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Abstract

In wireless networks, end-to-end communication depends on link capacities which, in turn, are determined by transmit
powers of interfering links. Optimal network performance and energy efficiency can be achieved by jointly optimizing
congestion control and power control. In this paper, we study this joint optimization problem by formulating it into convex
programming, i.e., we maximize a compound function which is a network utility function minus a factor, named tradeoff fac-
tor, of the associated power cost. We prove that this tradeoff factor is essential for good energy efficiency while maintaining
the network throughput at a satisfactory level. The problem is solved by a distributed dual-decomposition based algorithm
energy efficient jointly optimal congestion and power control (EJOC). EJOC tackles the power control problem in a recursive
manner, operating as easily as the steepest descent method but converging much faster. This optimization framework is
further extended to networks where each data source may have multiple alternative paths to its destination. Simulation results
show that the proposed algorithm converges faster than other algorithm and is capable of significantly improving the energy
efficiency of the network.
� 2008 Published by Elsevier GmbH
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1. Introduction

A plethora of different tradeoff relations exist in wireless
networks because wireless medium is open by nature. A
wireless network can be modeled as a graph whose level of
connectivity changes as the transmit powers are varied: it is
loosely connected if the powers barely able to attach to the
next hop nodes are used, or well connected if sufficiently
large powers are used. A well-connected graph may imply
the availability of multiple routes to destination; however,
unlike the wired counterpart, a well-connected graph does
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not always indicate good because signal interference may
get too large. In addition, each individual node sees different
channel and thus channel capacity varies at each link. As
a result, the problem of selecting power level at each link
and that of selecting traffic injection rate at each source are
tightly coupled.

We aim to use the network utility maximization (NUM)
framework by Kelly, Maulloo, and Tan (KMT) [1] for joint
power and congestion control. It is a convex optimization
method developed for optimal congestion control of data
traffic over wired networks, such as the Internet . Recently,
this work has been utilized in many cross-layer wireless net-
working researches [2–9]. The framework lends itself to a
Lagrange-dual based solution with which a gradient descent
type distributive control at each link and at each source in-
dividually can drive the network to a globally optimal state.
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Examples include the study of rate-reliability tradeoff [3],
joint congestion and power control in wireless networks
[4,5], joint routing and power allocation [6], joint oppor-
tunistic scheduling and congestion control [7], joint power
adaptation, scheduling, and routing [8], and joint congestion
control and medium access control [9].

In this paper, we are interested in the jointly optimal con-
trol at both the transport and the physical layer. Congestion
control is conducted at the transport layer to support high
network throughput, while power control is done at each
link, aiming to achieve high energy efficiency. They inter-
act through the link capacity constraints, i.e., the traffic flow
routed on any particular link is feasible only when there is
enough capacity of the link which can be varied by power
control. We carefully model this coupling between the lay-
ers and obtain a distributed and energy-efficient joint con-
gestion and power control algorithm for wireless networks.

The optimization frameworks in the literature can be cat-
egorized into single-path utility maximization, where each
source node has a single path to the destination [1–3], and
multipath utility maximization, where the traffic from each
source to its destination can pass through multiple alterna-
tive paths [1,10–12]. In [1], the authors briefly discuss the
multipath problem, and use a penalty function approach to
produce generally approximate solutions. The single-path
utility maximization in [10] is extended to the multipath case
and produces exact solutions. However, both this method
and that in [1] suffer from the convergence instability prob-
lem which is due to the lack of the strict concavity of the
objective function in its flow-rate variables. The authors in
[11] address this problem by adding a quadratic term to the
objective function. This is similar to the proximal optimiza-
tion method [13] which is used in [12] for wired networks
and adopted in this paper as well in the wireless context.

Our objective in this paper is to consider the joint con-
gestion and power control problem for wireless networks.
The most related work in this direction includes Chiang’s
analysis [4], where the author has addressed the joint con-
trol in a NUM based flow-rate utility maximization frame-
work and proposed a steepest descent method to optimize
the flow rate. In this paper, we provide the following unique
contributions for this problem:

1. First, different from the flow-rate utility maximization [4],
we focus on the energy-efficiency issues by explicitly in-
tegrating both flow rate and power cost into the objective
function. This integration of power cost turns out to be
very important and necessary, because otherwise we prove
that at least one link will transmit at its maximum power,
leading to a rather high interference level in the network
(see Proposition 1). By adjusting the tradeoff factor be-
tween the network utility and the power cost, the energy
efficiency of the network can be significantly improved at
the expense of a slight decrease in network throughput.

2. Second, we propose a novel recursive method to solve the
optimization problem of power control, which operates

as easily as the steepest descent method (as used in [4])
but converges much faster and does not require parameter
training. The fast convergence and no need for training
make the proposed method suitable for different wireless
networks that come with vastly different characteristics
and whose topology and link quality vary frequently over
time. As a comparison, we notice the steepest descent
method usually converges slowly and its control parame-
ter (i.e., the step size used to updated variables at each it-
eration) needs to be tuned a priori for good performance.
The optimality of the proposed method is proved (see
Proposition 2).

3. Third, our analysis is extended to wireless networks which
support multipath routing. The convergence instability re-
sulting from multipath routing is dealt with by introduc-
ing a modified proximal optimization method.

The rest of the paper is organized as follows. Section 2
formulates the joint optimization problem. Section 3 devel-
ops a distributed algorithm in which the power control sub-
problem is solved by a new recursive algorithm. In Section
4, we extend the analysis to the multipath routing network.
This is followed by discussions on simulation and numeri-
cal results in Section 5. Finally, we conclude the paper in
Section 6.

2. Problem formulation

Consider a wireless multihop network consisting of N
nodes and L directed links. Some nodes are traffic sources
and some act as relay nodes. Assume each source s has
a single path to the destination, which is composed of a
sequence L(s) of connected links l, l ∈ L(s). Accordingly,
we denote S(l) as the set of data flows that pass through a
certain link l. Notice that l ∈ L(s) if and only if s ∈ S(l).
Denote xs as the flow rate originated from source s, and Pl

as the transmit power of link l. It is assumed in this section
that each source has a single path to its destination. The
multipath problem will be analyzed later. In an interference-
limited wireless network, the information-theoretic capacity
cl of each link l is not fixed, but instead can be considered
as a function of the transmit powers and channel conditions:

cl (P) = 1/T · log(1 + SINRl ), (1)

where T is the symbol period and is assumed to be one unit
without loss of generality; P is the vector of the transmit
powers Pl , and SINRl denotes the signal-to-interference-
and-noise ratio (SINR) at the receiver of link l. We have
SINRl = Gl,l Pl/(

∑
k � l Gk,l Pk + nl ), where nl is the power

density spectrum of the additive white Gaussian noise at the
receiver of link l, and Gk,l is the channel fading from the
transmitter of link k to the receiver of link l. For simplicity,
we incorporate into Gl,l other constant coefficients, such as
the spreading gain in CDMA systems. Expression (1) can be
approximated by cl (P) = log(SINRl ) when SINRl is much



J. Zhang, H.-N. Lee / Int. J. Electron. Commun. (AEÜ) 64 (2010) 99–111 101

larger than 1 (e.g., �5). This is reasonable either when the
interference is much less than the received signal power, or
when the spreading gain is large, e.g., in a CDMA system.
In this case, the link capacity cl can be approximated by

cl (P) = log

(
Gl,l Pl∑

k � l Gk,l Pk + nl

)
, (2)

where the sum of interference terms over k � l can be con-
ducted in practice only over active links in the two-hop
neighborhood. Expressions (1) and (2) from information the-
ory can be easily extended to the systems with practical
modulation schemes. For example, it is known for M-QAM
modulation schemes, the link capacity can be expressed as
log(1 + K · SINRl (P)), where K is a constant determined
a priori by the modulation scheme and the required bit er-
ror rate [14]. In this case, we can simply redefine Gl,l as K
times the original Gl,l , and thus absorb the constant K into
expression (1) and (2).

2.1. Problem formulation

One objective of this paper is to improve the energy ef-
ficiency of the network, i.e., to maximize the utility of the
flow rates at the expense of appropriate transmit powers.
The problem can be formulated as follows:

P1 : maximize
∑

s

Us(xs) − �
∑

l

Vl (Pl )

subject to
∑

s∈S(l)

xs �cl (P), ∀l, (3)

xs �0 and 0� Pl � Pmax
l , ∀s, l, (4)

where Us(xs) is the utility function of traffic rate xs , which
depends on the type of service at source s; Vl (Pl ) is the cost
function of the transmit power Pl , which is determined by
the energy requirement; ��0 is the tradeoff factor which can
be interpreted as the ‘knob’ to balance the network utility
of flow rates and the cost of transmit powers. The second
constraint (4) states that each link l has a fixed power limit
Pmax

l .
For simplicity, the cost function is considered as a

weighted value of the transmit power, i.e.,

Vl (Pl ) = wl Pl , wl �0. (5)

Different shapes of utility functions lead to different types
of throughput fairness. For example, a family of utility func-
tions parameterized by [ps, �s](ps �0, �s �0) is proposed
in [15]:

Us(xs) =
{

ps log xs, �s = 1,

ps(1 − �s)−1x1−�s
s , �s � 1, �s �0,

(6)

where ps represents the weight (or priority) of different
flows. If �s =0, (6) is used to maximize the network through-
put. If �s = 1, proportional fairness among flows is attained;

if �s = 2, then harmonic mean fairness; and if �s → ∞,
then max–min fairness. It is clear, the general types of util-
ity functions in (6) facilitate us to analyze different types of
services and different efficiency-fairness tradeoffs.

2.2. Energy efficiency

In the literature, only the network utility of flow rates ap-
pears in the objective function, although the transmit powers
are also considered as variables to be optimized. For exam-
ple, the flow-rate utility maximization addressed in [4] can
be considered as a special case of P1 by setting � = 0. As
the main concern of this paper is energy-efficient network
utility maximization, we prove that a positive tradeoff factor
� is crucial to the energy efficiency of the whole system.

Proposition 1. In the case of � = 0, the optimal solution to
P1 is such that at least one link l transmits at its maximum
power, i.e., P∗

l = Pmax
l for some l.

Proof. (By contradiction) Denote (x∗, P∗) as the optimal
solution to P1 when �= 0, where x∗ is the vector of the op-
timal flow rates x∗

s and P∗ the vector of the optimal transmit
powers P∗

l .
Suppose the optimal transmit power is strictly within the

power constraints, i.e., P∗
l < Pmax

l , ∀l. It is clear that there
exists a positive constant � such that

(1 + �)P∗
l � Pmax

l , ∀l.

For example, one possible value is � = minl{(Pmax
l −

P∗
l )/P∗

l }. According to the expression of the link ca-
pacity (2), it is clear that a proportional increase in all
transmit powers leads to greater link capacities, i.e.,
cl (P∗) < cl ((1 + �)P∗).

In response to the increased capacity, the flow rates can
be increased by a certain amount without violating the ca-
pacity constraints. This implies a better solution than (x∗,
P∗) exists – a consequence of �=0 since there is no penalty
on the increase in the transmit powers – but it contradicts
the optimality of (x∗, P∗). �

The statement in Proposition 1 is consistent with intuition.
A link increases its transmit power to get a higher capacity.
However, the higher the power of this link, the higher the
interference to other links; hence the other links raise their
current power levels to a certain degree to at least maintain
their current channel capacities. As a result, all links end
up increasing their transmit powers so as to not reduce their
link capacities, until some links reach their maximal power
limit. The increase in transmit powers (and therefore inter-
ference), however, leads to progressively more marginal in-
crease in capacity since the capacity is logarithmic in SINR.
This will greatly deteriorate the energy efficiency of the
system.
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3. Optimization approach

In this section, we start with a standard dual-based ap-
proach to decompose the energy-efficient optimization to
congestion control and power control subproblems. We show
that the congestion control subproblem can be solved in a
closed form; we then propose a new method to solve the
power control subproblem which converges fast and requires
no a priori tuning on control parameters.

3.1. Standard approach for problem solving

P1 appears to be a non-convex programming problem,
since the link constraints (3) correspond to a non-convex re-
gion. However, a simple variable transformation P̃l =log(Pl )
can be used to transform the problem into an equivalent con-
vex optimization problem,

P2 : maximize
∑

s

Us(xs) − �
∑

l

Ṽl (P̃l )

subject to
∑

s∈S(l)

xs � c̃l (P̃), ∀l, (7)

xs �0, ∀s and P̃l � P̃max
l , ∀l, (8)

where P̃ is the vector of P̃l , and Ṽl (P̃l ) and c̃l (P̃) denote the
corresponding transformations of Vl (Pl ) and cl (P). Notice
that c̃l (P̃)=log(Gll )+ P̃l −log(

∑
k � l Gk,l exp(P̃k)+nl ) is the

summation of a linear function and a negative log–sum–exp
function. It is easy to prove that c̃l (P̃) is strictly convex in
P̃. For the sake of simplicity, we will use x ∈ X and P̃ ∈ Z
to denote the two sets of constraints (8).

Define the Lagrangian as

L(x, P̃, �) =
∑

s

Us(xs) − �
∑

l

Ṽl (P̃l )

−
∑

l

�l

⎛
⎝∑

s∈S(l)

xs − c̃l (P̃)

⎞
⎠ ,

where � is the vector of Lagrange multipliers �l associated
with capacity constraints (7). �l ’s are called dual variables
(or link prices in the literature of NUM), while Pl ’s and xs’s
primal variables. The dual problem P2 can be formulated as
follows:

D2 : min
��0

D(�),

where the dual function D(�) is given by

D(�) = max
x∈X,P̃∈Z

L(x, P̃, �)

= max
x∈X

L1(x, �) + max
P̃∈Z

L2(P̃, �). (9)

The first term in (9) is formulated as

max
x∈X

L1(x, �) =
∑

s

max
xs �0

[Us(xs) − xs�
s], (10)

where we denote �s := �l∈L (s)�l . Notice that �l can be
interpreted as the price one has to pay for the usage of
link l. Then, �s is the total price for the route the source
data s traverses. The optimization of (10) can be used to
regulate the flow rate at each source. The second term in (9)
is formulated as

max
P̃∈Z

L2(P̃, �) = max
P̃∈Z

∑
l

[�l c̃l (P̃) − �Ṽl (P̃l )]. (11)

Notice that this term aims to maximize the weighted sum
capacity less the power cost given fixed link prices. Thus,
Eq. (11) serves as a tool for power control at each individual
link.

It is clear that the energy efficiency issue can be explicitly
dealt with in (11). With the positive tradeoff factor �, we can
obtain an optimal balance between the link capacity c̃l (P̃)
and the power cost Ṽl (P̃l ). This provides a useful tool in
trading off the network utility of flow rates with the energy
efficiency of the system.

Problem D2 can be solved by minimization of the
dual function D(�), and the maximization of the two
sub-problems (10) and (11). First, note that Lagrangian
L(x, P̃, �) is a strictly concave function of (x, P̃). Accord-
ing to [16, Prop. 6.1.1], D(�) is continuously differentiable
everywhere and its unique subgradient

�D(�)

��l
= c̃l (P̃(�)) −

∑
s∈S(l)

xs(�)

is indeed its derivative. Therefore, the minimization of the
dual function D(�) can be done by a steepest descent method

�l (t + 1) =
⎡
⎣�l (t) + �1

⎛
⎝∑

s∈S(l)

xs(t) − cl (P(t))

⎞
⎠
⎤
⎦

+

, (12)

where [x]+ = max{0, x}, and �1 is a constant step size.
Second, given �, both (10) and (11) are strictly convex

programming and therefore each has a unique solution. De-
note the respective solution as x∗

s (�) and P̃∗
l (�). According

to the first-order necessary optimality condition, we have the
solution to (10):

x∗
s (�) = (�s/ps)−1/�s . (13)

P̃∗
l (�) does not have a closed-form expression and are usu-

ally solved by a steepest descent method, as used in the
JOCP algorithm proposed in [4]. As in JOCP, we can write
the gradient of L2(P̃, �) with respective to P as follows:

�L2(P̃, �)

�Pl
= �l

Pl
−
⎛
⎝∑

j � l

� j Gl, j

m j (P)
+ �wl

⎞
⎠ , ∀l, (14)

where

m j (P) =
∑
k � j

Gk, j Pk + n j (15)
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represents the interference level at the receiver of link j .
Thus, P̃∗

l (�) or P∗
l (�) can be updated as follows:

Pl (t + 1) =
⎡
⎣Pl (t) + �2

(
�l (t)

Pl (t)

−
⎛
⎝∑

j � l

� j (t)Gl, j

m j (P(t))
+ �wl

⎞
⎠
⎞
⎠
⎤
⎦

±

l

, (16)

where �2 is the step size of small value and where [x]±l =
min{max{0, x}, Pmax

l }.

3.2. A new approach for power control

The steepest decent algorithm (14), or the ones used in
[4], suffers from slow convergence, especially when the step
size �2 is not appropriately selected. An optimal �2 in general
can be found for a certain fixed network scenario through
extensive simulation trials. However, it becomes difficult
when the algorithm needs to be applied on-the-fly since it
takes a certain amount of training time to unearth the op-
timal step size. It becomes even more challenging when
the network scenario varies over time. This motivates us to
study a novel approach which is as simple as the steepest de-
cent algorithm, but converges faster without any parameter
tuning.

Proposition 2. The power control subproblem (11) can be
solved by alternately updating transmit powers of all links
(l = 1, 2, . . . , L) as follows:

Pl (t + 1) =

⎡
⎢⎣�l (t)

⎛
⎝∑

j � l

� j (t)Gl, j

m j (Pl (t))
+ �wl

⎞
⎠

−1
⎤
⎥⎦

±

l

, (17)

where

Pl (t) = (P1(t + 1), . . . , Pl−1(t + 1), Pl (t), Pl+1(t), PL (t))

(18)

is a vector of newly updated transmit powers of links 1 to
l − 1 at iteration t + 1 and the previous transmit powers of
links l to L at iteration t .

Proof. The convergence of expression (17) is proved in
Appendix B by showing that it increases the upper-bounded
objective function L2(P̃, �) at each iteration. �

It is worthwhile to provide some insight into (17). Let us
write the derivative of L2(P̃, �) with respect to P̃ as follows:

�L2(P̃, �)

�P̃l
= �l −

⎛
⎝∑

j � l

� j Gl, j

m j (P)
+ �wl

⎞
⎠ Pl , ∀l. (19)

It is clear that Eq. (17) implicitly solve the equations
�L2(P̃, �)/�P̃l = 0 in a recursive manner. This is similar to
the well-known power control algorithm in [17, Eq. (18)],
in the sense that the latter also uses a recursive method to
solve a set of power control equations.

The new method does not involve a step size in optimizing
the power control subproblem and is thus robust in various
network scenarios. Also, it benefits from the simple expres-
sion, which is comparable to the steepest decent method in
(16). This enables a distributed implementation by exchang-
ing messages � j/m j (P) among interfering links. Note that
m j (P), as defined in (15), represents the interference level
at the receiver of link j and therefore can be easily mea-
sured. What is more important, similar to the power control
algorithm in [17], the new method converges much faster
than the steepest descent method does as shown in our sim-
ulation (see Section 5 for details). In addition, all transmit
powers are alternately (not simultaneously) updated in (17)
and the sequence of the update does not affect the conver-
gence of the method. The alternate update may be beneficial
in a wireless network which provides only limited-quality
time synchronization. However, it is worth more investiga-
tion to see how the performance of the algorithm is affected
in such a network as the quality of time synchronization is
degraded.

Based on the above analysis, we propose an iterative
algorithm named energy efficient jointly optimal con-
gestion and power control (EJOC), to solve the dual
problem D2.

Algorithm EJOC.

1. At each link l
(a) Update the link price �l (t + 1) according to (12), and

communicate it to all sources using link l.
(b) Measure the interference level, ml (P), at the receiver

of link l, and broadcast �l/ml (P) to all interfering
nodes in the neighborhood.

(c) Receive messages � j/m j (P) from all interfering
nodes j in the neighborhood and repeat the power
update process (17) K times.

2. At each source s
(a) Receive from the reverse path the sum (�s =∑

l∈L(s) �l ) of link prices �l .
(b) Compute the new flow rate xs(t + 1) using (13), and

Communicate it to all links on its path.
3. Repeat Steps 1 and 2 until the flow rates and the transmit

powers converge.

In EJOC, the iteration proceeds in two timescales: K
primal variable updates are executed after each dual vari-
able update. A large K offers convergence with very small
residual error to the optimal point, but is likely to slow
down the convergence of the entire algorithm. Hence, a
small K is desired as long as the residual error is accept-
able. Simulation results show that K = 1 renders good
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performance due to the fast convergence of the proposed
recursive method (17).

4. Multipath routing

In this section, we extend our analysis to the situation
where multiple alternative paths may be established between
some source–destination pairs, and the sources are able to
explicitly adjust the traffic rates on these paths. When mul-
tiple paths are available, the source traffic is simply split
into these paths without any redundancy. We do not con-
sider balancing the traffic among the multiple paths. As a
complementary technique to what is considered in this pa-
per, interested readers may refer to [18] where energy effi-
ciency problem is dealt with by spreading traffic and energy
burdens over multiple paths.

In the following, we formulate the energy-efficient net-
work utility maximization for networks with multipath
routing. We tackle the instability problem caused by the
multipath routing. In addition, we show that the NUM
framework lends itself to an optimal water-filling rate allo-
cation among multiple paths within each source–destination
pair.

Assume each source s has a set �(s) of alternative paths
to the destination, each of which is composed of a se-
quence of connected links l ∈ L(s, p), for p ∈ �(s). De-
note S P(l) as the set of all source–path pairs (s, p) that
pass through link l. Notice that l ∈ L(s, p) if and only
if (s, p) ∈ S P(l). Let xs,p be the flow rate on each path;
the total traffic rate xs originated from source s is equal to∑

p∈�(s) xs,p. Similar to P2, the problem can be formulated
as follows:

P3 : maximize
∑

s

Us

⎛
⎝ ∑

p∈�(s)

xs,p

⎞
⎠− �

∑
l

Ṽl (P̃l )

subject to
∑

(s,p)∈S P(l)

xs,p � c̃l (P̃), ∀l, (20)

xs,p �0, ∀s, p and P̃l � P̃max
l , ∀l.

(21)

Notice that, different from that of P2, the objective func-
tion of P3 is not strictly concave once some sources have
multiple alternative paths. This may cause an instability
problem in the convergence of an iterative algorithm – a per-
sistent oscillation of the flow rate around the optimal value.
This implies that although the dual variables may converge,
the more important primal variables, flow rates and transmit
powers, may not. Such behavior was observed in wired net-
works [10]. To deal with this instability problem, we borrow
an idea from proximal optimization algorithms [13, p. 232].
That is, instead of P3, we try to solve an equivalent problem
by introducing a quadratic term of some auxiliary variables

ys,p so that the optimization problem becomes strictly con-
cave with respect to xs,p,

P4 : maximize
∑

s

Us

⎛
⎝ ∑

p∈�(s)

xs,p

⎞
⎠− �

∑
l

Ṽl (P̃l )

− c

2

∑
s

Is

∑
p∈�(s)

(xs,p − ys,p)2

subject to (20) and (21),

where c is a positive constant, Is is used to indicate whether
source s has multiple alternative paths or not, i.e.,

Is =
{

0, |�(s)| = 1,

1, |�(s)|�2,

where | · | denotes the cardinality of the set.
Lagrangian of P4 can be written as

L ′(x, y, P̃, �) =
∑

s

Us(xs) − c

2

∑
s

Is

∑
p∈�(s)

(xs,p − ys,p)2

−�
∑

l

Ṽl (P̃l )−�l

⎡
⎣ ∑

(s,p)∈S P(l)

xs,p−c̃l (P̃)

⎤
⎦,

where x and y are the vectors of xs,p and ys,p, respectively.
The dual problem P4 is formulated as follows:

D4 : min
��0

D′(�),

where the dual function D′(�) is given by

D′(�) = max
x∈X,y,P̃∈Z

L ′(x, y, P̃, �)

= max
x�0,y

L ′
1(x, y, �) + max

P̃∈Z
L2(P̃, �), (22)

where the second optimization term in (22) is the same as
that defined in (11), and therefore can be solved by the
method proposed in (17). The first optimization in (22) is
given by

max
x�0,y

L ′
1(x, y, �) =

∑
s

max
xs �0,ys

⎡
⎣∑

s

Us

⎛
⎝ ∑

p∈�(s)

xs,p

⎞
⎠

−
∑

p∈�(s)

(
xs,p�

s,p+ c

2
Is(xs,p−ys,p)2

)⎤⎦,

(23)

where �s,p =∑
l∈L(s,p) �l and xs and ys are the vectors of

xs,p and ys,p for p ∈ �(s), respectively.
If source s has a single path (i.e., Is = 0), the solution to

(23) is similar to (13), i.e.,

x∗
s (�) = x∗

s,1(�) = (�s,1/ps)−�s . (24)

Otherwise, the optimization (23) can be solved by a non-
linear Gauss–Seidel method which alternately (i) maximizes
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the objective function over xs while keeping ys fixed, then
(ii) maximizes it over ys while keeping xs fixed, and repeats.
As is proved in Appendix B, the maximization of (i) has a
water-filling solution:

xs,p(t + 1) = 1
c [psv

−�s − �s,p + cys,p(t)]+, (25)

where v is the unique solution to the equation f (v)=0 with

f (v) = v −
∑

p∈�(s)

[psv
−�s − �s,p + cys,p(t)]+

being a strictly increasing function. Note that f (0+)=−∞,
and f (+∞) = +∞. Hence the equation can be solved effi-
ciently by one-dimensional line search methods. The solu-
tion to maximization (ii) is merely

ys,p(t + 1) = xs,p(t + 1). (26)

Similar to EJOC, we propose the following algorithm
EJOCm to solve the multipath routing problem.

Algorithm EJOCm.

1. At each link l, the operations are the same as EJOC except
that the link price �l (t + 1) is updated as follows:

�l (t+1)=�l (t)+�2

⎡
⎣ ∑

p∈�(s)

xs,p(t)−cl (P(t))

⎤
⎦

+

. (27)

In addition, if SINRl = 1 in the last K1 = 50 iterations,
set Pl = 0 and declare link l as inactive.

2. At each source s
(a) Receive from the reverse path the sum �s,p =∑

l∈L(s,p) �l of link prices �l .
(b) Update the flow rate xs,p(t + 1) using (24) or (25).
(c) Communicate xs,p(t + 1) to all links on path p.
(d) In addition, if xs,p = 0 in the last K2 = 50 iterations,

declare path (s, p) as inactive.
3. Repeat Steps 1 and 2 until the flow rates and the transmit

powers converge.

It is worthwhile to provide some explanation of the link-
and path-removal procedures of EJOCm (i.e., the declara-
tion of a link or a path as inactive). Any solution to P4 or
D4 must satisfy SINRl �1 so that cl (P)�0. The links with
SINRl = 1 have zero capacity but are allocated non-zero
powers. Thus, we can remove these links and still guaran-
tee the feasibility of the solution. In addition, the removal of
these links reduces the interference level at other links and
contributes to higher link capacities. Hence, the link- and
path-removal procedures is capable of improving the algo-
rithm’s performance.

5. Simulation investigation

In this section, we investigate the performance of the
proposed iterative algorithms in some sample wireless

B F

A

C D

E

B F

A

C D

E

Fig. 1. Logical topology and connections for an illustrative ex-
ample. The coordinates of nodes A–F are (−(

√
3 + 1)/2, 1),

(−(
√

3 + 1)/2, 1), (−1, 0), (1, 0), ((
√

3 + 1)/2, 1), and
((

√
3 + 1)/2,−1), respectively.

Table 1. The source, sink, and path of the flows in Fig. 1.

Path/flow Source Destination Links on the path

1 A E A–C, C–D, D–E
2 B F B–C, C–D, D–F
3 C E C–D, D–E
4 A E A–E
5 B F B–F

networks. For simplicity, we present our simulation results
for a dumbbell-shaped network shown in Fig. 1. This net-
work is simple yet useful to model the usual bottleneck
situation and multipath routing in a network. There are six
nodes, A–F, and five wireless links A–C, B–C, C–D, D–E,
and D–F for the single-path routing or two additional links
A–E and B–F in the case of multipath routing. These nodes
and links are named as node 1, 2, . . . , 6, and link 1, 2, . . . , 7,
respectively. The single-path routing problem is analyzed in
Sections 5.1–5.3, where paths 1–3 in Table 1 are used for
data transmission. The multipath routing problem is then
addressed in Section 5.4, where all the five paths in Table
1 are considered.

In our simulation, we verified that the proposed algo-
rithms work well for different network configurations such
as those in [4,12] and that the proposed distributed algo-
rithm achieves the same optimum solution as the MATLAB
solver fmincon1 does. Due to space limitation, our discus-
sion focuses on the network shown in Fig. 1.

If not otherwise specified, the simulation scenario is set up
as follows. The system is initialized by setting all transmit
powers Pl to be 0.1, and the link prices �l to be 1. These link
prices are used to calculate the initial flow rate using (13). It
is assumed that the maximal transmit power Pmax

l of each
link is 1, and the noise power nl at each receiver 0.001. The
parameters ps and wl are set to be 2 and 1, respectively. All
the results reported below are obtained by averaging over
100 independent simulations, in which the channel fading
between any two nodes of distance d is randomly generated
according to a uniform distribution on [0.2d−4, 2d−4].

The energy efficiency of the system is defined as the ratio
of the total flow rate to the total transmit power.

1 Mathwork Inc. http://www.mathwork.com.

http://www.mathwork.com
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Fig. 2. The effect of the tradeoff factor � (�s = 1, ps = 2, wl = 1). From top to bottom, the three graphs show the total flow rate, the
total transmit power, and the corresponding energy efficiency, respectively. The curve shows the mean and the standard error calculated
based on 100 independent experiments.

5.1. The effect of b on the energy efficiency

As discussed in Section 2, the tradeoff factor � plays
an important role in improving the energy efficiency of the
system while maintaining the network throughput at a high
level. The comparison of different � is illustrated in Fig. 2. It
is interesting to note that as � increases from 0 to 1, the total
flow rate decreases by 2.28% while the total transmit power
goes down dramatically from 1.97 to 0.15. Accordingly, the
energy efficiency of the system goes up from 2.24 to 28.02.

For further investigation, we plot the typical convergence
behaviors of EJOC when � = 0 or 0.1 in plots (a)–(d) of
Fig. 3. The channel fading is assumed to be d−4 in both
cases. It is clear that the flow rates converge in a similar
way to the optimum after 40 iterations. The convergence
of transmit powers, however, are quite different in the two
cases. When � = 0, all transmit powers keep (roughly pro-
portionally) increasing from 40 to 100 iterations until link
3 reaches its limit, i.e., P3 = 1. This is consistent with the
statement of Proposition 1. Recall the expression of the link
capacity (2). It is clear a roughly proportional increase in all
transmit powers can increase link capacities. The capacity
increase, however, is getting more and more marginal due
to its logarithmic expression (2). As a result, the energy ef-
ficiency is significantly degraded due to the steady increase
in transmit powers. On the other hand, when � = 0.1, each
transmit power converge to a moderate level after 40 itera-
tions. This leads to much higher energy efficiency since the
total flow rates are almost the same for � = 0 and 0.1.

5.2. The effect of as

Now, let us consider the effect of various utility func-
tions which are defined as a family (6) and differ from one

another by the factor �s . As is known, this factor has a strong
affect on the fairness of the optimal flow rates. For the sake
of quantitative comparison, we define the fairness index as
f (x) = Es(xs)2/Es(x2

s ) [19], where Es(xs) and Es(x2
s ) de-

note the average values of xs and x2
s , respectively. The fair-

ness index ranges from 0 to 1 and a higher value implies a
higher degree of fairness.

The simulation results are presented in Table 2 and Fig.
4. It is clear from Table 2 that the higher the factor �s ,
the higher the fairn ess among the flows rates. It leads to
nearly identical flow rates when �s is equal to 10. Fig. 4
shows that �s has some effect on the energy efficiency of
the network: the energy efficiency is improved because the
transmit powers decrease faster than the flow rates do. It is
not always the case, however. For example, if � = 0, the
energy efficiency tends to slightly decrease as �s goes up.
This is because the total transmit power remains at a high
level if �=0 (Proposition 1), while the total flow rate steadily
decreases as �s increases.

5.3. Comparison of power control algorithms

In practical applications, we prefer an algorithm which
can be easily implemented in a distributed manner and con-
verge fast. In this subsection, we validate the effectiveness
of the simultaneous primal and dual updates of EJOC by
setting K = 1, and compare EJOC to the JOCP algorithm
proposed in [4].

Denote L2(PK , �) as the objective function value L2 of
power control sub-problem in Eq. (11) after K primal up-
dates, and RRE(K )=|L2(PK , �)−L2(P∗(�), �)|/|L2(P∗(�),
�)| as the relative residual error (RRE). In Fig. 5, we plot
the RRE after different number of dual updates. It is clear
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Fig. 3. The convergence behavior of joint congestion and power control (�s = 1, ps = 2, wl = 1). The x-axis shows the number of
iterations (i.e., the number of dual updates). Plots (a)–(d) show simulation results obtained by EJOC when � = 0 and 0.1, respectively.
Plots (e) and (f) are simulation results obtained by the steepest descent algorithm of JOCP proposed in [4] when � = 0.1.

Table 2. The effect of the factor �s on the flow rates (� = 0.1, ps = 2, wl = 1).

�s x1 x2 x3 �s xs Fairness
mean (std) mean (std) mean (std) mean (std) mean (std)

0 0.00 (0.0e+0) 0.71 (3.7e−1) 3.67 (3.8e−1) 4.38 (1.5e−1) 0.46 (7.0e−1)
1 1.28 (1.0e−1) 1.38 (9.3e−2) 1.54 (5.0e−2) 4.18 (2.0e−1) 0.99 (4.7e−3)
2 1.33 (8.6e−2) 1.38 (7.9e−2) 1.46 (5.8e−2) 4.17 (2.1e−1) 1.00 (1.4e−3)
5 1.35 (6.8e−2) 1.37 (6.5e−2) 1.41 (5.6e−2) 4.14 (1.9e−1) 1.00 (2.6e−4)
10 1.34 (6.0e−2) 1.35 (5.9e−2) 1.37 (5.4e−2) 4.06 (1.7e−1) 1.00 (6.6e−4)

that RRE can be reduced to 10−4 after a few dual updates
even with K = 1, which is attributed to recursive update of
the proposed method (17) of EJOC. A larger K can further

reduce the RRE but will inevitably lower the convergence
rate of the algorithm. It is thus reasonable to set K = 1 in
EJOC.
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Fig. 5. The relative residual error vs. the number (K ) of primal
updates between any two successive dual updates in EJOC.

We next compare EJOC to the JOCP algorithm [4] where
the steepest descent method is applied to update the transmit
powers. The convergence behaviors of EJOC and JOCP are
shown in plots (c)–(e) in Fig. 3. In JOCP, the step size of the
steepest descent method is set to 0.1 to update the transmit
powers. This value leads to fast convergence according to our
experiments. However, even with the best step size, JOCP
converges clearly slower than EJOC. Thus, EJOC has shown
its superiority to JOCP for its faster convergence and no
requirement of parameter training, which are beneficial in
wireless networks of different time-variant characteristics.

We note that each iteration of EJOC needs end-to-end
communication, and therefore requires a few round-trip
times (RTTs). Each RTT is typically in the order of mil-
lisecond to tens of milliseconds. Considering that EJOC
usually converges in less than 100 iterations, the overall
convergence time of the algorithm is less than 1s for this
simple network.

5.4. Multi-path routing

To simulate the multipath routing problem, we use all
the five paths listed in Table 1, i.e., both sources A and B
have two alternative paths while source C has a single path.
The simulation results are summarized in Table 3. Also, to
illustrate the effect of the path- and link-removal procedure
introduced in EJOCm, we consider an experiment where the
procedure is disabled at the beginning of optimization and
then enabled it after 100 iterations.

As is shown in Fig. 6, EJOCm converges to a small
neighborhood of the optimum value in 50 iterations. At the
optimum point, the SINR1 is equal to one (and thus the
capacity of link 1 is zero) because of the high interference
level at the receiver of link 1. Implemented with the path- and
link-removal procedures after the 100-th iteration, EJOCm
removes this link from further operation. This reduces inter-
ference levels at the receivers of other links, and thus leads
to higher link capacities and flow rates. Averaged over 100
simulations, the results in Table 3 indicate 11.77% reduction
of total transmit power and 25.39% improvement of total
flow rate. The energy efficiency is thus increased by 42.11%
from 6.33 to 9.00.

6. Conclusion

In this paper, we have considered energy-efficient utility
maximization in wireless networks by integrating both the
network utility and the power cost in the objective function.
A tradeoff factor is introduced to balance the network util-
ity and the energy cost. We have shown that the proposed
method significantly improves the energy efficiency of the
system. For example, as the tradeoff factor increases from 0
to 1 in the investigated scenario, the network throughput has
a slight decrease of 2.28% while the total transmit power is
dramatically reduced by 92.39%. Accordingly, the energy
efficiency increases from 2.24 to 28.02.

We have solved this optimization problem by decom-
posing it into two sub-problems. To tackle the power con-
trol sub-problem, we have proposed a new iterative method
which can be implemented as easily as the steepest descent
method but converges much faster than the latter. To solve
the congestion control sub-problem which no longer has a
closed-form solution in the multipath routing case, we have
derived a water-filling solution which simplifies the oper-
ation at each data source. The entire algorithm has been
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Table 3. A comparison of EJOCm (a) without or (b) with the path- and link-removal procedures (�s = 1, � = 1, ps = 2, wl = 1).

Link Average Tx power Flow Average flow rate
mean (std) mean (std)

(a) (b) (a) (b)

1 0.05 (2.5e−2) 0.01 (2.0e−2) 1 0.04 (1.2e−1) 0.02 (6.9e−2)
2 0.06 (2.5e−2) 0.03 (3.0e−2) 2 0.20 (2.5e−1) 0.23 (3.5e−1)
3 0.02 (8.3e−3) 0.02 (9.1e−3) 3 1.05 (2.3e−1) 1.23 (2.3e−1)
4 0.00 (2.7e−3) 0.00 (2.9e−3) 4 1.00 (3.2e−1) 1.33 (3.2e−1)
5 0.00 (1.4e−3) 0.00 (1.7e−3) 5 0.93 (4.7e−1) 1.24 (6.4e−1)
6 0.19 (6.1e−2) 0.21 (6.3e−2)
7 0.19 (6.4e−2) 0.19 (8.0e−2)

Total 0.51 (9.7e−2) 0.45 (8.8e−2) Total 3.23 (6.9e−1) 4.05 (8.1e−1)
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Fig. 6. An illustrative example of EJOCm. The path- and link-re-
moval procedures are disabled at the beginning and enabled at the
100-th iteration.

implemented in a distributed manner and simulation results
have been provided to confirm our claims.
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Appendix A. Proof of convergence (17)

Lemma 3. Suppose �l ’s are all positive. Let P(t) be the
sequence generated by (17), i.e.,

Pl (t + 1) =

⎡
⎢⎣�l (t)

⎛
⎝∑

j � l

� j (t)

Pl (t) + n′
j

+ �wl

⎞
⎠

−1
⎤
⎥⎦

±

l

, (A.1)

where

n′
j=G−1

l, j

⎛
⎝ ∑

k � j,k<l

Gk, j Pk(t+1) +
∑

k � j,k>l

Gk, j Pk(t)+n j

⎞
⎠.

We have

L2(P̃1(t), �)� L2(P̃2(t), �)� · · · � L2(P̃L (t), �), (A.2)

where

P̃l (t) = (P̃1(t + 1) · · · P̃l−1(t + 1), P̃l (t),

P̃l+1(t) · · · P̃L (t))T (A.3)

and the equalities simultaneously hold if and only if
P̃(t) = P̃∗.

Proof. Let

gl (	) = L2((P̃1(t + 1) · · · P̃l−1(t + 1), 	,

P̃l+1(t) · · · P̃L (t))T, �).

That is, gl (P̃l (t)) = L2(P̃l (t), �) and gl (P̃l (t + 1)) =
L2(P̃l+1(t), �). Thus, inequalities (A.2) are equivalent to

g(P̃l (t))�g(P̃l (t + 1)), l = 1, 2, · · · , L − 1. (A.4)

Before proceeding, we note that the derivative of g(	)

∇gl (	) = �l −
⎛
⎝∑

j � l

� j

exp(	) + n′
j

+ �wl

⎞
⎠ exp(	) (A.5)

is a strictly decreasing function of 	.
The positiveness assumption on all �l ’s implies the brack-

eted term in (A.1) is always positive. Thus, it is sufficient
for us to consider two cases: (i) 0 < Pl (t)� Pl (t +1)� Pmax

l ,
(ii) 0 < Pl (t + 1)� Pl (t)� Pmax

l and Pl (t + 1) < Pmax
l .
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In the first case, we have

∇gl (P̃l (t+1)) = �l−
⎛
⎝∑

j � l

� j

Pl (t+1)+n′
j
+�wl

⎞
⎠ Pl (t+1)

� �l − �l

⎛
⎝∑

j � l

� j

Pl (t + 1) + n′
j

+ �wl

⎞
⎠

×
⎛
⎝∑

j � l

� j

Pl (t) + n′
j

+ �wl

⎞
⎠

−1

� �l − �l = 0, (A.6)

where the first inequality is obtained by replacing Pl (t + 1)
with the bracketed term in (A.1), and the second inequality
is merely due to Pl (t)� Pl (t +1). Thus, we have ∇gl (	) > 0
for 	 < P̃l (t+1), because ∇gl (	) is a strictly decreasing func-
tion. Furthermore, gl (	) is strictly increasing for 	 < P̃l (t+1)
and thus (P̃l (t + 1))�g(P̃l (t)) with equality if and only if
P̃l (t) = P̃l (t + 1).

In the second case, Pl (t+1) is the bracketed term in (A.1).
Thus, we have

∇gl (P̃l (t+1)) = �l−
⎛
⎝∑

j � l

� j

Pl (t+1)+n′
j
+�wl

⎞
⎠ Pl (t+1)

= �l − �l

⎛
⎝∑

j � l

� j

Pl (t + 1) + n′
j

+ �wl

⎞
⎠

×
⎛
⎝∑

j � l

� j

Pl (t) + n′
j

+ �wl

⎞
⎠

−1

� �l − �l = 0 (A.7)

where the inequality follows from Pl (t + 1)� Pl (t). It is
clear ∇gl (	) < 0 for 	 > P̃l (t +1), because ∇gl (	) is strictly
decreasing. Furthermore, gl (	) is strictly decreasing for
	 > P̃l (t + 1) and thus g(P̃l (t + 1))�g(P̃l (t)) with equality
if and only if P̃l (t) = P̃l (t + 1).

In both cases, we arrive at (A.4) and the equality simul-
taneously holds for each l if and only if P̃(t) = P̃(t + 1),
i.e., P̃(t) = P̃∗. To see this, let us consider two cases: (i)
P̃l (t) = P̃l (t + 1) < P̃max

l and (ii)P̃l (t) = P̃l (t + 1) = P̃max
l .

In the first case, we can simply follow (A.7) to show that
∇gl (P̃l (t)) = ∇gl (P̃l (t + 1)) = 0, while in the second case,
we have ∇gl (P̃l (t))�0 according to (A.6). That is,

∇gl (P̃l (t))(	 − P̃l (t))�0 for 	� P̃max
l .

Notice that when P̃(t) = P̃(t + 1), ∇gl (P̃l (t)) is indeed
∇l L2(P̃(t), �). Thus, we have

∇l L2(P̃(t), �)(	 − P̃l (t))�0 for 	� P̃max
l ,

which is the sufficient condition for P̃(t) = P̃∗. �

Theorem 4. The sequence of P(t) generated by (17) con-
verges to the unique maximizor of problem (11)

max
P̃∈Z

L2(P̃, �) = max
P̃∈Z

∑
l

[
�l c̃l (P̃) − �Ṽl (P̃l )

]
. (A.8)

Proof. Let us first consider the non-trivial case where �l ’s
are all positive. According to Lemma 3, we have

L2(P̃(t), �)� L2(P̃(t + 1), �),

where P̃(t) = P̃1(t), P̃(t + 1) = P̃L (t) and the equality holds
if and only if P̃(t) = P̃∗. Since L2(P̃, �) is bounded from
above for P̃l � P̃max

l , the sequence of L2(P̃(t), �) converges
to the unique optimum, and accordingly P̃(t) converges to
the unique maximizor P̃∗.

If �l is equal to zero for some l, it is easy to see from (A.8)
that the corresponding P∗

l is equal to zero. This is achieved
by (17) or (A.1) in one step, so we can simply consider all
the links with �l = 0 to be inactive in the network. Note
that P∗

l = 0 implicitly removes itself from expression (A.1).
Thus, process (A.1) can still be used for other links with
�l > 0 to reach the optimum. This completes the proof. �

Appendix B. Proof of Eq. (25)

The derivative of the objective function in (23) with re-
spect to xs,p is given by

ps

(
∑

p∈�(s)xs,p)�s
− �s,p + cys,p − cxs,p.

Thus, according to the first-order necessary optimality con-
dition, we have

x∗
s,p = 1

c [psv
−�s − �s,p + cys,p]+, (A.9)

where v=∑p∈�(s)x
∗
s,p in turn can be calculated by summing

the both sides of (A.9) over p ∈ �(s), i.e.,

v =
∑

p∈�(s)

[psv
−�s − �s,p + cys,p]+. (A.10)

The iterative procedure (25) follows from (A.9) and (A.10).
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