
General random coding bounds: AWGN channels to MIMO
fading channels

Heung-No Lee & Jingqiao Zhang & Cheon Won Choi

Received: 22 June 2008 /Accepted: 16 November 2009 /Published online: 23 December 2009
# Institut TELECOM and Springer-Verlag 2009

Abstract Random coding bounds are obtained for
multiple-input multiple-output (MIMO) fading channels.
To derive the result in a compact and easy-to-evaluate form,
a series of combinatorial codeword enumeration problems
are solved for input-constrained MIMO fading channels.
The bounds obtained in this paper are shown useful as
performance prediction measures for MIMO systems which
employ turbo-like block codes as the outer code to derive
the space-time inner code. The error exponents for MIMO
channels are also derived from the bounds, and then
compared with the classical Gallager error exponents as
well as the channel capacities. The random coding bounds
associated with the maximum likelihood receiver exhibit
good match with the extensive system simulation results
obtained with a turbo-iterative receiver.
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1 Introduction

Multiple-input multiple-output (MIMO) systems have
drawn enormous attention ever since the potential for
multifold increase in spectral efficiency over rich scattering
fading channels has been identified [1, 2]. The use of turbo
codes [3] and low-density parity-check (LDPC) codes [4]
has shown extreme success, thanks to their capacity
achieving/approaching performance in many communica-
tion channels [5–7].

It is therefore of our interest to investigate the applica-
tion of turbo-like codes, LDPC codes in particular, over
MIMO systems and to derive analytical bounds on their
potential performance. In this regard, we have proposed a
couple of performance-bounding techniques in the past; one
for quasi-static fading channels in [8] and the other for fast
fading channels in [9, 10]. They are canonical union bounds
which require the knowledge of distance spectrum of outer
binary block code (compared to inner space-time block
code). These bounds were shown to be very useful as a
performance measure in comparison with simulation results
for a practical sum-product iterative decoding receiver.

In this paper, we focus on developing random coding
bounds which do not require the knowledge of distance
spectrum of outer code. In particular, the random block
code takes the role as the outer binary block code. The
distance spectra of random codes are straightforward and
can be compactly described with a few parameters for any
transmitter configuration. Random selection makes it
possible. Each code is generated randomly; within each
code, codewords are selected randomly as well. In a stark
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contrast, the distance spectra of the turbo-like codes are not
easy. Because of linear constraints, derivation of distance
spectrum is quite involved and only numerical approaches
are possible even for ensemble averages; furthermore, even
the numerical approaches are available only for certain
classes of linear codes [11–13]. Finding a non-ensemble
average distance spectrum of a linear code is an NP-hard
problem. Yet, searching for low weight codewords near
the all-zero codeword and their multiplicity have shown
some success using the so-called “error impulse” methods
[14, 15].

From the perspective of the “spectral thinning” argument
[16], the performance of random codes shall outperform
that of the linear turbo-like codes. Namely, the distance
spectrum of random block codes is thinner than that of
turbo-like linear codes. Consider an ensemble of (L,K)
random block codes. Let Ah denote the average number of
codewords whose Hamming weight is h. Then, the average
distance spectrum is simply given by Ah ¼ 2�L2K L

h

� �
for

h∈{0,···,L}. It is clear that Ah approaches to zero quickly for
small h. For turbo-like codes, however, the distance
spectrum is typically thicker due to the inherent linearity
constraint, i.e., the linear code has non-negligible number
of codewords with small Hamming weights. In fact, it has
been one of code designer’s wishes to eliminate the small
weight codewords from turbo and low-density parity-check
codes [16–18].

These observations have motivated our research in the
following direction: random coding bounds can be derived
in a concise form and the results can be utilized to serve as
tight lower bounds to the canonical union bounds. The
preliminary version of this approach has appeared in our
short paper [9], yet given without detailed and rigorous
proofs. We offer them here.

In this paper, our random coding bounds are compared
with the classical results such as Gallager’s random
coding exponents [19] and the input constraint mutual
information theoretic results [7, 20–23]. While Gallager’s
exponents and information theoretic capacities for MIMO
channels are useful, they are available to date only in basic
integral forms which require time-consuming numerical
evaluation and nested loop integration. We obtain closed
form error exponent expressions and show that the results
are consistent with canonical measures. Furthermore, we
show that our results are consistent with classical results
obtained for additive white Gaussian noise (AWGN)
channels.

Making connections to classical measures and compar-
ison of our results to well-known results are aimed at (1)
corroborating the accuracy of our results and at (2) showing
the generality of new results obtained in this paper, which
are extensive enough to subsuming previously known
classical results.

The rest of this paper is organized as follows. Section 2
describes the MIMO system of interest. In Section 3, we
provide the main result—the random coding bound—which
is proved in Appendix. In Section 4 through 7, we discuss
the results and make comparison with Gallager’s random
coding bound/exponent and MIMO capacity. Finally, we
make a summary in Section 8.

2 System of interest

Consider an ensemble of (L,K) random codes with a code
rate Rc ¼ K=L. The ensemble is constructed by randomly
selecting 2K codewords out of a total number of 2L distinct
binary strings of length L without replacement.1 The
ensemble is thus composed of all 2L

2K

� �
distinct codes

generated in this manner. Hereafter, it is assumed that each
code in the ensemble is equi-probably selectable.

As illustrated in Fig. 1, a random binary code C is used
to operate on the M-transmit N-receive MIMO system
which employs 2Kb -ary modulation (for example, Kb=2 for
4-QAM). In the system, a codeword c is equally likely
chosen from a code C for transmission. A codeword of
length L can be partitioned into a sequence of binary strings
of size MKb. Each string consists of MKb bits. We assume
the length of codeword L to be a T multiple of MKb for
convenience. We also assume that Kb stays the same over
time and antenna index throughout the paper except in
Section 7. There, we discuss the cases when Kb varies over
space and time.

We use a modulation table in this paper which maps
each string of MKb bits one-to-one correspondingly to an
M×1 vector s of channel symbols. Each entry of vector s
takes a point from the channel-symbol constellation of size
2Kb . We will call this base constellation. Note that a
channel-symbol vector s is an element of the set of J ¼
2MKb vectors. The set of the J vectors is referred to as vector
constellation as compared to the base constellation. We will
use S :¼ s0; � � � ; sJ�1f g to denote the vector constellation.
We assume the symbol vector s obeys the average energy

constraint, i.e., E sk k2
n o

¼ Es.

A map from a code C to ST is in general injective. Some
M×T space-time matrices are not selected as codewords as
some binary words of length L are not selected to be
codeword. But given a code, the map we have defined in
the previous paragraph will give us a set of space-time(ST)
sequences of channel symbol vectors. This set of ST
sequences, calling them ST codewords, is one-to-one
correspondent with the binary code selected. That is, there

1 Note that this is a little different from the classical definition of
random codes in which repetition is allowed.
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are 2K distinct binary codewords one-to-one correspond-
ingly mapped to 2K distinct space-time codewords. That is,
each codeword c in a code is mapped to a distinct M×T
space-time codeword matrix X=(x1,···,xT). Note that a
space-time codeword X consists of T columns and each
column xt takes a channel-symbol vector from the vector
constellation for each t∈{1,···,T}.

The input output relation for a receive signal (an N×1
vector) yt at the time epoch t is obtained as

yt ¼ Htxt þ nt ð1Þ
for t∈{1,···,T}, where Ht is the N×M channel matrix whose
entries are independent complex Gaussian distributed
random variables with zero mean and variance of 1/2 in
each dimension, and nt is the N×1 complex spatially and
temporally independent Gaussian noise with zero mean and
variance No

2 in each dimension. The channel matrix Ht is
assumed to be known at the receiver and to be selected
independently for each transmission of a channel-symbol
vector. Note that the channel is thus assumed to be ergodic.
This channel was considered in many previous studies [7,
9, 10, 22, 24].

We will omit the subscript t whenever there is no
confusion not distinguishing the time epoch.

We finish this section with the following remark.

Remark 1 Please note that input symbol vectors are
mutually independent and uniformly distributed (i.u.d.) on
the set S. Accordingly the Gallager error exponent and the
channel capacity will be obtained with the same condition
in Section 6. Such capacity is called the i.u.d. capacity in
the literature, see [23].

3 Random coding bounds

The main result of the paper is summarized in the following
theorem. The derivation of the union upper bound leading
to the Theorem is given in Appendix.

Theorem Consider the random-coded modulation MIMO
system described by Eq. 1. Let Pe denote the probability of
maximum likelihood (ML) decoding error which averaged

over the ensemble of random codes. Then, the error
probability is upper-bounded by

Pe � 2�T �EðRÞ ð2Þ
where, the exponent is defined as

EðRÞ :¼ Ro � R; ð3Þ

Ro :¼ �log2
1

22MKb

X2MKb�1

j¼0

X2MKb�1

k¼0

bj;k

( )
; ð4Þ

and

R ¼ RcMKb ð5Þ
In the theorem, we note that R represents the transmis-

sion rate (bits per channel use) of the system. Also, the
variable βj,k is defined as

bj;k :¼ 1þ 1

4N0
sj � sk
�� ��2� ��N

; ð6Þ

where, sk, sj∈S. It is the pairwise vector symbol error
averaged over fading. The proof is given in Appendix.

4 Discussions

A closed-form union upper bound on the MIMO transmis-
sion system has been derived in the theorem. As expected,
the bound decays exponentially fast to zero with increasing
block length N as long as a transmission rate R leading to a
positive error exponent E(R) is selected.

We will compare the result with the Gallager’s random
coding exponent in Section 5 and with the MIMO channel
capacity in Section 6. In Section 6, we will also show that
the rate Ro given in Eq. 4 can collapse down to a value called
the cut-off rate in the AWGN channel context. Hereafter, we
thus refer to the rate Ro in Eq. 4 as the cut-off rate for MIMO
channels. Later, we will also show that the cut-off rate can
serve as a lower bound to the MIMO channel capacity C. It
is worthwhile to note that this parameter is independent of
the constellation map used for transition from a binary
codeword to a space-time codeword. It rather depends on the
choice of signal constellation. This indicates that it can be
useful for code search problems.

Fig. 1 System block diagram of interest. Notation: M number of
transmit antennas; N number of receive antennas; c binary codeword
of length L; X [M×T] space-time codeword one-to-one correspond-
ingly mapped from c. Its T columns are selected the J–ary vector

constellation S; H is an [N×M] channel matrix. Its time index given in
the input output relation in Eq. 1 is omitted in the figure. Y [N×T]
matrix whose T columns are determined by the input-output
relationship given in Eq. 1
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4.1 An illustrative example

Consider a 2-transmit N-receive MIMO system with
quadrature phase-shift keying (QPSK) signaling, (i.e., M=

2 and Kh=2). We assume that signal points are chosen from
the QPSK constellation {+1,−1,+ i,−i}, where i ¼ ffiffiffiffiffiffiffi�1

p
.

In the system, there are J ¼ 2MK b ¼ 16 distinct values
that a symbol vector s can have as follows:

ffiffiffiffiffi
2

Es

r
sj 2

þ1

þ1

 !
;

þ1

þi

 !
;

þ1

�1

 !
;

þ1

�i

 !
;

þi

þ1

 !
;

þi

þi

 !
;

þi

�1

 !
;

þi

�i

 !
;

�1

þ1

 !
;

�1

þi

 !
;

�1

�1

 !
;

�1

�i

 !
;

�i

þ1

 !
;

�i

þi

 !
;

�i

�1

 !
;

�i

�i

 !( )

for j 2 0; � � � ; 15f g. As a function of sj and sk, βj,k can be
calculated from Eq. A24. By the use of βj,k, the error

exponent in Eq. 3 is finally obtained as:

EðRÞ ¼ 4� R� log2 1þ 4 1þ Es

4No

� ��N

þ 6 1þ Es

2No

� ��N

þ 4 1þ 3Es

4No

� ��N

þ 1þ Es

No

� ��N
( )

: ð7Þ

In Fig. 2, the random coding union bounds are compared
with the union bounds as well as the system simulation
results. At the transmitter, a Gallager’s (3,6) LDPC code [4]
generated randomly at the block length of 3,000 is used.
The receiver employs the usual turbo-iterative detection and
decoding which exchange the extrinsic log likelihood ratios
on the coded bit sequence. The QPSK modulation is used
to carry the coded bits over the 2×2 and 4×4 MIMO
channels. The union bounds for the linear LDPC codes are
derived using the technique reported in [9, 10], which is
based on the distance spectrum of the (3,6) LDPC codes.
The random coding bounds show a good prediction on the
waterfall position (and at least provide coercive upper
bounds to the simulation results). The comparison of the
random coding bounds with the union bounds for the linear

LDPC codes show that random coding bounds indeed are
suitable for lower bounding the union bounds for the linear
codes. Since the distance spectra of random codes possess
vanishing spectral components for small Hamming weights,
the random coding bounds show no sign of error floor (at
least in the region of interests) unlike the union bounds for
the linear code.

5 Comparison with Gallager’s random coding exponent

In this section, we compare the exponent derived in Eq. 3
with the classical random coding exponent developed by
Gallager ([19], see Section 5). Using the base-2 logarithm
in the system of concern, the average probability of ML
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Fig. 2 The union bounds on
random code (L=3,000, Rc=0.5)
vs. on the LDPC (3,000, 3, 6)
code: they are compared with
the system simulation of itera-
tive detection/decoding of the
LDPC code transmitted over the
MIMO channel
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decoding error was shown to be upper bounded in [25] as
follows:

Pe � 2�T �ErðRÞ ð8Þ
where, T is the number of channel uses,

ErðRÞ :¼ max
0�r�1

EoðrÞ � rRf g; and ð9Þ

Eo rð Þ :¼ �log2

Z
y;H

X2MKb�1

j¼0

1

2MKb
f y;Hjsj
� � 1

1þr

" #1þr

dydH

0B@
1CA:

ð10Þ
Note that f y;H sj

��� �
in Eq. 9 is the conditional

probability density function for y and H given s=sj.
According to [19], the function Eo in Eq. 9, which is to
be optimized, is concave for ρ≥0. Thus, it can be evaluated
by an optimization method such as the golden section
algorithm [26]. Nevertheless, the expression in Eq. 9 is still
not easy to calculate due to the integration over N(M+1)
complex dimensions. To evaluate it by the Monte Carlo
method, the following is more tractable alternative, which
can be obtained through a simple manipulation [25]:

Eo rð Þ ¼ �log2E

P2MKb�1

j¼0

1
2MKb

f y H; sj
��� � 1

1þr

" #1þr

P2MKb�1

j¼0

1
2MKb

f y H; sj
��� �

0BBBBB@

1CCCCCA ð11Þ

where f y H; sj
��� �

in Eq. 10 is the conditional probability
density function for y given H and s=sj.

As shown in Fig. 2, the exponent derived in Eq. 3 shows
a good match with the Gallager’s random-coding exponent.
Over a wide range of region, covering from low rates below
the cut-off rate, the optimal ρ in Eq. 9 is found to be equal
to 1 (by a numerical method). Thus, we can practically use
the exponent in Eq. 3 in place of the exponent in Eq. 9
while R<Ro. The two different measures coincide in this
region. Further investigation in this direction seems
interesting. As expected, the two exponents diverge in the
high-rate region where the transmission rate passes beyond
the cut-off rate and approaches the capacity. The final gap
between the cut-off rate and the capacity is about 1 bit/
channel use as observed in Figs. 3 and 4.

6 Comparison with MIMO channel capacity

In this section, we aim to compute the channel capacity and
then compare it with the cut-off rate in Eq. 4. The channel
capacity C is the mutual information between the input and
output symbol vectors under the assumption that input

symbol vectors are mutually i.u.d. on the set S={s0,···,sJ-1}
(in this sense, such a channel capacity is also called i.u.d.
capacity) [20, 23]. The capacity for the channel in Eq. 1 is
thus the conditional mutual information between the i.u.d.
input s and the output y. Let h be the conditional entropy
function. Note that h y; s Hjð Þ ¼ N log pNoeð Þ for white
Gaussian noise. Then, the channel capacity is expressed
by

C ¼ h y Hjð Þ � h y Hj ; sð Þ

¼ MK b � N log2 eð Þ � E log2
X2MKb�1

j¼0

exp � y�Hsj j2
No

 !" #( )
ð12Þ

where the final expression of the channel capacity is
yielded by formulating h y Hjð Þ from the marginal proba-
bility density for y. Note that the marginal probability
density for y is obtained from the conditional probability
density for y given s as follows:

f y Hjð Þ ¼ 1

2MKb

X2MKb�1

j¼0

f y H; sj
��� �

¼ 1

2MKb pNoð ÞN
X2MKb�1

j¼0

exp � y�Hsj
�� ��2

No

 ! ð13Þ

where f y Hjð Þ and f y Hj ; sð Þ are marginal and conditional
probability densities for y, respectively.

In Figs. 3 and 4, the cut-off rates in Eq. 4 are plotted in
comparison with the numerically obtained channel capac-
ities for various modulation and channel scenarios. The cut-
off rates are shown to be about 3.5 dB at maximum off
from their respective channel capacities. It is observed that
the signal-to-noise ratio (SNR) and the rate gaps do not
significantly vary according to modulation sizes and the
number of transmit and receive antennas used. In fact, the
gap to the capacity shows in Fig. 5 that the union bound are
not tight enough when the rate approaches the capacity.

Tight union bounds that continue to approach the
capacity have been the subject of many researches. Two
different tight bounding methods have been suggested by
Gallager: they are so called (1) Gallager’s first bounding
method, discussed in Chapter 3 of Gallager’s thesis [4] and
(2) Gallager’s second bounding method given in [19]. The
second method is applied to our MIMO setting and the
results obtained are given in Eqs. 8, 9, and 10. In the 2000s,
the interest on tight bounds has been revived, and many
papers have been published. Details can be found in [8] and
the reference therein.

There exist several interesting relationships between the
Gallager’s random coding error exponent (Eq. 11) and the
capacity (Eq. 12). One is that the derivative of the random
coding exponent Eo(ρ) with respect to ρ and evaluation of it
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at ρ=0 is equal to the capacity, see Theorem 5.6.3 proved
in [19]. Along with other relations, this shows that the
maximum rate attainable with the random coding bound is
the capacity.

Note, however, that the Gallager’s results applied to
MIMO channels—Eqs. 8, 9, and 10—require multiple
nested numerical integration and numerical optimization at
each rate with respect to the utility variable ρ.

Nevertheless, Gallager’s exponent does show that it
indeed stays useful up to the channel capacity. For example,
let’s take a look at 15dB Es/No point with 16-QAM for 2×2
MIMO system in Fig. 3. Reading off a value from Fig. 3, we

note that the capacity is around 7 bits/sec. The same value is
obtained with the Gallager’s random coding exponent curve
shown in Fig. 5. The Gallager’s exponent Er(R) approaches
zero arbitrarily closely when R approaches 7 bits/sec.

6.1 Extension to ricean and AWGN channels

In this subsection, we discuss extensions of our current
results to Ricean and AWGN channels. For this purpose,
we start with the pairwise error probability (PEP) discussed
in Appendix A. In Appendix A, the PEP is given for
Rayleigh fading. Here, we define it for Ricean fading
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channel, and will later on let the Ricean factor to be zero
and obtain the result for the AWGN channel. Regardless if
the PEP is for Ricean or Rayleigh, the derivation in
Appendix holds.

For Ricean fading channels, for example, the PEP is
given as the following,

P c ! c0ð Þ �
YT
t¼1

1þ 1

4No
xt � x

0
t

�� ��2� ��N

exp �N
KR

1
4No

xt � x
0
t

�� ��2
1þ 1

4No
xt � x0

t

�� ��2
0@ 1A

ð14Þ

where KR is the Ricean factor. It is clear that by setting KR=
0, the right hand side becomes the PEP for Rayleigh fading
which is the starting point of Appendix A. The right hand
side of Eq. 13 can be rewritten in a form similar to Eq. A4
so that

P c ! c0ð Þ

�
YJ�1

j¼0

YJ�1

k¼0

1þ 1

4No
sj � sk
�� ��2� ��N

exp �N
KR

1
4No

sj � sk
�� ��2

1þ 1
4No

sj � sk
�� ��2

0@ 1A24 35dj;k

ð15Þ

where, we can define βj,k as the term inside the square
brackets for j,k∈{0,···,J−1}. The PEP for Ricean is now in
exactly the same form as that for Rayleigh. Thus, it is trivial to
show that the theorem holds for the Ricean channels as well,

but with a new definition bj;k :¼ 1þ 1
4No

sj � sk
�� ��2� ��N

exp �N
KR

1
4No

sj�skj j2
1þ 1

4No
sj�skj j2

� �
:

Another example of interest is the AWGN channel.
For this, we let the number of antennas to be 1, i.e., M=

N=1. In addition, we consider the most simple case in
which a binary phase shift-keying modulation is assumed,
i.e., Kb=1 and x ¼ ffiffiffiffiffi

Es
p

1� 2cð Þ. Then, the PEP can be
written as

P c ! c0ð Þ � exp � 1

4No

XT
t¼1

xt � x
0
t

�� ��2 !

¼
YT
t¼1

exp � 1

4No
xt � x

0
t

�� ��2� �

¼
YJ�1

j¼0

YJ�1

k¼0

bj;k
dj;k

ð16Þ

where, xt and xt′ are the tth components of x and
x′, respectively. It is trivial to show β0,0=β1,1=1 and
b0;1 ¼ b1;0 ¼ exp �Es=Noð Þ. Accordingly, the error expo-
nent is obtained as

EðRÞ ¼ 1� R� log2 1þ exp � Es

No

� �	 

: ð17Þ

We note that the rate Ro ¼ 1� log2 1þ exp � Es
No

� �h i
is

the cut-off rate for the AWGN channel.
This extension to AWGN channel shows that our

result is general and consistent so with the previous
random-coding error exponent obtained in AWGN chan-
nel context.

7 Modification for different Kb in space and time

Throughout this paper so far, the size of base constellation
2Kb has remained constant for different time epochs and

Fig. 5 Comparison of the two
error exponents
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different antennas. During the review process, a very
interesting question came up from an anonymous
reviewer as to inquire if our framework is flexible
enough to handle the cases when Kb varies over time
and space. We consider both spatial and temporal variation
cases and discuss each.

The first is the case when Kb varies over antenna.
Different antennas can use different signal constellations.
This is an easy case and can be handled with almost
no additional effort. Let’s use an example for easy
exposition. Suppose M=2 and we want the first antenna
to use Kb,1=2 bit-base constellation while the second
antenna to use Kb,2=1 bit-base constellation. Then, the
vector constellation is a set of 2×1 vectors which can be
formed by taking its first element from the 2-bit
constellation while taking the second element from
the 1-bit constellation. One can construct the vector
constellation this way whose size is J ¼ 2Kb;1þKb;2 ¼ 22þ1.
The rest of the procedure stays exactly the same. A
slightly general vector constellation is the only required
modification.

The second is the case when Kb varies over
time. This is more involved. The key idea of the proof
given in Appendix was provided by the multinomial
expansion lemma. A modified expansion is needed for
the second case. Again let us take an example for easy
exposition. Suppose T=10 and variation occurs at t=5
and on. Let Kb,1=1 for the first four time epochs. Then,
T1=4. Let Kb,2=2 for the last six time epochs; T2=6.
Then, consider two sets of utility variables. One is
z1; j
� �

j¼0;1;:::;J1�1, and the expansion of T1-th power of the

sum is
PJ1�1

j¼0
z1; j

 !T1

¼ P
v12Ω1

T1
v1;0; v1;1; � � � v1;J�1

 ! QJ1�1

j¼0
z
v1; j
1; j .

The other is z 2; j
� �

j ¼ 0;1;:::; J2 � 1
and the expansion

of T2-th power of the sum is
PJ 2 � 1

j¼ 0
z 2; j

 ! T2

¼
P

v12Ω1

T2
v2;0; v2;1; � � � v2;J�1

 ! QJ2�1

j¼0
z
v2; j
2; j . The product of the

two has the following expansion,

XJ1�1

j¼0

z1;j

 !T1 XJ2�1

j¼0

z2;j

 !T2

¼
X
v12Ω1

X
v22Ω2

T1
v1;0; v1;1; � � � v1;J�1

 !
T2

v2;0; v2;1; � � � v2;J�1

 !YJ2�1

k¼0

z
v2;k
2;k

YJ1�1

k¼0

z
v1;k
1;k ð18Þ

where, Ω1 and Ω2 are the collections of arrays defined as

Ω1 :¼ v1 v1;j 2 0; 1; :::; Tf g;
XJ1�1

j¼0

v1;j ¼ T1

�����
( )

and

Ω1 :¼ v1 v1;j 2 0; 1; :::; Tf g;
XJ1�1

j¼0

v1;j ¼ T1

�����
( )

:

Corollary Using Eq. 18 and following the steps similar to
Appendix A and B, we obtain the following result:

Pe � 1

2L
2K

2L
XJ1�1

j;k¼0

b1;j;k

 !T1 XJ2�1

j;k¼0

b2;j;k

 !T2

¼ 2�T Ro�Rð Þ
ð19Þ

where, Ro : ¼ � log2 2
� 2 L

T � log 2

PJ1�1

j;k¼0
b1;j;k

 ! T1
T

�

log2
PJ2�1

j;k¼0
b2;j;k

 !T2
T

:

Note that L ¼ T1MKb;1 þ T2MKb;2; b1;j;k :¼ 1þ 1
4N0

j
�

s1;j � s1;k j2Þ�N is for the first vector constellation of size

MKb,1, and b2;j;k :¼ 1þ 1
4N0

s2;j � s2;k
�� ��2� ��N

is for the

second vector constellation of size MKb2. The proof is
omitted.

8 Conclusions

In this paper, we have obtained random-coding bounds for
MIMO systems. We have shown that these random-coding
bounds are general and consistent with the classical
measures such as Gallager’s error exponents and MIMO
channel capacities. We have shown that the obtained
bounds are useful to benchmark the system simulation
results of a practical coding scheme such as LDPC and
turbo codes. In this paper, we use an LDPC code and a
turbo-iterative message passing algorithm receiver. The
results indicate the usefulness of the derived bounds.

For the design of space-time block codes, the random
coding bound obtained in this paper can be used as a metric
to search for good space-time block codes. Note that a better
space-time block code consistently indicates a superior error
exponent behavior throughout the whole rate region [25].
The evaluation of the Gallager’s error exponent, however,
involves both the statistical averaging—over the noise, the
fading channel and the channel symbols—as well as the
optimization over the parameter given in Eq. 8, hence highly
intensive computation is required. Since the random coding
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exponent can be more quickly evaluable than the classical
measures, they may serve as a useful tool for code searches.

Appendix A. Pairwise error probability

In Appendix A and B, we will derive the main theorem. In
this section, we start with discussion of pairwise error
probability which will be used as the first building block to
prove the Theorem.

The PEP from codeword c to codeword c′ is defined as
the probability that the receiver, when making an ML
decision between a pair of codewords, erroneously decides
in preference of c′ when c was actually transmitted.
Suppose X and X′ are the two space-time words one-to-
one correspondingly mapped from c and c′, respectively.

In case of a Rayleigh MIMO channel, the PEP averaged
over the fading channel distribution for the system
described by Eq. 1 can be formulated as (see [24] for
details)

Pðc ! c0Þ �
YT
t¼1

1þ 1

4No
xt � x

0
t

�� ��2� ��N

ðA20Þ

where, T is the block length of the space-time word and |·|
denotes the L2 norm of the complex vector. Also, xt and xt′
are the tth columns of space-time words X and X′,
respectively. Further note that xt, xt′∈{s0,···,sJ-1}.

One of the key steps involved in the derivation of the
union bound is to determine the partition of a codebook
into a number of smaller sets so that the PEP in Eq. A20 is
to render an identical result within a set. The determination
of this set and the calculation of its cardinality are thus the
critical steps for deriving our result. To proceed, we
introduce two metrics given in the form of definition for
easy reference.

Recall that a codeword of length L is segmented into T
binary strings of length MKb and there are J ¼ 2MKb

distinct strings. For each string, we keep track of the
number of occurrence of the string within a codeword.
Under a particular constellation map, each string is mapped
to one of the J channel-symbol vectors in the vector
constellation. From a straightforward tracking of the one-to-
one correspondence in this manner, we will be able to
resolve all the codeword enumeration problems.

Definition 1 Binary string weight profile. There are J
binary strings which can be sequenced from 0 to J-1.
Likewise, there are J channel symbol vectors which can be
indexed from 0 to J-1. Let bj denote the jth binary string of
length MKb that is modulated onto the jth symbol vector sj.
We will use δj to denote the number of occurrences of the
jth string bj in a codeword. They can be stored in an array,

referred to here as the binary string weight profile (BSWP).
We use ^

�dðcÞ ¼ d0ðcÞ; � � � ; dJ�1ðcÞð Þ to denote a BSWP.
Each BSWP must satisfy the following four constraints
from its definition:

1. δj(c)∈{0,···,T}
2.

XJ�1

j¼0

dj cð Þ ¼ T

3. δj(c)∈{0,1,2,...,T} and
4.

XJ�1

j¼0

dj cð Þ ¼ T

When there is no ambiguity we will use ^
�d ¼ ^

�d cð Þ.
Under a specific constellation map, each binary string bj

maps to a corresponding channel symbol vector sj; likewise
each codeword, a sequence of T binary strings, maps to a
space-time word, a sequence of channel symbols sj. Making
use of definition 1, we note that there are δj(c) number of
channel symbol vectors sj in X. Likewise, we can find the
numbers of other channel-symbol vectors in X.

Now the following definition will help us identify those
pairwise error events which lead to an identical PEP under
the input/output relationship given in Eq. 1. For this, we
momentarily assume that a codeword c is selected and have
it held fixed. Relating to definition 1, its BSWP�̂d is fixed
as well.

Definition 2 Pairwise distance profile. In a pair of code-
words c and c′, there are a total of T binary string pairs.
Likewise, in the corresponding pair of space-time words X
and X′, there are a total of T channel symbol pairs (xt, xt′) for
t∈{1,···,T}. We use δj,k to denote the number of time indices
that a particular channel symbol pair (xt=sj, xt′=sk) appears
in a pair of ST words. Note that all different combinations of
j,k∈{0,···,J-1} are possible. The collection of all δj,k can be
stored into an array of size T2. The array is referred to as the
pairwise distance profile (PDP) between X and X′ (or
between c and c′). Let’s use d :¼ d0; d1; :::; dJ�1ð Þ to
denote the collection and each δ j is further defined as δ j :=
(δj,0, δj,1, …, δj,J-1) for each j∈{0,···,J-1}.

Using the definition of pairwise distance profile δ, one
can succinctly represent a set of erroneous words c′ each of
which leads to an identical PEP. Namely, for a fixed c, the
group of words c′ satisfy the following two constraints

0 � dj;k � dj cð Þ; andXJ�1

k¼0

dj;k ¼ dj cð Þ ðA21Þ
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for each j∈{0,···, J-1}. We note then that the sum of all
elements in the profile should be equal to T because it is the
total number of symbol vector pairs in any pair of space-
time words.

In summary, we have the following defined:

1. δj,k is the count of occurrences of a channel-symbol pair
in a pair of sequence for j, k=0, 1, …, J-1.

2. A pairwise distance profile δ(c)=(δ0, δ1, …, δJ-1) is an
array of collection of all δj,k. This distance profile is
between the two words in a pair. One is the test word c
(or its corresponding space-time word x(c)). The other
is an erroneous word c′ (or its corresponding x′(c′)). A
single profile is sufficient to represent a group of
erroneous binary words (c′) (or x′(c′)) whose PEPs
(Eq. A20) are the same.

3. The collection of all words with a same PDP δ(c) and
its size: for any fixed word c, we may want to count all
the words which share the same PDP δ(c). Any
erroneous error pattern belonging to this collection will
generate the same PEP. The cardinality of this group of
words is of interest and it can be written as the
following,

YJ�1

j¼0

dj cð Þ
dj;0; :::; dj;J�1

 !
; ðA22Þ

where
dj cð Þ

dj;0; . . . dj;J�1

 !
is the multinomial coefficient.

The following remarks show the usefulness of PDP.

Remark 2 The same PDP leads to the same PEP; but not
vice versa.

(a) The set of candidate codewords c′ can be partitioned
with respect to distinct PDP such that each partition
contains codewords with an identical PDP.

(b) Each codewords c′ in a partition has the same PEP.

A codeword pair can be described by a PDP δ. A
PDP is for each and every possible channel-symbol pair,
and for each it specifies the total number of times a
particular channel-symbol pair appears in a pair of ST
words. Once a PDP is given, the PEP in Eq. A20 can be
rewritten as,

P c ! c0ð Þ �
YJ�1

j¼0

YJ�1

k¼0

1þ 1

4No
sj � sk
�� ��2� ��N

" #�dj;k

¼
YJ�1

j¼0

YJ�1

k¼0

bj;k
dj;k

ðA23Þ

by grouping the like terms under each power exponent δj,k.
Here, we made use of the memory-less property of the
ergodic channel (Eq. 1). Note that the critical information
needed to write (Eq. A23) is stored in the PDP. Note that
terms βj,k are defined as

bj;k :¼ 1þ 1

4N0
sj � sk
�� ��2� ��N

ðA24Þ

which are completely determined and held fixed once a
vector constellation and power spectral density of the
noise are given.

The rationale behind the definition of the PDP δ as a
distance metric should be clear now: For a given SNR, the
pairwise distance profile δ completely determines the upper
bound formulation of the PEP. As will be noted in the
subsequent sections, use of the two profiles greatly
simplifies the union bound evaluation.

In the union bounds for binary transmission over
AWGN channels, for example, the use of distance profiles
based on Hamming weights and Hamming distances
greatly simplifies the calculation of union bound. The
calculation of union bounds becomes quite complex for a
J-ary vector constellation. The two profiles play the roles
similar to the Hamming weight and Hamming distance in
AWGN channels, and simply the union bound evaluation
for MIMO channels.

The following lemma is the multinomial expansion.
It will prove useful to write it here; while we omit the
proof.

Lemma Consider a set of J utility variables {zj}j=0,1,...,J-1
and the T-th power of the sum of the J utility variablesPJ�1

j¼0
zj

 !T

. Then, for an array of integers v=(v0, v1, …, vJ-1),

the T-th power of the sum can be expanded as,

XJ�1

j¼0

zj

 !T

¼
X
v2Ω

T

v0; v1; � � � vJ�1

 !YJ�1

j¼0

z
vj
j ðA25Þ

where, Ω is the collection of arrays v, i.e.,

Ω :¼ v vj 2 0; 1; :::; Tf g;
XJ�1

j¼0

vj ¼ T

�����
( )

;

and X
vi

v0; v1; � � � vn�1

 !
:¼

P
við Þ!Q
vi!

is the multinomial coefficient.
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Remark 3 Setting all utility variables to be equal to 1, we
note that

X
v2Ω

T

v0; v1; � � � vJ�1

 !
¼ JT ðA26Þ

Appendix B. Proof of theorem

We now discuss the proof of Theorem. The sketch of proof
goes as follows:

1. The random block code is not linear. Unlike linear
codes, the all-zero codeword alone is not enough to be
selected as the test codeword c. For a given codebook,
one must take the average over all randomly selectable
test codeword c. This is a difficult task.

2. The obstacle is circumvented by taking the ensemble
average over all equally probable selection of random
codebooks. The two profiles defined in Appendix A are
useful to simplify the union bound.

Proof Consider the ensemble of randomly selectable (L,K)
block codes. First, let us consider a code C in the ensemble
and the calculation of probability of maximum-likelihood
decoding error. A union bound to this error probability is
given as follows

Pe Cð Þ ¼ Ec2C Pejc
 �

� Ec2C
X

c02C;c0 6¼c

Pr c ! c0ð Þ
" #

¼ 1

2K
X

c2C
c02C;c0 6¼c

Pr c ! c0ð Þ;
ðA27Þ

where, Ec[•] is the expectation over the choice of a test
codeword out of 2K equi-probably selectable codewords in
the code C; Pe|c denotes the error probability conditioned
on the transmission of a test codeword c; and the inequality
is due to the usual union bound argument.

Then, the average probability of decoding error over the
ensemble of codes can be formulated according to Eq. A27
as follows,

Pe ¼ EC2C Pe Cð Þ½ � 1

Cj j
X
C2C

Pe Cð Þ
" #

� 1

2K Cj j
X
C2C

X
C2C

c02C;c0 6¼c

Pr c ! c0ð Þ
ðA28Þ

where we make use of the assumption that each code in the
ensemble is selected with equal probability.

In Eq. A28, note that (1) the inner summation shall be
conducted over all codeword pairs c and c′ (c≠c′) where
both should be element codewords in the same codebook
C; that (2) the outer summation is implied for each and
every code in the ensemble C.

It should be noted that the pilot codeword c should be
selected out of 2K valid codewords within each codebook
(the inner summation); but looking at it from the perspec-
tive of considering all codebooks in the ensemble, each and
every possible 2L distinct binary string of length L should
be considered as the test codeword at least once.

Making use of this observation and changing the order
of the summations, Eq. A28 can be rewritten as,

Pe � 1

2K Cj j
X
c

X
c0:c0 6¼c;
c;c02C;C2C

Pr c ! c0ð Þ ðA29Þ

where the outer sum is now over all 2L distinct binary string
c of length L. The inner sum is to count in all codeword c′
which are different from c, but must coexist with c in the
same codebook. Of course, there are only a finite number of
codebooks that possess both as its element codewords.
Shortly later, this quantity will be obtained explicitly under
the assumption of random coding argument (see Eq. A35).

Let us now consider the inner sum over all binary string
c′ with respect to a binary string c that have a binary string
weigh profile (δ0(c), δ1(c), …, δJ-1(c)). Recall that the
pairwise error probability from c to c′ in Eq. A23 is
completely determined by their pairwise distance profile δ.
The summation over c′ thus can be re-arranged with respect
to the PDP. We collect a single representative string per
each group of strings c′ which possess the same PDP, and
call it c″. That is, a string c″ represents all binary strings c′
each of which has the same pairwise distance profile, δ(c),
from the test word c.

Now Eq. A29 can be rewritten as

Pe � 1

2K Cj j
X
c

X
c0 0: d2Ω cð Þ

d 6¼d*

Sd cð Þ Pr c ! c00ð Þ

¼ 1

2K Cj j
X
c

X
c0 0: d2Ω cð Þ

d 6¼d*

Sd cð Þ
YJ�1

j;k¼0

b
dj;k
j;k :

ðA30Þ

A few explanations are in order per Eq. A30. First, Ω(c)
denotes the set of all possible pairwise distance profile δ(c) :=
(δ0, δ1, …, δJ-1) anchored at the test word c. Making use of
our definition in Eq. A21, we have,

Ω cð Þ :¼ d dj 2 Ωj cð Þ; for j ¼ 0; 1; 2; :::; J � 1
��n o

; ðA31Þ
where,

Ωj cð Þ :¼ dj dj;k 2 0; 1; :::; dj cð Þ� �
;
XJ�1

k¼0

dj;k ¼ dj cð Þ
�����

( )
: ðA32Þ
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Since the inner summation is taken over all the distinct
strings c″, each representing a group of equivalent strings
with the same PDP, the size of the group should be calculable

and it is the multinomial coefficient
QJ�1

j¼0

dj cð Þ
dj;0; :::; dj;J�1

 !
. It

is the number of ways to come up with the equivalent strings
which possess the given PDP. We will incorporate this factor
into the parameter Sδ(c); see Eq. A35.

Second, δ* denotes the unique PDP of a word anchored
at itself, and thus δ≠δ* is equivalent to c′≠c. Notice that for
δ* the entries are given as δj,k=δj(c) for j=k and δjk=0
otherwise.

Just for a check, we take the sum of all coefficients and
find:

X
c2GFð2ÞL

X
c0 0: d2Ω cð Þ;d 6¼d*

YJ�1

j¼0

djðcÞ
dj;0; :::; dj;J�1

 !
¼2L 2L � 1

� �
:

ðA33Þ
Third, we use Sδ(c) to subsume the rest of the factors.

It should point to the number of all erroneous codewords
c′ which have the pairwise distance profile δ from c,
counted for all valid codebooks. Note that a test word c
exists only in a certain number of codebooks. Such
occasions should be counted properly in the parameter
Sδ(c). Thus, taking the summation of Sδ(c) over all PDP
and all codeword pairs shall give a number equal to the
product of 2K(2K-1) and the cardinality of the (L,K) code
ensemble, i.e.,X
c2GF 2ð ÞL

X
c¶¶: d2Ω cð Þ;d 6¼d*

Sd cð Þ ¼ Cj j2K 2K � 1
� �

: ðA34Þ

The value of Sδ(c) can be calculated using the usual
combinatorial methods:

Sd cð Þ ¼ 2K

2L
Cj j

	 

� 2K � 1

2L � 1

	 

�
YJ�1

j¼0

dj cð Þ
dj;0; :::; dj;J�1

 !" #
;

ðA35Þ

for δ≠δ*. The first term is the number of codes in the
ensemble that include a word c as a codeword. Only a
certain fraction of these codes also include c″ as its element
codeword, which is the second term. There are 2K–1 binary
strings out of 2L– 1 available to be selected as the erroneous
codeword. Therefore, the number of codebooks which
contain both c and c″ simultaneously is the product of the
first two terms in Eq. A35. The third term is the tally of all
possible ways of having the binary strings for an erroneous
codeword which possess a PDP δ anchored at the test word
c and thus satisfying all the constraints due in Eq. A31 and
Eq. A32.

Substituting Eq. A35 into Eq. A30, we have

Pe � 1

2L
2K � 1

2L � 1

X
c2GF 2ð ÞL

X
c0 0 :d2Ω cð Þ

d 6¼d*

YJ�1

j¼0

dj cð Þ
dj;0; :::; dj;J�1

 !YJ�1

k¼0

bdj;kj;k

" #
:

ðA36Þ
Notice that, for δ=δ* (i.e., c′=c), the multinomial

coefficient in Eq. A36 equals 1, and also βj,k=1 according
to Eq. A24. Thus, Eq. A36 can be rewritten by considering
δ≠δ* separately,

Pe � 1

2L
2K � 1

2L � 1

X
c

X
d2Ω cð Þ

YJ�1

j¼0

dj cð Þ
dj;0; :::; dj;J�1

 !YJ�1

k¼0

b
dj;k
j;k

" #
� 2K � 1

2L � 1
:

ðA37Þ
Recalling the definition in Eq. A31 that the J constraints

for Ω(c) are not coupled with each other, the sum over δ=
(δ0, δ1, …, δJ-1) ∈ Ω(c) can be simplified as follows,

X
d2ΩðcÞ

YJ�1

j¼0

djðcÞ
dj;0; :::; dj;J�1

 !YJ�1

k¼0

bj;k
dj;k

" #

¼
X

d02Ω0 cð Þ
� � �

X
dJ�12ΩJ�1 cð Þ

YJ�1

j¼0

dj cð Þ
dj;0; :::; dj;J�1

 !YJ�1

k¼0

b
dj;k
j;k

" #

¼
YJ�1

j¼0

X
dj2Ωj cð Þ

dj cð Þ
dj;0; :::; dj;J�1

 !YJ�1

k¼0

b
dj;k
j;k

" #

¼
YJ�1

j¼0

XJ�1

k¼0

bj;k

 !dj cð Þ
;

ðA38Þ
where, the last equality follows from the Lemma.

Substituting Eq. A38 into Eq. A36, we have,

Pe � 1

2L
� 2

K � 1

2L � 1

X
c2GFð2ÞL

YJ�1

j¼0

XJ�1

k¼0

bj;k

 !dj cð Þ

� 2K � 1

2L � 1
: ðA39Þ

Now, let us move on to the summation over c: it
is over all 2L distinct binary strings of length L, as
mentioned before. Similar to the case for c′, this
summation can be reorganized with respect to the binary
string weigh profile d̂ cð Þ ¼ d0; d1; :::; dJ�1ð Þ associated
with each c. That is,

Pe � 1

2L
2K � 1

2L � 1

X
d̂2bΩ bAd̂

YJ�1

j¼0

XJ�1

k¼0

bj;k

 !dj

� 2K � 1

2L � 1
: ðA40Þ
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where, bAd̂ is the number of binary strings of length L that
have a metric d̂; i.e., each of these strings can be regarded
as a concatenation of a number δj of binary sub-string bj
(j=1, 2, …, J-1). Let bΩ denote the set of all possible
metric d̂ and according to definition 1, we have,

bΩ :¼ d̂ dj 2 0; 1; :::; Tf g;
XJ�1

j¼0

dj ¼ T

�����
( )

: ðA41Þ

Similar to Sδ(c), we use the combinatorial analysis to
calculate bAd̂;

Âd̂ ¼
T

d0; :::; dJ�1

 !
; ðA42Þ

which is the number of ways to arrange a number δj of
binary sub-strings bj (for j=0, 1, 2, … J-1). As expected, we
can verify that

P
d̂2bΩ Âd̂ ¼ JT ¼ 2MKbT ¼ 2L:

Substituting Eq. A42 into Eq. A40, we have

Pe � 1

2L
2K � 1

2L � 1

X
d̂2bΩ

T

d0; :::; dJ�1

 !YJ�1

j¼0

XJ�1

k¼0

bj;k

" #dj
� 2K � 1

2L � 1

¼ 1

2L
2K � 1

2L � 1

XJ�1

j;k¼0

bj;k

 !T

� 2K � 1

2L � 1
;

ðA43Þ
where the equality is obtained by applying the Lemma.

The bound can be further upper-bounded by

Pe � 1

2L
2K

2L
XJ�1

j;k¼0

bj;k

 !T

: ðA44Þ

Using L=TMKb and Rc=K/L and rewriting Eq. A44 in an
exponential form, we reach the result of the Theorem 2. □
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