in the steady
state of gesture-making, the error between the actual posture
and the brain-desired posture is mainly contributed from the
sensing error in the sensory pathway rather than from the er-
ror in the movement generation pathway (see Appendix A). In
other words, in the steady state, the limits of performance in
hand gesturing are imposed by the position sense, not the ca-
pacity of motor realization of the target postures. This is evident
from a report about people who had both a unilateral loss of
position sense and impaired motor control [16], [17]: these peo-
ple found it much more difficult to move the normal limb to
match the position of the impaired one (mainly affected by the
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sensing error) than to move the affected limb to match the normal
one (mainly affected by the error in the movement generation
pathway). Therefore, it is a good approximation to include only
the sensing error in the error of posture-making, so we used the
joint error ellipsoid of a finger posture to approximate a buffer
region around the posture.

Since the sizes and orientations of joint error ellipsoids may
vary significantly from posture to posture, we did not make
direct measurements, but instead estimated the size of a joint
error ellipsoid from a spindle error ellipsoid. We followed the
general belief that the sensory feedback from muscle spindles
is the primary source of the proprioceptive information about
limb position [15] and derived the joint error ellipsoid from the
spindle error ellipsoid in a hyperspace of appropriate dimensions
(see Appendixes B–D). Note that here we did not consider the
contribution of position sense from the visual system. In many
applications of hand gestures, visual system is not primarily
used for sensing and correcting the gestures (otherwise, the rate
of gesture switching will be greatly reduced—a skilled typist
will unlikely improve typing rate by looking at the fingers and
keyboard).

A spindle error ellipsoid represents the error in the estimate of
a specific set of muscle lengths [see Fig. 2(b)]. This concept was
generalized from Biggs and Horch’s conjecture about spindle
error sphere [15] by taking into account the difference in spindle
length sensitivity of different muscles. Such difference is due
to the different distributions of spindles across muscles [18].
We assume that the spindle error ellipsoid has equal size for
different combinations of muscle lengths. This assumption can
be supported by an experimental finding that the sensitivity
of the spindle to perturbations in forms of sinusoidal stretches
(with magnitude of 1 mm) is independent of muscle length [19].
Note that not all points in a spindle error sphere correspond to
feasible finger postures; these feasible combinations of finger
joint angles constitute only a lower dimensional manifold in the
spindle error sphere.

To estimate the size of a spindle error ellipsoid, we based our
estimation on an experimental result by Clark et al. [20]. They
estimated the target resolution at the proximal interphalangeal
(PIP) joint of the index finger. Based on their findings, we de-
rived the size of the projection, say Pi0 in Fig. 2(a), of the joint
error ellipsoid onto the PIP joint of the index finger [see (14) in
Appendix D]. The size of Pi0 was then used to estimate the size
of a spindle error ellipsoid (see Appendix D).

Next, we applied a biomechanical model of index finger [21]
and the data of muscle moment arms of the thumb [22] to
establish the mapping from finger joint angles to lengths of
related muscles, and then we were able to estimate the size of a
joint error ellipsoid [see (12b) and (12c) in Appendix C].

B. Step 2 (Estimate Maximum Sizes of Message Sets)

We counted the numbers of the nonoverlapping buffer regions
(approximated by joint error ellipsoids) within the whole range
of joint motion of the thumb and the index finger, respectively.
The whole range of joint motion of a finger can be represented
by a closed region in the hyperspace of its joint angles. This

TABLE I
SLIGHTLY OVERESTIMATED RANGE OF MOTION OF THUMB AND INDEX FINGER

(BASED ON [22] AND [23])

closed region is contained in a hypercuboid, each edge length
of which is determined by the maximum range of motion of a
specific joint (see Table I). We partitioned this hypercuboid into
small hypercubes so that within each hypercube, the sizes of
joint error ellipsoids are approximately the same. However, the
orientations and sizes of joint error ellipsoids in different hyper-
cubes may be different. Within each hypercube, we estimated
the maximum number of distinguishable postures of the finger
under consideration. This number is bounded above by the ra-
tio between the volume of the hypercube and the volume of a
typical joint error ellipsoid in the cube [see Fig. 2(c)]. Finally,
we added up the estimated bounds derived for all the hyper-
cubes and arrived at an upper bound for the maximum number
of distinguishable postures of the finger under consideration.

III. RESULTS

A. Sizes of Spindle Error Ellipsoids and Joint Error Ellipsoids

A spindle error ellipsoid is characterized by a scaling factor
r [see (1a) in Appendix B]. We estimated that r ≈ 20 mm [see
(15) in Appendix D]. With r, we can appreciate the size of a
spindle error ellipsoid: the “radius” of a spindle error ellipsoid
along the axis of a muscle spindle is determined by r/

√
si ,

where si is the number of spindles in muscle i. For example,
let muscle i be the abductor pollicis brevis, which has about 80
spindles, so si = 80 and r/

√
si ≈ 2.2 mm. The estimated radii

of the spindle error ellipsoid along the other axes of muscle
lengths are presented in the right column of Table II.

Following the steps described in Appendix C, we were able
to estimate the volumes of joint error ellipsoids for different
combinations of joint angles of the thumb or the index finger.
According to our calculation, for the thumb (five joint angles
considered—see Appendix B), the volume of a joint error el-
lipsoid ranges from about 2.2 × 105 to 1.8 × 106 deg5 over
the whole range of joint motion. As mentioned previously, the
whole range of thumb-joint motion is contained in a hyper-
cuboid, each edge length of which is determined by the max-
imum range of motion of a specific thumb joint (Table I).
The volume of this hypercuboid equals the product of all

Authorized licensed use limited to: Kwangju Institute of Science and Technology. Downloaded on October 7, 2009 at 08:02 from IEEE Xplore.  Restrictions apply. 



1538 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 56, NO. 5, MAY 2009

TABLE II
AVERAGE NUMBERS OF SPINDLES IN MUSCLES CONTROLLING THUMB AND

INDEX FINGER (ADAPTED FROM [18]) AND ESTIMATED “RADIUS” OF SPINDLE

ERROR ELLIPSOID ALONG EACH AXIS

its edge lengths: (22.5 + 22.5) × (27.5 + 22.5) × ( 25 +
65) × (17.5 + 17.5) × (15 + 65) ≈ 5.8 × 108 deg5 . Simi-
larly, we estimated that for the index finger (three joint an-
gles considered), the volume of a joint error ellipsoid ranges
from about 5.2 × 103 to 1.2 × 104 deg3 over the whole range
of joint motion. The volume of the hypercuboid containing the
feasible combinations of joint angles of the index finger equals
(21 + 28) × (73 + 98) × (0 + 110) ≈ 9.2 × 105 deg3 .

B. Information Delivered Through Thumb and Index Finger Per
Gesture

Based on the calculated joint error ellipsoids and follow-
ing step 2 in Section II, we estimated that the numbers of the
nonoverlapping joint error ellipsoids within the whole range of
joint motion of the thumb and index finger are bounded above
by 1100 and 130, respectively. In other words, the maximum
number of messages that can be unambiguously encoded by
postures of the thumb is no greater than 1100 and that of the
index finger is no greater than 130. In terms of bits of infor-
mation, the neural system may deliver at most log2(1100) ≈
10 bits of information through the thumb and log2(130) ≈ 7
bits of information through the index finger per use of a finger
gesture. These estimates are consistent with the fact that the
thumb is the most versatile and dexterous finger of the hand.

C. Information Capacities of Hand in Gesturing

Based on the aforementioned results for the thumb and the
index finger, we further calculated a rough upper bound, which
is 38 bits, for the maximum information that can be delivered
through the whole hand per use of a gesture. Generally, the in-
dex finger is more dexterous than any one of the middle, ring,
and pinky fingers, so it is reasonable for us to assume that each
of the latter three fingers can deliver only a smaller number of
messages per gesture than the index finger. In addition, per use
of a gesture, the maximum information delivered through the
hand should be less than the sum of the maximum information
delivered through each finger. This is because many peripheral

and central constraints significantly restrict the independence
among the five fingers [24]. Therefore, the maximum infor-
mation delivered through a hand posture should be less than
10 + 7 × 4 = 38 bits.

Taking into account the movement time, we derived that the
information capacity of the hand in making gestures (transitions
from posture to posture) is bounded above by 150 b/s. It was
shown in [25] that by using the hand gestures defined by ASL,
people fluent in fingerspelling can produce words at a rate of
four letters per second. This is consistent with an experimental
study [26] where the human subjects typically spelled words
in ASL at a rate of three to four letters per second. Another
experimental study [27] revealed that the average ASL word
production rate for the tested subjects was 2.4 letters per second.
Furthermore, when the size of the alphabet of hand gestures or
signs becomes larger, the end postures of gestures become less
distinguishable from each other, and the time (for movement and
decision-making) to complete a gesture has to grow as well. So
we believe 0.25 s (i.e., four gestures per second) is a reasonable
lower bound of the average transition time (across all posture
combinations) required for the hand to switch from one posture
to another. Therefore, the information capacity of the hand in
fingerspelling is bounded above by 38/0.25 ≈ 150 b/s.

IV. DISCUSSION

A. Related Studies

Information and control-theoretic approaches have been in-
troduced in the study of human–machine interaction. In terms of
information transmission rate, Fitts’ law was proposed to quan-
tify the speed accuracy tradeoff in human manual control [28].
This information-theoretic paradigm has received tremendous
success in characterizing the “pointing channel” in human–
machine interaction. On the other hand, it was shown from
the controls perspective that Fitts’ law is consistent with the
closed-loop step response of a time-delayed system of the first
order [29]. In our study, we followed the information-theoretic
paradigm to investigate the limit of the hand channel in commu-
nication. Meanwhile, we also used control theory to interpret
the constraints on the channel capacity imposed by errors in
the sensory pathway and movement generation pathway (see
Appendix A).

Researchers have investigated some limited aspects of infor-
mation processing via the hand. For example, Balakrishnan and
MacKenzie studied the information processing rate of the thumb
and index finger in a pinch-grip movement [4]. They asked hu-
man subjects to hold a pressure-sensitive stylus with the thumb
and index finger and perform a reciprocal point-select task in-
volving only the joints of the thumb and index finger. The task
was designed following Fitts’ speed/accuracy paradigm [28],
and the information processing rate of the thumb and index fin-
ger was estimated to be 4.5 b/s in the aforementioned task [4]
(the information processing rate can be calculated by dividing
the index of difficulty [28] of the task, measured in bits, by
the movement time, measured in seconds). Quastler and Wulff
investigated the information transmission in playing piano by
sight (random music) [5], [30]. They used a wide range of key
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numbers and encouraged the human subjects (experienced pi-
anists) to play with very high speeds so as to obtain informational
saturation. They estimated that the maximum rate of informa-
tion transmission from visual input to finger movements is about
25 b/s [5]. The information transmission rate was calculated by
dividing the mutual information between the visual input and
action output by the movement time. The aforementioned two
studies were both restricted to specific tasks of the hand, but their
estimates provided lower bounds on the information capacity of
the hand.

To our best knowledge, there has been no direct estimate of
an upper bound of the information processing rate of the hand.
A very rough upper bound can be obtained from the maximum
rate of information transmission through all the nerve bundles
in the arm. These nerve bundles carry all the information re-
quired for movement control of the hand. Hannula estimated
that the maximum information transmission capacity of the ner-
vous systems of the arm is about 107 b/s when the frequency
coding method is applied [13]. Apparently, this upper bound is
very conservative, because the nerve bundles in the arm under-
take more responsibilities than control of hand movements. In
our study, we provided a direct estimate of an upper bound of the
information capacity of the “hand channel” based on calculation
of spindle error ellipsoids and joint error ellipsoids.

Note that in this study, we considered only gesture-based
(discontinuous) manual control and communication. Our esti-
mation of channel capacity of the hand cannot be applied directly
to continuous hand movements such as tracking and steering.
However, the information delivered via continuous movements
seems unlikely to exceed the information carried in discontinu-
ous movements: it was reported in a set of continuous tracking
experiments that the observed maximum rate of information
transmission was 8.4 b/s [31], which is less than the maxi-
mum rates obtained under similar conditions in discontinuous
tracking [32] or pointing experiments [33], 17 and 11.7 b/s, re-
spectively. Therefore, the upper bound derived in this study may
be extended for continuous movements.

B. Radii of Spindle Error Ellipsoid

Our estimated radii of the spindle error ellipsoid along differ-
ent axes of muscle lengths are presented in Table II. These
values (ranging from 1.8 to 3.5 mm) are much larger than
25 µm, which was considered in [15] as the potential error
in neural estimate of length of one muscle due to the intrinsic
“noisiness” and finite gain of spindle signals. Such a discrep-
ancy can be explained as follows: the spindle error investigated
in [15] is different from the error defined in our context. Biggs
and Horch studied the sensitivity of spindles with respect to a
change of muscle length [15], and spindles can still respond sen-
sitively to stretches with amplitude as small as 25 µm [19]; in our
study, however, we considered the error of spindles (and con-
sequently, error of joint angles) distinguishable from the neural
system during the reproduction of different postures from mem-
ory. It is apparently easier for the neural system to tell whether
the present posture undergoes some perceivable changes than to
judge matching of a reproduced posture with a posture stored

in the memory. The latter task requires more information pro-
cessing in the neural system, and thus, more sources of noises
may affect the sizes of the spindle error ellipsoids and joint error
ellipsoids.

C. Limitations of Our Study

In addition to the estimation of information capacity of the
thumb and the index finger in communication, we provided an
upper bound (150 b/s) for the information transmission rate of
the whole hand in gesture-making. This upper bound is conser-
vative because we did not consider the constraints that keep the
five fingers from acting independently. These constraints may
originate in the biomechanical structures of the hand. For exam-
ple, a single muscle may be involved in the movement of several
fingers simultaneously (the extensor digitorum communis has
four tendons that insert into the second to fifth digits, and han-
dles extension of the four fingers). The finger movements may
also be constrained by the central control of the hand from the
nervous system. The nervous system has evolved to simplify the
control of multifinger movements at the price of sacrificing the
flexibility of the hand. The control has been able to handle the
large number of degrees of freedom during frequent and fun-
damental uses of the hand [24]. Due to these constraints, hand
postures are restricted to some lower dimensional manifolds in
the joint angle space.

D. Future Work

Considering the aforementioned constraints, we will under-
take human experiments in our future study on the information
capacity of the whole hand. Our proposed work is outlined in
the following four steps.
Step 1: We will obtain an ergodic sampling of hand postures.

This can be achieved by asking human subjects to arbi-
trarily create hand postures.

Step 2: We will utilize principal component analysis (PCA) to
determine the dimensionality of the manifold to which
the hand postures are restricted in the joint angle space
(similar to the method in [34]); moreover, we will map
this manifold onto a space of “primitive” postures,
which has reduced dimensionality than the space of
joint angles. Any hand posture can be denoted by a
point in the space of the primitive postures, with coor-
dinates representing the weights of contributions of the
primitive postures in the given hand posture. Here, the
idea of primitive posture decomposition is similar to
that proposed in [35], where pen gesture strokes were
decomposed into lower level elements.

Step 3: We will estimate the error ellipsoids in the space of
primitive postures (similar to the joint error ellipsoids
in the joint angle space). An error ellipsoid of a hand
posture can be estimated by asking human subjects to
memorize the posture and then to reproduce it repeat-
edly. We can calculate the mean and variance of the
distribution of the repeated postures. Based on the vari-
ance model for computing target resolution [20], we
can derive the size of the corresponding error ellipsoid.
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Step 4: We will follow a similar method as introduced in this
paper to estimate an upper bound for the maximum
number of the error ellipsoids that can be packed into
the region of hand postures in the space of primitive
postures. Such bound is an upper bound for the maxi-
mum number of distinguishable hand postures.

V. CONCLUSION

In this paper, we estimated the information capacity of the
thumb and the index finger in gesture-making based on the cal-
culation of joint error ellipsoids and spindle error ellipsoids. We
derived that the brain may deliver at most 10 bits of information
through the thumb and 7 bits of information through the in-
dex finger per use a finger gesture. Based on this, we estimated
that the information capacity of the hand in making gestures
is bounded above by 150 b/s. This study provided quantita-
tive indication of effectiveness and potential of the hand as a
communication channel. In future work, we will consider the
constraints imposed by the neural system on the planning and
control of hand movements. The neural system has developed
strategies to reduce dimensionality of the motor control, but at
the same time, these strategies have sacrificed flexibility of the
hand, and thus, exert limits on the information capacity of the
hand. Figuring out these limits will provide us another angle to
appreciate the neural strategies of movement control.

APPENDIX A

APPROXIMATING BUFFER REGIONS WITH JOINT

ERROR ELLIPSOIDS

In the hyperspace of joint angles of the thumb or the index
finger, a buffer region is reserved for a finger posture (end posture
of a gesture) that encodes a message. A buffer region around a
finger posture can be approximated by the joint error ellipsoid
of the given posture. This is because in the steady state of
gesture-making, the error between the actual posture and the
target posture desired by the brain is mainly contributed from
the sensing error in the sensory pathway rather than from the
error in the movement generation pathway. A control-theoretic
justification is given in the following.

Let us examine the movement generation at a single joint,
which can be modeled as a linear control system after sim-
plification (see Fig. 3). Although the neuromuscular system is
nonlinear, the linear approximation around an equilibrium is
reasonable when the state variables of the system vary within
a small range of that equilibrium; under situations where the
system is operating beyond this small range, we may consider
the linear approximation around another equilibrium. The input
of the control system in Fig. 3, i.e., θ, is the angle desired by
the brain at the given joint, and the output θ̂ is the actual joint
angle realized by the finger. With the introduction of Laplace
transform, a linear time-invariant analog system can be mod-
eled as a transfer function such that the Laplace transform of
the system’s zero-state response equals the multiplication of
the transfer function and the Laplace transform of the system
input [36].

Fig. 3. Modeling the movement generation at a finger joint as a linear control
system. The system input θ is the angle desired by the brain at the given joint
and the output θ̂ is the actual joint angle realized by the finger. We use K (s),
P (s), and H (s) to represent the transfer functions for the neural controller,
musculoskeletal system, and sensory feedback, respectively, and use nN , nM ,
and nS to represent the noises or perturbations in the corresponding pathways,
respectively.

The system in Fig. 3 is a single-input single-output version of
Fig. 1(c). We use K(s), P (s), and H(s) to represent the trans-
fer functions for the neural controller, musculoskeletal system,
and sensory feedback, respectively, and use nN (s), nM (s), and
nS (s) to represent the Laplace transforms of the noises or per-
turbations in the corresponding pathways, respectively. Then,
we can derive

θ̂(s)

=
K(s)P (s)θ(s) + P (s)nN (s) + nM (s) − K(s)P (s)nS (s)

L(s)

where L(s) = 1 + K(s)P (s)H(s).
In the steady state, the gain of a system equals the magnitude

of the system’s transfer function at s = 0 [36]. Therefore, in the
steady state

θ̂ss =
K(0)P (0)θss + P (0)nN ss + nM ss − K(0)P (0)nS ss

L(0)

where the subscript ss is used to indicate the steady-state value
of the corresponding variable. Note that: 1) P (0) should be
bounded and nonzero, because bounded input to the muscu-
loskeletal system always leads to bounded output, and the sys-
tem can have an output of nontrivial steady state in response to
some bounded input signal; 2) H(0) should equal one, because
the desired joint angle and the actual joint angle are compared
in the same metric space and their units must match each other;
and 3) K(s) should have high gain at low frequency range,
because K(s) contains a component of 1/s, i.e., neural integra-
tor [14]—therefore, ideally, lims→0 K(s) = ∞. Based on these
arguments

K(0)P (0)
L(0)

= 1,
P (0)
L(0)

= 0,
1

L(0)
= 0.

So

θ̂ss = θss − nS ss

which implies that under the linear-control-system approxima-
tion of the finger movement generation, the steady-state error
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between the actual posture and the brain-desired posture is con-
tributed only from the sensing error.

APPENDIX B

JOINT ERROR ELLIPSOIDS AND SPINDLE ERROR ELLIPSOIDS

Consider the hyperspace of joint angles of the thumb or index
finger [see Fig. 2(a)]. Each point in that hyperspace represents
a vector of joint angles: θ = (θ1 , . . . , θm )′. For the thumb, θ
contains five joint angles for: 1) flexion/extension of the inter-
phalangeal (IP) joint; 2) flexion/extension of the metacarpopha-
langeal (MP) joint; 3) abduction/adduction of the MP joint;
4) flexion/extension of the carpometacarpal (CMC) joint; and
5) abduction/adduction of the CMC joint (see Fig. 4). For the in-
dex finger, θ contains three joint angles for: 1) flexion/extension
of the PIP joint; 2) flexion/extension of the MP joint; and 3) ab-
duction/adduction of the MP joint (see Fig. 4). Note that for the
index finger, we do not consider the distal IP (DIP) joint because
the motions of the DIP and PIP joints are highly dependent—
during natural movements, the flexion of the DIP joint of a finger
is about two-thirds of that of the PIP joint [37].

We derive the joint error ellipsoid from the spindle error
ellipsoid, which takes into account the difference in spindle
length sensitivity of different muscles. Such difference is due
to the different distributions of spindles across muscles (see
Table II).

In the hyperspace of lengths of muscles involved in the move-
ment of the thumb or index finger [see Fig. 2(b)], each point
represents a vector of muscle lengths: l = (l1 , . . . , ln )′. For the
thumb, l contains lengths of the following muscles: abductor
pollicis brevis, abductor pollicis longus, adductor pollicis, ex-
tensor pollicis brevis, extensor pollicis longus, flexor pollicis
brevis, flexor pollicis longus, and opponens (see Fig. 5). For the
index finger, l contains lengths of extensor digitorum communis,
extensor indicis, flexor digitorum profundus, flexor digitorum
superficialis (FDS), first dorsal interosseous including the radial
and ulnar interosseous, and first lumbrical (see Fig. 6).

For a single muscle, say muscle i stretched to an actual length
of li0 , the muscle length estimated by the neural system is a ran-
dom variable. The error of estimation may come from a variety
of sources including stochastic firing of spindles. For simplifi-
cation, we approximate the error of estimation (of the length of
a muscle) as a zero-mean random variable with Gaussian dis-
tribution. Following the argument of [38], the variance of this
Gaussian random variable should be proportional to the recip-
rocal of the number of spindles in the muscle. Therefore, for
muscle i, the variance of the estimation error, denoted by σ2

i ,
equals σ2/si , where si is the number of spindles in muscle i
and σ2 is the variance contributed from a single spindle.

For a set of muscles (i = 1, . . . , n) with actual lengths l0 ,
we assume that the error in the estimated length of each mus-
cle is independent of the errors in the estimation for the oth-
ers. Thus, the length vector estimated by the neural system is
a Gaussian random vector, the mean of which equals l0 and
the covariance matrix is a diagonal matrix: diag{σ2

1 , . . . , σ2
n}=

diag{σ2/s1 , . . . , σ
2/sn}. According to the property of level

sets of a Gaussian distribution [39], for the muscles with ac-

Fig. 4. Joints of the thumb and the index finger. This picture is adapted from
http://commons.wikimedia.org/wiki/Image:Human_hand_bones_simple.svg.

Fig. 5. Muscles controlling the movement of the thumb. This picture is adapted
from http://classes.kumc.edu/sah/resources/handkines/sitemap.htm.

tual lengths l0 and a fixed constant c > 0, the estimated muscle
length vector should have the same probability density at any
l = (l1 , . . . , ln )′ on the following ellipsoid:

{
(l1 , . . . , ln )′| [√s1(l1 − l10)]

2 + · · · + [
√

sn (ln − ln0)]
2 = c

}
.

A spindle error ellipsoid El0 , which surrounds a specific
vector of muscle lengths l0 , is then defined as follows:

El0 =
{

(l1 , . . . , ln )′ | [
√

s1(l1 − l10)]
2 + · · ·

+ [
√

sn (ln − ln0)]
2 ≤ r2

}
(1a)
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Fig. 6. Muscles controlling the movement of the index finger. This picture is
adapted from http://classes.kumc.edu/sah/resources/handkines/sitemap.htm.

where r is a scaling factor characterizing the size of El0 . The
value of r will be estimated later in (14) and (15). In the case
that si is the same for all i, El0 becomes a hypersphere. An
equivalent expression for (1a) is

El0 =
{
l | [Λ(l − l0)]′ [Λ(l − l0)] ≤ r2} (1b)

where

Λ = diag {√s1 , . . . ,
√

sn} . (2)

We further assume that r does not depend on l0 , i.e., El0

has equal size for different combinations of muscle lengths.
As mentioned previously, this assumption can be supported
by an experimental finding from [19]. In addition, the value
of r should be the smallest among those that satisfy the sep-
aration criterion for spindle error ellipsoids: any two pos-
tures, represented in the hyperspace of muscle lengths by l1
and l2 , respectively, can be sensed by the neural system to
be two different postures during reproduction of them from
memory if the two surrounding ellipsoids El1 and El2 do not
overlap.

To estimate the information capacity of the thumb and the
index finger in gesturing, we need to know the sizes of joint
error ellipsoids. In the following, we first derive the relationship
between the joint error ellipsoids and spindle error ellipsoids
(see Appendix C), then estimate the sizes of spindle error ellip-
soids characterized by the parameter r (see Appendix D), and

finally, we can estimate the sizes of joint error ellipsoids from
the value of r.

APPENDIX C

ESTIMATING JOINT ERROR ELLIPSOIDS FROM SPINDLE

ERROR ELLIPSOIDS

As discussed in Section II, the error in finger joint sensation is
primarily due to the error in the muscle length estimation by the
neural system via the spindles. Therefore, we have the following
approximated relation between the joint error ellipsoids and
spindle error ellipsoids:

Eθ0 = {θ | f(θ) ∈ El0 , where l0 = f(θ0)} (3)

where f = (f1 , . . . , fn )′ is a vector function that describes the
relationship between muscle lengths and joint angles




l1 = f1(θ1 , . . . , θm )
l2 = f2(θ1 , . . . , θm )

· · · · · · · · ·
ln = fn (θ1 , . . . , θm ).

(4)

Consider the FDS of the index finger as an example. Sticking
to the notation in Appendix B, we denote θ1 the flexion angle
of the PIP joint, θ2 the flexion angle of the MP joint, θ3 the
adduction angle of the MP joint, and l4 the muscle length of the
FDS. Based on a biomechanical model of index finger dynamics
[21], we have the following relationship between l4 and the three
joint angles:

l4 = f4(θ1 , θ2 , θ3)

= c0 − c1θ1 − c2θ2 − 2c3

[
1 − θ1/2

tan(θ1/2)

]

− 2c4

[
1 − θ2/2

tan(θ2/2)

]
− (c5 + c6θ3)θ3 (5)

where ci (i = 1, . . . , 6) are coefficients that can be obtained
from [21] ([21, eq. (4b) and Table II]), and c0 represents the
muscle length of the FDS when θ1 = θ2 = θ3 = 0. The rela-
tionship between the other muscle lengths and the joint angles
of the index finger can also be obtained from [21].

In general, the dimension of El0 is greater than that of Eθ0 ,
i.e., n > m. In addition, not all combinations of muscle lengths
correspond to feasible finger postures or feasible combinations
of finger joint angles. The vector function f maps Eθ0 onto a
lower dimensional manifold in El0 .

Since both spindle error ellipsoids and joint error ellip-
soids are small, l = f(θ) can be approximated via linearization
around l0 = f(θ0) for θ ∈ Eθ0

l − l0 = J (θ − θ0)

where J is an n × m Jacobian matrix defined by

J =




∂f1/∂θ1 · · · ∂f1/∂θm

...
. . .

...
∂fn/∂θ1 · · · ∂fn/∂θm




θ=θ0

(6)
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where ∂fi/∂θj can be calculated from (4). For example, for the
index finger

∂f4

∂θ1
= −c1 + c3

[
1

tan(θ1/2)
− θ1/2

sin2(θ1/2)

]

∂f4

∂θ2
= −c2 + c4

[
1

tan(θ2/2)
− θ2/2

sin2(θ2/2)

]

∂f4

∂θ3
= −c5 − 2c6θ3

according to (5).
The Jacobian matrix transforms changes in joint angle to

changes in muscle length. The value of J depends on θ0 and
may vary as θ0 changes.

Due to (1b) and (3), any θ ∈ Eθ0 should satisfy
{Λ[f(θ) − l0 ]}′{Λ[f(θ) − l0 ]}≤ r2 , which can be approxi-
mated by [ΛJ (θ − θ0)]′ [ΛJ (θ − θ0)] ≤ r2 . Therefore, we
have the following approximation for Eθ0 :

Eθ0 =
{
θ | [ΛJ (θ − θ0)]′ [ΛJ (θ − θ0)] ≤ r2} . (7)

We performsingular value decomposition (SVD) [40] for the
n × m matrix ΛJ , where the rank of ΛJ should be m. For ΛJ ,
there exists a factorization of the form

ΛJ = UDV ′ (8)

where U and V are n × m and m × m matrices, respectively,
each of which has orthonormal columns so that U ′U = V ′V =
Im (m × m identity matrix), and D is an m × m diagonal ma-
trix with nonnegative numbers on the diagonal. Then

[ΛJ (θ − θ0)]′ [ΛJ (θ − θ0)]

= [UDV ′(θ − θ0)]′ [UDV ′(θ − θ0)]

= [DV ′(θ − θ0)]′ [DV ′(θ − θ0)].

By introducing

φ = DV ′(θ − θ0) (9)

which is a transformation consisting of translation, rotation,
and dilation, Eθ0 can be transformed into an m-dimensional
hypersphere (m sphere)

Eφ =
{
φ′φ ≤ r2} . (10)

According to the property of an m-sphere [41] (m = 5 for the
thumb and m = 3 for the index finger—see the first paragraph
of Appendix B for the m-values of the two fingers), we have

(volume of Eφ) for the thumb =
8
15

π2r5 (11a)

(volume of Eφ) for the index finger =
4
3
πr3 . (11b)

According to the geometry of determinant [42], we have

(volume of Eθ0 ) =
1

|det(DV ′)| (volume of Eφ).

Using (8), we have

|det(DV ′)| =
√

det [(DV ′)′(DV ′)] =
√

det [(ΛJ)′(ΛJ) ]

So

(volume of Eθ0 ) =
1√

det [(ΛJ)′(ΛJ)]
(volume of Eφ)

(12a)

(volume of Eθ0 ) for the thumb =
8π2r5

15
√

det [(ΛJ)′(ΛJ)]

(12b)

(volume of Eθ0 ) for the index finger =
4πr3

3
√

det [(ΛJ)′(ΛJ)]
.

(12c)

The volume of Eθ0 is a function of J , which depends on θ0 .
Therefore, the size of Eθ0 may vary as θ0 changes.

Equations (12b) and (12c) show how to estimate the sizes of
joint error ellipsoids for the thumb and the index finger from the
sizes of spindle error ellipsoids (characterized by r). Except for
r, the other parameters in (12b) and (12c) can be obtained read-
ily: the diagonal matrix Λ is a constant matrix determined by
(2); the Jacobian matrix J for the index finger can be calculated
from the vector function f , which is described in a biomechani-
cal model of index finger dynamics [21]; for the thumb, J can be
estimated using the data for thumb joint muscle moment arms,
which is available in [22] (for a joint muscle system, the change
in muscle length with respect to joint angle is the moment arm
of this system). Note that the Jacobian matrix J is not constant
but varies as finger posture changes. Now, the only unknown in
(12b) and (12c) is r. In the following, we estimate the value of
r.

APPENDIX D

ESTIMATION OF r

We take an indirect method to estimate the size of the spindle
error ellipsoid, r. Our method is based on an experimental result
by Clark et al. [20], who proposed the concept of target reso-
lution to assess the exactness of position sensing. This concept
can be used to estimate the maximum number of equally spaced
targets that can be reliably distinguished by the neural system
within a given range. Their experimental study on the PIP joint
of the index finger showed that over a range of 70◦ (100◦–170◦),
the resolution is 2.5 targets. In other words, a subject in their
experiment could fit at most 2.5 targets (averaged over subjects)
into the aforementioned range of movement at the PIP joint of
the index finger, while maintaining almost error-free matching
of targets when the subject tried to reproduce these targets from
memory. In the following, we show how we use this result to
estimate the value of r.

Generally, a joint error ellipsoid is eccentric: its projections
on different axes are different. If it has larger projection on
a given axis, then the joint angle represented by this axis is
more difficult to estimate. The sizes of these projections can be
calculated from the joint error ellipsoid. Let Pi0 represent the
projection interval of Eθ0 on the θi-axis [see Fig. 2(a)]. It can
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TABLE III
ESTIMATION OF r

be seen that

length of Pi0 = max
θ∈Eθ0

{2(θi − θi0)} .

Let

W = (DV ′)−1 (13)

where D and V are obtained from (8), and denote wi the ith
row vector of W . According to (9), we have θi − θi0 = wiφ,
and then

length of Pi0 = max
φ′φ≤r 2

{2wiφ} .

The maximum value of the set on the right-hand side of the afore-
mentioned expression is achieved when φ =

[
w′

i/
√

wiw′
i

]
r.

Therefore

length of Pi0 =
(
2
√

wiw′
i

)
r. (14)

Thus, the value of r can be estimated by (14) following the
steps summarized in Table III. As mentioned previously, Clark
et al. showed that within the range from 100◦ to 170◦ the target
resolution of the PIP joint is about 2.5 targets [20]. This implies
that the size of projection of Eθ0 on the PIP joint, i.e., the
length of Pi0 in (14), is about 70/2.5 = 28◦ on average over a
range of 70◦. Next, we calculate the average value of 2

√
wiw′

i

over the same range of PIP angles (100◦–170◦) while setting
the angle of DIP joint to be two-thirds of the PIP joint angle
and fixing the flexion angle and abduction angle of the MP
joint at 170◦ and 0◦, respectively (a comfortable posture for the
MP joint). Specifically, to calculate the value of 2

√
wiw′

i for a
given combination of joint angles of the index finger, we can:
1) obtain the expression for the vector function f in (4) based
on a biomechanical model of index finger [21]; 2) calculate the
Jacobian matrix J in (6); 3) obtain the value of Λ from (2) and
Table II; 4) perform SVD upon ΛJ and get D and V matrices
from (8); and 5) calculate the matrix W using (13) and the value
of

(
2
√

wiw′
i

)
. Following these steps, we compute and then

average the values of
(
2
√

wiw′
i

)
over a set of equally spaced

discrete values (5◦ apart from each other) of PIP joint angles
within the range from 100◦ and 170◦, and obtain the following
value as an approximation for the average value of 2

√
wiw′

i :

0.0239 rad/mm or 1.37◦/mm. So

r ≈ 28
1.37

≈ 20 mm. (15)
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