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The main idea in network coding was introduced in 2000 by
Ahlswede et al. With network coding, an intermediate node
can not only forward its incoming packets but also encode
them. It has been shown that the use of network coding
can enhance the performance of wired networks significantly.
Recent works have indicated that network coding can also
offer significant benefits for wireless networks.

Communications over wireless channels are error-prone
and unpredictable due to fading, mobility, and intermittent
connectivity. Moreover, in wireless networks, transmissions
are broadcasted and can be overheard by neighbors, which
is treated in current systems as interference. Furthermore,
security poses new challenges in wireless networks, where
both passive and active attacks have quite different premises
than in wired networks. Ideas in network coding promise
to help toward all these issues, allowing to gracefully add
redundancy to combat errors, take advantage of the broad-
cast nature of the wireless medium and achieve opportunistic
diversity, exploit interference rather than be limited by it, and
provide secure network communication against adversarial
attacks.

In this special issue, we have been able to put together
six original research articles which we believe can carry the
momentum further and take the wireless network coding
research to the next level. One article investigates the
energy efficiency benefit of using network code. The other
article exploits the superposition principle of radio waves in
improving network coding performance. Two articles suggest
various network coding strategies for relay networks. The
last two aim to design minimal decoding delay network
coding schemes for broadcast networks. While pointing
detailed explanation to these individual articles, we will
briefly introduce them here one by one.

J. Goseling et al., in the first paper of this special issue
“Lower bounds on the maximum energy benefit of network
coding for wireless multiple unicast,” investigate the benefit
of using network coding for reducing energy consumption
in wireless networks. The energy benefit of using network
coding in d-dimensional networks, the paper indicates, is at
least 2d/�√d�-fold, compared to the case of using the plain
routing solution.

S. Zhang and S. C. Liew in the second paper, “Application
of physical-layer network coding in wireless networks,” inves-
tigate the use of physical-layer network coding (PNC) for
wireless networks. The idea of PNC is to exploit the inherent
property of the radio channel that radio waves from different
users superpose at the receiver antenna. This property can be
used to carry out the addition operation needed in network
coding and can be utilized to achieve substantial increase
in throughput compared to conventional network coding
schemes.

In the third paper, “Joint channel-network coding for the
Gaussian two-way two-relay network,” P. Hu et al. investigate
a two-way relay channel problem and consider five different
network coding strategies made from a combination of
basic ones such as Amplify-Forward (AF), Decode-Forward,
and Decode-Amplify Forward. They have done extensive
performance evaluations of these strategies for various relay
channel environments.

B. Du and J. Zhang in the fourth paper, “Parity-check
network coding for multiple access relay channel (MARC) in
wireless sensor cooperative communications,” aim to design
a parity-check network coding scheme for a two-source
multiple access relay channel. The parity-check network
code, they imply, is a multidimensional low-density parity-
check (LDPC) code. Each user employs an LDPC code to
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encode one’s own source data, and the relay adds extra
parity-check bits. The extra bits can be used as a “binning”
process and make the overall coding scheme to be stronger
in its error correction capability.

X. Wang et al., in the fifth paper “Data dissemination in
wireless sensor networks with network coding,” aim at applying
network coding in data dissemination problems which may
arise in wireless sensor networks, such as software upgrades
and an addition of new functionality. A package of data,
often very large in its complete size, should be delivered in its
entirety to each individual sensor. But the package of packets
may not be delivered to all the sensors in a timely manner
because some of them may have been put to operate in a
sleep mode. Sleep scheduling is frequently used in wireless
sensor networks as a means to save the battery, perhaps the
most critical resource. The authors focus on the design of
an effective XOR-based network coding strategy given a sleep
scheduling information.

P. Sadeghi et al. investigate the design of feedback-
based adaptive network coding schemes for packet erasure
networks in the last paper “An optimal adaptive network
coding scheme for minimizing decoding delay in broadcast
erasure channels.” The aim is to deliver high throughputs
and low decoding delays. Two main throughput optimal
schemes are fountain codes and random linear network
codes since they do not require feedback about erasures. But
their throughout optimality may come at the cost of large
decoding delays. In the application layer, having to wait for
the entire coded block to arrive can result in unacceptable
delays. This paper focuses on designing network coding
schemes with the help of feedback that can deliver innovative
packets in any order to the destination and guarantee fast
decoding.
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We consider the energy savings that can be obtained by employing network coding instead of plain routing in wireless multiple
unicast problems. We establish lower bounds on the benefit of network coding, defined as the maximum of the ratio of the
minimum energy required by routing and network coding solutions, where the maximum is over all configurations. It is shown
that if coding and routing solutions are using the same transmission range, the benefit in d-dimensional networks is at least
2d/�√d�. Moreover, it is shown that if the transmission range can be optimized for routing and coding individually, the benefit in
2-dimensional networks is at least 3. Our results imply that codes following a decode-and-recombine strategy are not always optimal
regarding energy efficiency.

1. Introduction

Emerging applications in wireless networks, like environ-
ment monitoring in rural areas by ad hoc networks, require
more and more resources. One of the most important
limitations is formed by battery life. Since battery technology
is not keeping up with the increasing demand from resource-
consuming applications, it is imperative that more efficient
use is made of the available energy. There has been significant
recent attention to the problem of minimizing energy
consumption in networks. Some of the topics considered are
minimum cost routing [1–3], power control algorithms [4–
6], and cross-layer protocol design for energy minimization
[7]. In this work, we are interested in the use of network cod-
ing [8–14] for reducing the energy consumption in wireless
networks. We compare the reduction with traditional routing
solutions. The contributions of this work are lower bounds
on the energy reduction that can be achieved by using
network coding for multiple unicast problems in wireless
networks.

In recent years, there has been significant interest in net-
work coding with the aim of reducing energy consumption
in networks. More generally, network coding with a cost
criterion has been considered. Much progress has been made
in understanding the case of multicast traffic. In fact, it has
been shown by Lun et al. that a minimum-cost network
coding solution can be found in a distributed fashion in
polynomial time [15]. The fact that the complexity of finding
this solution is polynomial in time is surprising, since the
corresponding routing problem is a Steiner tree problem that
is known to be NP-complete [16].

Besides constructing minimum-cost coding solutions, it
is also of interest to know what the benefits of network coding
are compared to routing. In this work we, are interested in the
energy benefit of network coding, which is the ratio of the
minimum energy solution in a routing solution compared to
the minimum energy network coding solution, maximized
over all configurations. It has been shown by Goel and
Khanna [17] that the energy benefit of network coding for
multicast problems in wireless networks is upper bounded
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by a constant. The problem of reducing energy consumption
for many-to-many broadcast traffic in wireless networks has
been studied by Fragouli et al. in [18] and Widmer and
Le Boudec in [19], providing lower bounds on the energy
benefit of network coding for specific topologies. More
importantly, algorithms have been presented in [18, 19] that
allow to exploit these benefits in practical scenarios, that is,
in a distributed fashion.

The above demonstrates that for multicast traffic and
for many-to-many broadcast traffic, there is some under-
standing of the energy benefits of network coding and how
to exploit them. In order to reduce energy consumption
in practical networks, however, it is important to consider
also multiple unicast traffic. Indeed, in practice a large
part of the data will be generated by unicast sessions. For
the case of multiple unicast traffic, contrary to multicast
and broadcast, not much is known. This paper deals with
the energy benefits of network coding for wireless multiple
unicast. Remember from the above that for multicast,
the problem of minimum-cost routing is hard, whereas
minimum-cost network coding is easy. In stark contrast,
the problem of minimum-cost multiple unicast routing is
easy. One constructs the minimum-cost solution, that is, the
shortest path, for each session individually. The minimum-
cost multiple unicast network coding problem, however,
seems hard and in general very little is known.

Network coding for the multiple unicast problem was
first studied by Wu et al. in [20], in which it was shown
that in the information exchange problem on the line
network, the energy saving achieved by network coding is
a factor two. The network codes that we construct in this
work are in a sense a generalization of the results on one-
dimensional networks [20], to higher-dimensional networks.
The networks considered in this work are lattices. More
specifically, the hexagonal lattice and the rectangular lattice.
Effros et al. [21] and Kim et al. [22] have considered energy-
efficient network codes on the hexagonal lattice. We improve
the lower bounds on the energy savings of network on the
hexagonal lattice given in [21]. More precisely, we improve
the previously known bound of 2.4 and obtain a new bound
of 3.

Kramer and Savari have developed techniques that can
be used to upper bound the achievable throughputs in a
multiple unicast problem [23]. No methods are known,
however, to lower bound the cost of network coding
solutions for a configuration. A lower bound to the ratio of
the minimum energy consumption of routing and coding
solutions for a given multiple unicast configuration was
provided by Keshavarz-Haddad and Riedi in [24]. For the
type of configurations used in this paper, however, the results
from [24] give the trivial lower bound of one. We will see,
however, that network coding has large energy savings for
these configurations.

An important class of network codes operates according
to a principle that we will refer to in the remainder as
decode-and-recombine. These codes satisfy the constraint that
each symbol in each linear combination that is transmitted
is explicitly known by the node transmitting that linear
combination. Note, that this is a restriction from the

general linear coding strategy, in which linear combinations
of coded messages can be retransmitted. The motivation
behind using decode-and-recombine codes is that it prevents
information from spreading too much in the network, away
from the path between source and destination, a heuristic
introduced by Katti et al. [25]. The use of a decode-and-
recombine strategy results in reduced complexity. However,
an important question that has to be addressed is whether
the use of decode-and-recombine codes leads to a higher
energy consumption than is strictly necessary. We answer
this question affirmatively. An upper bound of three on
the energy benefit of decode-and-recombine codes has been
given by Liu et al. [26]. One of the contributions of this
work is to show that larger energy benefits can be obtained
by considering also other types of codes.

This paper is organized as follows. In Section 2 we
specify our model and problem statement more precisely.
Our main results are presented in Section 3. Constructions of
configurations that allow a large energy benefit for network
coding and proofs of our results are given in Sections 4 and
5. In Section 6, finally, we discuss our work.

2. Model and Problem Statement

Let V ⊂ Rd be the nodes of a d-dimensional wireless net-
work. We consider a wireless network model with broadcast,
where all nodes within range r of a transmitting node can
receive, and nodes outside this range cannot. More precisely,
given a transmission range r, a node v is broadcasting to all
nodes in the set

{u ∈ V | ‖u− v‖ ≤ r}, (1)

where ‖u − v‖ denotes the Euclidean norm of u − v. The
energy required to transmit one unit of information to all
other nodes within range r equals crα, where α is the path
loss exponent and c is some constant. In analyzing the energy
consumption of nodes, we will consider only the energy
consumed by transmitting. Receiver energy consumption as
well as energy consumed by processing are assumed to be
negligible compared to transmitter energy consumption. In
particular, note that little additional processing is required
for network coding, compared to the processing that is
performed in a traditional wireless protocol stack.

The traffic pattern that we consider is multiple unicast.
All symbols are from the field F2, that is, they are bits and
addition corresponds to the xor operation. The source of
each unicast session has a sequence of source symbols that
need to be delivered to the corresponding destination. Let
M be the set of unicast sessions. We call {V ,M, r} a wireless
multiple unicast configuration.

We will compare energy consumption of routing and
network coding. Our goal is to establish lower bounds on the
maximum of the ratio of the minimum energy required by
routing and network coding solutions, where the maximum
is over all configurations. We will refer to this ratio as
the energy benefit of network coding. Let Ecoding(V ,M, r)
and Erouting(V ,M, r) be the minimum energy required for
network coding and routing solutions, respectively, for
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a configuration {V ,M, r}. The energy consumption of a
coding or routing scheme is defined as the time-average of
the total energy spent by all nodes in the network to deliver
one symbol for each unicast session. In analyzing coding
schemes, we will ignore the energy consumption in an initial
startup phase and consider only steady-state behavior.

Note that since energy consumption per transmission
equals crα, the transmission range r is an important factor
in the energy consumption. Therefore, it is of particular
interest to optimize the transmission range such that energy
consumption is minimized. In this work, we consider two
different quantities: (1) Bfixed, denoting the energy benefit
that can be obtained if the transmission range is given and
fixed and (2) Bvar, denoting the energy benefit that can
be obtained if one is allowed to optimize the transmission
range. Note that the transmission range can be individually
optimized for the routing and network coding scenarios.
More precisely, the goal of this work is to establish lower
bounds on

Bfixed(d) = max
V ,M,r

Erouting(V ,M, r)

Ecoding(V ,M, r)
, (2)

where the maximization is over all node locations V ⊂ Rd,
multiple unicast sessions M, and transmission ranges r, with
the transmission range equal for the routing and network
coding solutions, and

Bvar(d) = max
V ,M

minrErouting(V ,M, r)

minrEcoding(V ,M, r)
, (3)

where the maximization is over all node locations V ⊂ Rd

and multiple unicast sessions M, with the transmission range
being optimized individually for the routing and network
coding solutions. If no confusion can arise, we will omit
dependency on d in the notation for Bfixed and Bvar.

Since in Bfixed, r is equal for Erouting and Ecoding, the energy
per transmission is equal in Erouting and Ecoding and the benefit
is equal to the ratio of the number of transmissions required
in routing and network coding solutions.

Since we are interested in energy consumption only, we
can assume that all transmissions are scheduled sequentially
and/or that there is no interference. All coding and routing
schemes that we consider proceed in time slots or rounds.
In each time slot, all nodes are allowed to transmit one or
more messages. We assume that the length of the time slot
is large enough to accommodate sequential transmission of
all messages in that round. Coding operations will be based
on messages received in previous time slots only. Finally,
we assume that all nodes have complete knowledge of the
network topology and the network code that is being used.

To conclude this section, we introduce here some of the
notation that will be used in the remainder of the paper. The
symbol transmitted by a node v ∈ V in time slot t is denoted
by xt(v). If v transmits more than one symbol in time slot
t, these will be distinguished by a superscript, giving, for
instance, x1

t (v) and x2
t (v). Nodes are represented by vectors.

Given vectors u = (u1, . . . ,ud) and v = (v1, . . . , vd), let
ulk � (uk, . . . ,ul), (u, v) � (u1, . . . ,ud, v1, . . . , vd), and u\i �
(u1, . . . ,ui−1,ui+1, . . . ,ud) = (ui−1

1 ,udi+1).

Unicast sessions are denoted by mi(u), with i being an
integer and u a vector. We will see in Sections 4 and 5 that u
defines the location of the source and i the relative location of
the destination, that is, the direction of the session. In some
cases mi(u) will be denoted as mi(u1,ud2) or similar forms.
The tth source symbol of a session mi(u) is denoted by mi

t(u).
The source and destination of session mi(u) are denoted by
si(u) and ri(u), respectively.

3. Results

We provide lower bounds on Bvar and Bfixed.

Theorem 1. The ratio of the minimum energy consumption
of routing solutions and the minimum energy consumption of
network coding solutions, maximized over all node locations,
multiple unicast sessions, and transmission ranges, with the
transmission range equal for the routing and network coding
solutions, is at least 2d/�√d�, that is,

Bfixed(d) ≥ 2d⌊√
d
⌋ . (4)

The result states that Bfixed is at least 2, 4, and 6 for
1-, 2- and 3-dimensional networks, respectively. The result
that Bfixed is at least 2 in one-dimensional networks also
follows from the results in [20]. The lower bound 4 for 2-
dimensional networks exceeds the previously known bound
of 2.4 [21]. This new lower bound is of particular interest,
since it exceeds the upper bound of 3 for decode-and-
recombine type network codes [26]. Indeed, the code that we
construct does not follow a decode-and-recombine strategy.
This shows that energy can be saved by considering strategies
other than decode-and-recombine. No lower bounds for
three-dimensional networks have been previously estab-
lished.

Before proving Theorem 1 in Section 5, we provide
some intuition. The configuration used to proof Theorem 1
has nodes placed at a d-dimensional rectangular lattice,
connectivity r = √

d and is parameterized by an integer K
controlling the size of the network. The network is given
in Figure 1 for d = 2 and K = 5. For d = 2, the result
of Theorem 1 is obtained as follows. First consider the case
of routing. Note, that the minimum-energy solution is to
route all packets along the shortest path between source
and destination. Therefore, all nodes in the interior of the
network will need to transmit four times. Now, for the case of
network coding, we will show in Section 5 that it is possible
to construct a network code in which each node in the
interior of the network is transmitting only once in each
time slot. Therefore, by considering large K and neglecting
the energy consumption at the borders of the network, the
obtained energy benefit is 4.

In Section 5 we will consider the general case of arbitrary
d. Again, the network coding solution will be such that each
of the Kd + O(Kd−1) nodes in the interior of the network
is transmitting only once in each time slot. In analyzing the
routing solution, some care needs to the taken. Since r = √d,
the number of hops that need to be taken on the shortest path
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K + 1 nodes

(a) (b)

Figure 1: Configuration for which Erouting/Ecoding = 2d/�√d�, with d = 2 depicted here, is achievable. Nodes are located at integer coordinates
in a d-dimensional space, with connectivity given by r = √d, as depicted in (a). Unicast sessions are placed according to (b).

(a) (b)

Figure 2: Configuration for which Erouting/Ecoding = 3 is achievable. Nodes are a subset of the hexagonal lattice, with connectivity as depicted
in (a). Unicast sessions are placed according to (b).

between source and destination equals 
K/�√d��. By noting
that the number of sessions is roughly equal to the number of
nodes at the border of the network, that is, 2dKd−1+O(Kd−2),
and ignoring all transmission from nodes at the border of the
network, we establish

Bfixed(d) ≥ lim
K→∞

[
2dKd−1 + O

(
Kd−2

)]⌈
K/
⌊√

d
⌋⌉

Kd + O(Kd−1)

= lim
K→∞

2d/
⌊√

d
⌋
Kd + O

(
Kd−1

)

Kd + O(Kd−1)

= 2d⌊√
d
⌋ .

(5)

Details of the configuration and a proof of Theorem 1 are
given in Section 5.

The configuration and network code construction used
for Theorem 1 are not useful for obtaining bounds on Bvar.
Since r = √

d, the cost per transmission in the network
coding scheme is cdα/2. One can verify, however, that the
optimal transmission range under routing is r = 1. This
requires K hops per session, with the cost per transmission
being equal to c. Using the network code described above and
the optimal routing solution at r = 1 gives

Bvar(d) ≥ lim
K→∞

cK
[

2dKd−1 + O
(
Kd−2

)]

cdα/2[Kd + O(Kd−1)]

= 2d1−α/2,

(6)

which is at most 2, since α ≥ 2. Note that it was already
shown in [20] that Bvar(1) ≥ 2 and in [21] that Bvar(2) ≥ 2.4.

By considering a different configuration, we show that
Bvar(2) ≥ 3.

Theorem 2. For 2-dimensional wireless networks, the ratio of
the minimum energy consumption of routing solutions and
the minimum energy consumption of network coding solutions,
maximized over all node locations and multiple unicast
sessions, with the transmission range optimized individually for
the routing and network coding solutions, is at least 3, that is,
Bvar(2) ≥ 3.

Here we provide an intuitive explanation of this result;
details of the configuration and a proof of Theorem 2
are provided in Section 4. The result is established using
a multiple unicast configuration on a subset of the 2-
dimensional hexagonal lattice as depicted in Figure 2. The
minimum cost routing solution on this network follows
shortest paths for all sessions and will require all nodes in
the interior of the network to transmit three times in order
to deliver one symbol for each session. In Section 4, we
construct a network code in which each node in the interior
is only transmitting once per delivered symbol. By making
the size of the network large, the influence of the borders
becomes negligible. Hence, the energy benefit is 3.

Besides providing new lower bounds on the energy
benefit of network, the network codes that are constructed
in this paper are of interest by themselves. They might lead to
insight in how to operate in networks with another structure.
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Finally, even though the case d > 3 is not of any practical
relevance, the bounds as well as the code constructions might
lead to a better insight for lower-dimensional networks.

4. An Efficient Code on the Hexagonal Lattice

In this section, we present a multiple unicast configuration
in which the nodes form a subset of the hexagonal lattice. It
will be shown that the energy benefit on this configuration
is 3, proving Theorem 2. Since the code construction used
here is less involved then the construction used to prove
Theorem 1, we start with the proof of Theorem 2. This
section is organized as follows. In Section 4.1 we present
the configuration in more detail after which we give the
construction of the network code in Section 4.2. Section 4.3
is used to prove that the code is valid. Finally, in Section 4.4
we analyze the energy consumption of the network code and
prove Theorem 2.

4.1. Configuration. The size of the configuration is parame-
terized by a positive integer K . The nodes V form a subset of
the hexagonal lattice. We index nodes with a tuple (v1, v2) ∈
N2. V is given by

V = {(v1, v2) | v1, v2 ≥ 0, v1, v2 ≤ K , v1 + v2 ≤ K}. (7)

The location of node v ∈ V in R2 is given by vG, where

G =
⎡
⎣

1 0
1
2

√
3

2

⎤
⎦. (8)

Let
◦
V denote the interior of the network, that is,

◦
V = {v ∈ V | v1, v2 > 0, v1, v2 < K , v1 + v2 < K}. (9)

The transmission range that we are interested in is r = 1. This
leads to connectivity between the six nearest neighbours.

Hence, the neighbours of a node (u1,u2) ∈
◦
V are

(u1 − 1,u2 + 1), (u1,u2 + 1), (u1 − 1,u2),

(u1 + 1,u2), (u1,u2 − 1), (u1 + 1,u2 − 1).
(10)

The nodes V and the connectivity are depicted in Figure 3.
There are 3(K − 1) unicast sessions, denoted by m1(i),

m2(i), and m3(i), 1 ≤ i ≤ K − 1. Sources and destinations of
the sessions are positioned as follows:

m1(i) : s1(i) = (0, i), r1(i) = (K − i, i),

m2(i) : s2(i) = (i,K − i), r2(i) = (i, 0),

m3(i) : s3(i) = (K − i, 0), r3(i) = (0,K − i),

(11)

as depicted in Figure 4. Remember from Section 2, that ses-

sion mj(i) has the sequence of source symbols m
j
0(i),m

j
1(i),

m
j
2(i), . . . to be transferred.

(0,K)

(0, 1)

(0, 0)
(1, 0) (K , 0)

Figure 3: Nodes at a subset of the hexagonal lattice with the
connectivity induced by a transmission range r = 1. The size of
the network is controlled by K , with K = 5 in this figure.

4.2. Network Code. The network code is such that in
each time slot a new source symbol from each session is
transmitted. Also, one symbol of each session is decoded by
its destination in each time slot. After successfully decoding
a symbol, it is retransmitted by the destination in the next
time slot. Nodes at the border will, therefore, transmit twice
in each time slot. Nodes in the interior of the network
transmit only once. The symbol that they transmit is a
linear combination of one symbol from each of the sessions
for which the shortest path between source and destination
includes that node.

The operation of the network code is demonstrated in
Figure 5 in which the transmissions of all nodes in the first
four time slots are depicted. Different transmissions by the
same node are separated by a comma. Note, moreover, that
there is a startup phase, time slots 0 to 2, in which not all
destinations are able to decode a symbol. From time slot 3
onwards, all destinations decode one symbol in every time
slot. In analyzing the energy consumption of the coding
scheme, we will ignore the startup phase.

The symbol transmitted at t = 3 by the node with the
dotted border can be obtained by summing all transmissions
from nodes with a dashed border in earlier time slots. Indeed

m1
1(3) + m2

1(2) + m1
0(1) + m3

0(2) + m2
2(1)

+ m1
1(3) + m1

2(2) + m3
0(2) + m1

0(1) + m2
1(2)

+ m3
1(1) = m1

2(2) + m2
2(1) + m3

1(1).

(12)

This coding operation (i.e., in time slot t, a node transmits
the sum of what was transmitted by its top-left neighbour
in time slot t − 2, by its top right-neighbour in time
slot t−1, and so forth, as visualized in Figure 5) is performed
by all nodes that are in the interior of the network. The idea
behind the coding operation is to cancel, by means of the
XOR operation, all symbols that should not be retransmitted.
In (12), for instance, we have m1

1(3) + m1
1(3) = 0. The

exact operation of the network code is made more precise in
the remainder of this subsection. The coding operation for
interior nodes is given in exact form in (17).

Nodes at the border of the network operate as follows. Let
0 < u2 < K . In time slot t node (0,u2) transmitstwo symbols
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s1(1), r3(4)

s1(2), r3(3)

s1(3), r3(2)

s1(4), r3(1)

s2(4), r1(1)

s2(3), r1(2)

s2(2), r1(3)

s2(1), r1(4)

s3(4)

r2(1)

s3(3)

r2(2)

s3(2)

r2(3)

s3(1)

r2(4)

Figure 4: The unicast sessions on the network from Figure 3.

x1
t (0,u2) and x3

t (0,u2), where

Left border:

x1
t (0,u2) = m1

t (u2),

x3
t (0,u2) = m3

t−u2
(K − u2).

(13)

Since (0,u2) is the source of session m1(u2) it has source
symbol m1

t (u2), available. Also, (0,u2) is the destination
for session m3(K − u2). It remains to be shown that
symbol m3

t−u2
(K − u2) can be decoded by (0,u2) using the

information obtained from its neighbours up to time slot t.
For notational convenience, let

Left border:

xt(0,u2) � x1
t (0,u2) + x3

t (0,u2). (14)

In a similar fashion, we have the following transmissions at
the right and bottom borders of the network.

Right border:

x1
t (v1, v2) = m1

t−v1
(v2),

x2
t (v1, v2) = m2

t (v1),

xt(v1, v2) � x1
t (v1, v2) + x2

t (v1, v2),

(15)

Bottom border:

x2
t (u1, 0) = m2

t−K+u1
(u1),

x3
t (u1, 0) = m3

t (K − u1),

xt(u1, 0) � x2
t (u1, 0) + x3

t (u1, 0),

(16)

where u1, v1, v2 > 0, u1, v1, v2 < K , and v1+v2 = K . Moreover,
xt(v1, v2) and xt(u1, 0) are not symbols that are transmitted,
but only notational shortcuts.

Nodes in the interior of the network transmit once in

each time slot. Let (u1,u2) ∈
◦
V . The coding operation it

performs is given by

xt(u1,u2) = xt−1(u1 − 1,u2) + xt−2(u1 − 1,u2 + 1)

+xt−1(u1,u2 + 1) + xt−3(u1,u2)

+xt−2(u1 + 1,u2) + xt−2(u1,u2 − 1)

+xt−1(u1 + 1,u2 − 1).

(17)

4.3. Validity of the Network Code. We need to show that
destinations can decode in time in order to retransmit the
required symbols according to (13), (15), and (16). In order
to do so we first analyze how data propagates through the
network. If we look at the nodes in the network that transmit
linear combinations that contain a certain source symbol, we
see that symbols propagate exactly along the shortest paths
between source and destination. This is made more precise
in the following two lemmas.

Lemma 1. Let 0 < u2 < K . Assume that the only nonzero
source symbol transmitted in the network is m1

0(u2) by node

(0,u2) in time slot 0. Then, for all t ≥ 0 and (v1, v2) ∈
◦
V

xt(v1, v2) =
⎧⎨
⎩
m1

0(u2) if v1 = t, v2 = u2,

0, otherwise.
(18)

Proof. We use induction over time. The base case is time slot
t = 0, for which it is readily verified that the statement is
true. Now, for the induction step, suppose that the lemma
holds for all t′ smaller than t. This implies that for all τ > 0

and (v1, v2) ∈
◦
V ,

xt−τ(v1, v2) = xt−τ−1(v1 − 1, v2). (19)

Hence,

xt(v1, v2) = xt−1(v1 − 1, v2) + xt−2(v1 − 1, v2 + 1)

+ xt−1(v1, v2 + 1) + xt−3(v1, v2) + xt−2(v1 + 1, v2)

+ xt−2(v1, v2 − 1) + xt−1(v1 + 1, v2 − 1)

= xt−1(v1 − 1, v2) + xt−2(v1 − 1, v2 + 1)

+ xt−2(v1 − 1, v2 + 1) + xt−3(v1, v2) + xt−3(v1, v2)

+ xt−2(v1, v2 − 1) + xt−2(v1, v2 − 1)

= xt−1(v1 − 1, v2),
(20)

which by the induction hypothesis is equal to m1
0(u2) if v1 = t

and v2 = u2 and zero otherwise.

Lemma 2. Let (u1,u2) ∈
◦
V .

xt(u1,u2) = m1
t−u1

(u2) + m2
t−K+u1+u2

(u1)

+ m3
t−u2

(K − u1 − u2).
(21)
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Proof. From Lemma 1, the time-invariance of the system,
and the symmetry of the coding operation (17) of the
internal nodes.

We are now ready to prove that the destinations can
correctly decode source symbols. We present the decoding
procedure for nodes on the right border of the network. The
decoding procedures at the other borders can be obtained by
exploiting the symmetry of the system.

Lemma 3. Consider (u1,u2), with u1 + u2 = K , 0 < u2 < K ,
that is, the destination of session m1(u2). It can decode symbol
m1

t−u1
(u2) at the end of time slot t − 1 as

x2
t−2(u1 − 1,u2 + 1) + xt−1(u1 − 1,u2) + x2

t−3(u1,u2)

+ xt−2(u1,u2 − 1) + x1
t−1(u1 + 1,u2 − 1).

(22)

Proof. From Lemma 2, (15), it follows that (22) equals

m1
t−u1

(u2) + m1
t−u1−2(u2 − 1) + m1

t−u1−2(u2 − 1)

+ m2
t−2(u1 − 1) + m2

t−2(u1 − 1) + m2
t−3(u1)

+ m2
t−3(u1)m3

t−u2−1(1) + m3
t−u2−1(1) = m1

t−u1
(u2).

(23)

4.4. Energy Consumption. The energy consumption of the
network coding scheme presented above is given in the
following lemma.

Lemma 4. minr Ecoding(V ,M, r) ≤ Ecoding(V ,M, 1) ≤ (c/
2)K2 + O(K).

Proof. From (13)–(17), we have that each of the 3(K −
1) nodes at the border that are source or destination are
transmitting twice in each time slot. Each of the (K − 1)(K −
2)/2 internal nodes is transmitting once in each time slot.
Since r = 1, the energy consumption per transmission is c.
This gives

Ecoding(V ,M, 1) ≤ 6c(K − 1) +
c(K − 1)(K − 2)

2

= c

2
K2 + O(K).

(24)

Next, we give the minimum energy required by a routing
solution.

Lemma 5. minrErouting(V ,M, r) = Erouting(V ,M, 1) =
(3c/2)K2 + O(K).

Proof. Since we consider routing, we need to take the shortest
path for each session. Since the energy consumption per
hop equals crα, the energy consumption under routing
is minimized for r = 1. Now, we see that the number
of transmissions required to deliver a symbol for the

sessions m1(1), . . . ,m1(K −1) equals K(K −1)/2. Adding the
transmissions for sessions of type 2 and 3 gives

Erouting(V ,M, 1) = 3c
2
K(K − 1) = 3c

2
K2 + O(K). (25)

Using the above two lemmas, we are able to prove
Theorem 2.

Proof of Theorem 2. Remember that Bvar is defined as the
maximum of minrErouting(V ,M, r)/minrEcoding(V ,M, r) over
V and M. Hence, minrErouting(V ,M, r)/minrEcoding(V ,M, r)
for any specific V and M will provide a lower bound to Bvar.
In addition, any upper bound to minrEcoding(V ,M, r) will
result in a lower bound to Bvar. Hence, from Lemmas 4 and
5, we have

Bvar(2) ≥ lim
K→∞

minrErouting(V ,M, r)

minrEcoding(V ,M, r)

≥ lim
K→∞

Erouting(V ,M, 1)

Ecoding(V ,M, 1)

≥ lim
K→∞

(3c/2)K2 + O(K)
(c/2)K2 + O(K)

= 3.

(26)

5. An Efficient Code on the d-Dimensional
Rectangular Lattice

In this section, we present a multiple unicast configuration
in which the nodes are placed at integer coordinates in a d-
dimensional space, that is, at the rectangular lattice.

5.1. Configuration. The size of the configuration is parame-
terized by a positive integer K . We have

V = {(v1, . . . , vd) | 0 ≤ vi ≤ K , i = 1, . . . ,d}. (27)

The interior of the network is given by

◦
V = {v ∈ V | 0 < vi < K , i = 1, . . . ,d}. (28)

We will make use of

V = {v ∈ V | ∃unique i : vi ∈ {0,K}}, (29)

which corresponds to those nodes that are part of exactly one
face of the network.

The transmission range that will be used is r = √d. This
transmission range induces a neighbourhood consisting of
all neighbours within distance

√
d. The coding operation of

our network code is based on only part of the neighbour-
hood, that is, it uses

Nv = {u ∈ V | |ui − vi| ≤ 1 ∀i, u /= v}. (30)

Note, that for d ≤ 3, Nv corresponds to the complete neigh-
bourhood of v. We will be using dist(u, v) � ‖u− v‖1 =∑d

i=1 |ui − vi|, that is, dist(u, v) denotes the Manhattan
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m1
0(3),
0

m2
0(1),
0

m1
0(2),
0

m2
0(2),
0

0

m1
0(1),
0

0 0 m2
0(3),
0

m3
0(3),
0

m3
0(2),
0

m3
0(1),
0

(a) t = 0

m1
1(3),
0

m2
1(1),

m1
0(3)

m1
1(2),
0

m2
1(2),
0

m1
0(2)+

m2
0(1)

m1
1(1),

m3
0(3)

m1
0(1)+

m3
0(2)

m2
0(2)+

m3
0(1)

m2
1(3),
0

m3
1(3),
0

m3
1(2),
0

m3
1(1),

m2
0(3)

(b) t = 1

m1
2(3),
0

m2
2(1),

m1
1(3)

m1
2(2),

m3
0(2)

m2
2(2),

m1
0(2)

m1
1(2)+

m2
1(1)+

m3
0(1)

m1
2(1),

m3
1(3)

m1
1(1)+

m2
0(1)+

m3
1(2)

m1
0(1)+

m2
1(2)+

m3
1(1)

m2
2(3),
0

m3
2(3),
0

m3
2(2),

m2
0(2)

m3
2(1),

m2
1(3)

(c) t = 2

m1
3(3),

m3
0(1)

m2
3(1),

m1
2(3)

m1
3(2),

m3
1(2)

m2
3(2),

m1
1(2)

m1
2(2)+

m2
2(1)+

m3
1(1)

m1
3(1),

m3
2(3)

m1
2(1)+

m2
1(1)+

m3
2(2)

m1
1(1)+

m2
2(2)+

m3
2(1)

m2
3(3),

m1
0(1)

m3
3(3),

m2
0(1)

m3
3(2),

m2
1(2)

m3
3(1),

m2
2(3)

(d) t = 3

Figure 5: Example operation of the network code of Section 4, with K = 4. The transmissions of all nodes in the time slots 0, . . . , 3 are
depicted. Different transmissions by the same node are separated by a comma. Note, that the symbol transmitted at t = 3 by the node with
dotted border can be obtained by summing all transmissions from nodes with a dashed border in earlier time slots. All nodes in the interior
of the network perform this simple coding operation.

distance from u to v. The network and its connectivity are
depicted for d = 2 in Figure 6.

A source is located at each v ∈ V . Therefore, there
are |V | = 2d(K − 1)d−1 sessions. If vi = 0, we denote
the session corresponding to this source by mi(v\i). Recall
from Section 2 that v\i denotes the d-1 dimensional vector
obtained by removing the ith element from v. If vi = K ,
we denote the session by md+i(v\i). The destination of each
session is located at the other side of the network, that is, we
have ri(v\i) = sd+i(v\i) and rd+i(v\i) = si(v\i). The positions
of sources and destinations are depicted for d = 2 in Figure 7.

It can be seen that mi(v\i) and md+i(v\i) form oppositely
directed sessions.

5.2. Network Code. We introduce sets Θδ ⊂ {1, . . . , 2d}, 0 ≤
δ ≤ d, which are defined recursively as follows:

Θd = {d},
Θδ = (Θδ+1 − 1)Δ(Θδ+1 + 1), 0 < δ < d,

Θ0 = (Θ1 − 1)Δ(Θ1 + 1) \ {0},
(31)



EURASIP Journal on Wireless Communications and Networking 9

(0,K)

(0, 1)

(0, 0)
(1, 0) (K , 0)

Figure 6: Nodes at a subset of the d-dimensional rectangular lattice,
d = 2 depicted in the figure, with the connectivity induced by a
transmission range r = √d. The size of the network is controlled by
K , with K = 5 in this figure.

s1(1), r3(1)

s1(2), r3(2)

s1(3), r3(3)

s1(4), r3(4)

s3(1), r1(1)

s3(2), r1(2)

s3(3), r1(3)

s3(4), r1(4)

s2(1)

r4(1)

s2(2)

r4(2)

s2(3)

r4(3)

s2(4)

r4(4)

s4(1)

r2(1)

s4(2)

r2(2)

s4(3)

r2(3)

s4(4)

r2(4)

Figure 7: The unicast sessions on the network from Figure 6.

where Δ denotes symmetric difference and Θδ ± 1 = {τ ± 1 |
τ ∈ Θδ}. Note that irrespective of d we have 1 ∈ Θ1. As
an example for d = 2 we have Θ2 = {2}, Θ1 = {1, 3} and
Θ0 = {4}.

The scheme is very similar in flavour to the scheme
presented in Section 4; its operation is demonstrated in
Figure 8 in which, for d = 2 and K = 3, the transmissions
of all nodes in the first four time slots are depicted. The
operation of the scheme is such that in time slot t sources
transmit the tth source symbol and destinations decode
the (t − K)th source symbol. Besides transmitting a new
source symbol in each time slot, sources/destinations will
also retransmit the symbol that has been decoded in that
time slot, that is, they transmit two different symbols in each
time slot. In the figure, different transmissions by the same
node are separated by a comma. Nodes in the interior of the
network transmit only once. The symbol that they transmit is
a linear combination of one symbol from each of the sessions
for which the shortest path between source and destination
includes that node. The symbol transmitted at t = 3 by the
node with the dotted border can be obtained by summing
all transmissions from nodes with a dashed border in earlier
time slots. This coding operation is performed by all nodes
that are in the interior of the network. The exact operation
of the network code is made more precise in the remainder

of this subsection. The coding operation for interior nodes is
given in exact form in (34).

Let node v ∈ V . Remember that v ∈ V implies that there
exists a unique i such that vi ∈ {0,K}. Node v transmits

xit(v) = mi
t−vi
(
v\i
)
,

xd+i
t (v) = md+i

t−K+vi

(
v\i
)
.

(32)

For notational convenience, let

xt(v) � xit(v) + xd+i
t (v). (33)

The coding operation performed by an internal node is as
follows:

xt(v) = ∑
u∈Nv∪{v}

∑
τ∈Θdist(u,v)

xt−τ(u). (34)

5.3. Validity of the Network Code. The following result
follows directly from the definition of the sets Θδ , but is
stated here as a lemma because of its importance in the
remainder of the paper.

Lemma 6. Let {xt} be a sequence of symbols from F2 and let
0 < δ < d. We have

∑

τ∈Θδ

xt−τ =
∑

τ∈Θδ+1

[xt−τ+1 + xt−τ−1],

∑

τ∈Θ0

xt−τ =
∑

τ∈Θ1\{1}
xt−τ+1 +

∑

τ∈Θ1

xt−τ−1.
(35)

Lemma 7. Consider node (0,ud2) ∈ V . Assume that the only
nonzero source symbol transmitted in the network is m1

0(ud2) by
node (0,ud2) in time slot 0. Then

xt(v) =
⎧⎪⎨
⎪⎩
m1

0

(
ud2
)

, if v1 = t, vd2 = ud2 ,

0, otherwise,
(36)

for all v ∈ V and t ≥ 0.

Proof. We use induction over t. At time t = 0, the lemma
holds, giving us our base case. Now suppose that the lemma
holds for all time slots smaller than t. If v ∈ V , the
lemma follows directly from (32)–(33). In the remainder we

consider u ∈
◦
V . From the induction hypothesis, it follows

that for any t′ < t

xt′(u) = xt′−1

(
u1 − 1,ud2

)
. (37)

If u1 = K − 1, it follows from (32) and the induction
hypothesis that

xt′−1(u) = xt′
(
u1 + 1,ud2

)
. (38)

Now, at t the coding operation performed by u can be
decomposed as

xt(u) =
∑

w∈Nu∪{v}

∑

τ∈Θdist(w,u)

xt−τ(w) =
∑

w∈Nu :
w1=u1

g(w), (39)
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Figure 8: Example operation of the network code of Section 5, with K = 3. The transmissions of all nodes in the time slots 0, . . . , 3 are
depicted. Different transmissions by the same node are separated by a comma. Note, that the symbol transmitted at t = 3 by the node with
dotted border can be obtained by summing all transmissions from nodes with a dashed border in earlier time slots. All nodes in the interior
of the network perform this simple coding operation.

where

g(w) =
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 − 1,wd

2

)
+

∑

τ∈Θdist(w,u)

xt−τ(w)

+
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 + 1,wd

2

)
.

(40)

In the remainder, we show that

g(w) =
⎧⎪⎨
⎪⎩
xt−1

(
w1 − 1,wd

2

)
if w = u

0, otherwise,
(41)

which proves the lemma, since by the induction hypothesis
xt−1(u1 − 1,ud2) = m1

0(ud2) if u1 = t and zero otherwise.
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For w /=u we, have

g(w) =
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 − 1,wd

2

)
+

∑

τ∈Θdist(w,u)

xt−τ(w)

+
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 +1,wd

2

)

=
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 − 1,wd

2

)
+

∑

τ∈Θdist(w,u)+1

xt−τ+1(w)

+
∑

τ∈Θdist(w,u)+1

xt−τ−1(w) +
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 + 1,wd

2

)

=
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1−1,wd

2

)
+

∑

τ∈Θdist(w,u)+1

xt−τ
(
w1−1,wd

2

)

+
∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 +1,wd

2

) ∑

τ∈Θdist(w,u)+1

xt−τ
(
w1 +1,wd

2

)

= 0,
(42)

where the second equality follows from Lemma 6, the third
equality follows from (37)-(38), and the last equality holds
because we work over F2.

For w = u, we have

g(u) =
∑

τ∈Θ1

xt−τ
(
u1 − 1,ud2

)
+
∑

τ∈Θ0

xt−τ(u)

+
∑

τ∈Θ1

xt−τ
(
u1 + 1,ud2

)

=
∑

τ∈Θ1

xt−τ
(
u1 − 1,ud2

)
+

∑

τ∈Θ1\{1}
xt−τ+1(u)

+
∑

τ∈Θ1

xt−τ−1(u) +
∑

τ∈Θ1

xt−τ
(
w1 + 1,wd

2

)

=
∑

τ∈Θ1

xt−τ
(
u1 − 1,ud2

)
+

∑

τ∈Θ1\{1}
xt−τ

(
u1 − 1,ud2

)

+
∑

τ∈Θ1

xt−τ
(
u1 + 1,ud2

)
+
∑

τ∈Θ1

xt−τ
(
u1 + 1,ud2

)

= xt−1

(
u1 − 1,ud2

)
.

(43)

Lemma 8. Let u ∈
◦
V

xt(u) =
d∑

i=1

[
mi

t−ui
(
u\i
)

+ md+i
t−K+ui

(
u\i
)]
. (44)

Proof. By linearity, time-invariance and symmetry of (34)
together with Lemma 7.

We are now ready to prove that the destinations can
correctly decode source symbols. We present the decoding
procedure for nodes on the right border of the network,
that is, for nodes of type (K ,ud2) ∈ V . The decoding

procedures at the other borders can be obtained by exploiting
the symmetry of the system.

Lemma 9. Consider node u = (K ,ud2) ∈ V . At the end of time
slot t − 1, it can decode symbol m1

t−K (ud2) as

∑

v∈Nu :
v1<K

∑

τ∈Θdist(u,v)

xt−τ(v)

+
∑

v∈Nu :
v1=K

∑

τ∈Θdist(u,v)+1

[
x1
t−τ+1(v) + xd+1

t−τ−1(v)
]

+
∑

τ∈Θ1\{1}
x1
t−τ+1(u) +

∑

τ∈Θ1

xd+1
t−τ−1(u)

(45)

Proof. First note that all terms in (45) correspond to symbols
that have been received by (K ,ud2) before or in time slot t−1.

Now, from Lemma 8, we have

∑

v∈Nu :
v1<K

∑

τ∈Θdist(u,v)

xt−τ(v)

=
∑

v∈Nu :
v1<K

∑

τ∈Θdist(u,v)

d∑

i=1

[
mi

t−vi−τ
(
v\i
)

+ md+i
t−K+vi−τ

(
v\i
)]

=
∑

v∈Nu :
v1<K

∑

τ∈Θdist(u,v)

[
m1

t−v1−τ
(
v\1
)

+ md+1
t−K+v1−τ

(
v\1
)]

+
d∑

i=2

⎡
⎢⎢⎣

∑

v∈Nu :
v1<K ,vi=ui

⎡
⎣ ∑

τ∈Θdist(u,v)+1

mi
t−vi+1−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)

mi
t−vi−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)+1

mi
t−vi−1−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)+1

md+i
t−vi+1−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)

md+i
t−vi−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)+1

md+i
t−vi−1−τ

(
v\i
)⎤⎦

⎤
⎥⎥⎦

(a)=
∑

v∈Nu :
v1<K

∑

τ∈Θdist(u,v)

[
m1

t−v1−τ
(
v\1
)

+ md+1
t−K+v1−τ

(
v\1
)]

=
∑

τ∈Θ1

[
m1

t−K+1−τ
(
u\1
)

+ md+1
t−1−τ

(
u\1
)]

+
∑

v∈Nu :
v1=K

∑

τ∈Θdist(u,v)+1

[
m1

t−K+1−τ
(
v\1
)

+ md+1
t−1−τ

(
v\1
)]

,

(46)
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where (a) holds, because for dist(u, v) > 0, Lemma 6 gives

∑

τ∈Θdist(u,v)+1

mi
t−vi+1−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)

mi
t−vi−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)+1

mi
t−vi−1−τ

(
v\i
)
= 0,

(47)

and
∑

τ∈Θdist(u,v)+1

md+i
t−vi+1−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)

md+i
t−vi−τ

(
v\i
)

+
∑

τ∈Θdist(u,v)+1

md+i
t−vi−1−τ

(
v\i
)
= 0.

(48)

From (32) it follows that
∑

v∈Nu :
v1=K

∑

τ∈Θdist(u,v)+1

[
x1
t−τ+1(v) + xd+1

t−τ−1(v)
]

=
∑

v∈Nu :

v1=K

∑

τ∈Θdist(u,v)+1

[
m1

t−K+1−τ
(
v\1
)

+ md+1
t−1−τ

(
v\1
)]

,

(49)

and
∑

τ∈Θ1\{1}
x1
t−τ+1(u) +

∑

τ∈Θ1

xd+1
t−τ−1(u)

=
∑

τ∈Θ1\{1}
m1

t−K+1−τ
(
u\1
)

+
∑

τ∈Θ1

md+1
t−1−τ

(
u\1
)
.

(50)

The proof of the lemma follows by adding the final expres-
sions from (46), (49) and (50) observing that the outcome is
m1

t−K (ud2).

5.4. Energy Consumption. The energy consumption of the
network coding scheme presented above provides an upper
bound to minrEcoding(V ,M, r).

Lemma 10. Ecoding(V ,M,
√
d) ≤ 4cd1+α/2(K − 1)d−1 +

cdα/2(K − 1)d.

Proof. All transmissions are over distance
√
d and cost cdα/2.

The nodes in V are transmitting twice. On each of the 2d
sides of the network, there are (K − 1)d−1 nodes from V ;
hence |V | = 2d(K − 1)d−1. This gives 2|V | = 4d(K − 1)d−1

transmissions. In addition, there are (K − 1)d nodes in the
interior, that are all transmitting once.

Next, we give the minimum energy required by a routing
solution.

Lemma 11. Erouting(V ,M,
√
d) = 2cd1+α/2
K/�√d��(K −

1)d−1.

Proof. Since the transmission range is equal to
√
d, a routing

solution requires 
K/�√d�� transmissions per session. More-
over, there are |V | = 2d(K − 1)d−1 sessions.

Using the above two lemmas, we are able to prove
Theorem 1.

Proof of Theorem 1. Lemmas 10 and 11 give

Bfixed(d) ≥ lim
K→∞

Erouting

(
V ,M,

√
d
)

Ecoding

(
V ,M,

√
d
)

≥ lim
K→∞

2cd1+α/2
⌈
K/
⌊√

d
⌋⌉

(K − 1)d−1

cdα/2
[

4d(K − 1)d−1 + (K − 1)d
]

= 2d⌊√
d
⌋ .

(51)

(52)

6. Discussion

We have given several constructions of energy-efficient
network codes. These constructions serve to show that
compared to plain routing, network coding has the potential
of reducing energy consumption in wireless networks. Since
we have provided only codes that are based on a centralized
design, it remains to be shown in future work if and how this
potential can be exploited using practical codes. Moreover,
it would also be of interest to consider the energy-benefit in
topologies in which the nodes are not positioned at a lattice,
for instance, random networks.

In this work we have provided lower bounds on the
energy benefit of network coding for wireless multiple
unicast. Another open problem is to find upper bounds on
the benefit.
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A main distinguishing feature of a wireless network compared with a wired network is its broadcast nature, in which the signal
transmitted by a node may reach several other nodes, and a node may receive signals from several other nodes, simultaneously.
Rather than a blessing, this feature is treated more as an interference-inducing nuisance in most wireless networks today (e.g.,
IEEE 802.11). This paper shows that the concept of network coding can be applied at the physical layer to turn the broadcast
property into a capacity-boosting advantage in wireless ad hoc networks. Specifically, we propose a physical-layer network coding
(PNC) scheme to coordinate transmissions among nodes. In contrast to “straightforward” network coding which performs coding
arithmetic on digital bit streams after they have been received, PNC makes use of the additive nature of simultaneously arriving
electromagnetic (EM) waves for equivalent coding operation. And in doing so, PNC can potentially achieve 100% and 50%
throughput increases compared with traditional transmission and straightforward network coding, respectively, in 1D regular
linear networks with multiple random flows. The throughput improvements are even larger in 2D regular networks: 200% and
100%, respectively.

1. Introduction

One of the biggest challenges in wireless communication
is how to deal with the interference at the receiver when
signals from multiple sources arrive simultaneously. In the
radio channel of the physical-layer of wireless networks, data
are transmitted through electromagnetic (EM) waves in a
broadcast manner. The interference between these EM waves
causes the data to be scrambled.

To overcome its negative impact, most schemes attempt
to find ways to either reduce or avoid interference through
receiver design or transmission scheduling [1]. For example,
in 802.11 networks, the carrier-sensing mechanism allows at
most one source to transmit or receive at any time within
a carrier-sensing range. This is obviously inefficient when
multiple nodes have data to transmit.

While interference causes throughput degradation on
wireless networks in general, its negative effect for multihop
ad hoc networks is particularly significant. For example, in
802.11 networks, the theoretical throughput of a multihop
flow in a linear network is less than 1/4 of the single-hop case

due to the “self-interference” effect, in which packets of the
same flow but at different hops collide with each other [2, 3].

Instead of treating interference as a nuisance to be
avoided, we can actually embrace interference to improve
throughput performance with the “right mechanism”. To do
so in a multihop network, the following goals must be met.

(1) A relay node must be able to convert simultaneously
received signals into interpretable output signals to be
relayed to their final destinations.

(2) A destination must be able to extract the information
addressed to it from the relayed signals.

The capability of network coding to combine and extract
information through simple Galois field GF(2n) additions
[4, 5] provides a potential approach to meet such goals. How-
ever, network coding arithmetic is generally only applied on
bits that have already been correctly received. That is, when
the EM waves from multiple sources overlap and mutually
interfere, network coding cannot be used to resolve the data
at the receiver. So, criterion 1 above cannot be met.
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This paper proposes the application of network coding
directly within the radio channel at the physical-layer. We
call this scheme Physical-layer Network Coding (PNC). The
main idea of PNC is to create an apparatus similar to that
of network coding, but at the physical-layer that deals with
EM signal reception and modulation. Through a proper
modulation-and-demodulation technique at the relay nodes,
additions of EM signals can be mapped to GF(2n) additions
of digital bit streams, so that the interference becomes part of
the arithmetic operation in network coding. The basic idea
of PNC was first put forth in our conference paper in [6].
Going beyond [6], this paper addresses a number of practical
issues of applying PNC in wireless networks. In particular,
we evaluate the performance of PNC based on specific
scheduling algorithms for 1D and 2D regular networks that
make use of PNC (The PNC scheduling schemes in this
paper can be easily extended to more general networks as
in [6]) . Compared to the traditional transmission and the
straightforward network coding, our analytical results show
that PNC can improve the network throughput by a factor of
2 and 1.5, respectively, for the 1D network, and by a factor of
3 and 2 respectively for the 2D network.

1.1. Related Work. In 2006, we proposed PNC in [6] as
demodulation mappings based on different modulation
schemes. A similar idea was also published independently in
[7] at the same time by another group. After that, a large body
of work from other researchers on PNC began to appear. The
work can be roughly divided into three categories.

In the first category, PNC is regarded as a modulation-
demodulation technique. Many new PNC mapping schemes
have been proposed since [6]. For example, [8] proposed
a scheme based on Tomlinson-Harashima precoding. Fol-
lowing [6], [9] proposed a simple relay strategy called
analog network coding (ANC), in which the relay amplifies
and forwards the received superimposed signal without
any processing. Analog network coding turns out to be
similar to a scheme earlier by researchers in the satellite
communication society [10]. In [11], a number of memo-
ryless relay functions, including PNC mapping and the BER
optimal function, were identified and analyzed assuming
phase synchronization between signals of the transmitters. In
[12], we observed that there is a one-to-one correspondence
between a relay function and a specific PNC scheme under
the general definition of memoryless PNC. Besides the
precise definition of memoryless PNC which distinguishes it
from the traditional straightforward network coding (SNC),
[12] also gave a number of new PNC schemes. Reference [13]
proposed a new PNC scheme where the relay maps a group
constellation points to one signal according to the phase
difference of the two end nodes’ signals. The mechanism also
takes care of the phase difference between the two end nodes
implicitly.

In the second category, PNC and channel coding are
studied jointly. In [14–16], PNC was combined with Lattice
code or LDPC code. It was proved that the capacity of
the two-way relay channel can be approached in high
SNR and low SNR. In [14–16], channel coding and PNC
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Figure 1: A three-node linear network.

mapping are performed independently (i.e., successively).
In [17], we proposed a novel scheme which treats channel
coding and PNC in an integrated manner. We show that
joint channel-PNC decoding can outperform the previous
schemes significantly.

In the third category, the focus is on the performance
impact and significance of PNC in large-scale wireless net-
works. For one-dimensional wireless networks, [18] showed
that PNC can improve the capacity by a fixed factor, although
it does not change the scaling law. For two-dimensional
wireless networks, [19] showed that PNC can increase
capacity by a factor of 2.5 for the rectangular networks and
a factor 2 for the hexagonal networks. However, the result
in [18] is obtained based on a rough scheduling scheme
which is established traditional network coding rather than
physical-layer network coding (the special properties of PNC
are ignored). Our paper here also discusses the application
of PNC in large-scale wireless networks. It is different from
[18] in that we provide the construction of an explicit PNC-
scheduling algorithm (specially designed for PNC), upon
which all our results are established. Compared with [19], we
consider the many-to-many scenario with multiple sources
and destinations, while [19] only considered the one-to-
many scenario with one source.

The rest of this paper is organized as follows. Section 2
overviews the basic idea of PNC with a linear 3-node multi-
hop network. Sections 3 and 4 investigate the application of
PNC in the 1D regular linear network and 2D regular grid
network, respectively. Section A concludes the paper.

2. Illustrating Example: A Three-Node Wireless
Linear Network

Consider the three-node linear network in Figure 1. N1

(Node 1) and N3 (Node 3) are nodes that exchange
information, but they are out of each other’s transmission
range. N2 (Node 2) is the relay node between them.

This three-node wireless network is a basic unit for
cooperative transmission and it has previously been inves-
tigated extensively [20–25]. In cooperative transmission, the
relay node N2 can choose different transmission strategies,
such as Amplify-and-Forward or Decode-and-Forward [22],
according to different Signal-to-Noise (SNR) situations.
This paper focuses on the Decode-and-Forward strategy.
We consider frame-based communication in which a time
slot is defined as the time required for the transmission
of one fixed-size frame. Each node is equipped with an
omnidirectional antenna, and the channel is half duplex
so that transmission and reception at a particular node
must occur in different time slots. Slow fading is assumed
throughout this paper for the ease of synchronization.

Before introducing the PNC transmission scheme,
we first describe the traditional transmission scheduling
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Figure 2: Traditional scheduling scheme.
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Figure 3: Straightforward network coding scheme.

scheme and the “straightforward” network-coding scheme
for mutual exchange of a frame in the three-node network
[20, 25].

2.1. Traditional Transmission Scheduling Scheme. In tradi-
tional networks, interference is usually avoided by prohibit-
ing the overlapping of signals from N1 and N3 to N2 in the
same time slot. A possible transmission schedule is given in
Figure 2. Let Si denote the frame initiated byNi.N1 first sends
S1 to N2, and then N2 relays S1 to N3. After that, N3 sends S3

in the reverse direction. A total of four time slots are needed
for the exchange of two frames in opposite directions.

2.2. Straightforward Network Coding Scheme. References [20,
25] outline the straightforward way of applying network cod-
ing in the three-node wireless network. Figure 3 illustrates
the idea. First, N1 sends S1 to N2 and then N3 sends frame
S3 to N2. After receiving S1 and S3, N2 encodes frame S2 as
follows:

S2 = S1 ⊕ S3, (1)

where ⊕ denotes bitwise exclusive OR operation being
applied over the entire frames of S1 and S3. N2 then
broadcasts S2 to both N1 and N3. When N1 receives S2, it
extracts S3 from S2 using the local information S1, as follows:

S1 ⊕ S2 = S1 ⊕ (S1 ⊕ S3) = S3. (2)

Similarly, N2 can extract S1. A total of three time slots
are needed, for a throughput improvement of 33% over the
traditional transmission scheduling scheme.

2.3. Physical-Layer Network Coding (PNC). We now intro-
duce PNC as shown in Figure 4. Let us assume that the use
of BPSK modulation at all the nodes. We further assume
symbol-level time and carrier-phase synchronization, and
the use of power control, so that the frames from N1 and
N3 arrive at N2 with the same phase and amplitude (Power
control can be achieved in a slow fading channel with current
techniques. Additional discussion about carrier-phase and
symbol time synchronization can be found in [26]) . The
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Figure 4: Physical-layer network coding.

combined bandpass signal received by N2 during one symbol
period is

r2(t) = s1(t) + s3(t)

= a1 cos(ωt) + a3 cos(ωt)

= (a1 + a3) cos(ωt),

(3)

where si(t), i = 1 or 3, is the bandpass signal transmitted by
Ni, r2(t) is the bandpass signal received by N2 during one
symbol period, ai is the BPSK modulated information bit
of Ni, and ω is the carrier frequency. Then, N2 will obtain
a baseband signal a1 + a3.

Note that N2 cannot extract the individual information
transmitted by N1 and N3, that is, a1 and a3, from the
combined signal in a1 + a3. However, N2 is just a relay node.
As long as N2 can transmit the necessary information to
N1 and N3 for extraction of a1 and a3 over there, the end-
to-end delivery of information will be successful. For this,
all we need is a special modulation/demodulation mapping
scheme, referred to as PNC mapping in this paper, to obtain
the equivalence of GF(2) summation of bits from N1 and N3

at the physical-layer.
Table 1 illustrates the idea of PNC mapping. In Table 1,

s j ∈ {0, 1} is a variable representing the data bit of Nj and
aj ∈ {−1, 1} is a variable representing the BPSK modulated
bit of s j such that aj = 2s j − 1.

With reference to Table 1, N2 obtains the information
bits:

s2 = s1 ⊕ s3. (4)

It then transmits

s2(t) = a2 cos(ωt). (5)

The BER analysis in [6] shows that the end-to-end BER
for the three schemes is similar when the per-hop BER is
low (the BER is less than 10−5 for 10 dB). Ignoring the
slight BER difference, we have the following conclusion.
For a frame exchange, PNC requires two time slots, 802.11
requires four, while straightforward network coding requires
three. Therefore, PNC can improve the system throughput
of the three-node wireless network by a factor of 100%
and 50% relative to traditional transmission scheduling and
straightforward network coding, respectively.

3. Applying PNC in Regular 1D Networks

Our discussions so far has only focused on the simple 3-
node network with one bidirectional flow. In this section,
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Table 1: PNC Mapping: modulation mapping at N1, N2; demodulation and modulation mappings at N3.

Modulation mapping at N1 and N3 Demodulation mapping at N2

Input Output

Input Output Modulation mapping at N2

Input Output

s1 s3 a1 a3 a1 + a3 s2 a2

1 1 1 1 2 0 −1

0 1 −1 1 0 1 1

1 0 1 −1 0 1 1

0 0 −1 −1 −2 0 −1

we discuss the application of PNC in 1D regular networks.
There are two reasons for this discussion. First, the schemes
proposed in regular network still work in random networks.
And the analytical results in regular networks also provide
some insights about applying PNC in random networks.
Second, the regular network can also find applications in real
world. For example, APs (access points) positioned along a
highway form a regular linear chain in a vehicular network.

3.1. Regular Linear Network with One Bidirectional Flow.
Consider a regular linear network with N nodes with equal
spacing between adjacent nodes. Label the nodes as node 1,
node 2, . . ., node N , successively with nodes 1 and N being
the two source and destination nodes, respectively. Figure 5
shows a network with N = 5. Suppose that node 1 is to
transmit frames X1, X2, . . . . to node N , and node N is to
transmit frames Y1, Y2, . . . . to node 1.

We could divide the time slots into two types: odd slots
and even slots. In the odd time slots, the odd-numbered
nodes transmit and the even-numbered nodes receive. In the
even time slots, the even-numbered nodes transmit and the
odd-numbered nodes receive.

Figure 5 shows the sequence of frames being transmitted
by the nodes in a 5-node network. In slot 1, node 1 transmits
X1 to node 2 and node 5 transmits Y1 to node 4 at the same
time. In slot 2, node 2 and node 4 transmit X1 and Y1 to node
3 simultaneously; both node 2 and node 4 also store a copy
of X1 and Y1 in their buffer, respectively. In slot 3, node 1
transmits X2 to node 2, node 5 transmits Y2 to node 4, and
node 3 broadcasts X1 ⊕ Y1 simultaneously; node 3 stores a
copy of X1⊕Y1 in its buffer. Adding the stored X1 to X2⊕X1⊕
Y1 received with PNC detection, node 2 can obtain Y1 ⊕ X2.
Node 4 can obtain Y2 ⊕ X1 similarly. In slot 4, node 2 and
node 4 broadcast Y1 ⊕ X2 and Y2 ⊕ X1, respectively. In this
way, node 5 receives a copy of X1 and node 1 receives Y1 in
slot 4. Also, in slot 4, node 3 obtains Y2⊕X2 by adding stored
packet X1 ⊕ Y1 to the received packet X1 ⊕ Y2 ⊕ X2 ⊕ Y1.

With reference to Figure 5, we see that a relay node
forwards two frames, one in each direction, every two time
slots. So, the throughput is 0.5 frame/time slot in each
direction. Due to the half duplex assumption, this is the
maximum possible throughput we can achieve.

As detailed above, when applying PNC on the linear
network, each node transmits and receives alternately in
successive time slots; and when a node transmits, its adjacent
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Figure 5: Bidirection PNC transmission in linear network.

nodes receive, and vice versa (see Figure 5). Let us investigate
the signal-to-inference ratio (SIR) given this transmission
pattern to make sure that it is not excessive. Consider
the worst-case scenario of an infinite chain. We note the
following characteristics of PNC from a receiving node’s
point of view.

(a) The interfering nodes are symmetric on both sides.

(b) The simultaneous signals received from the two
adjacent nodes do not interfere due to the nature of
PNC.

(c) The nodes that are two hops away are also receiving
at the same time, and therefore will not interfere with
the node.

Therefore, the two nearest interfering nodes are three
hops away. We have the following SIR:

SIR = P0/dα

2∗∑∞
l=1 P0/[(2l + 1)d]α

, (6)

where P0 is the common (In a regular network, a trivial
result of power control is that every node uses the same
transmission power if the distances between adjacent nodes
are constant) transmitting power of the nodes and α is the
path-loss exponent. According to [27], α = 2 for free space,
α = 2.7∼3.5 for urban cellular networks, and α = 4∼6 for in-
building transmission. We calculate the SIR for different α
and the results are shown in Table 2. As can be seen, when
α ≥ 3 (this is typical in wireless networks), the SIR is no
less than 10 dB and the impact of the interference on BER is
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Table 2: Signal to Noise Ratio with different path loss exponent

α 2 3 4 5 6

SIR (dB) 3.3 9.8 15.3 20.4 25.4

negligible for BPSK based on [28] (the capture threshold is
often set to 10 db in wireless networks [3]). More generally,
a thorough treatment should take into account the actual
modulation scheme used, the difference between the effects
of interference and noise, and whether or not channel coding
is used. However, we can conclude that as far as the SIR is
concerned, PNC is not worse than traditional scheduling (see
Section 4) when generalized to the n-node linear network (In
this paper, we assume that channel coding [17] is properly
used at all the nodes and the packets can be correctly
decoded to avoid error propagation once the targeted SIR is
achieved. Reference [17] provides and investigates a hop-to-
hop channel coding scheme for PNC) .

3.2. Regular Linear Network with Multiple Flows. Part A
considers only one bidirectional flow. Here we consider a
general setting in which there are K unidirectional flows
in the N-node linear network. Note that this generalization
includes the scenario in which there is a combination
of unidirectional and bidirectional flows in the network,
since each bidirectional flow can be considered as two
unidirectional flows.

To allow PNC to be applied, we compose bidirectional
flows out of the K unidirectional flows by matching pairs of
unidirectional flows in opposite directions. The bidirectional
flows can then make use of PNC for transmission, while the
remaining unmatched unidirectional flows make use of the
traditional strategy of multihop data transmission.

The optimal way to compose the bidirectional flows
and schedule the transmission of the links in the flows
is a tough problem. Here we consider a simple heuristic
which is asymptotically optimal for the regularN-node linear
network when N goes to infinity as shown in Part C. For
simplicity, we assume that all flows have equal traffic.

We define the following terms with respect to the linear
network. Let us label the nodes from left to right by 1 to N
sequentially. Let (si,di) denote the source-destination pair of
flow i. For a right-bound flow, si < di; for a left-bound flow,
si > di. Let F denote the overall set of flows, and FR ⊆ F be the
set of right-bound flows and FL ⊆ F be the set of left-found
flows.

Two right-bound (left-bound) flows i and j are said to be
nonoverlapping if di < sj or dj < si (si < dj or s j < di). A
right packing (left packing) is a set of nonoverlapping right-
bound flows (left-bound flows). A dual packing consists of a
right packing and a left packing. Figure 6 shows an example
of a dual packing. Flows 2 and 3 form a right packing,
and Flow 1 forms a left packing. Note that some of the
nodes are traversed by both a right-bound flow and a left-
bound flow. Let us call these nodes the common nodes,
and the other nodes the noncommon nodes. A sequence
of adjacent common nodes, flanked by but not including

Flow 1
Flow 2 Flow 3

Figure 6: An example of a dual packing formed by a right packing
and a left packing. An ellipse corresponds to a PNC unit. The nodes
between two adjacent ellipses (including the terminal nodes of the
ellipses) are grouped together by a rectangle.

two noncommon nodes at two ends (an ellipse in Figure 6),
forms a PNC unit, and we can use the PNC mechanism for
transporting the bidirectional traffic over it. A sequence of
adjacent noncommon nodes, together with the two common
nodes flanking them (a rectangle in Figure 6), may or may
not have traffic flowing over them. When there is traffic,
the traffic is in one direction only, and the traditional
multihop communication technique can be used to carry
the unidirectional traffic. Essentially, by forming a dual
packing, we also form many “virtual” bidirectional flows
(each corresponding to a PNC unit) on which PNC can be
applied.

Our heuristic as showing in Algorithm 1 consists of a
method of forming dual packings from the K unidirectional
flows.

The dual packings yield a set of “virtual” bidirectional
flows, each corresponding to a PNC unit. Scheduling can
then be performed as follows. Let us refer to the time needed
for all the K unidirectional flows to transfer one packet from
source to destination as one frame. Each link (hop) of a flow
is allocated one time slot for transmission within a frame. A
frame is further divided into two intervals, as follows.

(1) The first interval is dedicated to the PNC units (i.e.,
ellipses). Note that if there are M dual packings, 2M
time slots are needed in the worst case; in the worst
case, different dual packings use different time slots
to transmit, and 2 time slots are needed for each
dual packing (Two caveats are in order. The first
is that according to our construction, there could
be “trivial” PNC units with two nodes only. In this
case, the PNC mechanism is not needed, and each
node gets to transmit directly to the other node.
Regardless of whether the PNC unit is trivial or not,
two time slots are needed for the bidirectional flows.
The second caveat is that there could be two PNC
units in the same dual packing next to each other. For
example, suppose nodes 1, 2, and 3 form a PNC unit,
and nodes 4, 5, 6 form another. To avoid conflict, the
scheduling of the transmissions on these two PNC
units should be such that nodes 1, 3, 4, and 6 transmit
in one time slot while nodes 2 and 5 transmit in
another time slot. Again, two time slots are needed.).

(2) The second interval is dedicated to the nonPNC units
(i.e., rectangles). The nodes of all rectangles of all
dual packings are scheduled to transmit using the
conventional scheme.
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while (F /=∅) { /∗ Each iteration in the while loop forms a dual packing. ∗/
while (FR /=∅) { /∗ Each iteration in the while loop tries to find a “tight” right packing ∗/

largestDest=0;
while (true) {

/∗ Each iteration in the while loop includes one more flow into the right packing being assembled. ∗/
i = arg min j∈FR :s j >largestDests j

/∗ Select a flow with the smallest source larger than LargestDest; assume “null” is returned if there is no more flow
left in FR with s j > largestDest. ∗/

if (i /=null) {
include flow i into the current right packing being assembled;
largestDest = di;
remove flow i from F;

} else
break;

/∗ Break out of the while(true) loop. ∗/
}

}
while (FL /=∅) {
/∗ Each iteration in the while loop tries to find a “tight” left packing. ∗/
/∗ Comment: details omitted here; the procedure is similar to the “while (FR /=∅)” loop above
except that largestDest is replaced by smallestDest; s j > largestDest is replaced by s j < smallestDest etc. ∗/
}

/∗ Combine the right packings and left packings one by one to obtain dual packings ∗/
}

Algorithm 1

The number of time slots needed in the second interval
depends on both the number and the lengths of the rec-
tangles. As will be shown in Part C, it can be ignored
compared to the time slots needed in the first interval as N
goes to infinity.

3.3. Throughput of 1D Network with PNC. We now show
that the packing and scheduling strategies presented in
Part B can allow the upper-bound capacity of 1D network
to be approached when the number of nodes N goes
to infinity. Furthermore, compared with the conventional
schemes discussed in [29], PNC can achieve a constant factor
of throughput improvement.

We first detail the system model. To avoid edge effects,
we consider a “large” circle instead of a line. The N nodes are
uniformly distributed over the circle with a constant distance
between adjacent nodes. Without loss of generality, let the
distance between two adjacent nodes be a unit distance. Each
transmission is over only one unit distance (i.e., a node only
transmits to its two adjacent nodes). Consider the receiver
of a link. We assume that simultaneous transmission by
another link whose transmitter is two or more hops away
from the receiver of the first link will not cause a collision
to the first link. In our model, N/2 nodes are randomly
chosen as the source nodes. The remaining N/2 nodes are
the potential destination nodes. For each source node, a
unique destination node is chosen among the N/2 poten-
tial destination nodes with equal probability. We assume
matching without replacement in that the destination node
chosen for a source node will not be put back to the pool
before the destination node of another source is chosen. The

route for a source-destination pair is also predetermined in a
random way (note: there are two routes from a source to its
destination, one in the clockwise direction and the other in
the counterclockwise direction).

The analytical results for the traditional transmission
scheme and straightforward network coding scheme in our
circular model are similar to those in the 1D linear network
in [29] when N goes to infinity. Using similar approach, it is
not difficult to obtain the respective per-flow throughputs in
our circular network as

λT(N) = 2
N

, λS(N) = 8
3N

, (7)

where unit link bandwidth is assumed.
Let us now focus on the PNC throughput. We will show

that PNC can achieve the per-flow throughput 4/N − ε for
any small positive value ε as N goes to infinity. Let us first
provide further details to the scheduling strategy presented
in Part B.

The packing and scheduling are as follows. For packing,
we first unwrap the circle to a noncircular linear network
by randomly selecting the source node of a clockwise flow,
labelled s, on the circle as the start point of the linear
network. The adjacent node of the selected source node
in the counterclockwise direction in the circle, labeled e,
will serve as the end point of the linear network. Next,
we obtain one packing of the clockwise flows according to
the packing algorithm in Part B. It is possible that the last
selected flow crosses the start point. In that case, we cut the
flow into two subflows by performing the cut between the
start point and the end point, and only consider the first
subflow in the aforementioned packing. After forming the
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above clockwise unidirectional packing, we form a matching
counterclockwise unidirectional packing at choosing e as the
start point and s as the end point. If there is an existing
counterclockwise flow with e as its source node, we will start
with this flow in the unidirectional packing. If not, we will
choose the next flow with source node closest to e in the
counterclockwise direction in our packing.

For “traffic balance”, after getting the first dual packing as
above, for the next dual packing, we will start with forming
the counterclockwise unidirectional packing first (i.e., s and e
will be defined with respect to the counterclockwise packing)
before constructing the matching clockwise packing. Repeat-
ing the above procedure allows us to form a series of dual
packings.

The scheduling of transmissions is the same as that
in Part B except that here we also have to consider the
transmission across the two subflows cut as above, if any.
We assume the traffic from the destination of a preceding
subflow to the source of its corresponding subflow is
transmitted using the conventional scheme in the second
interval.

With the above packing and scheduling strategies, we
have the following theorem on the per-flow throughput of
the 1D circular network when N goes to infinity.

Theorem 1. With PNC, we can approach the upper bound of
the per-flow throughput of the 1D network:

λP(N) = 4
N
. (8)

Sketch of Proof. A sketch of the proof for Theorem 1 is
provided here and a detailed proof is given in the Appendix.
With the help of the max-flow min-cut theorem, the upper
bound of the per-flow throughput for our 1D circular
network can be shown to be 4/N . That this upper bound can
be approached with the application of the aforementioned
PNC packing and scheduling strategies is argued as follows.
Consider the original N/4 unidirectional flows. With PNC
packing and scheduling, these flows have been decomposed
into PNC units and nonPNC units for transmission in the
first and second intervals. For each round of first and second
intervals (i.e., for each frame), one packet is transported from
the source to the destination of each flow. We can show that
the number of time slots needed in the first interval for all
the flows is at most (1 + ε1)N/4, where the small positive
quantity ε1 goes to zero as N goes to infinity. The number of
time slots needed in the second interval, on the other hand,
is ε2N , where the small positive quantity ε2 goes to zero as N
goes to infinity. Then we can obtain the per-flow throughput
with PNC: 1/(N/4 + ε1N/4 + ε2N/4) = (1− ε)N/4.

A corollary of Theorem 1 is that PNC can improve the
throughput of the 1D network by a factor of 2 and 1.5 relative
to the traditional transmission scheme and the SNC scheme
(7), respectively.

A notable fact is that PNC can approach the capacity with
minimum energy. Recall that PNC exchanges one packet
between the two end nodes within two time slots, during
which each of the n nodes on the chain transmits once with

energy Et and receives once with energy Er . And a total
energy n(Et+Er) is used. In fact, n(Et+Er) is the lower bound
of energy to exchange one packet. For one exchange, the two
end nodes must transmit once to send their message and
must receive once to obtain their needed message; the n − 2
relay nodes must receive once and transmit once to finish one
relay. Therefore, the energy of n(Et + Er) is necessary.

4. Applying PNC in 2D Grid Network

Section 3 focused on the 1D regular network. This section
investigates the application of PNC in a 2D regular gird
network. We assume the same transmission protocol as in
Section 3.

4.1. 2D Grid Network with One Bidirectional Flow in Each
Line. Figure 7 shows the grid network under consideration,
in which N nodes are uniformly located at the cross points
as shown. In this part, we first consider the case in which
each line (horizontal or vertical) on the grid has one and only
one bidirectional flow. Specifically, the two end nodes in each
line, node 1 and node

√
N , exchange information through

the relay nodes in between.
The flows transmit with the following PNC schedule.

Consider the horizontal lines (similar schedule applies for
the vertical lines). The first two time slots are dedicated to
transmissions on lines 1, J + 1, 2J + 1, . . .; the next two time
slots are dedicated to transmissions on lines nodes on the
lines 2, J + 2, 2J + 2, . . .; and so on. The separation J must be
large enough for acceptable SIR. In the example of Figure 7,
J = 4.

For a group of simultaneous active lines, to reduce SIR,
when the odd nodes transmit on one active line, then the
even nodes will transmit on its two adjacent active lines, as
shown in Figure 7.

Let us investigate the SIR of this transmission pattern
given a J . Consider the worst-case scenario in which N
goes to infinity. For a given receiver, the interference from
the nodes within the same line is I1 = 2 ∗ ∑∞

l=1 P0/[(2l +
1)d]α, where P0, l, d = 1, and α are defined similarly
as in Section 3.1. Without loss of generality, suppose that
the receiver is an even node. The interference from the
other active lines whose odd nodes are transmitting is
I2 = 4

∑∞
k=0

∑∞
l=0 P0/[(2l)2d2 + J2(2k + 2)2d2]α/2, and the

interference from the other active lines whose even nodes are
transmitting is I3 = 4

∑∞
k=0

∑∞
l=0 P0/[(2l + 1)2d2 + J2(2k +

1)2d2]α/2. Thus, the overall SIR is given by

SIR = P0/dα

I1 + I2 + I3
. (9)

For a typical value of α = 4, the SIR in (9) is about 13.5 dB,
12.3 dB, and 10.0 dB for J equals 5, 4, and 3, respectively.
With an assumed 10 dB target, J = 3 is enough to guarantee
successful transmission.

4.2. 2D Grid Network with Multiple Random Flows. Let us
now investigate the application of PNC in the 2D grid
network with a more general traffic pattern. With respect to
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Figure 7: Subfigure (a) shows 2D grid network with one bidirectional flow in each line. The lines separated by J − 1 = 3 lines, that is, the
lines with the same color, are allowed to transmit simultaneously. Subfigure (b) shows a scheduling for one group active lines (red lines) in
a specific time slot

Figure 7, we now randomly choose N/2 of the nodes as the
source nodes. The remaining N/2 nodes are the destination
nodes.

Here we apply a simple routing scheme, as in [29]. For a
source-destination pair at positions (xs, ys) and (xd, yd), the
data will first be forwarded vertically to the node at (xs, yd)
before being forwarded horizontally to the destination. The
horizontal and vertical transmissions are separated into
two different time intervals. For horizontal (or vertical)
transmissions, the scheduling within each line (column) is
the same as that in the Section 3.2 and the scheduling among
different lines (columns) is the same as in part A.

When N goes to infinity, the number of nodes in each
line or column,

√
N , also goes to infinity, and the per-flow

PNC throughput in each line or column will approach 4/
√
N ,

as argued in Section 3. Since the horizontal transmission
and vertical transmission are scheduled in different time
interval and in each interval every J lines (columns) transmit
simultaneously, the per-flow transmission of PNC in the 2D
grid network can approach

λP(N) = 4√
N
· 1
J
· 1

2
= 2

J
√
N
. (10)

For comparison purposes, let us look at the per-
flow throughput under the traditional transmission strategy
and under the straightforward network coding strategy.
With the routing/scheduling strategy and the corresponding
throughput analysis in [29], we can show that the traditional
transmission scheme and SNC scheme can achieve the
following throughputs, respectively:

λT(N) = 4
(1 + Δ)

√
N
· 1

3
· 1

2
= 2

9
√
N

,

λC(N) = 4
(1 + Δ/2)

√
N
· 1

3
· 1

2
= 1

3
√
N
.

(11)

In the 2D grid network, the nodes are tightly packed than
in the 1D network, and the interfering nodes must be kept

at least 3 hops away, that is, Δ = 2, to obtain an SIR of
no less than 10 dB (note: in the 1D network, Δ could be 1
for SIR of about 10 dB). When Δ = 2, we can verify that
throughputs better than (11) cannot be achieved. In other
words, the throughput in (11) is also the upper bound for
traditional transmission scheme and SNC scheme under all
possible schedulings.

Therefore, setting J = 3 in (10), we conclude that
PNC can achieve a throughput improvement factor of 3 and
2 relative to the traditional transmission scheme and the
SNC scheme, respectively. Note that the improvement factors
under the 2D network are larger than those under the 1D
network, which are 2 and 1.5, respectively (see Section 3).

5. Conclusion

This paper has introduced a novel scheme called Physical-
layer Network Coding (PNC) that significantly enhances
the throughput performance of multihop wireless networks.
Instead of avoiding interference caused by simultaneous elec-
tromagnetic waves transmitted from multiple sources, PNC
embraces interference to effect network-coding operation
directly from physical-layer signal modulation and demod-
ulation. With PNC, signal scrambling due to interference,
which causes packet collisions in the MAC layer protocol
of traditional wireless networks (e.g., IEEE 802.11), can be
eliminated.

We have proposed explicit scheduling algorithms for
PNC in 1D and 2D regular networks with multiple random
flows. It is shown that PNC can potentially achieve 100%
and 50% throughput increases compared with traditional
transmission and straightforward network coding, respec-
tively, in the 1D regular linear network. The throughput
improvements are even larger in the 2D regular network:
200% and 100%, respectively. In particular, PNC can allow
the upper-bound throughput of the 1D regular network to
be approached as the number of nodes goes to infinity.
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Appendix

A. Proof of Theorem 1

This appendix proves Theorem 1 in three steps. First, the
fact that 4/N is the upper bound for the throughput of
the 1D circular linear network can be argued as follows.
Let us consider the number of time slots needed so that
each flow can transport one packet from its source to its
destination. Due to half-duplexity, there can be at most
N/2 transmitting nodes in a time slot. In general, each
transmitting node can transmit to at most two of its adjacent
nodes simultaneously. Hence, in total, there can be at most
N one-hop transmissions being successfully completed in
each time slot. The number of hops between the source
and destination of a flow is on average N/2. There are
altogether N/2 flows. Using Chernoff bound, we can show
that the total number of one-hop transmissions required
(aggregated over all flows) is N2/4 w.h.p. as N goes to
infinity. Thus, the time slots needed are lower bounded
by (N2/4)/N = N/4. Within this number of time slots,
each flow transports a packet from source to destina-
tion. Thus, the per-flow throughput is upper bounded by
λ ≤ 1/(N/4) = 4/N .

Next, we prove that the number of time slots needed in
the second interval is negligible compared to N , denoted
by ε2N where ε2 is a small positive quantity that goes to
zero as N goes to infinity. The total one-hop transmissions
in the second interval can be divided into two parts, the
one-hop transmissions in the rectangles and the one-hop
transmissions between subflows (created when we unwrap
the circular network into a linear network).

Let us first consider the rectangles. As shown in Figure 8,
within a dual packing, the rectangles do not overlap.
Furthermore, the two end nodes in a rectangle must be
either a source or destination node of some flow. As a
proof technique, let us artificially divide the rectangles
into two groups according to the dual packings containing
them. Recall that the dual packings are formed successively
in our packing algorithm. Consider the first (1 − ε3)
fraction of all flows (including the original flows and the
generated subflows) that are included successively into the
dual packings. The first group of rectangles arises from
these flows. The second group of rectangles belongs to the
remaining ε3 fraction of the flows. We set ε3 such that

ε3 = 1/
√

logN .
As discussed in Section 3.2, when we perform packing on

the circular network by unwrapping it to a linear network,
it is possible for a flow to be cut into two subflows. Each
clockwise unidirectional packing contains at least one flow
that does not generate subflows (a flow cannot have more
than N hops). As a corollary, if the clockwise packing
contains a flow that has been cut into two subflows, then
the packing must contain at least two flows to start with.
One of these subflows will be relegated to a future packing
exercise. So, each clockwise packing reduces the number
of remaining flows to be packed by at least one. For the
matching counterclockwise packing, at most one flow will be
cut into two subflows. Thus, the matching counterclockwise

packing does not increase the number of remaining counter-
clockwise flow. Recall from the discussion in Section 3.2
that for “traffic balance” successive dual packings will start
with clockwise and counterclockwise packings in an alternate
manner. Thus, successive dual packings will reduce the
numbers of remaining clockwise and counterclockwise flows
by at least one alternately.

In the beginning, there are N/2 original flows (N/4 of
which are clockwise and N/4 of which are counterclockwise
flows). From the argument in the previous paragraph, there
are altogether at most N/2 dual packings. Each dual packing
will at most generate at most two extra flows to the flow
pool (because of cut between s and e). Thus, altogether there
could be at most N extra flows being generated. Hence, the
total number of flows (including the original flows and the
subflows) is 3N/2.

In general, since the two end nodes of a rectangle must be
either a source or a destination of some flow, the number of
rectangles in a dual packing is no more than the number of
flows in that dual packing (note: some nonend nodes within
a rectangle could also be sources or destinations; thus the “no
more than” rather than “equal to”). Therefore, the number
of rectangles in the first group is no more than (1 − ε3)N .
For these rectangles, as shown in Lemma 2 at the end of this
appendix, the number of nodes in each group-1 rectangle is
no more than (1−ε4) log(N)+ε4N w.h.p., where ε4 is a small
positive quantity that goes to zero when N goes to infinity.
Similarly, the number of rectangles in the second group is
upper bounded by ε3N . As a trivial bound, we will upper-
bound the number of nodes in each group-2 rectangle by
N . Note that each node will at most transmit once within a
rectangle (group-1 or group-2) for traffic forwarding. Thus,
the total number of one-hop transmissions needed for the
rectangles is upper bounded by

T1 = (1− ε3)N · [(1− ε4) log(N) + ε4N
]

+ ε3N ·N.
(A.1)

Now, consider the transmissions across subflows. A
one-hop transmission is needed for two adjacent subflows
generated by the cut when we unwrap the circular network
to a corresponding linear network. In other words, there is
a one-hop transmission whenever there is an extra subflow,
which is upper bounded by N/2 according to the above
argument. Thus, the total number of one-hop transmis-
sions between all adjacent subflows is upper bounded by
T2 = N/2.

Putting things together, the total one-hop transmissions
in the second interval is upper bounded by T1 + T2. Since we
determine the start and end nodes of each dual packing in a
uniformly random way and pack each unidirectional packing
in a uniformly random way, the one-hop transmissions in
the rectangles are also uniformly distributed among all the
N nodes along the circle. With the traditional transmission
scheme, there are N/2 one-hop transmissions in each time
slot. Therefore, the time slots needed in the second interval
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are upper bounded by

k2 = T1 + T2

N/2

= (1− ε3)N · [(1− ε4) log(N) + ε4N
]

+ ε3N ·N + N/2
N/2

= 2(1− ε3)(1− ε4) log(N) + 2(1− ε3)ε4N + ε3N + 1

= Nε2,
(A.2)

where ε2 is determined by ε3, ε4, and N . It is easy to show that
ε2 will go to zero as N goes to infinity.

Finally, we prove that the number of time slots needed in
the first interval is less than (1 + ε1)N/4. In a unidirectional
packing, a residual node is an idle node that through
which no packet passes (i.e., none of the flows of the
unidirectional packing passes through the node). Thus, the
number of nodes through which one packet passes in one
unidirectional packing is N , minus the number of residual
nodes. Consider a dual packing to which group-1 rectangles
belong. According to Lemma 1 immediately after the proof
of Theorem 1 here, the number of residual nodes in each of
the unidirectional packings of the dual packings is less than
log(N) w.h.p.. That is, the number of nonresidual nodes in
a unidirectional packing is more than N-log(N) w.h.p., and
the number of nonresidual nodes in both the unidirectional
packings of the dual packing is more than 2(N − logN).
That is, the traffic handled by each dual packing (in terms
of packet flows across all nodes in the dual packing) is more
than 2(N − logN).

Now, consider an arbitrary node in the network. Accord-
ing to our model, it is either the source or destination
of some flow. The packet of that flow passes through it
with probability 1. For the other N/2 − 1 original flows, a
packet passes through the node with probability 1/2. By the
Chernoff-Hoeffding theorem, the number of packets that go
through each node is 1/2 · (N/2− 1) + 1 w.h.p.. Considering
all N nodes, the number of packets passing through them is
(1/2(N/2−1) +1)N . Note that this is the total traffic which is
more than the traffic in the dual packings to which group-1
rectangles belong.

Therefore, the number of dual packings to which the
group-1 rectangles belong is upper bounded by

(1/2(N/2− 1) + 1)N(
2
(
N − log(N)

)) w.h.p. (A.3)

Similar to the argument for group-1 rectangles, for the
flows containing the group-2 rectangles, there are at most
ε3N flows which will generate at most ε3N unidirectional
packings, that is, ε3N/2 dual packings. Then we can obtain
that the total number of dual packings is no more than

(1/2(N/2− 1) + 1)N(
2
(
N − log(N)

)) +
ε3N

2
= (1 + ε1)N

8
, (A.4)

with high probability, where ε1 is determined by ε3 and N .
It is easy to verify that ε1 goes to zero as N goes to infinity.

Since each packing needs at most two times slots, the time
slots needed for the first interval are at most k1 = (1+ε1)N/4.

With the help of k1 and k2, we can obtain the lower bound
of the per-flow throughput as

λP(N) = 1
k1 + k2

= 1
(1 + ε1)N/4 + 2 log(N) + 2Nε2 + 1

= 4
N

1
1 + ε1 + 2 log(N)/N + 2ε2 + 1/N

= 4
N

(1− ε),

(A.5)

where ε can be obtained from ε1, ε2, and N , and it goes to
zero as N goes to infinity. Then Theorem 1 is proved.

Lemma 1. For any clockwise (counterclockwise) unidirectional
packing contained in the dual packings to which group-1
rectangles belong, the number of residual nodes is less than
log(N) w.h.p.

Proof. Let P denote the set of dual packings to which group-1
rectangles belong. Let us focus on one clockwise unidirec-
tional packing p in P. The proof for the counterclockwise
case is similar. Let Pc be the clockwise packings in P. Let m
denote the number of clockwise flows in Pc. According to
our way of partitioning the rectangles into the two groups,
we have m ≤ (1 − ε3)N1, where N1 is the total number of
clockwise flows.

Recall that in our traffic model, we randomly select N/2
nodes to be sources and N/2 nodes to be destinations. In
other words, any node among the N nodes is either a source
or a destination. This applies to any residual node in p as well.
In particular, a residual node in p is either (1) a destination
node (of a clockwise or counter-clockwise flow), (2) a source
node of a counter-clockwise flow, or (3) a source node of a
clockwise flow. In case 3, since the residual node is a residual
node in p, it must be a source node of a clockwise flow
already packed (i.e., already belong to Pc) prior to packing
p.

For a unidirectional packing, consider the first flow from
the start point s. Suppose this flow ends at node i. Let us
consider the probability of node (i + 1) being a residual
node with respect to this unidirectional packing. Due to
the randomness of our packing procedure and our random
selection of sources and destinations for flows, node (i + 1)
is a destination node with probability p1 = 1/2; it is a source
node of a counter-clockwise flow with probability p2 = 1/4
w.h.p, and it is a source node of a prepacked clockwise flow
with probability p3 ≤ (1− ε3)/4 w.h.p. Then the probability
that node (i + 1) is a residual node given that node i is not a
residual node is

P(1 | 0) = p1 + p2 + p3 ≤ 1− ε3

4
. (A.6)

In out notation above, the 1 in P(1 | 0) refers to the fact
that we have found one residual thus far, and the 0 refers
to the fact that we have not found any residual node so far.
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Flow 1 Flow 2

Flow 3 Flow 4

Figure 8: An example of a dual packing, where flow 1 and flow 2
belong to the clockwise unidirectional packing, flow 3 and flow 4
belong to the counterclockwise unidirectional packing. The white
nodes are nonresidual nodes, the red nodes are the residual nodes
of the clockwise unidirectional packing, the green nodes are the
residual nodes of the counterclockwise packing, and the blue nodes
are the residual nodes of both the two unidirectional packings. The
nodes in the rectangles are the uncommon nodes.

Given node (i + 1) is a residual node, the probability that the
node (i + 2) is also a residual node is P(2 | 1) ≤ P(1 | 0)
(due to sampling without replacement). The probability of a
sequence of l or more residual nodes is given by

P(1 | 0)P(2 | 1)P(3 | 2) · · ·P(l | l − 1) ≤ [P(1 | 0)]l

≤
[

1− ε3

4

]l
.

(A.7)

When l = log(N), as N-goes to infinity, the above

probability is exp(−
√

log(N)/4), which will approach zero.
Thus, Lemma 1 is proved.

Lemma 2. For group-1 rectangles, the number of nodes in each
rectangle is no more than 2log(N) with probability 1−ε4, where
ε4 is a small positive quantity that goes to zero when N goes to
infinity.

Proof. With respect to Figure 8 and the explanation in its
caption, let Nr ,Ng ,Nb denote the number of red, green, and
blue nodes in a dual packing, respectively. By Lemma 1,
Nr + Nb ≤ log(N), and Ng + Nb ≤ log(N) w.h.p. Thus,
Nr + Ng + Nb ≤ Nr + Ng + 2Nb ≤ 2 log(N).

Acknowledgments

This work was partially supported by the Competitive Ear-
marked Research Grant (project number 414507) established
under the University Grant Committee of the Hong Kong
and the Natural Science Foundation of China (project
number 60902016).

References

[1] T. Ojanperä and R. Prasad, “An overview of air interface
multiple access for IMT-2000/UMTS,” IEEE Communications
Magazine, vol. 36, no. 9, pp. 82–95, 1998.

[2] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morris,
“Capacity of ad hoc wireless networks,” in Proceedings of the
7th Annual International Conference on Mobile Computing and
Networking (MOBICOM ’01), pp. 61–69, Rome, Italy, July
2001.

[3] P. C. Ng and S. C. Liew, “Throughput analysis of IEEE802.11
multi-hop ad hoc networks,” IEEE/ACM Transactions on
Networking, vol. 15, no. 2, pp. 309–322, 2007.

[4] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Transactions on Information Theory,
vol. 46, no. 4, pp. 1204–1216, 2000.

[5] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,”
IEEE Transactions on Information Theory, vol. 49, no. 2, pp.
371–381, 2003.

[6] S. Zhang, S. C. Liew, and P. P. Lam, “Hot topic: physical-
layer network coding,” in Proceedings of the 12th Annual
International Conference on Mobile Computing and Networking
(MOBICOM ’06), pp. 358–365, Los Angeles, Calif, USA,
September 2006.

[7] P. Popovski and H. Yomo, “The anti-packets can increase the
achievable throughput of a wireless multi-hop network,” in
Proceedings of IEEE International Conference on Communica-
tions (ICC ’06), vol. 9, pp. 3885–3890, Istanbul, Turkey, July
2006.

[8] Y. Hao, D. Goeckel, Z. Ding, D. Towsley, and K. K.
Leung, “Achievable rates for network coding on the exchange
channel,” in Proceedings of IEEE Military Communications
Conference (MILCOM ’07), Orlando, Fla, USA, October 2007.

[9] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless
interference: analog network coding,” Tech. Rep. MIT-CSAIL-
TR-2007-012, MIT, Cambridge, Mass, USA, 2007.

[10] M. Denkberg, “Paired carrier multiple access(PCMA) for
satellite communications,” in Proceedings of the Pacafic
Telecommunications Conference, Honolulu, Hawaii, USA,
1998.

[11] T. Cui, T. Ho, and J. Kliewer, “Memoryless relay strategies
for two-way relay channels: performance analysis and opti-
mization,” in Proceedings of IEEE International Conference on
Communications (ICC ’08), pp. 1139–1143, Beijing, China,
May 2008.

[12] S. Zhang, S. C. Liew, and L. Lu, “Physical layer network
coding schemes over finite and infinite fields,” in Proceedings
of IEEE Global Telecommunications Conference (GLOBECOM
’08), pp. 3784–3789, New Orleans, La, USA, November-
December 2008.

[13] T. Koike-Akino, P. Popovski, and V. Tarokh, “Denoising maps
and constellations for wireless network coding in two-way
relaying systems,” in Proceedings of IEEE Global Telecommu-
nications Conference (GLOBECOM ’08), pp. 3790–3794, New
Orleans, La, USA, November-December 2008.

[14] S. Zhang and S. Liew, “Capacity of two-way relay chan-
nel,” 3rd HK-BJ Doctoral forum, 2008, http://arxiv.org/
ftp/arxiv/papers/0804/0804.3120.pdf.

[15] W. Nam, S.-Y. Chung, and Y. H. Lee, “Capacity bounds for
two-way relay channels,” in Proceedings of the International
Zurich Seminar on Digital Communications (IZS ’08), pp. 144–
147, Zurich, Germany, March 2008.

[16] K. Narayanan, M. P. Wilson, and A. Sprintson, “Joint physical
layer coding and network coding for bi-directional relaying,”
in Proceedings of the 45th Annual Allerton Conference on
Communication, Control, and Computing, Monticello, Ill,
USA, September 2007.

[17] S. Zhang and S.-C. Liew, “Channel coding and decoding in
a relay system operated with physical-layer network coding,”
IEEE Journal on Selected Areas in Communications, vol. 27, no.
5, pp. 788–796, 2009.

[18] K. Lu, S. Fu, Y. Qian, and H.-H. Chen, “On capacity of random
wireless networks with physical-layer network coding,” IEEE



12 EURASIP Journal on Wireless Communications and Networking

Journal on Selected Areas in Communications, vol. 27, no. 5, pp.
763–772, 2009.

[19] C. Chen, K. Cai, and H. Xiang, “Scalable ad hoc networks for
arbitrary-cast: practical broadcast-relay transmission strategy
leveraging physical-layer network coding,” EURASIP Journal
on Wireless Communications and Networking, vol. 2008, Article
ID 621703, 15 pages, 2008.

[20] Y. Wu, P. A. Chou, and S. Y. Kung, “Information exchange
in wireless networks with network coding and physical layer
broadcast,” Tech. Rep. MSR-TR-2004-78, Microsoft Research,
Redmond, Wash, USA, 2004.

[21] C. Hausl and J. Hagenauer, “Iterative network and channel
decoding for the two-way relay channel,” in Proceedings of
IEEE International Conference on Communications (ICC ’06),
vol. 4, pp. 1568–1573, Istanbul, Turkey, July 2006.

[22] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative
diversity in wireless networks: efficient protocols and outage
behavior,” IEEE Transactions on Information Theory, vol. 50,
no. 12, pp. 3062–3080, 2004.

[23] T. M. Cover and A. A. El-Gamal, “Capacity theorems for the
relay channel,” IEEE Transactions on Information Theory, vol.
25, no. 5, pp. 572–584, 1979.

[24] L. Lai, K. Liu, and H. El-Gamal, “On the achievable rate of
three-node wireless networks,” in Proceedings of the IEEE Inter-
national Conference on Wireless Networks, Communications
and Mobile Computing, vol. 1, pp. 739–744, Maui, Hawaii,
USA, June 2005.

[25] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and
J. Crowcroft, “XORs in the air: practical wireless network
coding,” IEEE/ACM Transactions on Networking, vol. 16, no.
3, pp. 497–510, 2008.

[26] S. Zhang and S. Liew, “Synchronization analysis in phys-
ical layer network coding,” Submitted, http://arxiv.org/
abs/1001.0069.

[27] T. S. Rappaport, Wireless Communications: Principles and
Practice, Prentice-Hall, Englewood Cliffs, NJ, USA, 1996.

[28] J. G. Proakis, Digital Communications, McGraw-Hill, New
York, NY, USA.

[29] J. Liu, D. Goeckelt, and D. Towsley, “Bounds on the gain
of network coding and broadcasting in wireless networks,”
in Proceedings of the 26th IEEE International Conference on
Computer Communications (INFOCOM ’07), pp. 724–732,
Anchorage, Alaska, USA, May 2007.



Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2010, Article ID 708416, 13 pages
doi:10.1155/2010/708416

Research Article

Joint Channel-Network Coding for the Gaussian Two-Way
Two-Relay Network

Ping Hu,1 Chi Wan Sung,1 and Kenneth W. Shum2

1 Department of Electronic Engineering, City University of Hong Kong, Hong Kong
2 Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong

Correspondence should be addressed to Kenneth W. Shum, wkshum@inc.cuhk.edu.hk

Received 1 October 2009; Revised 27 January 2010; Accepted 13 March 2010

Academic Editor: Sae-Young Chung

Copyright © 2010 Ping Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

New aspects arise when generalizing two-way relay network with one relay to two-way relay network with multiple relays. To study
the essential features of the two-way multiple-relay network, we focus on the case of two relays in our work. The problem of
how two terminals, equipped with multiple antennas, exchange messages with the help of two relays is studied. Five transmission
strategies, namely, amplify-forward (AF), hybrid decode amplify forward (HLC), hybrid decode amplify forward (HMC), decode
forward (DF), and partial decode forward (PDF), are proposed. Their designs are based on a variety of techniques including
network coding, multiplexed coding, multi-input multi-output transmission, and multiple access with common information.
Their performance is compared with the cut-set outer bound. It is shown that there is no dominating strategy and the best strategy
depends on the channel conditions. However, by studying their multiplexing gains at high signal-tonoise (SNR) ratio, it is shown
that the AF scheme dominates the others in high SNR regime.

1. Introduction

Relay channel, which considers the communication between
a source node and a destination with the help of a relay
node, was introduced by van der Meulen in [1]. Based on
this channel model, Cover and El Gamal developed coding
strategies known as decode-forward (DF) and compress-
forward (CF) in [2]. These techniques now become standard
building blocks for cooperative and relaying networks, which
have been extensively studied in the literature (e.g., [3, 4]).

For many applications, communication is inherently
two-way. A typical example is the telephone service. In fact,
the study of two-way channel is not new and can be traced
back to Shannon’s work in 1961 [5]. However, the model
of two-way relay channel, though natural, did not attract
much attention. Recently, probably due to the advent of
network coding [6] in the last decade, there is a growing
interest in this model. The application of DF and CF to
two-way relay channel was considered in [7]. The half-
duplex case was studied in [8, 9]. The results in [10] showed
that feedback is beneficial only in a two-way transmission.
Network coding for the two-way relay channel was studied

in [11, 12]. Physical layer network coding based on lattices is
considered recently [13], and shown to be within 0.5 bit from
the capacity in some special cases [14].

All the aforementioned works are for one relaying node.
It is easy to envisage that in real systems, more than one
relay can be used. Schein in [15] started the investigation
of the network with one source-destination pair and two
parallel relays in between. This model was further studied in
[16] under the assumption of half-duplex relay operations.
For one-way multiple-relay networks in general, cooperative
strategies were proposed and studied in [17]. We remark
that a notable feature that does not exist in the single-
relay case is that the multiple relays can act as a virtual
antenna array so that beamforming gain can be reaped at
the receiver. In this paper, we follow this line of research and
consider two-way communications. Two-relays are assumed,
for this simple model already captures the essential features
of the more general multiple-relay case. We are interested in
knowing how different techniques can be used to construct
transmission strategies for the two-way two-relay network
and how they perform under different channel conditions.
In particular, we apply the idea of network coding to both the



2 EURASIP Journal on Wireless Communications and Networking

physical layer and the network layer. Besides, channel coding
techniques for multiple access channel (MAC) and multi-
input multi-output (MIMO) channel are also employed.
Several transmission strategies are thus constructed and their
achievable rate regions are derived.

We remark that the channel model that we consider
in this paper is also called the restricted two-way two-relay
channel [7]. This means that the signal from a source node
depends only on the message to be transmitted, but not
on the received signal at the source. Besides, our results are
obtained under the half-duplex assumption, which is realistic
for practical systems. Each node is assumed to transmit one
half of the time and receive during the other half of the time.
The performance of our proposed strategies can be further
improved if the ratio of transmission time and receiving time
is optimized. We do not consider this more general case, since
it complicates the analysis but provides no new insights.

This paper is organized as follows. Our network model
is described in Section 2. Some basic coding techniques are
reviewed in Section 3. Based on these coding techniques,
several transmission strategies are devised in Section 4. Their
performance at high signal-to-noise ratio regime is analyzed
in Section 5. The rate regions of these strategies are compared
under some typical channel realizations in Section 6. The
conclusion is drawn in Section 7.

2. Channel Model and Notations

The two-way two-relay (TWTR) network consists of four
nodes: two terminals A and B, and two parallel relays 1
and 2 (see Figure 1). Terminals A and B want to exchange
messages with the help of the two relays. We assume there is
no direct link between the two terminals and between the
two-relays. Furthermore, all of the nodes are half-duplex.
The total communication time, 2N , are divided into two
stages, each of which consists of N time slots. In the first
stage, the terminals send signals and the relays receive. In the
second stage, the relays send signals and the terminals receive.
The solid arrows in Figure 1 correspond to stage 1 and the
dashed arrows correspond to stage 2.

Suppose that terminals A and B are equipped with n
antennas, whereas each of relays 1 and 2 has only one
antenna. For i ∈ {A,B} and j ∈ {1, 2}, we use Xi(t) ∈ Rn

to denote the transmit signal from node i, and Zj(t) ∈ R
to denote independently and identically distributed (i.i.d.)
Gaussian noise with distribution N (0, σ2). The channel is
assumed static and the channel gain from node i to j is
denoted by an n-dimensional column vector hi j . We assume
channel reciprocity holds so that hi j = h ji. In the first stage,
the outputs of the network at time t = 1, 2, . . . ,N , are given
by

Y1(t) = hT
A1XA(t) + hT

B1XB(t) + Z1(t), (1)

Y2(t) = hT
A2XA(t) + hT

B2XB(t) + Z2(t). (2)

A B

1

2

hB1

hB2hA2

hA1

Figure 1: Model of two-way two-relay network. The labels of the
arrows indicate the corresponding link gains.

In the second stage, for t = N + 1,N + 2, . . . , 2N , the
outputs at the terminal nodes are

YA(t) = hA1X1(t) + hA2X2(t) + ZA(t), (3)

YB(t) = hB2X2(t) + hB1X1(t) + ZB(t), (4)

where Xj(t) ∈ R, j ∈ {1, 2} is the transmit symbol of relay j,
Zi(t) ∈ Rn for i ∈ {A,B} is a Gaussian random vector with
each component i.i.d according to N (0, σ2). We assume that
the link gains hA1, hA2, hB1, and hB2 are time-invariant and
known to all nodes. We have the following power constraints
in each stage:

1
N

N∑

t=1

Xi(t)
TXi(t) ≤ Pi (5)

for i ∈ {A,B}, and

1
N

2N∑

t=N+1

X2
j (t) ≤ Pj (6)

for j ∈ {1, 2}, where PA, PB, P1, and P2 denote the
power constraints on terminals A and B and relays 1 and 2,
respectively.

Let RA and RB be the data rates of terminal A and B,
respectively. In a period consisting of 2N channel symbols (N
symbols for each phase), terminal A wants to send one of the
22NRA symbols to terminal B, and terminal B wants to send
one of the 22NRB symbols to terminal A. A (22NRA , 22NRB , 2N)
code for the TWTR network consists of two message sets
MA = {1, 2, . . . , 22NRA} and MB = {1, 2, . . . , 22NRB}, two
encoding functions

fi : Mi −→ (Rn)N , i ∈ {A,B}, (7)

two relay functions

φj : RN −→ RN , j ∈ {1, 2}, (8)

and two decoding functions

gA : (Rn)N ×MA −→MB,

gB : (Rn)N ×MB −→MA.
(9)

For i = A,B, terminal i transmits the codeword fi(mi) in
stage one, where mi is the message to be transmitted. For
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j = 1, 2, relay j applies the function φj to its received
signal and transmits the resulting signal in the second stage.
Let the received signals at terminals A and B be YN

A and
YN
B , respectively. In this paper, we will use a superscript

“YN” to indicate a sequence of length N . So YN
A and YN

B

are sequences of length N , with each component equal to
a vector in Rn. After the second stage, terminal i decodes
the message from the other source node by gi. We note
that the decoding function gi uses the message from source
terminal i as input as well. We say that a decoding error
occurs if gA(YN

A ,mA) /=mB or gB(YN
B ,mB) /=mA. The average

probability of error is

P2N
e � 1

|MA||MB|
×

∑

(mA,mB)
∈MA×MB

Pr
{
gA

(
YN
A ,mA

)
/=mB, or

gB
(

YN
B ,mB

)
/=mA | (mA,mB) is sent

}
.

(10)

A rate pair (RA,RB) is said to be achievable if there exists
a sequence of (22NRA , 22NRB , 2N) codes, satisfying the power
constraints in (5) and (6), with P2N

e → 0 as N → ∞.
Although the terminals are equipped with n antennas,

the transmitted signals from the terminals are essentially 2
dimensional. To see this, we observe that the first term in
the right hand side of (1), namely, hT

A1XA(t), is a projection
of XA(t) in the direction of hA1. Any signal component of
XA(t) orthogonal to hA1 will not be picked up by relay 1.
Likewise, from (2), we see that any signal component of
XA(t) orthogonal to hA2 will not be sensed by relay 2. There is
no loss of generality, if we assume that the signals transmitted
from the terminals take the following form:

Xi(t) = Hiλi(t) (11)

for i ∈ {A,B}, where Hi � [hi1 hi2] is an n × 2 matrix,
and the two components in λi(t) � [λi1(t) λi2(t)]T represent
the projections of Xi(t) on hi1 and hi2. We consider the 2-
dimensional vector λi(t) as the input to the channel at node
i. The power constraint in (5) can be written as

1
N

N∑

t=1

λi(t)
THT

i Hiλi(t) ≤ Pi, (12)

for i ∈ {A,B}.

Notations. We will treat 2 × 1 random vectors λA and λB as
input signals at terminal A and B, respectively, and let KA and
KB denote their corresponding 2×2 covariance matrices. For
i ∈ {A,B} and j ∈ {1, 2}, let

Γij �
hT
i jHiKiHT

i hi j

σ2
(13)

be the signal to noise ratio of the signal received at relay j
from terminal i. Shannon’s capacity formula is denoted by

C(x) � 0.25log2(1 + x). Also, for n × n matrices, we let
Cn(X) � 0.25log2 det(In + X), where In denote the n × n
identity matrix. The reason for the factor of 0.25 before the
log function, instead of a factor of 0.5 in the original capacity
formula, is due to the fact that the total transmission time is
divided into two stages of equal length. All logarithms in this
paper are in base 2. The set of non-negative real numbers is
denoted by R+. Gaussian distribution with mean zero and
covariance matrix K is denoted by N (0, K).

3. Review of Coding Techniques and Capacity
Regions from Information Theory

The proposed transmission strategies are based on a host of
existing coding techniques and capacity results. A review of
them is given in this section.

3.1. Physical-Layer Network Coding. In wireless channel, the
channel is inherently additive; the received signal is a linear
combination of the transmitted signals. This fact is exploited
for the two-way relay channel in [18–21]. Consider the
following single-antenna two-way network with two sources
and one relay in between. There is no direct link between the
two sources, and the exchange of data is done via the relay
node in the middle. Let xi(t) be the transmitted signal from
source i, for i = 1, 2. The transmission is divided into two
phases. In the first phase, the relay receives

y(t) = x1(t) + x2(t) + z(t), (14)

where z(t) is an additive noise. For simplicity, it is assumed
that both link gains from the sources to the relay are equal
to one. In the second phase, the relay amplifies the received
signal y(t), and transmits a scaled version ζ y(t) of y(t),
where ζ is a scalar chosen so that the power requirement
is met. Since source 1 knows x1(t), the component ζx1(t)
within the received signal at source 1 can be treated as known
interference, and hence be subtracted. Similarly, source 2 can
subtract ζx2(t) from the received signal. Decoding is then
based on the signal after interference subtraction.

3.2. Multiplexed Coding. Multiplexed coding [22] is a useful
coding technique for multi-user scenarios in which some
user knows the message of another user a priori. Consider
the two-way relay channel as in the previous paragraph.
Node 1 wants to send message m1 to node 2 via the relay
node, and node 2 wants to send message m2 to node 1
via the relay node. For i = 1, 2, let ni be the number of
bits used to represent message mi. The transmission of the
nodes is divided into two phases. In the first phase, the two
source nodes transmit. Suppose that the relay node is able to
decode m1 and m2. For the encoder at the relay, we generate a
2n1×2n2 array of codewords. Each codeword is independently
drawn according to the Gaussian distribution such that the
total power of each codeword is less than or equal to P. In
the second phase, the relay node sends the codeword in the
(m1,m2)-entry in this array. Suppose that the received signal
at source node i is corrupted by additive white Gaussian
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noise with variance σ2
i , for i = 1, 2. At source 1, since m1

is known, the decoder knows that one of the 2n2 codewords
in the row corresponding to m1 had been transmitted. Out
of these 2n2 codewords, it then declares the one based on the
maximal likelihood criterion. By the channel coding theorem
for the point-to-point Gaussian channel, source 1 can decode
reliably at a rate of 0.5 log(1+P/σ2

1 ). Likewise, by considering
the columns in the array of codewords, source 2 can decode
at a rate of 0.5 log(1 + P/σ2

2 ).
Multiplexed coding can be implemented using concepts

from network coding. We assume, without loss of generality,
that n2 ≥ n1. We identify the 2n2 possible messages from
source node 2 with the vectors in the n2-dimensional vector
space over the finite field of size 2, Fn2

2 , and identify the
2n1 messages from source node 1 with a subspace of Fn2

2 of
dimension n1, say V1. We generate 2n2 Gaussian codewords
independently, one for each vector in Fn2

2 . To send messages
m1 and m2 in the second phase, the relay node transmits
the codeword corresponding to m1 + m2, where the addition
is performed using arithmetics in Fn2

2 . The output of the
decoder at node 1 is a vector in Fn2

2 . We subtract from it the
vector in V1 corresponding to m1. If there is no decoding
error, this gives the codeword corresponding to m2, and the
value of m2 is recovered.

Now let us consider node 2. Since m2 is known a priori,
node 2 is certain that the signal transmitted from the relay
is associated with one of the vectors in the affine space
m2 + V1. The message m1 can be estimated by comparing
the likelihood function of the 2n1 codewords associated with
m2 + V1. It can be seen that the maximal data rate is the
same as in the array approach mentioned in the previous
paragraph, but the size of the codebook at the relay reduces
from 2n2+n1 to 2n2 .

3.3. Capacity Region for MIMO Channel. Consider a MIMO
channel with nT transmit antennas and nR receive antennas,
with the link gain matrix denoted by a real nR×nT matrix H.
The channel output equals

Y = HX + Z, (15)

where X is the nT-dimensional channel input and Z is an
nR-dimensional zero-mean colored Gaussian noise vector
with covariance matrix KZ . Without loss of information, we
whiten the noise by pre-multiplying both sides of (15) by
K−1/2
Z . The transformed channel output is thus

Y′ = K−1/2
Z HX + K−1/2

Z Z. (16)

The covariance matrix of the noise vector K−1/2
Z Z is now the

nR × nR identity matrix. By the capacity formula for MIMO
channel with white Gaussian noise [23], the capacity for the
MIMO channel in (15) is given by

1
2

log det
(

InR + K−1/2
Z HKXHTK−1/2

Z

)
, (17)

where KX denotes the nR × nR covariance matrix of X. Using
the identity

det(In + AB) ≡ det(Im + BA), (18)

which holds for any n×m matrix A and m× n matrix B, we
rewrite (17) as

1
2

log det
(

InT + HTK−1
Z HKX

)
. (19)

3.4. Capacity Region for Multiple-Access Channel (MAC).
The channel output of the two-user single-antenna Gaussian
multiple-access channel is given by

y = x1 + x2 + z, (20)

where xi is the signal from user i, for i = 1, 2, and z is an
additive white Gaussian noise with variance σ2. Each of the
two users wants to send some bits to the common receiver.
Suppose that the power of user i is limited to Pi, for i = 1, 2.
The rate pair (R1,R2), where Ri is the data rate of user i, is
achievable in the above 2-user MAC if and only if it belongs
to

Cmac

(
P1

σ2
,
P2

σ2

)
�

{
(R1,R2) ∈ R2

+ : (21)

R1 ≤ 0.5log2

(
1 +

P1

σ2

)
(22)

R2 ≤ 0.5log2

(
1 +

P2

σ2

)
(23)

R1 + R2 ≤ 0.5log2

(
1 +

(P1 + P2)
σ2

)}
.

(24)

We refer the reader to [24] for more details on the optimal
coding scheme for MAC.

4. Channel-Network Coding Strategies

We develop five transmission schemes for TWTR network.
In the first scheme (AF), the received signals at both relay
nodes are amplified and forwarded back to terminals A and
B. In the second and third scheme (HLC, HMC), one of
the relays employs the amplify forward strategy, while the
other decodes the messages from terminals A and B. In
the fourth scheme (DF), both relays decode the messages
from terminals A and B. In the last strategy (PDF), another
mixture of decode-forward and amplify-forward strategy is
described.

4.1. Amplify Forward (AF). In this strategy, relay node j
( j ∈ {1, 2}) buffers the signal received in the first stage, and
amplifies it by a factor of ζj . The amplified signal

Xj(t) = ζj
(

hT
AjXA(t) + hT

B jXB(t) + Zj(t)
)

(25)

is then transmitted in the second stage. At the end of the
second stage, each terminal, who has the information of
itself, subtracts the corresponding term and obtains the
desired message from the residual signal.
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By putting (25) into (3), we can write the received signal
at terminal A as

YA(t) =
(
ζ1hA1hT

A1 + ζ2hA2hT
A2

)
HAλA(t)

+
(
ζ1hA1hT

B1 + ζ2hA2hT
B2

)
HBλB(t)

+ ζ1hA1Z1(t) + ζ2hA2Z2(t) + ZA(t).

(26)

Here, we have replaced XA(t) and XB(t) by their 2-
dimensional representations HAλA(t) and HBλB(t). Since
terminal A knows its own input λA(t) as well as the link gains
and amplifying factors, the signal component containing
λA(t) as a factor can be subtracted from YA(t). The residual
signal is

(
ζ1hA1hT

B1 + ζ2hA2hT
B2

)
HBλB(t)

+ ζ1hA1Z1(t) + ζ2hA2Z2(t) + ZA(t).
(27)

The message from terminal B can then be decoded using a
decoding algorithm for point-to-point MIMO channel. The
received signal at terminal B is treated similarly.

Theorem 1. A rate pair (RA,RB) is achievable by the AF
strategy if

RA ≤ C2

(
HT

AHT
af

(
NB

af

)−1
HafHAKA

)
,

RB ≤ C2

(
HT

BHaf

(
NA

af

)−1
HT

afHBKB

)
,

(28)

where

Ni
af �

(
ζ2

1 hi1hT
i1 + ζ2

2 hi2hT
i2 + In

)
σ2, i ∈ {A,B},

Haf � ζ1hB1hT
A1 + ζ2hB2hT

A2,
(29)

ζ1, ζ2 ∈ R and KA and KB are 2× 2 covariance matrices, such
that the following power constraints:

Tr
(

HiKiHT
i

)
≤ Pi, for i = A,B, (30)

(
ΓAj + ΓBj + 1

)
ζ2
j σ

2 ≤ Pj , for j = 1, 2, (31)

are satisfied.

Proof. The residual signal (27) at terminal A can be written
as HT

afHBλB(t) plus a noise vector with covariance matrix
NA

af. The residual signal at terminal B equals HafHAλA(t)
plus a noise vector with covariance matrix NB

af. Therefore,
after self-signal subtraction, the resultant channels can be
considered MIMO channels with two transmit antennas and
n receive antennas. From (19), we obtain the rate constraints
in (28). The inequalities in (30) are the power constraints
for terminals A and B, and those in (31) are the power
constraints for relays 1 and 2.

4.2. Hybrid Decode-Amplify Forward with Linear Combina-
tion (HLC). In this strategy, relay 1 decodes the messages

from terminals A and B, and meanwhile, relay 2 employs the
amplify-forward strategy. In order to obtain beamforming
gain, after decoding the two messages, relay 1 reconstructs
the codewords corresponding to the decoded messages and
sends a linear combination of them in the second stage.

In the first stage, relay 1 and terminals A and B form a
multiple-access channel with relay 1 as the destination node.
We use the optimal encoding scheme for MAC at terminals
A and B, and the optimal decoding scheme at relay 1. In
the second stage, relay 1 decodes and reconstructs XA(t) and
XB(t), and then transmits a linear combination

X1(t) = zTAXA(t) + zTBXB(t) (32)

for some zA and zB ∈ Rn. Relay 2 amplifies Y2(t) by a scalar
factor ζ and transmits X2(t) = ζY2(t).

At terminal A, after subtracting the signal component
that involves XA(t), we get

(
hA1zTB + ζhA2hT

B2

)
HBλB(t) + ζhA2Z2(t) + ZA(t). (33)

At terminal B, the residual signal after subtraction is

(
hB1zTA + ζhB2hT

A2

)
HAλA(t) + ζhB2Z2(t) + ZB(t). (34)

The decoding is done by using decoding method for MIMO
channel.

Theorem 2. A rate pair (RA,RB) is achievable by the HLC
strategy if

(RA,RB) ∈ 1
2
Cmac

(
ΓA1 ,ΓB1

)
, (35)

RA ≤ C2

((
HA

hlc

)T(
NB

hlc

)−1
HA

hlcKA

)
, (36)

RB ≤ C2

((
HB

hlc

)T(
NA

hlc

)−1
HB

hlcKB

)
, (37)

where

HA
hlc �

(
hB1zTA + ζhB2hT

A2

)
HA,

HB
hlc �

(
hA1zTB + ζhA2hT

B2

)
HB,

Ni
hlc �

(
ζ2hi2hT

i2 + In
)
σ2, for i = A,B,

(38)

zA, zB ∈ Rn, ζ ∈ R, and KA and KB are 2 × 2 covariance
matrices such that the following power constraints:

Tr
(

HiKiHT
i

)
≤ Pi, for i = A,B, (39)

zTAHAKAHT
AzA + zTBHBKBHT

BzB ≤ P1, (40)
(
ΓA2 + ΓB2 + 1

)
ζ2σ2 ≤ P2 (41)

are satisfied.

In (35), the product of a real number x and a set A is
defined as xA � {xa : a ∈A}.
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Proof. From the rate constraints for MAC channel in (22)–
(24), we have the rate constraints for relay 1 in (35). We
multiply by a factor of one half because the first phase only
occupies half of the total transmission time.

The conditions in (36) and (37) are derived from the
capacity formula for MIMO channel with colored noise in
(19). The inequalities in (39) are the power constraints for
sources A and B. The inequalities in (40) and (41) are the
power constraints for relays 1 and 2, respectively.

The parameters zA, zB, KA, and KB can be obtained by
running an optimization algorithm. For example, we can aim
at maximizing a weighted sum wARA + wBRB. The values of
zA, zB, KA and KB which maximize the weighted sum wARA+
wBRB are chosen.

4.3. Hybrid Decode-Amplify Forward with Multiplexed Coding
(HMC). As in the previous strategy, relay 1 decodes and
forwards the messages from A and B, and relay 2 amplifies
and transmits the received signal. However, in this strategy,
relay 1 re-encodes the messages into a new codeword to be
sent out in the second stage. Terminals A and B decode the
desired messages based on multiplexed coding.

Theorem 3. A rate pair (RA,RB) is achievable by the HMC
strategy if RA and RB satisfy

(RA,RB) ∈ 1
2

Cmac

(
ΓA1 ,ΓB1

)
, (42)

RA ≤ Cn

(
GA

hmc

(
NB

hmc

)−1
)

, (43)

RB ≤ Cn

(
GB

hmc

(
NA

hmc

)−1
)

, (44)

where

GA
hmc � hB1hT

B1P1 + ζ2hB2hT
A2HAKAHT

AhA2hT
B2, (45)

GB
hmc � hA1hT

A1P1 + ζ2hA2hT
B2HBKBHT

BhB2hT
A2, (46)

Ni
hmc �

(
ζ2hi2hT

i2 + In
)
σ2, for i ∈ {A,B}, (47)

KA, KB are 2×2 covariance matrices satisfying (39), and ζ ∈ R
satisfies (41).

Proof. The proof is by random coding argument and we will
sketch the proof below. More details can be found in [25].

Our objective is to show that any rate pair (RA,RB) that
satisfies the condition in the theorem is achievable. For i =
A,B, terminal i randomly generates a Gaussian codebook
with 22NRi codewords with length N , satisfying the power
constraint in (5). Label the codewords by XN

i (mi), for mi ∈
Mi. For relay 1, we generate a 22NRA×22NRB array of Gaussian
codewords of length N and power P1. The codeword in row
mA and column mB is denoted by XN

1 (mA,mB), and satisfies
the power constraint in (6).

After the first stage, relay 1 is required to decode both
messages from terminals A and B. This can be accom-
plished with arbitrarily small probability of error if the

A B

1

2

mAc ,mBc ,mAp

mAc ,mBc ,mBp

Figure 2: Decoded messages at the two-relays in the DF strategy.

rate constraints for MAC in (22) to (24) are satisfied. This
corresponds to the rate constraint in (42). Let the estimated
messages from A and B be m̂A and m̂B.

In the second stage, relay 1 transmits XN
1 (m̂A, m̂B). Relay

2 amplifies its received signal and transmits ζY2(t). From
(41), the amplified signal has average power no more than
P2.

After subtracting the term ζhA2hT
A2XA(t), which is known

to terminal A, the residual signal at terminal A is

[
hA1X1(m̂A, m̂B)(t) + ζhA2hT

B2XB(t)
]

+ ζhA2Z2(t) + ZA(t).

(48)

Note that terminal A knows its message mA, and m̂A = mA

with probability arbitrarily close to one if (42) is satisfied.
The idea of multiplexed coding can then be used. In (48), the
covariance matrix of the signal in square bracket is given by
GB

hmc in (46), and the covariance of the noise term is given by
NA

hmc. Applying the capacity expression, we obtain the rate
constraint in (44). In a similar manner, we obtain (43).

4.4. Decode Forward (DF). In the DF strategy, terminal
node i, (i ∈ {A,B}) splits the message mi into two parts:
the common part mic and the private part mip. The two
common messages are transmitted via both relay nodes. The
private message mAp is decoded by relay 1 only, and can
be interpreted as going through the path from terminal A
to relay 1 to terminal B. Symmetrically, the private part
of message mBp is decoded by relay 2 only, and can be
interpreted as going through the path from terminal B to
relay 2 to terminal A. After the first stage, relay 1 decodes the
common messages of both terminals and the private message
of terminal A. Relay 2 decodes the common messages of
both terminals and the private message of terminal B. The
encoding and decoding schemes in the first stage is similar to
those developed by Han and Kobayashi for the interference
channel (IC) in [26]. Since both relays have access to the
common messages, the channel in the second stage can
be considered a multiple access channel with common
information. Furthermore, since terminals A and B have
information of themselves, we can further improve the rate
region by the idea of multiplexed coding.
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We have the following characterization of the rate region
for the DF strategy:

Theorem 4. For i ∈ {A,B}, let Rip and Ric be the rates of the
private and common messages, respectively, from terminal i. Let
Γ j denote Pj/σ2 for j = 1, 2, and let KAc, KAp, KBc, and KBp

denote 2× 2 covariance matrices, and

Γikj �
hT
i jHiKikHT

i hi j

σ2
(49)

for i ∈ {A,B}, j ∈ {1, 2} and k ∈ {p, c}. For j = 1, 2. A rate
pair (RA,RB) is achievable if we can decompose RA = RAp+RAc

and RB = RBp + RBc such that

(RA,RBc) ∈ 1
2
Cmac

(
Γ
Ap
1 + ΓAc1

Γ
Bp
1 + 1

,
ΓBc1

Γ
Bp
1 + 1

)
, (50)

(RAc,RB) ∈ 1
2
Cmac

(
ΓAc2

ΓAc2 + 1
,
Γ
Bp
2 + ΓBc2

ΓAc2 + 1

)
, (51)

RAp ≤ C
(
α1‖hB1‖2Γ1

)
, (52)

RA ≤ Cn

(
Γ1hB1hT

B1 + Γ2hB2hT
B2

+
√
α1α2Γ1Γ2

(
hB1hT

B2 + hB2hT
B1

))
,

(53)

RBp ≤ C
(
α2‖hA2‖2Γ2

)
, (54)

RB ≤ Cn

(
Γ1hA1hT

A1 + Γ2hA2hT
A2

+
√
α1α2Γ1Γ2

(
hA1hT

A2 + hA2hT
A1

))
,

(55)

Tr
(

HA

(
KAc + KAp

)
HT

A

)
< PA, (56)

Tr
(

HB

(
KBc + KBp

)
HT

B

)
< PB,

α1 + α1 < 1, α2 + α2 < 1
(57)

for some nonnegative αj and αj .

Details of the DF coding scheme and the proof of
Theorem 4 are given in the Appendix.

4.5. Partial Decode Forward (PDF). In the PDF strategy,
both relays decode the message of terminal A. Each relay
then subtracts the reconstructed signal of terminal A from
the received signal. Call the resulting signal the residual
signal. The message of terminal A is re-encoded into a new
codeword, and linearly combined with the residual signal.
This linear combination is then transmitted in the second
stage. Since both relays know the message of terminal A, the
two-relays can jointly re-encode the message of terminal A
using some encoding scheme for a MIMO channel with two
transmit antennas and n receive antennas.

Theorem 5. A rate pair (RA,RB) is achievable by the PDF
strategy if it satisfies

RA ≤ min

⎧⎨
⎩C

⎛
⎝ ΓA1(

ΓB1 + 1
)
⎞
⎠,C

⎛
⎝ ΓA2(

ΓB2 + 1
)
⎞
⎠
⎫⎬
⎭, (58)

RA ≤ C2

(
(HB)T

(
NB

pdf

)−1
HBKR

)
, (59)

RB ≤ C2

((
HB

pdf

)T(
NA

pdf

)−1
HB

pdfKB

)
, (60)

where

Ni
pdf �

(
ζ2

1 hi1hT
i1 + ζ2

2 hi2hT
i2 + In

)
σ2,

HB
pdf �

(
ζ1hA1hT

B1 + ζ2hA2hT
B2

)
HB,

(61)

and ζj ∈ R and KA, KB, KR are 2× 2 covariance matrices such
that the following power constraints hold

Tr
(

HiKiHT
i

)
≤ Pi, for i = A,B, (62)

KR
(
j, j

)
+
(
ΓBj + 1

)
σ2ζ2

j ≤ Pj (63)

for j = 1, 2. (Here, KR( j, j) denotes the jth diagonal entry in
KR.)

Proof. The two-relays treat the signal originated from ter-
minal B as noise, and decode the message of terminal A.
The rate requirement in (58) guarantees that the message of
terminal A can be decoded with arbitrarily small probability
of error at both relays. Let the decoded message of terminal
A be denoted by m̂A.

For j = 1, 2, the reconstructed signal hT
AjXA(t) is then

subtracted from Yj(t). The residual signal at relay j is
hT
B jXB(t) + Zj(t).

At the relays, we employ two Gaussian codebooks for
the re-encoding of the message from terminal A. For each
message mA, we generate two correlated codewords U1,mA(t)
and U2,mA(t), with mean zero and each pair of symbols at any
t distributed according to a 2 × 2 covariance matrix KR. At
relay j, the decoded message m̂A is re-encoded into Uj,m̂A(t),
which is a codeword with power KR( j, j). In the second stage,
relay j transmits

Uj,m̂A(t) + ζj
(

hT
B jXB(t) + Zj(t)

)
, (64)

for some amplifying factor ζj . The inequality in (63) ensures
that the power constraint is satisfied at the relays.

At the end of stage 2, terminal A subtracts the signal
component that involves U1,mA and U2,mA from its received
signal and obtains

HB
pdfλB(t) + ζ1hA1Z1(t) + ζ2hA2Z2(t) + ZA(t). (65)

From the capacity formula for MIMO channel (19), terminal
A can recover the message from terminal B reliably if (60) is
satisfied.
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For the decoding in terminal B, we subtract all terms
involving XB(t), and get

HB

[
U1,m̂A(t)
U2,m̂A(t)

]
+ ζ1hB1Z1(t) + ζ2hB2Z2(t) + ZB(t). (66)

This is equivalent to a MIMO channel with link gain matrix
HB and colored noise. Recall that KR is the covariance matrix
of the encoded signal. By the capacity formula of MIMO
channel (19), we obtain the rate constraint in (59).

Remark 1. We note that the matrices Ni
af, Ni

hlc, Ni
hmc and

Ni
pdf, for i = A,B, are invertible. Indeed, by checking that

vTNv is strictly positive for all non-zero v ∈ Rn, we see that
the matrix is positive definite, and hence invertible.

5. Performance in High SNR Regime

In this section, we compare the performance of the five
strategies described in the previous section in the high
Signal-to-Noise Ratio (SNR) regime.

For fixed powers and link gains, let Csum(σ2) denote the
sum rate RA + RB as a function of the noise variance σ2. We
use the multiplexing gain (also called degree of freedom) [27],
defined by

M � lim
σ2 → 0

Csum
(
σ2

)

(1/2) log(σ−2)
, (67)

as the performance measure at high SNR. At high SNR, that
is, when σ2 is very small, we can approximate the sum rate by
(M/2) log(σ−2) if the multiplexing gain is equal to M.

Consider the multiplexing gain of the AF scheme. When
the sum rate RA + RB is maximized subject to the rate
constraints (28) in Theorem 1, the equalities in (28) hold.
We can assume without loss of generality that

RA = C2

(
HT

AHT
af

(
NB

af

)−1
HafHAKA

)
, (68)

RB = C2

(
HT

BHaf

(
NA

af

)−1
HT

afHBKB

)
. (69)

We first suppose that the covariance matrices KA and KB,
and the amplifying constants ζ1 and ζ2, are fixed. Note that if
the power constraint in (31) holds, then it continues to hold
if σ2 becomes smaller. Therefore, when σ2 → 0, the power
constraints in (30) and (31) are satisfied.

Each of the expressions in (68) and (69) can be written in
the form

1
4

log det
(

I2 +
M
σ2

)
, (70)

where M is a 2× 2 matrix that equals

HT
AHT

af

(
NB

af

)−1
HafHAKA, or (71)

HT
BHaf

(
NA

af

)−1
HT

afHBKB. (72)

By singular value decomposition [28, Chapter 7], we can
factor M as UΛV, where U and V are 2× 2 unitary matrices,

and Λ = [λi j] is a diagonal matrix with non-negative
diagonal entries λ11 ≥ λ22 ≥ 0. The number of positive
diagonal entries in Λ is precisely the rank of M. We can
rewrite (70) as

1
4

log det
(

U−1V−1 +
Λ

σ2

)
. (73)

Suppose that U−1V−1 is equal to [ai j]
2
i, j=1. The determinant

∣∣∣∣∣∣∣∣

a11 +
λ11

σ2
a12

a21 a22 +
λ22

σ2

∣∣∣∣∣∣∣∣
(74)

in (73) can be expanded as a polynomial in σ−2, with the
degree equal to the rank of M. Therefore, the limit

lim
σ2 → 0

(1/4) log det
(

I2 + M/σ2
)

(1/2) log(σ−2)
(75)

depends only on the rank of the matrix M, and equals 0,
0.5, or 1, if the rank of M is 0, 1, or 2, respectively. The
problem of determining the multiplexing gain now reduces
to determining the rank of the matrices in (71) and (72).

Recall that the rank function satisfies the following
properties [28, page 13]: (i) if A and C are square invertible
matrices, then rank(ABC) = rank(B) for all matrix B,
whenever the matrix multiplications are well-defined; (ii)
for all m × n matrices A, we have rank(ATA) = rank(A).
Consider the matrix in (72). After replacing Haf by its
definition, we can express the matrix in (72) as

HT
BHBZHT

A

(
NA

af

)−1
HAZHT

BHBKB, (76)

where Z denotes the diagonal matrix diag(ζ2
1 , ζ2

2 ). We assume
that HA and HB have full rank. This assumption holds
with probability one if the link gains are generated from
a continuous probability distribution function such as
Rayleigh. Also, we assume that Z, KA, and KB are of full
rank. This assumption does not incur any loss of generality,
because they are design parameters that we can choose. We
can perturb them infinitesimally, and the resulting matrices
will be of rank two, but the value on the right hand side of
(69) deviates negligibly. By property (i), and the fact that
HT

BHB, Z, and KB are invertible 2 × 2 matrices, the rank of
the matrix in (76) is equal to the rank of HT

A(NA
af)
−1HA. Then

we get

rank
(

HT
A

(
NA

af

)−1
HA

)

= rank
(

HT
A

(
NA

af

)−1/2(
NA

af

)−1/2
HA

)

= rank
((

NA
af

)−1/2
HA

) (
by Property (ii)

)

= rank(HA)
(
by Property (i)

)

= 2.

(77)
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Similarly, we can show that the rank of the matrix in (71) is
equal to two.

For fixed invertible covariance matrices KA and KB, and
positive real numbers ζ1 and ζ2,

lim
σ2 → 0

R.H.S. of (69) + R.H.S. of (69)
0.5 log(σ−2)

= 2. (78)

Since the above argument holds for all invertible KA and KB,
and positive ζ1 and ζ2, we conclude that the multiplexing gain
of the AF strategy is equal to 2.

For HLC and HMC, relay 1 is required to decode the
messages of the terminals, and in both schemes the sum rate
is subject to the sum rate constraint in the MAC channel in
the first phase. The multiplexing gains of both the HLC and
HMC strategies are limited by

lim
σ2 → 0

C
(
ΓA1 + ΓB1

)

0.5 log(σ−2)
= 0.5. (79)

Similarly, the multiplexing gain of DF is also limited by the
decoding of messages at the relays. The rate constraints (50)
and (51) imply that it is no more than 0.5.

The multiplexing gain of the PDF scheme is somewhere
in between the multiplexing gains of AF and DF. The trans-
mission from terminal B to terminal A can be considered AF,
while the transmission from terminal A to terminal B in the
other direction is limited by the message decoding after stage
1. From (58), we get

lim
σ2 → 0

RA
(
σ2

)

0.5 log(σ−2)
≤ 0.5, (80)

and from (60), we have

lim
σ2 → 0

RB
(
σ2

)

0.5 log(σ−2)
= 1

2
rank(HA) = 1, (81)

provided that the HA has full rank. Therefore, its maximal
multiplexing gain is 1.5.

We summarize the performance of the five schemes at
high SNR in Table 1. We can see that the AF strategy has the
highest multiplexing gain. It is well known that the maximal
multiplexing gain of the Gaussian MIMO channel with two
transmit antennas and two received antennas is equal to two
[23]. We see that at high SNR, the AF strategy behaves like a
transmission scheme achieving full multiplexing gain in the
MIMO channel with two transmit antennas and two received
antennas.

6. Numerical Examples

We compare the information rates achievable by the pro-
posed strategies in Section 4 with the cut-set outer bound
in [29]. Since the derivation is straightforward, we state the
outer bound without proof. For i, j ∈ {1, 2}, and k ∈ {A,B},
let

Γki j � hT
kiHkKkHT

k hk j

σ2
. (82)

Theorem 6 (Outer bound). A rate pair (RA,RB) is achievable
in the TWTR network only if it satisfies

RA ≤ min
{
C
(
ΓA1 + ΓA2 + ΓA1 Γ

A
2 − ΓA12Γ

A
21

)
,

C
(
ΓA2

)
+ Cn

(
hB1hT

B1

(
1− ρ2)Γ1

)
,

C
(
ΓA1

)
+ Cn

(
hB2hT

B2

(
1− ρ2)Γ2

)
,

Cn

(
hB1hT

B1Γ1 + hB2hT
B2Γ2

+ρ
(

hB1hT
B2 + hB2hT

B1

)√
Γ1Γ2

)}
,

RB ≤ min
{
C
(
ΓB1 + ΓB2 + ΓB1Γ

B
2 − ΓA12Γ

B
21

)
,

C
(
ΓB2

)
+ Cn

(
hA1hT

A1

(
1− ρ2)Γ1

)
,

C
(
ΓB1

)
+ Cn

(
hA2hT

A2

(
1− ρ2)Γ2

)
,

Cn

(
hA1hT

A1Γ1 + hA2hT
A2Γ2

+ρ
(

hA1hT
A2 + hA2hT

A1

)√
Γ1Γ2

)}
,

(83)

for some real number ρ between 0 and 1, and 2× 2 covariance
matrices KA and KB such that Tr(HiKiHT

i ) ≤ Pi holds for i =
A,B.

We select several typical channel realizations and show
the corresponding achievable rate regions in Figure 3 to
Figure 8. To simplify the calculation, we consider the single
antenna case where n = 1. The power constraint is set to
P = 1 and the noise variance is set to σ2 = 1.

In Figure 3, we plot the rate regions when all link gains
are large (the link gain is 10 for all links). As mentioned in the
previous section, the AF strategy has the largest multiplexing
gain in the high SNR regime. We can see in Figure 3 that the
AF strategy achieves the largest sum rate.

In Figures 4 and 5, we consider the case where relay 1 has
larger link gains than relay 2. In Figure 4, the link gains hA1

and hB1 are the same. In this case, HMC dominates all other
strategies. In Figure 5, the two link gains, hA1 and hB1, are
not equal. In this case, HLC dominates HMC. HLC performs
better in this asymmetric case because of its ability to adjust
power between signals and utilize the beamforming gain.

When both relays are close to one of the terminals, PDF
has the best performance, as can be seen in Figure 6. The
reason is that both relays are able to decode reliably the
message from the closer terminal, and then they coopera-
tively forward the message to the other terminal using MIMO
techniques.

Figures 7 and 8 presents two scenarios in which DF
dominates all other transmission strategies. We remark that
DF is quite flexible in that it has many tunable parameters.
The case where both hA1 and hB2 are relatively large is shown
in Figure 7. Another case where hA1 and hA2 are larger than
hB1 and hB2 is shown in Figure 8. In both cases, DF is much
better than other strategies.

We can further summarize the numerical results in
Table 2. It is not supposed to be a precise description on the
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Figure 3: The achievable rate regions when all link gains are large.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

RA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
B

AF
DF
HMC

HLC
PDF
Outer bound

hA1 = 2 hB1 = 2 hA2 = 0.5 hB2 = 0.5

Figure 4: The achievable rate regions when one relay has large link
gains (symmetric case).

relative merits of the schemes. Instead, it provides a rough
guideline for easy selection of a suitable scheme. In the table,
“G” refers to “the channel condition is good” and “B” refers
to “the channel condition is bad.” We say that a channel is
good if its link gain is two to three times, or more, than the
link gain of a bad channel. When all the link gains are large,
we should use AF. In the case when one pair of the opposite
links of the network is good, whereas the other pair is weak,
DF provides larger throughput. If one of the relays is good
but the other relay is bad, HMC or HLC should be used.
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Figure 5: The achievable rate regions when one relay has large link
gains (symmetric case).
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Figure 6: The achievable rate regions when both relays are close to
terminal A.

Table 1: Multiplexing gains of the transmission schemes in the high
SNR regime.

Scheme AF HMC, HLC, DF PDF

Multiplexing gain 2 0.5 1.5

PDF scheme is the best one in the scenario where one of the
sources has large link gains but the other does not.
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Figure 7: The achievable rate regions and the outer bound.
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Figure 8: The achievable rate regions and the outer bound.

Table 2: Performance guideline for the two-way two-relay network
in the medium SNR regime.

‖hA1‖ ‖hB1‖ ‖hA2‖ ‖hB2‖ Scheme

G G G G AF

G B B G DF

G G B B HMC, HLC

G B G B PDF

7. Conclusion

We have devised several transmission strategies for the
TWTR network, each of which is derived from a mix-and-
match of several basic building blocks, namely, amplify-
forward strategy, decode-forward strategy, and physical-
layer network coding, and so forth. We can see from the
numerical examples that there is no single transmission
strategy that can dominate all other strategies under all
channel realizations. In other words, transmission strategy
should be tailor-made for a given environment. In this paper,
we have investigated the pros and cons of different building
blocks and demonstrated how they can be used to construct
transmission strategies for the TWTR network. We believe
that the idea can be applied to other relay networks as well.

While in this paper we only consider the case where
there are only two-relays, the ideas of our proposed schemes
can be applied to the case with more than two-relays. In
particular, AF and PDF can be directly implemented without
any change. As for DF, HMC, and HLC, the design may be
more complicated, since we have to determine which relay to
decode which source’s message. On the other hand, the idea
behind remains the same.

In our work, we have assumed that the channels are static.
When link gains are time varying, our result reveals that a
static strategy can only be suboptimal. To fully exploit the
available capacity of the network, adaptive strategies that can
switch between several modes are needed. How to determine
a good strategy based on channel state information is an
open problem. It is especially difficult if the switching is
based on local information only, and we leave it for future
work.

Appendix

Proof of Theorem 4

The following information-theoretic argument shows that
any rate pair (RA,RB) satisfying the conditions in Theorem 4
is achievable.

Codebook Generation . For i = A,B, the common message
of terminal i is drawn uniformly in Mic � {1, 2, . . . , 22NRic}
and the private message from Mip � {1, 2, . . . , 22NRip}.
For i = A,B, we generate 22NRic independent sequences
of length N . In each sequence, the components are 2 × 1
vectors drawn independently with distribution N (0, Kic).
Label the generated sequences by UN

i (mic) for mic ∈ Mic.
Generate 22NRip independent sequences of length N , with
each component drawn independently with distribution
N (0, Kip). Label the generated sequences by WN

i (mip) for
mip ∈Mip. Set

XN
i

(
mic,mip

)
= Hi

(
UN

i (mic) + WN
i

(
mip

))
. (A.1)

By (56) and (57), with very high probability the power
constraints on node A and node B are satisfied.

There is a common codebook for relay 1 and relay 2. We
generate an array of codewords with 22NRAc rows and 22NRBc
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columns. The codewords have length N and each component
is drawn independently from N (0, 1). Label the codewords
by VN

0 (mAc,mBc), for mAc ∈MAc and mBc ∈MBc.
For relay 1, we generate 22N(RAp +RAc RBc ) codewords,

indexed by mAp ∈ MAp, mAc ∈ MAc, mBc ∈ MBc, and
denoted by

X̃N
1

(
mAp,mAc,mBc

)
. (A.2)

Each of them is drawn independently with each component
generated from N (0,α1P1). Let XN

1 (mAc,mBc,mAp) be the
linear combination

√
α1P1V

N
0 (mAc,mBc) + X̃N

1

(
mAp,mAc,mBc

)
. (A.3)

Since α1+α1 is strictly less than 1, XN
1 (mAc,mBc,mAp) satisfies

the power constraint of node 1 with very high probability.
For relay 2, we generate 22N(RBc +RBp+RAc ) codewords,

labeled by

X̃N
2

(
mBp,mBc,mAc

)
, (A.4)

for mBp ∈ MBp, mBc ∈ MBc, mAc ∈ MAc. The compo-
nents of each codeword are generated independently from
N (0,α2P2). Let XN

2 (mAc,mBc,mBp) be
√
α2P2V

N
0 (mAc,mBc) + X̃N

2

(
mBp,mBc,mAc

)
. (A.5)

The codeword XN
2 (mAc,mBc,mBp) satisfies the power con-

straint of node 2 by the hypothesis that α2 + α2 < 1.

Encoding: For source node i ∈ {A,B}, to send the message
(mic,mip), it sends XN

i (mic,mip) to the relays.
In the second stage, relay 1 and relay 2 transmit XN

1 (m̂Ac,
m̂Bc, m̂Ap) and XN

2 (m̂Ac, m̂Bc, m̂Bp). The messages indicated
by ̂ is the estimated version of the original message.

Decoding: For i = 1, 2, the channel output at relay i is

hT
AiHA

(
UA(mAc)(t) + WA

(
mAp

)
(t)

)

+ hT
BiHB

(
UB(mBc(t)) + WB

(
mBp

)
(t)

)
+ Zi(t).

(A.6)

The receiver at relay 1 treats the signal component
hT
B1HBWB(mBp)(t) as noise, and tries to decode mAc, mBc

and mAp. It reduces to a MAC with two users, but three
independent messages; two messages from node A and
one message from node B. In order to decode these three
messages reliably, we need the requirement in (50). Likewise,
we have the requirement in (51) for correct decoding at node
2.

Relay 2 treats the signal component hT
A2HAWA(mAp)(t)

as noise, and tries to decode mAc, mBc and mBp. This can
be done with arbitrarily small error if the condition in (51)
holds.

In the second stage, terminal A receives

YA(t) =
[√

α1P1hA1 +
√
α2P2hA2

]
V0(m̂Ac, m̂Bc)(t)

+ hA1X̃1

(
m̂Ap, m̂Ac, m̂Bc

)
(t)

+ hA2X̃2

(
m̂Bp, m̂Bc, m̂Ac

)
(t) + ZA(t).

(A.7)

Assuming that m̂Ac = mAc and m̂Ap = mAp, the channel is
equivalent to a two-user MAC with common information, in
which both users send mBc, and one of the users sends the
private message mBp. The decoding is done by typicality as
in [30, chapter 8], with the additional functionality of multi-

plexed coding. The decoder at terminal A searches for ̂̂mBc

and ̂̂mBp such that YN
A , VN

0 (mAc, ̂̂mBc), X̃N
1 (mAp,mAc, ̂̂mBc)

and X̃N
2 ( ̂̂mBp, ̂̂mBc,mAc) are jointly typical. From the capacity

region of MAC with common information [30, page 102], we
obtain the following rate requirements

RBp ≤ I
(
X̃2;YA | X̃1,V0

)
,

RBp + RBc ≤ I
(
X̃1, X̃2,V0;YA

)
,

(A.8)

where I is the mutual information function. This gives the
conditions in (54) and (55).

Similarly, we have the conditions in (52) and (53) for
successful decoding in terminal B. This completes the proof
of Theorem 4.
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A recently developed theory suggests that network coding is a generalization of source coding and channel coding and thus
yields a significant performance improvement in terms of throughput and spatial diversity. This paper proposes a cooperative
design of a parity-check network coding scheme in the context of a two-source multiple access relay channel (MARC) model, a
common compact model in hierarchical wireless sensor networks (WSNs). The scheme uses Low-Density Parity-Check (LDPC)
as the surrogate to build up a layered structure which encapsulates the multiple constituent LDPC codes in the source and relay
nodes. Specifically, the relay node decodes the messages from two sources, which are used to generate extra parity-check bits by a
random network coding procedure to fill up the rate gap between Source-Relay and Source-Destination transmissions. Then, we
derived the key algebraic relationships among multidimensional LDPC constituent codes as one of the constraints for code profile
optimization. These extra check bits are sent to the destination to realize a cooperative diversity as well as to approach MARC
decode-and-forward (DF) capacity.

1. Introduction

The demand for ubiquitous communications has motivated
the deployment of a variety of wireless devices and tech-
nologies that accommodate ad hoc communications. In
large numbers, such devices, despite their different sizes,
processing constraints, and levels of affordability, form a
Wireless Sensor Network (WSN). The WSN cooperatively
monitors the physical world and enables sharing of comput-
ing capabilities, bandwidth, and energy resources, offering
more integrated and essential information than with any
single-sensor node. The WSN is generally built as a hierar-
chical structure by placing a sparse network of access points
connected by a high-bandwidth network within a random
homogeneous ad hoc network, in which wireless relay nodes
serve exclusively as forwarders [1], as in Figure 1. In addition,
the hierarchical sensor network with an access point and
a single forwarding node can be modeled as a Multiple
Access Relay Channel (MARC), which is a multisource
extension of the well-known single-user relay channel [2].
With dedicated relay nodes, cooperative communications
[3–7] among WSN exploit the broadcast characteristics

and inherent spatial diversity to form a large transmit
and/or receive antenna array (also known as Multiple Input
Multiple Output, MIMO). Collaborative clusters are able
to achieve spatial diversity as well as rate multiplexing by
making “negotiations” among neighboring nodes to fully
utilize the rich wireless propagation environments across
multiple protocol layers and offers numerous opportunities
to improve network performance in terms of throughput [2],
reliability [8–10], longevity, and flexibility.

The most important element in cooperative communica-
tions is coding protocols responsible for interaction between
cooperative nodes. Over the past few years, several coding
strategies have been deployed for cooperative communica-
tions. Distributed space-time coding was originally proposed
for MIMO systems [6]; nevertheless, synchronization among
cooperative nodes is the unavoidable problem when the
space-time coding strategy is brought into cooperative com-
munications. Lately, as the network grows, traditional relay
schemes have become increasingly bandwidth-inefficient. To
break through the bandwidth bottleneck, network coding
[11]—a technique originally developed for routing in lossless
wireline networks—has been recently applied to wireless
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Figure 1: Hierarchical communication structure with multiple
sources and dedicated relays.

relay networks. Traditional relaying [12–14] entails a loss in
spectral efficiency that can be mitigated through network
coding in cooperative communications, for its information
theoretical scheme and cooperative nature. However, certain
fundamental aspects of wireless communication, interfer-
ence, fading, and mobility make the problem of applying
network coding to cooperative communications particularly
challenging.

The application of a cooperative network coding strategy
is based on the fact that network coding has automati-
cally been associated with cooperative communications as
it employs intermediate nodes to combine packets [15–
22]. Some approaches with practical advantages have been
established to introduce network coding strategies into relay
cases. In a two-way relay channel, the relay node combines
received messages via network coding and broadcasts them
to the opposite sited sources [15, 16]. Such a strategy has
been demonstrated to reduce the number of time slots
required to exchange a packet from 4 to 2, and thus a
significant gain in throughput. A recently developed idea
based on joint network coding with channel coding or
source coding [17, 18, 21, 22] suggests that network coding
is a generalization of source coding and channel coding
[23]. Effros et al. [19] used network information theory
to show that joint design of source, channel, and network
coding in end-to-end transmission could yield much better
performance, especially for the situation in which source,
channel, and network separation between these codes does
not hold in underlying networks.

In essence, the contribution of this paper is to employ
network coding with additional parity-check bits generated
from the two sources’ information bits in relay nodes with
linear acceptable complexity. The extra parity-check bits
are designed as side information to fill up the mutual
information gap between Source-Destination and Relay-
Destination transmissions and hence approach the MARC
“Cut-Set” bound, which is not addressed in most of the
previous research works. Specifically, this paper constructs a
multidimensional LDPC code to realize the network coding
in a cooperative pair of nodes, as the graphical description
of LDPC can flexibly bridge distributed processing and can
be customized to emulate a random coding scheme of any
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R D

R
D
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Yd1

Yd2

Yr

d 1− d

t1N

X11

t2N

X3 = ( f1(x11)
⊕

f2(x21))

Figure 2: Cooperative protocol in MARC with one-block transmis-
sion. In the t1 slot, S1 and S2 broadcast x11 and x21; in the t2 slot, R
forwards the network-coded message x3, and S1 and S2 transmit x12

and x22.

rate. Although density evolution (DE) has high precision,
the resulting increase in the complexity of DE poses a
significant challenge to design a multidimensional LDPC
decoder. Our work concentrates on practical implementation
to present the behaviors of constituent decoders by Extrinsic
Information Transfer Charts (EXITs) with a modified Gaus-
sian approximation, which reduces the infinite dimensional
problem of tracking densities to a one-dimensional problem
of tracking means that is readily addressed with linear
programming tools.

The remainder of the paper is organized as follows.
Section 2 describes a MARC model as well as system
settings. In Section 3, we analyze the achievable sum-rate
with information theory as the motivation for coding design
and propose network-coding cooperative transmit strategy
with multidimensional LDPC codes. The work in Section 4
focuses on the optimization of multidimensional LDPC code
profile using modified Gaussian approximation and EXIT
as a linear-constraint optimization. Finally, simulations are
conducted and discussed to demonstrate the effectiveness of
the network-coded cooperative strategy.

2. System Model and Coding Strategy

This section briefly introduces the two-source MARC model
used throughout the paper and LDPC code preliminaries as
the basis of the paper.

2.1. System Model. To exhaustively describe the network
coding strategy, we formulate our system to MARC, a
model for network topologies in which multiple sources
communicate with a single Destination in the presence of
a Relay node. Basically, the system consists of two Sources
(S1, S2), one Relay (R) and one Destination (D), as in
Figure 2. This MARC model has a symmetric positioning of
S1, S2 with respect to R and D. The relay moves along the line
connecting D with the origin, which is normalized to 1. The
distance between S and R is set to d. Path loss is proportional
to 1/d2. The channels between each node are independent of
each other. Perfect global channel knowledge is assumed at
all nodes.
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Since radio terminals cannot transmit and receive simul-
taneously in the same frequency band, most cooperative
strategies are based on the half-duplex mode [24]. The nodes
are allocated orthogonal channels by TDMA. S1 and S2

are assumed to send messages with no priority. One block
transmission is separated into two consecutive time slots,
normalized to t1 + t2 = 1. Furthermore, one block length
of the source is N (for brevity and clarity, the symbols S1

and S2 are equal to and independent of each other) and is
further divided into two subblocks with t1N and t2N-long
codewords for two slots’ transmissions.

We use X , Y to represent the signals sent and received.
In particular, xi j , i, j ∈ {1, 2} denotes the signals sent by S1,
S2. The subscript i identifies S1 and S2, and the subscript j
represents the two consecutive channels. x3 is the signal sent
by R, and yr is the signal received by R. The variables yd1

and yd2 are signals received by D in consecutive channels.
Specifically, in time slot t1, S1 and S2 broadcast their messages
x11 and x21 to R and D. In time slot t2, R forwards the
network-coded message x3, and S1 and S2 send the messages
x12 and x22 (new or old) to D, as in Figure 2. The equivalent
baseband transmission model is shown in (1):

yr = hs1rx11 + hs2rx21 + wr1,

yd1 = hs1dx11 + hs2dx21 + wd1,

yd2 = hs1dx12 + hs2dx22 + hrdx3 + wd2.

(1)

Rayleigh flat fading is adopted to model these links.
Specifically, hi j are channel coefficients capturing the effects
of path-loss, shadowing, and fading, modeled by inde-
pendent circularly symmetric complex Gaussian random
variables with a mean of zero and a variance of σ2

i j .
Furthermore, wi, i = r, d1, and d2 account for noise and
other additive interferences at the receiver, modeled with an
independent, zero-mean additive Gaussian white noise with
variance σ2.

2.2. Power Control. The transmit power of each source
Pt
i = E[(xi(n)2)], where i = 1, 2, 3 denote S1, S2, and R,

respectively, is constrained by

Pt1
1 + Pt1

2 ≤ Pt1
tot,

Pt2
1 + Pt2

2 + Pt2
3 ≤ Pt2

tot.
(2)

2.3. LDPC Codes. The cooperative coding scheme adopts
LDPC code. A binary LDPC code is represented by a
binary sparse parity-check matrix Hk×n which connects to
a bipartite graph with n variable nodes (corresponding
to n columns) and k check nodes (corresponding to k
rows). An attractive property of LDPC is that it can be
designed graphically by a bipartite graph, which naturally
matches the network topology for cooperation. The LDPC
code is presented by its variable and check nodes degree
distributions (λ(x), ρ(x)), where λi(ρi) represents the fraction

of edges connected to a variable (check) node with degree i.
The rate of the code is given in terms of (λ(x), ρ(x)):

R = 1−
∫
ρ(x)dx∫
λ(x)dx

. (3)

3. Parity-Check Network Code Design

There are two particular highlights of our cooperative
strategy: one is the cooperative design of side information at
the relay node to exactly fill up the gap of mutual information
between SR and SD channels (based on the MARC model,
relay is in the middle of S1, S2, and D, and SR thus subject
to less path loss than SD channel); the other is the network
coding procedure to combine extra check bits for one-slot
transmission. Particularly, the insight of the first highlight is
to approach the MARC DF “Cut-Set” bound, and the second
is to ensure BER QoS as network coding is extended to
wireless fading environment. This section will address these
two challenges.

3.1. Achievable Rates. This subsection analyzes the parity-
check network coding cooperative strategy, extended from
decode-and-forward in MARC using information theory, as
a fundamental instruction to develop the coding design as
described below.

The key element in the proposed strategy is that the
relay node forwards redundant bits as side information for
both S1 and S2 to D, which is based on the essential idea
of “channel coding with side information.” This process is a
“dual thought” of “source coding with side information” [25,
26]. Channel coding with side information is to append some
extra check bits to codewords, which is a “binning” process
assigning a set of codewords to different bins and enlarging
the minimum distance between them. At the receiver, the side
information provides an index of the message, and then the
decoding process chooses the closest codeword in a box with
a specific index. Application of such an idea in a traditional
three-node relay network can be found in [8, 9]. This paper
applies the binning approach to a MARC with network
coding. Besides, the extra check bits are generated with
the goal of approaching MARC DF capacity. The resulting
network-coded strategy is capable of balancing the problem
of spatial diversity and multiplexing.

Usually, the informational theoretical view deals with
achievable rates. In the MARC scenario, we consider the
sum-rate, which conveys more intuition. For decode-and-
forward strategy in a general multiple source half-duplex
relay channel, the bounds on all combinations of the rate
tuples for reliable detection at R and D are as follows [1]:

(
RS1 + RS2

)
DF

≤ min
t1+t2=1

⎛
⎝t1I(X11,X21;Yr) + t2I

(
X12,X22;Yd2 | X3

)
,

t1I
(
X11,X21;Yd1

)
+ t2I

(
X12,X22,X3;Yd2

)
⎞
⎠.

(4)

The first terms in min(·) of (4) represent the maximum
rate at which R can decode the messages x11 and x21 and
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Figure 3: The cooperative strategy based on parity-check network coding.

the maximum rate at which D can decode x12 and x22 in the
presence of x3. The second terms in min(·) of (4) represent
the maximum rate at which D can decode the messages x11

and x21, and the maximum rate at which D can decode all
three messages x12, x22, andx3.

The cooperative strategy in this study employs network
coding in the sense of cooperation between S1, S2, and R to
achieve MARC capacity in (4). The detailed protocol is as
follows.

3.1.1. In Time Slot t1: Source Nodes Operations. Each S1 (S2)
encodes the message x11 (x21) to codewords Ct1

S1
(Ct1

S2
) at the

rate of

Rt1
S1R + Rt1

S2R = I(X11,X21;Yr). (5)

Then, S1 (S2) broadcasts Ct1
S1

(Ct1
S2

) to R and D. D receives
the data and waits for decoding at the end of the block
transmission.

To achieve maximum throughput, S1 and S2 broadcast
messages at the sum-rate (5). R is able to decode x11, x21

with an arbitrarily low error probability, since Rt1
S1R + Rt1

S2R
equals the capacity of the SR channels. According to the geo-
metric configuration in Figure 2, intuitively, I(X11,X21;Yr) >
I(X11,X21;Yd); the physical channel of SD is more attenuated
by the path loss than that of the SR channel. Consequently,
although D also receives x11 and x21, it is unable to uniquely
decode them and requires extra bits t1N(I(X11,X21;Yr) −
I(X11,X21;Yd)) to make x11 and x21 decodable.

3.1.2. In Time Slot t2: Relay Node Operation. R sends these
extra bits, t1N(I(X11,X21;Yr) − I(X11,X21;Yd)), to D at the
rate

RRD = t1N
(
I(X11,X21;Yr)− I

(
X11,X21;Yd1

))

t2N

= t1
t2

(
I(X11,X21;Yr)− I

(
X11,X21;Yd1

))
.

(6)

Specifically, after decoding the codewords from Si, R
estimates Ct1

S1
and Ct1

S2
, and cooperatively uses the codewords

Ct1
S1

and Ct1
S2

to generate extra check bits for both S1 and S2,
and then combines them with network coding to produce
knet = t1N(I(X11,X21;Yr) − I(X11,X21;Yd1 )) extra check
bits. The process is “network coding.” For transmission,
knet is encapsulated by R’s LDPC codeword Ct2

R and sent
to D. Hence, the extra check bits with S1 and S2 codes
Ct1
S1

and Ct1
S2

construct the cooperative multidimensional
LDPC code CSR, as illustrated in Figure 3. The elements
in the blue rectangle construct the cooperative code CSR

with respect to the information in time slot t1. The pro-
cedure in the red rectangle is the network coding which
produces and combines extra bits for both S1 and S2. In
particular, knet check bits encapsulated by codeword Ct2

R sent
to D capture the RD channel’s fading characteristics and
provide an effective extinct message at D to realize a spatial
diversity.

From the perspective of information theory, CSR is
cooperatively encoded by S1, S2, and R on the grounds
of coding with side information. “Binning” is performed
by extra check network-coded bits (or syndromes) in
R’s message generated from Ct1

Si
, i ∈ {1,2} to perform

decoding of x11, x21 ∈ {1, 2, . . . , 2t1NI(X11,X21;Yr )} by restricting
them into 2t1NI(X11,X21;Yd1 ) bins of 2t1N(I(X11,X21;Yr )−I(X11,X21;Yd1 ))

in size each. From Figure 4, the “binning” process of R
partitions the space of codewords of S1 and S2, enlarging
their minimum distances to make the source’s message
decodable.

3.1.3. Source Nodes Operations. In time slot t2, each S1 (S2)
sends a message to D independently because R is in the
half-duplex mode. According to the channel status, S1 and
S2 can choose to send new or old information using the
independent codebook Ct2

S1
(Ct2

S2
). The new information sent
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Figure 4: The minimum distances of CSR and Ct1
Si

, i ∈ {1,2}.

in the t2 time slot at the sum-rate inherited from the DF rate
region in (4) is

(
Rt2
S1D + Rt2

S2D

)
DF

≤ min

⎛
⎜⎜⎜⎜⎝

I
(
X12,X22;Yd2 | X3

)
,

⎛
⎜⎝

I
(
X12,X22,X3;Yd2

)

− t1
t2

(
I(X11,X21;Yr)− I

(
X11,X21;Yd1

))

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎠
.

(7)

Source transmissions in the t2 slot are isolated from the
operation of R, as in Figure 3, which illustrates the operation
in time slot t2 with independent information transmissions
by S1, S2, and R. Thus, we deal with codebook Ct2

S1
(Ct2

S2
) as a

single LDPC code and choose a suitable LDPC codebook to
satisfy the rate constraint in (7).

At the end of one block transmission, D successively
decodes Ct2

R , Ct2
S1

, and Ct2
S2

. Then, the extra check bits
knet are obtained for joint decoding of CSR with Ct1

S1
and

Ct1
S2

.The network coding cooperative strategy is summarized
as follows in Table 1.

In the cooperative protocol mentioned above, MARC
DF capacity in (4) is approximated via the rate allocation
scheme in (5) through (7). Especially, if I(X11,X21;Yr) >
I(X11,X21;Yd), the rate at I(X11,X21;Yr) to transmit infor-
mation of S1 and S2 in time slot t1 to D will be achieved,
resulting in a rate gain by cooperation between S1, S2, and R.

However, strictly speaking, the network coding per-
formed here is not exactly the same as the network layer
coding, which mainly focuses on routing problems and
packet-level combination. Here, we borrow the kernel idea
of the network layer coding to combine the extra check bits
in R, which improves the bandwidth efficiency by R’s extra
check bits transmitted in one slot for both S1 and S2.

3.1.4. Parameters in the Cooperative Protocol. The achievable
sum-rate is as a function of three parameters: d, t1, and βi.
The definition of d and t1 is in Section 2.1. βi is the fraction
of Si allocate to the old messages in t2. And β1 = β2 = β
is set for the symmetric geometry. The achievable sum-rate
in (4) can be evaluated by these three parameters with the

AWGN channel capacity. The outer bound of the sum-rate is
the maximum of (8) subject to the value of tiβi, i ∈ {1, 2}.
(
RS1 + RS2

)
DF

≤max
ti ,βi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t1C

⎛
⎝ ∑

i∈{1,2}
γt1Si

∣∣hSir
∣∣2

⎞
⎠

+t2C

⎛
⎝ ∑

i∈{1,2}

(
1− βi

)
γt2Si

∣∣hSid
∣∣2

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1C

⎛
⎝ ∑

i∈{1,2}
γt1Si

∣∣hSid
∣∣2

⎞
⎠

+t2C

⎛
⎜⎜⎝

∑

i∈{1,2}

γt2Si
∣∣hSid

∣∣2 +γt2R |hrd|2

+
∑

i∈{1,2}
2
√
βiγ

t2
Si

∣∣hSid
∣∣2
γt2R |hrd|2

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(8)

The received signal-to-noise ratio for R and D is listed
with the channel gains as

Pt1
Sir = γt1Si

∣∣hSir
∣∣2, Pt1

Sid
= γt1Si

∣∣hSid
∣∣2,

Pt2
Sid
= γt2Si

∣∣hSid
∣∣2, Pt2

rd = γt2R |hrd|2,
i ∈ {1, 2}. (9)

γ = ES/σ2 = P/(Wσ2) is the input signal-to-noise ratio
(SNR), where power P is constrained within 10 dB in both
time slots using (2), and σ2 is the variance of noise at the
receivers of R and D, which are assumed to be equal.

The rates of (8) are plotted in Figure 5. Note that, when d
is around 0.5, the sum-rate is at its maximum. The function
of best β against d is more like a step function. When R is
physically closer to the source d < 0.3, β = 1 is optimal,
which means that the old information takes up all source
transmissions in time slot t2. This could be attributed to a
path loss of the RD channel, and so S1 and S2 send the same
information again to fill up the gap. The other extreme is
when R is physically closer to D, d > 0.7, β = 0 which means
that sources send new information in time slot t2. However,
R must successfully decode the source’s information.

To obtain the time partition factor t1, the sum-rate in (7)
can be used to calculate t by manipulating the sum-rate at
the corner point of the capacity region, which means that the
two terms of min(·) in (7) are equal. In Figure 5, we evaluate
t by setting the two terms mentioned above to be equal, with
different d. When d = 0.5 and t1 = 0.7, the MARC DF
sum-rate achieves its maximum value, which means that R’s
transmission takes up t2 = 0.3 slot, resulting in a free degree
of each source of 0.7/2 + 0.3 = 0.65.

3.2. Cooperative Design Framework. This subsection depicts
the network-coded cooperative framework to realize above
achievable rates. Specifically, the layered structure is con-
structed with multidimensional LDPC constituent codes
corresponding to S1 and S2, as in Figure 6. This coding
strategy is based on a half-duplex TDD mode, so that the



6 EURASIP Journal on Wireless Communications and Networking

Table 1: The network-coded cooperative strategy.

S1 and S2 R D

t1 Broadcast Ct1
S1

and Ct1
S2 Receives Ct1

S1
and Ct1

S2
Receives Ct1

S1
and Ct1

S2
and stores them for deocoding.

t2 Send Ct2
S1

and Ct2
S2

to D.

Performs network
coding to generate
knet extra check bits
which is encoded by
Ct2
R and sends Ct2

R to D

(1) Receives Ct2
S1

and Ct2
S2

(2) Receives Ct2
R

(3) Successively decodes Ct2
S1

,Ct2
S2

,Ct2
R and obtains knet

(4) Joint decodes Ct1
S1

and Ct1
S2

with knet
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Figure 5: The achievable sum-rate with Pt1
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operation of R only cooperates with the source transmissions
in time slot t1. In time slot t2, S1, S2, and R send their
information independently.

The cooperative codeword CSR’s parity-check matrix HSR

is constructed with three LDPC constituent codes as in
Figure 6, including sub-LDPC parity-check matrices HS1 and
HS2 , and the network code parity-check matrix Hnet. HS1

(HS2 ) is employed by S1 (S2) to encode the message x11, (x21)
locally; thus, HS1 (HS2 ) is a complete parity-check matrix. HS1

(HS2 ) has n1 (n2) variable nodes and k1 (k2) check nodes.
The sources’ codeword Ct1

S1
(Ct1

S2
) is enforced to satisfy k1 (k2)

check bits.
In addition, parity-checks k1 and k2 do not interact with

each other or do not check each others’ variable nodes since
the independent sources S1 and S2 cannot produce checks for
unknown information bits.

The extra check nodes knet have the same variable nodes
as the check nodes of S1 and S2; otherwise, they cannot
provide any checks for the codewords of S1 and S2. Therefore,
in Hnet, the variable nodes n1 and n2 are sequentially
arranged as information bits and are enforced to satisfy knet

check bits. Hence, Hnet has knet rows and (n1 + n2 + knet)
columns, as Hnet: knet×(n1 +n2 +knet). Above all, the network
coding procedure uses Hnet to merge the extra check bits.

Random linear codes are capacity-approaching for the
Gaussian channel under maximum likelihood decoding.
Therefore, the extra checks are randomly connected to the
set of variable nodes n1 + n2 in Hnet. However, if Hnet

is constructed in a completely random way, encoder and
decoder implementations become very difficult as the code
size grows due to the pseudorandom interconnection and
the large memory required. Structured LDPC codes would
be a good option to facilitate implementation without
compromising performance. Therefore, Hnet is constructed
in the partial dual-diagonal form so that most parity check
bits can be obtained via back-substitution. Partial dual-
diagonal form is merely in the knet portion, as illustrated in
Figure 6, and the remainders are still randomly constructed.

Linear-time encoding can be achieved by using the near-
triangular parity portion. The extra check bits b1,b2, . . . , bknet

are generated by a direct encoding procedure, as follows:

b0 =
t1N+t1N∑

j=1

knet∑

i=1

Hnet
(
i, j

)[
Ct1
S1

,Ct1
S2

]T
,

b1 =
t1N+t1N∑

j=1

Hnet
(
i, j

)[
Ct1
S1

,Ct1
S2

]T
+ b0, i = 1,

bi+1 = bi +
t1N+t1N∑

j=1

Hnet
(
i, j

)[
Ct1
S1

,Ct1
S2

]T
+ b0,

i = 2, . . . , knet.

(10)

The addition of the above equations is in a binary field;
b0 is an additional variable used to calculate extra check bits
b1,b2, . . . , bknet .

As mentioned above, the cooperative LDPC code CSR is
satisfied by the parity-check constraints as

HS1

[
Ct1
S1

]
= 0; HS2

[
Ct1
S2

]
= 0;

HSR

[
Ct1
S1

,Ct1
S2

,
{
b1, b2, . . . , bknet

}] = 0.
(11)

Moreover, once knet extra check bits are obtained via
optimization cooperatively conducted with HS1 and HS2 , the
quasidiagonal part of Hnet is determined. Hence the parity-
check matrix HSR can be simplified to H′

SR by removing the
columns of the quasidiagonal part, and the optimization is
then performed on H′

SR instead.
In H′

SR, variable nodes have two types of checks: their
own checks and extra checks offered by network coding.



EURASIP Journal on Wireless Communications and Networking 7

11
11

11
11

0 0

Extra
check bits

for S2

Extra
check bits

for S1

Extra
check bits

for S2

Extra
check bits

for S1

Network codes: Hnet

Ct1
S2

S1k1

S1k2

S1n1

knet

knet

Columns:
variable nodes

1
1

1

1 10

00

0

0 0

0

0

Sub-graph
Hyber-graph

HSR CSR

S2n2

. . .

Rows:
check nodes

Quasi-diagonal
structure: square

Ct1
S1

HS1 HS1

HS2 HS2

H′
SR

Figure 6: The cooperative design framework of parity-check network coding.

Accordingly, each variable node in H′
SR has two types of

variable node degrees, expressed by λSRi, j : sub-LDPC degree
(in HS1 or HS2 ) i, i ≥2, and extra degree j, j ≥ 0 (in Hnet).
Assuming that 0 < η1(η2) < 1 is the ratio of the edges
in HS1 (HS2 ) to the edges in H′

SR, the variable node degree
distributions γS1 (x) (γS2 (x)) of HS1 (HS2 ) in terms of λSRi, j are

γS1
i =

1
η1

∑

j≥0

i

i + j
λSRi, j , γS2

i =
1
η2

∑

j≥0

i

i + j
λSRi, j . (12)

The relationship of (12) is used for cooperative code
profile optimization in next section.

Then, we will give the kernel constraint of the cooperative
design, which determines how the extra check bits are
connected to the variable node set in the cooperative code
CSR. Since the extra checks are appended to the sub-LDPC
codes Ct1

S1
and Ct1

S2
, which have the same set of variable

nodes as CSR, the degree of CSR variable nodes turns out
to be greater than that of the same set of variable nodes in
sub-LDPC codes Ct1

S1
and Ct1

S2
. However, due to the random

construction, the extra checks connected to one specific
variable node cannot be determined; in other words, it
is impossible to list exactly which variable node receives
the extra checks. Under this circumstance, we derive the
relationship between Ct1

S1
, Ct1

S2
, and CSR in terms of variable

nodes’ number with respect to a specific degree i, denoted by
Ni = (λi/i) · E, where E is the total number of edges of the
parity-check matrix concerned.

Theorem 1. If the cooperative code CSR has a maximum degree
dv,SR and a total number of edges ESR and, similarly, two sub-
LDPC codes Ct1

S1
and Ct1

S2
have maximum degrees dv,S1 and

dv,S2 and total edges ES1 and ES2 , respectively, then one has the
following relationships:

dv,SR∑

i= j

λSRi, j
i
ESR

≥
max(dv,S1 ,dv,S2 )∑

i= j

(
γS1
i

i
ES1 +

γS2
i

i
ES2

)
∀ j = 2, 3, . . . ,dv,SR.

(13)

The proof of Theorem 1 is in the appendix. Theorem 1
ensures that the network-coded messages from the relay
node as the extra check bits independently sent through the
fading channel offer spatial diversity gain to the cooperative
strategy. And the number of extra check bits is determined
by

(n1 + n2)
(
I(X11,X21;Yr)− I

(
X11,X21;Yd1

))
. (14)

4. Cooperative Code Profile Optimization

Next, the challenge to the construction of H′
SR lies in finding

the optimal code profile of CSR, including optimal profiles
of sub-LDPC constituent codes Ct1

S1
, Ct1

S2
together with extra

check bits.
In engineering, optimization has always been a difficult

problem due to its computational complexity, particularly
for cost-constraint hardware. Therefore, to restrict our opti-
mization algorithms to a linear programming is the mainly
interest in this section. We will use Gaussian approximation
and Extrinsic Information Transfer (EXIT) charts as the
linear programming tool to obtain a CSR code profile in a
cooperative framework illustrated in Figure 6.
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Generally, optimization of LDPC code profile can be
done in two different ways. One is to fix noise variance
and maximize information transmit rate to search for the
optimal degree distributions (λ(x), ρ(x)). The other is to fix
the rate to find the (λ(x), ρ(x)) that yields the largest noise
threshold. The cooperative strategy discussed in this paper
prefers bandwidth efficiency to noise threshold. Information
transmit rate seems straightforward, which is defined as
the ratio of information bits sent by sources to all bits
transmitted for the concerned message (source messages in
time slot t1), and thus,

RSR = n1 − k1 + n2 − k2

n1 + n2 + knet
. (15)

Equation (15) can be expressed by the degree distribution
as

RSR = 1−
∑

i≥2 ρ
SR
i /i∑

i≥2, j≥0 λ
SR
i, j /

(
i + j

) . (16)

The optimization algorithm maximizes rate RSR to obtain
the degree distribution of H′

SR.
It is difficult to obtain (λ(x), ρ(x)) in one operational

procedure, and so we fix ρ(x) to get λ(x) and then get ρ(x)
with fixed λ(x), given the maximum number of iterations.
With a constant ρ(x), the maximizing rate is equivalent to
maximizing

∑
i≥2, j≥0 λ

SR
i, j /(i + j).

EXIT [27] provides a computationally simple tool for
predicting the asymptotic convergence behavior of iterative
coding schemes by tracking trajectories of extrinsic infor-
mation exchange between variable nodes and check nodes
in the bipartite graph. Furthermore, operations of variable
and check nodes are referred to the variable-node decoder
(VND) and check-node decoder (CND), respectively. We
also use mutual information as the surrogate to analyze and
optimize LDPC codes by matching the EXIT functions with
the constituent decoders (VND, CND) based on the area
property of the functions. Figure 7 illustrates iterative joint
decoding of VND and CND in H′

SR. Specifically, Ct1
S1

and Ct1
S2

are received by D at t1 time slot, while Ct2
R is received by D

at t2 time slot. Channel S1D captures its own fading factor
via Ct1

S1
; channel S2D captures its own fading factor via Ct1

S2
;

channel RD captures its own fading factor via Ct2
R . These

three codewords are used to cooperative decode x11 and x21.
Each sub-LDPC code is related to a coupling of a VND-CND
decoder. The network code plays a role as the interleaving
function of the two CNDs with extra extrinsic information.

EXIT charts compute two curves, the VND curve and
the CND curve, corresponding to the steps of each decoder’s
density evolution. With the VND curve, IA is interpreted
as the mutual information between the VND “input” LLR
message and the transmitted symbol of the check node
at iteration l. IE is interpreted as the mutual information
between the VND “output” LLR message and the transmitted
symbol of the variable node at iteration l. With the CND
function, the interpretations of IE and IA are opposite.

Gaussian approximation is an effective way to track the
means of the log likelihood ratio (LLR) message, which
is assumed to be symmetrically Gaussian distributed [28].

Even with an irregular LDPC code [27], the Gaussian
approximation can still be precise after a few modifications;
that is, the distribution of the variable node LLR message is a
mixture of Gaussian approximations, and the corresponding
VND EXIT function is

IEV = f
(
Ich, IAV

) =
dv∑

j=2

λjIEV j

=
dv∑

j=2

λjJ
(
J−1(Ich) +

(
j − 1

)
J−1(IAV

))
,

(17)

where J(x) is defined by

J(x) = I(X ,L) =
∫

1√
4πx

e−(l−x)2/4x
(

1− log2

(
1 + el

))
dl.

(18)

The corresponding CND EXIT function is

IEc = f
(
IAc

) =
dc∑

j=2

ρjIEc j

=
dc∑

j=2

ρj
1

ln 2

∞∑

i=1

1
(2i− 1)(2i)

[
ϕi
(
J−1(IAc

))] j−1
,

(19)

where ϕi(x) is defined by

ϕi(x) =
∫ 1

−1

2t2i

(1− t2)
√

4πx
e−(ln(1+t/1−t)−x)2/4xdt. (20)

The decoding process is expected to converge progres-
sively after each decoding iteration. Therefore, we require
IEv (IEc(IA)) > IA for all IA ∈ [0, 1] to ensure successful
decoding. This is equivalent to IEv (IA) > I−1

Ec (IA). The
decoding process is thus predicted to converge if and only if
the VND curve is strictly greater than the reversed-axis CND
curve.

Next we will formulate the constraints to fulfill the
optimization and obtain code profiles of CSR, Ct1

S1
, and

Ct1
S2

: (λSRi, j , ρ
SR), (γS1 , ρS1 ), and (γS2 , ρS2 ). In this paper, for

simplicity but still revealing the insights of the cooperative
design, we let node S1 and S2 completely symmetric, that is,
Ct1
S1

and Ct1
S2

are equal, and thus in simulations we can treat
them as one LDPC code Ct1

S1
(or Ct1

S2
).

First, (13) in Section 3 is the kernel constraint. Specifi-
cally, if S1 and S2 are completely symmetric, which means
that Ct1

S1
and Ct1

S2
have an equal number of extra checks and an

equal number of bipartite graph edges, that is, ESR = 2ES1 =
2ES2 , we have

dv,SR∑

i= j

(
λSRi, j

)

i

≥
max(dv,S1 ,dv,S2 )∑

i= j

(
γS1
i

2i
+
γS2
i

2i

)
∀ j = 2, 3, . . . ,dv,SR.

(21)



EURASIP Journal on Wireless Communications and Networking 9

VND

VNDCND

CND

IEc

IEc

IAc

IAc

IEv

IEv

IAv

IAv

IE,ch

IE,ch

Extra check bits k net

Hard decision

Hard decision
Output

Output

S1D

S2D

RD

Ct1
S1

Ct1
S2

Ct2
R

t1 slot message decoding

−

−

−

−

∏−1

∏

∏′

∏

∏−1

Figure 7: Decoder structure for joint decoding of CSR.

Equation (21) poses a constraint to ensure the coopera-
tive design of CSR together with Ct1

S1
and Ct1

S2
.

Moreover, the rate constraints are imposed to further
restrict cooperative design. Cooperative CSR has more check
bits than both sources; so the cooperative code rate should be
lower than any rate of S1 and S2:

RSR < R(C
t1
S1

), RSR < R(C
t1
S2

),

⎛
⎝R(C

t1
S j

) = 1−
(∑

i ρi/i∑
i γi/i

)S j

, j = 1, 2

⎞
⎠.

(22)

As mentioned above, using EXIT, the VND curve must
be strictly greater than the reversed-axis CND curve to
ensure the convergence of a propagation decoding algorithm,
which requires that all the constituent codes satisfy the
condition IEv (IA) > I−1

Ec (IA), with additional irregular LDPC
modification for all I belonging to a discrete, fine grid over
(0, 1):

∑
γS1
i I

S1
EV ,i

(
IAV , Ich

)
> I−1S1

EC

(
IAC

)
+ δ,

∑
γS2
i I

S2
EV ,i

(
IAV , Ich

)
> I−1S2

EC

(
IAC

)
+ δ,

∑

i, j

λSRi, j IEV ,i, j
(
IAV , Ich

)
> I−1SR

EC

(
IAC

)
+ δ.

δ > 0, (23)

Clearly, the degree distribution λ(x) of a complete parity-
check matrix sums to “1” wherever it occurs in HS1 and HS2

or in H′
SR:

γS1 (1) = γS1 (1) = λSR(1) = 1. (24)

The above four constraints (21)–(24) formulate the
cooperative design and optimization and maintain the linear
features of the variable node degree distribution λ(x). Linear
optimization with respect to λ(x) yields a good CSR profile
λ(x) with a fixed and concentrated check node degree ρ(x).
Meanwhile, fixing the variable node degree distribution λ(x),
similar optimization principles hold for the check node
degree distribution ρ(x).

5. Simulations and Results

This section validates the performance of parity-check
network coding in MARC via numerical simulations. These
simulations focus on two goals: (1) demonstrating that the
cooperative framework produces a good cooperative code
CSR profile as well as a single code Ct1

S1
or Ct1

S2
profile and (2)

investigating the BER performance of the cooperative code
CSR under different channel settings compared with Ct1

S1
or

Ct1
S2

.

5.1. EXIT Chats of Code Profile. EXIT charts of CSR, Ct1
S1

(or Ct1
S2

) are shown in Figure 8. With the rate Rt1
S1R = 0.5

(Rt1
S2R = 0.5) and the SNR = 1.2 dB, the EXIT curve of VND

and CND is obtained. The curve of CND is strictly lower than
the reversed-axis VND curve. Figure 8(b) draws the EXIT
chart of the cooperative code CSR subject to the EXIT chart
of Ct1

S1
(or Ct1

S2
) in Figure 8(a) with the linear optimization

algorithm mentioned in Section 4. The curves of VND and
CND approach asymptotically as the code rate increases.
However, a comparison of the two subfigures shows that the
gap between the VND and CND curves of CSR is greater
than that of Ct1

S1
(or Ct1

S2
) because more check bits work on

the same set of variable nodes for code CSR. Table 2 lists the
optimal degree distributions at the Ct1

S1
(or Ct1

S2
) code rates of

0.3, 0.4, 0.5, and 0.6. In each column of the rate, Ct1
S1

(or Ct1
S2

)
code profile is in the left subcolumn, while the cooperative
CSR code profile is in the right subcolumn. It is obvious that
the distributions satisfy the constraints of (21)–(24); this is
especially true for the cooperative design constraints.

Moreover, Figure 9 shows the maximum of CSR transmit
rates and related Ct1

S1
(or Ct1

S2
) transmit rates obtained by

the linear optimization algorithm in Section 4. Here, we
assume that the S1 and S2 have the same transmit rate
(this is not necessary). We also plot the MARC decode-and-
forward “Cut-Set” capacity in the same figure to compare
the proposed parity-check network coding strategy. These
results show that the cooperative strategy achievable rate is
approximately 0.5 dB below the MARC capacity. And for
better illustration the cooperative strategy, the direct link
transmission capacity, that is, I(X11,X21;Yd1 ) without relay
is also plotted.
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Table 2: Code profile from the optimization algorithm.

Rate
0.3 0.4 0.5 0.6

Ct1
S1

(or Ct1
S2

) CSR Ct1
S1

(or Ct1
S2

) CSR Ct1
S1

(or Ct1
S2

) CSR Ct1
S1

(or Ct1
S2

) CSR

λ(x)

2 0.2264 2 0.1671 2 0.2479 2 0.1716 2 0.243 2 0.1956 2 0.3944 2 0.3463

3 0.0173 3 0.0288 4 0.1395 4 0.1996 3 0.2994 3 0.1127 3 0.0462 3 0.0749

4 5.03e-6 5 0.2689 5 0.2893 5 0.2887 7 0.2862 4 0.171 4 0.2411 4 0.2246

5 0.2683 6 0.0338 18 0.0604 18 0.0539 8 5.98e-6 7 0.2304 5 0.3183 5 0.2086

6 0.1074 8 0.0451 19 0.2629 19 0.1492 9 0.1714 8 4.63e-6 8 0.101

27 0.1818 29 0.2256 27 0.0835 10 3.13e-6 9 0.0467 9 0.0446

29 0.1273 30 0.1693 38 0.0535 23 3.12e-6

31 0.0259 31 0.0221 24 0.2434

58 0.0455 59 0.0394

ρ(x)

3 0.0340 3 0.0592 5 0.2011 6 0.6623 6 0.2923 6 0.5084 7 0.6984 7 0.9667

4 0.0634 4 0.0497 7 0.6084 7 0.0724 7 0.6073 7 0.3165 8 0.3016 20 0.0333

6 0.2133 7 0.2295 13 0.1463 20 0.2653 20 0.1003 20 0.1751

8 0.4504 8 0.0310 16 0.0442

9 0.2091 10 0.5258

20 0.0298 20 0.1049
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Figure 8: VND-CND decoding trajectory: (a) Ct1
S1

or Ct1
S2

, and (b) CSR.

5.2. BER Performance. Next, we will use an optimized CSR

code profile (λ(x), ρ(x)) in Table 2 to analyze performance
in terms of Bit Error Rate (BER) in the AWGN and
Rayleigh fading channels, respectively. In simulations, the
soft decision information from the demodulator is input into
the decoder. The parameters used in simulations are listed
in Table 3. The time partition parameter t1 = 0.7 (obtained
as in Section 5.2) is chosen to maximize the network coding
capacity of the DF MARC model. Codeword length is 104.

In a decode-and-forward cooperative strategy, R needs to
decode information from sources correctly. This requires the
entire codeword to be correctly transmitted. Therefore, codes
should have excellent frame error ratios (FERs). To ensure

the FER performance of LDPC codes, small circles in the
parity-check matrix must be removed. Then, parity-check
matrices of CSR, Ct1

S1
, and Ct1

S2
are randomly constructed by

λ(x) and ρ(x)), respectively. Accordingly, the girth of length
4 in the bipartite graph has been detected and removed.

Figure 10 shows the BER curve against the SNR at
the different Ct1

S1
(or Ct1

S2
) code rate. Obviously, with the

help of the cooperative mechanism, the result has a great
improvement of performance on BER, because R is near
to D and provides almost a 1.2 dB increase in spatial
diversity in low SNR in the AWGN channel at a Ct1

S1
(or

Ct1
S2

) rate of 0.5. In the AWGN channel at a Ct1
S1

(or Ct1
S2

)
rate of 2/3, the performance still improves by 1 dB. In such
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Table 3: Parameters in simulation.

Time partition t 1 = 0.7

Codeword
length

NS = 104

Distance
between S and R

Distance = 0.5

Channel model
AWGN, Rayleigh Fasting Fading and Rayleigh
Slow Fading

Power E[x2] = 0 dBw

Max iteration 100

Modulation BPSK, QPSK

Decoding
algorithm

BP

circumstances, the direct link between S and D cannot offer
a service-satisfied physical layer QoS transmission, but with
the cooperative relaying, the transmission will be employed
again. The simulations demonstrate that this cooperative
strategy has improved reliability, especially for the cases in
low SNR.

In the Rayleigh channel as shown in Figures 11 and
12, the average gain in diversity is larger than 2 dB. Two
kinds of modulation schemes are plotted to compare the
performance: BPSK and QPSK. The BPSK scheme is shown
to have a lower BER performance than the QPSK. Besides,
the presented network-coded cooperative strategy has better
BER performance under fast fading channel than that under
slow fading channel. And it is concluded that in fast fading or
mobile environment, the employment of a relay node indeed
could provide effective spatial diversity.

We also intend to investigate the effects of the relay
position factor d on BER performance. BER curves with
d = 0.1, 0.25, d = 0.35, d = 0.5, d = 0.6, and d = 0.8 are
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Figure 10: The BER performance under the AWGN channel with
BPSK, d = 0.5.
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Figure 11: The BER performance under the Rayleigh Fading
channel with BPSK, d = 0.5, and Rt1

S1R = Rt1
S2R = 0.5.

plotted in Figure 13. The comparisons show that increasing
d increases the performance of BER versus SNR. This is
because the path loss of the RD channel decreases, which
is easier to decode Ct2

R , resulting in decoding of the extra
check bits with a lower error rate. However, from Figure 5
in Section 3.1, when d = 0.5, the achievable sum-rate is
optimal; the slope of the curve with d > 0.5 is larger than
that of the curve with d < 0.5. In other words, as d = 0.8,
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Figure 12: The BER performance under the Rayleigh Fading
channel with QPSK, d = 0.5, and Rt1
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the achievable sum-rate is less than that as d = 0.2. Likewise,
we also give the BER performance with different settings of
the relay position factor d under Rayleigh Slow Fading and
Rayleigh Fast Fading channels in Figure 14 and Figure 15.
As a result, the spatial diversity and multiplexing can be
balanced by the factor d in the parity-check network coding
cooperative strategy.
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Figure 14: The BER performance under the Rayleigh Slow Fading
channel with different settings of d, the distance between Source and
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Figure 15: The BER performance under the Rayleigh Fast Fading
channel with different settings of d, the distance between Source
and Relay.

Besides, we also investigate the effects of BER with
different numbers of extra check bits under AWGN and
Rayleigh Fading channels through Figure 16 to Figure 18. It
is valid that the more extra bits are sent, the better the BER
performances are, since the rate of cooperative code CSR is
reduced. Thereby, the spatial gain obtained by sending more
extra check bits is at the cost of throughput of the whole
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system. As a result, the spatial diversity and multiplexing
can be balanced by maximizing the rate of the cooperative
strategy to obtain optimal relay position d and optimal extra
check bits length.
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Figure 18: The BER performance under the Rayleigh Fast Fading
channel with different lengths of extra check bits.

6. Conclusion

This study investigated a cooperative strategy based on
parity-check network coding. The relative performance
improvement of the schemes lies in a decode-and-forward
strategy at the relay node. In particular, this study has
revealed that a successful design should (1) employ the most
effective extra check bits to make full use of the information
contained in x3 to help decode the messages from S1 and S2

and (2) perform linear network coding with the extra check
bits. Specifically, we provide an implementation of parity-
check network coding based on layered multidimensional
LDPC code and a corresponding belief propagation decoding
algorithm. The parity-check network coding for both sources
removes the bandwidth loss that occurs in relaying, which is
only 0.5 dB from the MARC DF “Cut-Set” capacity, and yet
the parity-check bits ensures an attractive spatial diversity of
cooperative communication. In the future, we would like to
extend the proposed scheme to correlated multiple source
nodes and conduct further research on network coding in
GF(q) fields.

Appendix

Proof of Theorem 1. Rearrange the columns of the CSR parity-
check matrix according to the descending sequence of
variable node degrees, such as {dv,SR,dv,SR − 1, . . . , 3, 2}, and
then successively deal with the numbers of variable nodes
in each degree. The variable nodes in CSR have two types
of degrees, λSRi, j , sub-LDPC degree i, i ≥ 2 and extra degree
j, j ≥ 0. Therefore, the number of variable nodes with a
specific degree d in CSR, denoted by Nd = (λd/d) · E, also
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has two parts: Nd, j=0, the number of degree d without extra
checks in Ct1

S1
(or Ct1

S2
); Ni<d, j /= 0,i+ j=d, the number of turning

into degree d after extra checks added in Ct1
S1

(or Ct1
S2

).
For the maximum degree dv,SR in cooperative CSR, let

dv,S = max(dv,S1 ,dv,S2 ) and dv,SR ≥ dv,S. Ndv,S,j=0 represents
the number of variable nodes in Ct1

S1
(or Ct1

S2
). Clearly, for the

maximum degree dv,SR,

Ndv,SR = Ndv,S , j=0 + Ni<dv,S, j /= 0
i+ j=dv,S

. (A.1)

Hence, Ndv,SR ≥ Ndv,S,j=0 is tenable, and based on Nd =
(λd/d) · E, we have

λdv,SR

dv,SR
ESR ≥

(
γdv,S

dv,S
ES1 +

γdv,S

dv,S
ES2

)
. (A.2)

If dv,SR = max(dv,S1 ,dv,S2 ), then γdv,S /= 0; if dv,SR >
max(dv,S1 ,dv,S2 ), then γdv,S = 0.

Next, considering degree dv,SR−1, the number of variable
nodes with degrees larger than dv,SR − 1 is

Ndv,SR + Ndv,SR−1

=
(
Ndv,S , j=0 + Ndv,S−1, j=0

)
+ N i<(dv,S−1), j /= 0

i+ j=dv,S,(dv,S−1)
,

(A.3)

where (Ndv,S, j=0 + Ndv,S−1, j=0) is the number of variable nodes
with degrees larger than dv,SR−1 in Ct1

S1
(or Ct1

S2
). Thus, based

on Nd = (λd/d) · E, we obtain
(
λdv,SR

dv,SR
+

λdv,SR−1

dv,SR − 1

)
ESR

≥
∑

i=dv,SR,dv,SR−1

(
γi,S1

i
ES1 +

γi,S2

i
ES2

)
.

(A.4)

Then, for all degrees in the descending sequence in CSR,
it is confirmed that

(
Ndv,SR + Ndv,SR−1 + · · · + N2

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
Ndv,S, j=0 + Ndv,S−1, j=0 + · · · + N2, j=0

)

+

(
N i<(dv,S−1), j /= 0

i+ j=dv,S,(dv,S−1)

)
+

(
N i<(dv,S−2), j /= 0

i+ j=dv,S,(dv,S−1),(dv,S−2)

)

+ · · · +

(
N i=2, j /= 0

i+ j=dv,S,(dv,S−1),...,3

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(A.5)

Using the expression in terms of degree
distribution Nd = (λd/d) · ESR to replace Nd, we have

dv,SR∑

i= j

(
λSRi, j

)

i
ESR ≥

max(dv,S1 ,dv,S2 )∑

i= j

(
γS1
i

i
ES1 +

γS2
i

i
ES2

)

∀ j = 2, 3, . . . ,dv,SR.

(A.6)

Therefore, the relationships of (13) hold under the
cooperative constructions.
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In wireless sensor networks (WSNs), it is often necessary to update the software running on sensors, which requires reliable
dissemination of large data objects to each sensor with energy efficiency. During data dissemination, due to sleep scheduling
designed for energy efficiency, some sensors may not receive some packets at some time slots. In the meantime, due to the
unreliability of wireless communication, a sensor may not successfully receive a packet even when it is in the active mode.
Thus, retransmission of such packets to those sensors is necessary, which consumes more energy and increases the delay of
data dissemination cycle. In this paper, we propose a network coding-based approach in data dissemination such that data
dissemination can be accomplished at the earliest time. Thus, less energy is consumed and the delay can be decreased. The impact
of packet loss probability and the sleep probability of sensors on the network coding gain is analyzed. A threshold is also given to
decide whether the current sleep scheduling is effective on energy saving in data dissemination process or not. Simulation results
demonstrate the effectiveness and scalability of the proposed work.

1. Introduction

Recently, more research attention has been directed towards
wireless sensor networks. Once deployed, sensors are
expected to operate for extended periods of time, and it
is impractical to physically reach all sensors. However, it
is quite often necessary to update the software running on
those sensors or add new functionality to the sensors [1–3].
Reprogramming the network needs to reliably disseminate
large data objects (50–100 KB) to every sensor in the network
with energy efficiency [2].

Protocols for reliably disseminating large data objects
in WSNs have been developed over years. Protocols in [1–
4] achieve data dissemination reliability through different
mechanisms such as hop-by-hop recovery, NACKs or ACKs
mechanisms, while another requirement of disseminating
large objects in WSNs, energy efficiency, has not been well
studied.

In WSNs, energy consumption is a critical issue and sleep
scheduling has been well studied as a conservative approach

to minimize the energy consumption due to idle listening
[5, 6]. Though sleep scheduling can save energy, sensors in
sleep mode cannot receive data packets. In addition, due
to the unreliability of wireless communication, a sensor
may not receive the packet successfully even when it is in
active mode [7]. Hence, a data packet may be transmitted
several times in order to be disseminated to all sensors,
which wastes energy and increases the delay of the whole
data dissemination process. In other words, the data dis-
semination process consists of sending native data packets
and recovering “wanted” packets that each sensor has not
received due to sleep scheduling and/or link unreliability. In
order to complete the data dissemination process in a timely
manner and achieve energy efficiency, it is crucial to assure
that the maximum number of “wanted” packets at all sensors
can be recovered at each time slot.

Recently, network coding has become a promising
approach to improve the system throughput in wireless
networks. Network coding with XORs operation in wireless
broadcast has been studied in [8], which shows the advantage
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of the proposed XORs coding scheme over the traditional
wireless broadcast in the bandwidth efficiency through
simulations and theoretical analysis. In XORs coding, a
coded packet carries both the coding vector information
and the encoded data. Thus, upon receiving a coded packet,
the receiver knows which packets are encoded together and
how to decode the packet with the available packets at the
receiver. The work in [9] has proved that optimal XORs
encoding decision for wireless broadcast, which decides
the coding vector of each coded packet, is an NP-hard
problem. Heuristic algorithms of encoding decision problem
for wireless broadcast and multicast are proposed in [9, 10].
However, the proposed encoding decision approach can only
be applied to the scenario where all receivers remain active
during the whole time period of recovery. Such an approach
can not be applied to WSNs with sleep scheduling because
different sets of active sensors may be available at different
time slots.

In this paper, given the sleep scheduling information at
the sensors, we aim to determine an effective XORs encoding
strategy such that the minimum number of transmissions
is required in order for each sensor in the network to
successfully receive the whole set of disseminated data
packets. Thus, energy consumption can be reduced and the
data dissemination process can be accomplished in a timely
manner. To achieve such an objective, it is important to
maximize the expected number of active sensors that can
decode out one “wanted” data packet at each time slot
in the recovery process, which is the focus of this paper.
The contribution of the proposed work is summarized as
follows.

(i) The proposed work takes both link unreliability and
sleep scheduling into consideration and proposes an
XORs encoding decision algorithm to maximize the
expected number of active sensors that can decode
out one native packet in their “wanted” data packet
sets at each time slot in the recovery process.

(ii) We analyze the impact of each link’s packet loss
probability and each sensor’s sleep probability at each
time slot on the network coding gain, which is an
extension of the analysis given in [8].

(iii) We also study the effectiveness of sleep scheduling on
energy saving, which is offsetted by the total number
of active time slots consumed in the data dissemina-
tion process. A threshold is derived to decide whether
the current sleep scheduling is effective on energy
saving or not. The simulation results also confirm the
accuracy of our analysis.

The rest of the paper is organized as follows. Related
work is reviewed in Section 2. Section 3 introduces the
system architecture and data dissemination schemes. The
problem description and its complexity is presented in
Section 4. Section 5 describes the algorithm design. The-
oretical analysis is given in Section 6. Section 7 gives
the simulation results. Finally, we conclude the paper in
Section 8.

2. Related Work

In this section, we review the related work of network
coding in WSNs. Network coding is originally proposed
in information theory [11] and recently has become a
promising approach to improve the system throughput
in wireless networks [11–16]. Adaptive network coding
is proposed in [17] to reduce traffic in the process of
software updates where linear network coding technique is
used. As computation ability and the memory at sensor
nodes are very limited, the complexity of linear encoding
and decoding introduces extra overhead. Thus, it is more
appropriate to use XORs operation in WSNs since both
encoding and decoding operations are much simpler. In fact,
XORs coding has been widely used in wireless networks to
reduce the complexity of linear network coding [8, 10, 18,
19].

COPE proposed in [18] improves the throughput of
unicast with XORs coding. By exploiting the broadcast
nature of wireless medium, each node buffers overheard
packets for a short time and notifies its neighbors which
packets it has heard. When a node transmits a packet, it uses
its knowledge of what its neighbors have heard to perform
opportunistic coding and XORs multiple packets to transmit
them as a single packet while ensuring that each intended
next-hop has enough information to decode the encoded
packet.

Network coding with XORs operation in wireless broad-
cast has also been studied in [8], which shows the advantage
of the proposed network coding scheme over traditional
wireless broadcast in bandwidth efficiency through simula-
tions and theoretical analysis. However, encoding decision
has not been given in [8]. The work in [9] has proved
that optimal XORs encoding decision problem for wireless
broadcast is an NP-hard problem.

Several heuristic algorithms for encoding decision in
wireless broadcast and multicast have been proposed in [9,
10]. With the knowledge of the “wanted” packet set at each
receiver, an auxiliary graph is constructed. The encoding
decision during the recovery process is then converted to a
clique partition problem in the auxiliary graph. However,
the proposed encoding decision algorithms can only be
applied to the scenario where all receivers remain active
during the time period of recovery. Such an approach
cannot be applied to WSNs since different set of active
sensors may be available at different time slots. Thus,
encoding decision in WSNs with sleep scheduling cannot be
converted into finding a minimum clique partition in the
graph.

The work in [20] proposes a retransmission scheme,
which only uses reception estimation to determine the
coding set selection. However, the reception estimation at
the source node may not be accurate enough, consequently,
some receivers may not be able to decode useful information
from the coded packet and more retransmissions will be
needed. In addition, the coding decision based on reception
estimation does not consider the impact of sleep scheduling,
which affects the decoding probability at the receivers in low
duty-cycled WSNs.
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Figure 1: Hierarchical architecture.

In this paper, we propose to use XORs coding in data
dissemination in a large scale WSN which is organized
as a multihop cluster hierarchy [21]. A multihop cluster
hierarchical architecture consists of multiple layers as shown
in Figure 1. In the lowest layer, all the nodes in the network
are grouped into clusters. In addition, besides being a
member in a cluster, a node may act as a cluster head in
a down layer cluster, for example, p2 in the figure. Within
each cluster, the cluster head communicates with its member
sensors in a one-hop fashion [22]. We also assume that each
sensor is aware of its one-hop neighbors’ sleep scheduling
and the reliability of the wireless links between the sensor to
its neighbors. This can be easily accomplished by one-hop
information exchange and link loss inference [23].

3. System Architecture and Data Dissemination
with Network Coding

Our data dissemination process is conducted at each cluster
head so as to make sure that finally all the sensors obtain the
updating packets. In a multihop cluster hierarchy, if a cluster
head in an intermediate layer starts to transmit the received
packet immediately after receiving one fresh packet, the gain
of network coding cannot be fully utilized. On the other
hand, if a cluster head waits and starts to transmit packets
until it receives all packets from the cluster head in the upper
layer, it will waste bandwidth and introduce extra delay. In
order to achieve the balance between bandwidth efficiency
and network coding gain, we propose to use a threshold α to
determine when the current cluster head starts to transmit
the packets to its member nodes. Specifically, for each cluster
head, after obtaining αM′ fresh native packets, where 0 <
α ≤ 1 and M′ is the number of native packets available

at its upper-layer cluster head, it will conduct XORs coding
scheme to transmit the packets to its member nodes. In the
simulation part, we will study the impact of the threshold α
on the delay and energy consumption.

In the rest of the paper, we focus on how a cluster
head encodes the packets and transmits them to its member
sensors. The coding decision at other cluster heads can use
the same approach.

As we mentioned earlier, the data dissemination process
consists of sending native data packets and recovering
“wanted” packets for each receiver. We now give an example
to show that network coding can indeed recover “wanted”
packets for all neighbors more efficiently.

Suppose that four packets d1,d2,d3, and d4 need to be
transmitted to sensors p1, p2, p3 and p4 as shown in Figure 2.
The sleep scheduling at each receiver is given in Figure 2(a)
where 1 denotes that this sensor is active at the current
time slot, otherwise, it is in sleep mode. For the sake of
simplicity, in this example, we assume that no packet is lost
due to unreliable wireless communication, which means that
a sensor can receive a packet successfully when it is in active
mode. We also assume that an active sensor can only transmit
or receive one packet at each time slot [5]. We show that
different data dissemination approaches will lead to different
finishing time of data dissemination.

(i) Without network coding, 4 native packets will be sent
firstly, followed by sending native packets to recover
“wanted” packets at sensors. Figure 2(b) gives the
“wanted” data packet set at each sensor after 4 native
packets are sent out. Without network coding, it will
take 10 time slots to finish the data dissemination
process as shown in Figure 2(c).

(ii) With network coding, 4 native packets can be sent at
first followed by sending encoded packets to recover
“wanted” packets at sensors. Assume that our coding
strategy at each time slot is to maximize the number
of active receivers that can decode the encoded
packet. For example, at time t5, if d1 ⊕ d2 is sent,
all four receivers can obtain a “wanted” packet by
d1 ⊕ (d1 ⊕ d2) or d2 ⊕ (d1 ⊕ d2). Eventually, it will
take 8 time slots to finish the data dissemination
process as shown in Figure 2(d). Under such a data
dissemination approach, as all native packets are sent
at first, the available packets at sensors are most
diversified. Thus, the best network coding gain can
be achieved. This, however, means that each sensor
needs to buffer all received native packets in order
to decode out “wanted” packets, which might not be
feasible in a WSN due to limited memories at sensors.

(iii) An alternative approach will be to divide the data
dissemination process into several batches where in
each batch, M native packets are sent followed by the
recovering process [24]. Once all M native packets are
received by all sensors in the cluster, the cluster head
proceeds to transmit the following batch of packets.
The data dissemination is accomplished when all
batches of packets are obtained by all sensor nodes
in the network. In Figure 2(e), we send two native
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P1

P2

P3

P4

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 · · ·
0 1 0 1 1 1 1 1 0 1 · · ·
1 0 0 1 1 1 0 1 1 0 · · ·
0 1 0 0 1 0 1 1 0 1 · · ·
0 1 1 0 1 1 0 0 1 1 · · ·

(a) Sleep scheduling at sensors

Sending native packets:
at t1 : d1

at t2 : d2

at t3 : d3

at t4 : d4

R(p1) = {d1,d3}
R(p2) = {d2,d3}
R(p3) = {d1,d3,d4}
R(p4) = {d1,d4}

(b) “Wanted” data packet sets at
sensors after time t4

Recovery packets:
at t5 : d1

at t6 : d3

at t7 : d3

at t8 : d2

at t9 : d4

at t10 : d4

(c) Sending decision without coding

Sending native packets:
at t1 : d1

at t2 : d2

at t3 : d3

at t4 : d4

Recovery packets:
at t5 : d1 ⊕ d2

at t6 : d3 ⊕ d4

at t7 : d3

at t8 : d4

(d) The first sending decision with coding

Sending native packets:
at t1 : d1

at t2 : d2

Recovery packets:
at t3 : d1

at t4 : d1 ⊕ d2

at t5 : d1

Sending native packets:
at t6 : d3

at t7 : d4

Recovery packets:
at t8 : d3 ⊕ d4
at t9 : d4

(e) The second sending decision with coding

Figure 2: Comparison with different dissemination schemes.

packets at first, followed by sending encoded packets
to recover “wanted” packets of the first batch at
sensors, then send the last two native packets followed
by sending encoded packets to recover “wanted”
packets of the second batch at sensors. It takes 9 time
slots to finish the data dissemination process.

We now discuss how the cluster head can maintain
“wanted” packet set at each member sensor. After send-
ing out a packet, the cluster head needs to collect the
“wanted” packet set at each member sensor. In order to
reduce ACKs implosion, only the active receivers that have
received a packet at current time slot successfully and
can obtain/decode one “wanted” packet from the received
packet will send an ACK message to the cluster head. Thus,
according to ACKs from receivers, the cluster head can derive
the “wanted” packet set for each active receiver.

With the information of “wanted” packet set of each
receiver at each time slot in the recovery process, an encoding
decision which aims to maximize the expected number of
active sensors that can decode out one “wanted” packet at
current time slot will be introduced in the following section.

4. Problem Description and Complexity

In this section, we first describe the encoding decision
problem that aims to decide which native packets should be

encoded at each time slot t in the recovering process such
that the maximum expected number of active sensors at time
slot t can decode out one “wanted” native packet. Thus,
we limit our discussion to the recovery process of one data
dissemination batch in a cluster, which can also be applied to
other batches in all other clusters.

Suppose that D = {d1,d2, . . . ,dM} is the set of data
packets in a batch which need to be disseminated to all
the sensors in a cluster. Let Pt = {pi1 , pi2 , . . . , pil} be the
set of active member sensors in the cluster at tth time slot
At each time slot, the cluster head can obtain its neighbor
sensors’ “wanted” packet set based on ACKs feedback. Let
ri, j be 1 if packet dj is not available at active sensor pi at
current time slot where dj ∈ D, otherwise, let it be 0. Let
R(pi) = {dj | ri, j = 1 and pi ∈ Pt} be the “wanted” data
packet set of active sensor pi at current time slot t as shown
in Figure 2(b). Assume that li is the probability that sensor
pi can not successfully receive a packet from the cluster head
when pi is in active mode.

Let aj be 1 if native packet dj ∈ D is combined in
current encoded packet, otherwise, let it be 0. Let ci, j be
1 if active sensor pi can decode out one “wanted” native
packet dj from the current encoded packet where dj ∈
R(pi), otherwise, let it be 0. Considering unreliable wireless
communication, the probability that an active sensor pi can
successfully obtain one “wanted” packet at the current time
slot is

∑M
j=1 ci, j(1−li). Thus, at current time slot, the expected
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number of sensors that can decode out one “wanted” packet
is
∑

i∈{i|pi∈Pt}
∑M

j=1 ci, j(1 − li), which needs to be maximized
in order to save energy.

Still take Figure 2(d) as an example, after t4, the cluster
head starts to recover the “wanted” packets at its member
sensors. At t5, if the cluster head sends an encoded packet
d1 ⊕ d2, in an ideal condition where no packet will be lost,
active receivers p1, p2, p3, p4 can decode out one “wanted”
packet by d1⊕(d1⊕d2) or d2⊕(d1⊕d2). Assume that l1 = 0.1,
l2 = 0.2, l3 = 0.3, l4 = 0.15 in a practical wireless network
where the probability of successfully receiving a packet at
p1, p2, p3, and p4 is 0.9, 0.8, 0.7 and 0.85 respectively due
to unreliable wireless communication. Thus, the expected
number of active receivers that can decode out one “wanted”
packet after receiving the current encoded packet d1 ⊕ d2

is 0.9 ∗ 1 + 0.8 ∗ 1 + 0.7 ∗ 1 + 0.85 ∗ 1 = 3.25, which is
maximum at the current time slot. Thus, the cluster head will
send out d1 ⊕ d2 at the current time slot. In this paper, such
an encoding decision problem using XORs coding is referred
to as network coding based data dissemination (NCDD)
problem.

4.1. Problem Formulation. We can formally formulate the
NCDD problem at time slot t in the recovery process as
follows:

Z = max
∑

pi∈Pt

M∑

j=1

ci, j ∗ (1− li) (1)

subject to

M∑

j=1

ci, j ≤ 1, ∀i ∈ {i′ | pi′ ∈ Pt
}
. (2)

ci, j ≤ aj ∗ ri, j , ∀i ∈ {i′ | pi′ ∈ Pt
}

, ∀1 ≤ j ≤M, (3)

aj′ ∗ ri, j′ + ci, j ≤ 1, i ∈ {i′ | pi′ ∈ Pt
}

, ∀1 ≤ j /= j′ ≤M,
(4)

aj ≤
∑

i∈{i′|pi′∈Pt}
ri, j , ∀1 ≤ j ≤M, (5)

aj , ci, j ∈ {0, 1}, ∀i ∈ {i′ | pi′ ∈ Pt
}

, ∀1 ≤ j ≤M. (6)

In the above formulation, the term of the objective
represents the expected number of active receivers that can
decode out one “wanted” data packet from the encoded
packet at the current time slot. Equations (2) and (6) ensure
that each receiver can only decode out at most one “wanted”
native packet from the encoded packet. Equations (3) and
(4) give two requirements that active receiver pi can decode
out one “wanted” packet dj : (1) packet dj is in pi’s “wanted”
packet set and dj is participated in the encoded packet; (2)
all other combined native packets except dj in the encoded
packet have already been successfully received by receiver
pi. Equation (5) guarantees that if packet dj is available at
all active receivers at current time slot t, dj must not be
combined into the encoded packet.

4.2. Problem Complexity

Theorem 1. NCDD problem is NP-hard.

Proof. We prove the theorem by a reduction from MAXI-
MUM ONE-IN-THREE SAT problem which is a well known
NP-hard problem in the strong sense.

MAXIMUM ONE-IN-THREE SAT: We are given a set
U = {u1,u2, . . . ,uM} of M boolean variables and a collection
C = {c1, c2, . . . , cn} of clauses with exactly three literals.
Each of these clauses is a boolean formula and it is true if
and only if exactly one of its three literals is true. Without
loss of generality, we assume that the three literals in ci are
{ui1 ,ui2 ,ui3}. The objective of MAXIMUM ONE-IN-THREE
SAT is to find a truth assignment such that the maximum
number of clauses is true. We use OPTs to denote the optimal
solution of this problem.

Given an instance of MAXIMUM ONE-IN-THREE SAT,
we can construct an instance of the decision version of the
NCDD problem in polynomial time as follows. Let there
be M data packets needed to be disseminated from the
cluster head to n receiver nodes. If uj = 1, packet dj is
participated in encoding, otherwise, dj is not participated
in encoding. For each clause ci, if uj is a literal of ci, then
dj is a “wanted” packet at pi. In other words, each sensor
pi has lost exactly three packets and has all other packets.
Let the probability that an active sensor can successfully
receive a packet be 100%. Then, our objective is to maximize∑

i∈{i|pi∈Pt}
∑M

j=1 ci, j For a given encoded packet, pi can
decode a new native packet if and only if exactly one native
packet in Ri is encoded into the new encoded one. The
problem is to find an encoding strategy to maximize the
number of receivers which can decode out one “wanted”
packet from the encoded packet. We use OPTp to refer to
the result of this objective.

(i) Suppose that there is a true assignment for MAX-
IMUM ONE-IN-THREE SAT with the maximum
number of clauses. If ci is true, there must be exactly
one true assignment for {ui1 ,ui2 ,ui3}. Without loss
of generality, we assume that ui2 is true while ui1 ,ui3
are both false. According to the construction of the
instance, only di2 is participated in encoding while
neither di1 nor di3 is participated in encoding. In
other words, only one lost packet of pi is participated
in encoding and pi has all other packets involved
in encoding, thus, pi can decode out one “wanted”
native packet di2 . Therefore, if there is a clause which
is true in the MAXIMUM ONE-IN-THREE SAT
problem, there must be a receiver which can obtain
a “wanted” native packet. Then, we have OPTs ≤
OPTp.

(ii) Suppose that there is an encoding strategy such that
the maximum number of receivers can decode the
new native packet. Assume that pi can decode a new
native packet di2 from the encoded one. According to
the decoding strategy, the other two “wanted” packets
di1 ,di3 must not be encoded into the new one, that
is, ui1 ,ui3 both have false assignment while ui2 is true.
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In this assignment, ci also has a true value. So, we have
OPTp ≤ OPTs.

The above analysis shows that OPTp = OPTs. Thus
NCDD problem is NP-hard.

5. Algorithm for NCDD Problem

In this section, we first introduce an auxiliary graph in which
each vertex is assigned a weight. We then show that the
proposed NCDD problem can be converted into finding a
maximum weight clique problem in the auxiliary graph,
based on which we develop a heuristic algorithm for the
NCDD problem.

5.1. Model Design. At any tth time slot, let R(pi) ⊆ D be the
set of packets “wanted” by pi and H(pi) ⊆ D be the set of
packets received by pi. We can construct an auxiliary graph
G(V ,E) similar to [9] where V = {vi, j | dj ∈ R(pi) and
pi ∈ Pt}, which means that every “wanted” packet of each
active sensor has a vertex in G. Considering two receivers pi1
and pi2 , if they have lost the same packet dj , then they can
both recover dj if only native packet dj is encoded at current
time slot. We use a link e ∈ E between vi1, j and vi2, j to denote
such recoverability. If dj1 is a “wanted” packet of pi1 and dj1 ∈
H(pi2 ), while dj2 is a “wanted” packet of pi2 and dj2 ∈ H(pi1 ),
then pi1 can recover dj1 when it receives dj1 ⊕ dj2 and pi2 can
recover dj2 when it receives dj1 ⊕ dj2 . We use a link e ∈ E
between vi1, j1 and vi2, j2 to denote such recoverability. In other
words, E = {(vi1, j1 , vi2, j2 ) | dj2 ∈ H(pi1 ), dj1 ∈ H(pi2 ) or
j1 = j2, i1 /= i2} where pi1 , pi2 ∈ Pt .

For a clique Q = {vi1, j1 , vi2, j2 , . . . , vik , jk} in the graph, let
P′ = {pi|vi, j ∈ Q, 1 ≤ j ≤ M} be the sensors which
have “wanted” packets in Q and D′ = {dj | vi, j ∈ Q, 1 ≤
i ≤ n} be the set of “wanted” packets of those sensors in
Q. Suppose that there are m′ packets in D′. For any vertex
vi, j ∈ Q, according to the edge assignment of G, pi must have
already successfully obtained the packets in D′ − {vj} but
still requires packet vj . Thus, if dj1 ⊕ dj2 ⊕ · · · ⊕ djm′ where
dj1 ,dj2 , . . . ,djm′ ∈ D′ are encoded and sent at tth time slot,
each sensor in P′ will be able to decode out one “wanted”
packet if the encoded packet can be successfully received by
all sensors in P′. To consider the unreliability of wireless
communication, we assign weight wi, j = 1 − li in the vertex
vi, j for any j ∈ { j | vi, j ∈ V}. Then the weight for clique Q
which is defined in

w(Q) =
∑

(i, j)∈{(i, j)|vi, j∈Q}
wi, j , (7)

is equivalent to the expected number of active sensors which
can successfully decode out one “wanted” packet if all packets
in D′ are encoded together. Thus, our NCDD problem which
aims to maximize the expected number of active sensors that
can decode out one “wanted” packet is converted into finding
a maximum weight clique in graph G.

For example, after the whole 4 native packets are sent, the
“wanted” packet set in Figure 2(b) can be constructed into
Figure 3. Thus, the encoding decision for recovery process at

0.9 v1,1
0.9v1,3

0.85
v4,1

0.85
v4,4

0.7
v3,4

0.7
v3,3

0.7
v3,1

0.8
v2,3

0.8

v2,2

Figure 3: Graph model.

t5 is then converted into finding a maximum weight clique in
such a graph. As shown in Figure 3, the clique that consists
of {v1,1, v2,2, v3,1, v4,1} is the clique with the maximum weight
0.9 + 0.8 + 0.7 + 0.85 = 3.25. After the encoded packet
d1 ⊕ d2 is sent, active receivers p1, p2, p3, p4 can decode out
d1,d2,d1,d1, respectively, if all sensors successfully receive
d1 ⊕ d2.

5.2. Algorithm Design. Assume that the total number of
vertices in G(V ,E) is N . We first sort all vertices into
nonincreasing order according to wi, j . For the example
given in Figure 3, vertices in G will be sorted into V =
{v1,1, v1,3, v4,1, v4,4, v2,2, v2,3, v3,1, v3,3, v3,4}.

For the simplicity of presentation, we abuse the
notation a little bit and assign a unique id vk for each
vertex in G, which uses one-dimensional subscript for
vertices in G instead of using two-dimensional subscripts.
Correspondingly, we use wk to denote the weight of vk.
Thus, for the example given in Figure 3, we have V =
{v1(v1,1), v2(v1,3), v3(v4,1), v4(v4,4), v5(v2,2), v6(v2,3), v7(v3,1),
v8(v3,3), v9(v3,4)}. Without loss of generality, we assume that
V = {v1, v2, . . . , vN} where w1 ≥ w2 ≥ · · · ≥ wN .

Let Qi be the clique with maximum weight in the sub-
graph which only contains vertices of Si = {vi, vi+1, . . . , vN}
and let C(Qi) be the weight of clique Qi. In other words,
Qi represents the maximum weight clique the algorithm has
found considering of the subgraph consisting of vertices
{vi, vi1 , . . . , vN}. The algorithm starts with i = N and
iteratively considers more vertices until all vertices in G are
considered. The algorithm stops when Q1 is found.

When we consider vertex vi−1, there are two cases. If Qi∪
{vi−1} is also a clique, then Qi−1 = Qi∪{vi−1} and C(Qi−1) =
C(Qi)+wi−1, otherwise, if Qi∪{vi−1} is not a clique, we need
to find out a clique Qi−1 that includes vi−1 in the subgraph
consisting of Si−1 = {vi−1, vi, . . . , vN}. Let N(vi−1) be the set
of neighbors of vertex vi−1. Initially, Qi−1 = {vi−1} and Si−1 =
N(vi−1)∩Si−1. If Si−1 is not∅, let j be the smallest j such that
vj ∈ Si−1. We add vj to the clique, that is, Qi−1 = Qi−1∪{vj},
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Function wclique(Si,C(Qi), i)
if |Si| = ∅

if C(Qi) > max
max = C(Qi);
mc = i;

return
while Si /=∅

j = min{ j | vj ∈ Si};
Qi = Qi ∪ {vj};
C(Qi) = C(Qi) + wj ;
Si = (Si − {vj})∩N(vj);
if Si = ∅

if C(Qi) > max
max = C(Qi); mc = i;

return
Function MWC

Qi = ∅, i ∈ {1, . . . ,N − 1}; QN = {vN};
C(Qi) = 0, i ∈ {1, 2, . . . ,N − 1};
C(QN ) = wN ;
max = C(QN );
Si = {vi, vi+1, . . . , vN}, i ∈ {1, 2, . . . ,N};
for i = N − 1 down to 1

if {vi} ∪Qi+1 is also a clique;
Qi = Qi+1 ∪ {vi};
C(Qi) = C(Qi+1) + wi;

else
Qi = {vi};
C(Qi) = wi;
wclique(Si

⋂
N(vi),wi, i);

if mc /= i
Qi = Qi+1; C(Qi) = C(Qi+1);

return

Algorithm 1: Maximum weight clique algorithm.

and update Si−1, that is, Si−1 = Si−1∩N(vj). If Si−1 is still not
∅, we then add another vertex whose index is the smallest in
Si−1 into the clique Qi−1. We repeat this process until there is
no vertex in Si−1, that is, Si−1 = ∅. By comparing the weight
of the clique Qi without including vi−1 and the weight of the
clique Qi−1 including vi−1, the clique Qi−1 with maximum
weight in the subgraph including vertices in {vi−1, vi, . . . , vN}
is set to be the one with the larger weight. The detail of the
algorithm is given in Algorithm 1. After this algorithm, Q1

gives all vertices in the found maximum weight clique. All
native packets involved in Q1 will be encoded together and
be sent out at current time slot.

We now show how to find the maximum weight clique
of the graph shown in Figure 3. Assume that Q2 has been
found, which consists of {v2, v4, v6}. Next, we will consider
Q1. Since {v1} ∪ Q2 is not a clique, we need to find Q1

which includes vertex v1 in the subgraph consisting of S1 =
{v1, v2, . . . , v9}. The corresponding steps for finding such Q1

is given in Algorithm 2 where vk(vi1, j1 ) in V denotes that we
use a unique id vk in the algorithm to replace the original
vertex vi1, j1 . After Q1 is found, we compare it with Q2 which
has the weight C(Q2) = 2.55. Since C(Q1) is larger than
C(Q2), the cliqueQ1 = {v1, v3, v5, v7} is the maximum weight

clique found in graph G. Vertices in Q1 indicate that p1, p3

and p4 lost packet d1 and p2 lost packet d2. The encoding
decision will be to send d1 ⊕ d2.

6. Analysis

In this section, we firstly analyze the impact of packet loss
probability and sleep probability on network coding gain.
Then, we derive a threshold to decide whether the current
sleep scheduling can save energy compared with no sleep
scheduling. We only limit the analysis to one cluster in the
multihop cluster hierarchy.

6.1. Impact of Packet Loss Probability and Sleep Probability
on Network Coding Gain. Suppose that Na is the number of
transmissions that the data dissemination process requires
without coding and Nb is the number of transmissions
required with XORs coding. Assume that the probability that
receiver pi is in sleep mode is si at each time slot, and li is
the probability that receiver pi can not successfully receive
a packet even when it is in active mode due to unreliable
wireless communication. We have the following two lemmas.

Lemma 1. The total number of transmissions without coding
required for transmitting sufficient large M packets to n
receivers is

Na =
∑

i1,i2,...,in

(−1)i1+i2+···+in−1

1− (l′1)i1 (l′2)i2 · · · (l′n
)in M, (8)

where i1, i2, . . . , in ∈ {0, 1} and ∃i j /= 0, l′i = 1−(1− li)(1−si).

Proof. See Appendix A.

Lemma 2. The total number of transmissions with XORs
coding for transmitting sufficient large M packets to n receivers
is

Nb = M

mini∈{1,2,...,n}{(1− li)(1− si)} . (9)

Proof. See Appendix B.

With the analytical result of Na and Nb, we can define
analytical network coding gain as

γ = Na −Nb

Na
. (10)

Take two receivers as an example, assume that l1 = 0.1, l2 =
0.25, s1 = 0.15, s2 = 0.05 and M is sufficient large. According
to (8) and (9), we can calculate that Na = 1.6382 M, Nb =
1.4035 M. Then, the analytical network coding gain is γ =
0.1433.

From Lemmas 1 and 2, we can also obtain the following
corollary.

Corollary 1. With two receivers, the maximum network
coding gain γ can be achieved if l′1 = l′2, that is, (1−l1)(1−s1) =
(1− l2)(1− s2).

Proof. See Appendix C.
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V = {v1(v1,1), v2(v1,3), v3(v4,1), v4(v4,4), v5(v2,2), v6(v2,3), v7(v3,1), v8(v3,3), v9(v3,4)}
Step 1:

Q1 = {v1}, S1 = {v1, v2, v3, v4, v5, v6, v7, v8, v9}, N(v1) = {v4, v5, v7} C(Q1) = 0.9
S1 = S1 ∩N(v1) = {v3, v5, v7} vj = v3

Q1 = Q1 ∪ {v3} = {v1, v3} C(Q1) = 0.9 + 0.85 = 1.75
Step 2:

N(v3) = {v1, v5, v6, v7}
S1 = S1 ∩N(v3) = {v5, v7} vj = v5

Q1 = Q1 ∪ {v5} = {v1, v3, v5} C(Q1) = 1.75 + 0.8 = 2.55
Step 3:

N(v5) = {v1, v3, v4, v7, v9}
S1 = S1 ∩N(v5) = {v7} vj = v7

Q1 = Q1 ∪ {v7} = {v1, v3, v5, v7} C(Q1) = 2.55 + 0.7 = 3.25
Step 4:

N(v7) = {v1, v3, v5}
S1 = S1 ∩N(v5) = Φ
Terminate;

Algorithm 2: The steps of finding Q1.

6.2. Impact of Sleep Probability on Energy Consumption.
Though sleep scheduling can save energy consumption due
to idle listening, sensors in sleep mode cannot receive data
packets, which imposes retransmission and may consume
more energy. If sensor pi is active at tth time slot, we say
that tth time slot is an active time slot for sensor pi. We
know that only at its active time slot, sensor pi consumes its
energy. Thus, we can use the total number of active time slots
consumed for the sensors to successfully receive the whole set
of packets as the energy consumption for data dissemination.

We define a threshold as follows:

ε =
n∑

i=1

(1− si)− n

lmin
min

i∈{1,2,...,n}
{(1− li)(1− si)}, (11)

where lmin = 1−maxi∈{1,2,...,n}{li}.
Then, we have the following lemma.

Lemma 3. In XORs coding, if ε < 0, the current sleep schedul-
ing can save energy consumed by idle listening; otherwise, the
current sleep scheduling has no contribution to energy saving.

Proof. See Appendix D.

Take two receivers with l1 = 0.23, s1 = 0.15, l2 =
0.27, s2 = 0.18 as an example, according to (11), we have
ε > 0. Thus, the energy saving with sleep scheduling is
offsetted by more retransmissions. In this case, the cluster
head should wake up more sensors. An interesting problem
is how to design an optimal sleep scheduling such that energy
saving of sleep scheduling will not be offsetted by more
retransmission, which is out of the scope of this paper.

7. Simulation Results

In this section, we demonstrate the effectiveness of our
dissemination schemes through simulations using C++
simulator. In our simulations, a multihop cluster hierarchical

WSN is randomly generated with the fixed value of the
number of sensors if without specification. We group the
packets required to send into batches, and each batch has M
packets. Recovery process with network coding starts after
every M native packets are transmitted. In a cluster, we
randomly generate sensor pi’s sleep scheduling according to
its sleeping probability si.

To demonstrate the advantage of our coding scheme,
we introduce two baseline algorithms, namely, dissemi-
nation without coding algorithm and dissemination with
random coding algorithm. Dissemination without coding
algorithm randomly transmits a native “wanted” packet at
each time slot until all receivers obtain their “wanted” data
packets while dissemination with random coding algorithm
transmits an XORs packet which is randomly generated
at each time slot until all receivers obtain their “wanted”
packets.

In the simulation, we are interested in evaluating the
performance of our coding schemes from the following
perspectives.

(i) The number of active receivers that can obtain a
new “wanted” packet at one time slot and the total
number of transmissions required in one batch data
dissemination within one cluster.

(ii) The impact of the number of receiver sensors n, batch
size M, sleep probability and packet loss probability
on the network coding gain under different dissemi-
nation schemes within one cluster.

(iii) How close the performance of our proposed algo-
rithms is to the derived analytical results within one
cluster.

(iv) The impact of the threshold α on the delay and the
total number of transmissions required in a multihop
cluster hierarchy.

For each setting, we simulate 150 instances and report the
average performance.
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Figure 4: The number of receivers that can obtain a new “wanted”
packet at a time slot versus the number of receiver nodes.

7.1. Comparison with Different Data Dissemination Schemes.
The effectiveness of our coding scheme for maximizing the
expected number of sensors that can obtain one “wanted”
packet at one time slot is demonstrated by comparing with
dissemination without coding algorithm and dissemination
with random coding algorithm.

We evaluate the performance of our algorithms by
varying the number of active sensors within a cluster at one
time slot in the range of [10, 40] for M = 50, and li = 0.2.
As shown in Figure 4, the number of active sensors that can
obtain one “wanted” packet by our coding scheme is much
more than that by dissemination without coding algorithm
and dissemination with random coding algorithm.

For one batch data dissemination process within a cluster,
to demonstrate the performance of our coding scheme, the
total number of transmissions required is also compared
with the other two baseline algorithms: dissemination
without coding and dissemination with random coding
algorithms. We vary the number of packets needed to be sent
in the range of [60, 100] for n = 10, si = 0.3, li = 0.2.
As shown in Figure 5, the total number of transmissions
required in one batch dissemination by our coding scheme
is much less than that by dissemination without coding
and dissemination with random coding algorithms. Hence,
for data dissemination with a large set of packets, our
XORs coding scheme can efficiently decrease the number of
transmissions required. Thus, more energy can be saved.

7.2. Network Coding Gain Comparison with Analytical Results.
We demonstrate the effectiveness of the proposed network
coding algorithm by comparing the network coding gain
obtained through simulation with the analytical network
coding gain.
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Figure 5: Total number of transmissions versus number of packets
needed to be sent.

We start with a simple experiment where there are only
two members sensors in a cluster. We fix l1 to 0.2 and vary
l2 in the range of [0.1, 0.4] for n = 2, si = 0.3,M = 100.
As shown in Figure 6(a), the network coding gain obtained
by our simulation follows the same trend as the analytical
results. In addition, the maximum network coding gain is
achieved when l′1 = l′2 = 1−(1−0.2)(1−0.3) = 0.44 with both
our simulation results and analytical results, which verifies
Corollary 1. When l′1 = l′2, most likely the “wanted” packets
at one receiver are the packets available at another receiver,
thus, coding opportunity is high, which achieves maximum
network coding gain.

We also extend the simulation to 10 receivers in a cluster.
The loss probability of p1 is varied along the x-axis for M =
100; si = 0.2, 1 ≤ i ≤ 5; si = 0.3, 6 ≤ i ≤ 10 and l2 = l3 =
l1 + 0.02, l4 = l5 = l1 + 0.04, l6 = l7 = l1 + 0.06, l8 = l1 + 0.08,
l9 = l10 = l1 + 0.1. As shown in Figure 6(b), the simulation
results are very close to the analytical results. In addition,
Figure 6 verifies that network coding indeed can bring gains
on reducing the number of transmissions required.

In Figure 7, we vary the sleep probability at sensors,
similar results as Figure 6 can be observed and the network
coding gain obtained through simulations is quite close to
the analytical results.

7.3. The Impact of Sleep Scheduling on Energy Saving. We now
study the impact of sleep scheduling on the energy consump-
tion. Our simulation is conducted within one cluster. We use
the total number of active time slots consumed to denote the
energy consumption in data dissemination process.

Suppose that XORs coding is applied. Let ηs be the total
number of active time slots consumed for data dissemination
with sleep scheduling and ηns be the total number of trans-
missions for data dissemination without sleep scheduling.
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Figure 6: Network coding gain versus packet loss probability of sensor.
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The energy saving in XORs coding with sleep scheduling over
that without sleep scheduling is

δ = ηns − ηs
ηns

. (12)

For data dissemination without coding, we can define
energy saving with sleep scheduling over that without sleep
scheduling in a similar way.

We evaluate the performance of our algorithm by varying
s2 in [0, 0.3] for n = 2, l1 = 0.1, l2 = 0.25, s1 = 0.15, M = 50.

As shown in Figure 8, the simulation results are very close to
the analytical results.

For our XORs coding, from the figure, we know that the
energy consumption with sleep scheduling is less than that
without sleep scheduling when s2 is less than 0.15. When
s2 = 0.15, the energy consumption with sleep scheduling
is equal to that without sleep scheduling. When s2 is larger
than 0.15, sleep scheduling has no contribution to the energy
saving, it even incurs more energy consumption than that
without sleep scheduling. This interesting result is plausible
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since when the number of sleep sensors becomes larger,
more retransmissions are required, which imposes more
energy consumption. In this case, the energy saving with
sleep scheduling is offsetted by more retransmissions, which
means that the threshold ε > 0 and the cluster head should
wake up more sensors to receive packets in order to save
energy.

7.4. The Impact of Threshold α on the Delay and the Total
Number of Transmissions Required. We now study the impact
of threshold α on the delay of the data dissemination process
in a multihop cluster hierarchical WSN. The threshold α is
varied in the range of [0.2, 1.0] for M = 30, 40, 50. Figure 9
gives the delay required for data dissemination when the
number of layers is 5 and 6, respectively. We can see that
the delay increases with the threshold α. This is because the
cluster heads need to wait more time before they can transmit
their available packets to their members with the increasing
of α. Thus, the cluster heads in down layers can do nothing
for a long time. Specifically, when α = 1, each cluster head
cannot transmit its available packets until receiving all M
packets. In this case, concurrent transmissions cannot be
allowed even if there is no collision between them, which
thus increases the delay. From Figure 9, we can also see that
the delay increases with the number of layers, because the
number of receivers increases with the number of layers.

We further study the impact of the threshold α on the
total number of transmissions required under a multihop
cluster hierarchical WSN. The threshold α is also varied in the
range of [0.2, 1.0] for M = 30, 40, 50. As shown in Figure 10,
the total number of transmissions required decreases with
the threshold α. When α is small, the cluster heads transmit
the packets to their members more quickly. Therefore, the

number of fresh packets available at cluster heads is small,
which can not fully utilize the network coding gain. Hence,
the total number of transmissions required is more than with
larger threshold α.

8. Conclusion

This paper studies data dissemination in wireless sensor
networks with network coding to achieve energy efficiency.
In order to quickly complete the whole process of data
dissemination, at each time slot in the recovery process, we
aim to transmit an encoded packet such that the expected
number of active sensors that can decode out one “wanted”
packet is maximized. A maximum weight clique model is
proposed here to achieve such an objective. We further
study the impact of packet loss probability and sleep
probability on network coding gain. We also analyze the
impact of sleep probability on energy saving gain and derive
a threshold which can be used to decide whether the current
sleep scheduling is effective on energy saving or not. The
simulation results verify the work proposed in the paper.

Appendices

A. Proof of Lemma 1

According to [8], we can obtain that the total num-
ber of transmissions without coding to successfully deliver
sufficient large M packets to n receivers is

∑
i1,i2,...,in

((−1)i1+i2+···+in−1/(1 − (l1)i1 (l2)i2 · · · (ln)in))M, where each
receiver keeps in active mode during data transmission
process.

However, in the data dissemination process, receiver
sensor pi may be in sleep mode and can not successfully
receive a packet. Therefore, the probability that sensor pi can
successfully receive the packet at any time slot is (1−li)(1−si).
In other words, the probability that sensor pi will lose the
packet is 1−(1−li)(1−si). Thus, considering sleep scheduling,
the total number of transmissions required without coding is

Na =
∑

i1,i2,...,in

(−1)i1+i2+···+in−1

1− (l′1)i1 (l′2)i2 · · · (l′n
)in M, (A.1)

where i1, i2, . . . , in ∈ {0, 1} and ∃i j /= 0, l′i = 1−(1− li)(1−si).

B. Proof of Lemma 2

From [8], we know that the total number of transmissions
with XORs coding to successfully deliver sufficient large M
packets to n receivers is M/(1−maxi∈{1,2,...,n}{li}), where each
receiver keeps in active mode during the data transmission
process.

As in Appendix A , the probability that sensor pi can
not successfully receive the packet with sleep scheduling is
changed into 1 − (1 − li)(1 − si). Thus, the total number



12 EURASIP Journal on Wireless Communications and Networking

250

300

350

400

450

500
To

ta
ld

el
ay

(t
im

e
u

n
it

s)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The threshold α

M = 30
M = 40
M = 50

(a) Hierarchy with 5 layers

250

300

350

400

450

500

To
ta

ld
el

ay
(t

im
e

u
n

it
s)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The threshold α

M = 30
M = 40
M = 50

(b) Hierarchy with 6 layers

Figure 9: The total delay (time units) versus the threshold α.
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Figure 10: The total number of transmissions required versus the threshold α.

of transmissions required with XORs coding to transmit
sufficient large M packets to n receivers is

Nb = M

1−maxi∈{1,2,...,n}{1− (1− li)(1− si)}

= M

mini∈{1,2,...,n}{(1− li)(1− si)} ,

(B.2)

C. Proof of Corollary 1

With two receivers, from Lemma 1, the total number of
transmissions required for M packets without coding is Na =
M/(1 − l′1) + M/(1 − l′2) −M/(1 − l′1l

′
2), and from Lemma 2,

the total number of transmissions with XORs coding is Nb =
M/ min{1− l′1, 1− l′2}, where l′i = 1− (1− li)(1− si).

Without loss of generality, suppose that l′1 ≥ l′2 and l′2 =
βl′1, 0 ≤ β ≤ 1. We have
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γ = Na −Nb

Na

= 1− Nb

Na

= 1− 1/(1− l′1)
1/(1− l′1) + 1/(1− l′2)− 1/(1− l′1l

′
2)

= 1− 1
1 + (1− l′1)/

(
1− βl′1

)− (1− l′1)/
(
1− βl

′2
1

) ,

(C.3)

Define a function f (β) = γ with β being the variable. We can
easily prove that f (β) is an increasing function. Thus, when
β is 1, the value of function f (β) is maximum. That is when
l′1 = l′2, the network coding gain γ is maximum, which proves
our Corollary 1.

D. Proof of Lemma 3

From the analysis in the previous section, we can see that
the total number of active time slots consumed for data
dissemination with XORs coding is

ηs = Nb

n∑

i=1

(1− si)

= M
∑n

i=1(1− si)
mini∈{1,2,...,n}{(1− li)(1− si)} ,

(D.4)

where si is the probability that sensor pi is in sleep mode at
each time slot.

However, if there is no sleep scheduling at sensors, that is
si = 0, the total number of transmissions for disseminating
sufficient large M packets to n receivers with XORs coding is

N ′
b =

M

1−maxi∈{1,2,...,n}{li} . (D.5)

Since no sensors are in sleep mode, the total number of active
time slots consumed for disseminating packets with XORs
coding is

ηns = N ′
bn

= Mn

1−maxi∈{1,2,...,n}{li} .
(D.6)

From the above formulation, we know that only if ηs < ηns,
sleep scheduling has contribution to save energy consumed
by idle listening, otherwise, the retransmission due to sleep
scheduling in sensors imposes more energy consumption.
The above ηs < ηns changes into

M
∑n

i=1(1− si)
mini∈{1,2,...,n}{(1− li)(1− si)} <

Mn

1−maxi∈{1,2,...,n}{li} .
(D.7)

That is

n∑

i=1

(1− si) <
n

lmin
min

i∈{1,2,...,n}
{(1− li)(1− si)}, (D.8)

where lmin = 1−maxi∈{1,2,...,n}{li}.

Thus, if (D.8) can be satisfied, the current sleep schedul-
ing must have contribution to save energy compared with no
sleep scheduling.
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We are concerned with designing feedback-based adaptive network coding schemes with the aim of minimizing decoding delay
in each transmission in packet-based erasure networks. We study systems where each packet brings new information to the
destination regardless of its order and require the packets to be instantaneously decodable. We first formulate the decoding delay
minimization problem as an integer linear program and then propose efficient algorithms for finding its optimal solution(s). We
show that our problem formulation is applicable to memoryless erasures as well as Gilbert-Elliott erasures with memory. We
then propose a number of heuristic algorithms with worst case linear execution complexity that can be used when an optimal
solution cannot be found in a reasonable time. We verify the delay and speed performance of our techniques through numerical
analysis. This analysis reveals that by taking channel memory into account in network coding decisions, one can considerably
reduce decoding delays.

1. Introduction

In this paper, we are concerned with designing feedback-
based adaptive network coding schemes that can deliver
high throughputs and low decoding delays in packet erasure
networks. We first present some background on existing
work and emphasize that the notion of delay and the choice
of a suitable network coding strategy are highly entangled
with the underlying application.

1.1. Motivation and Background. Consider a broadcast
packet-based transmission from one source to many des-
tinations where erasures can occur in the links between
the source and destinations. Two main throughput optimal
schemes to deal with such erasures are fountain codes [1]
and random linear network codes (RLNC) [2]. In the latter
scheme, for example, the source transmits random linear
mixtures of all the packets to be delivered. It is well-known
that if the random coefficients are chosen from a finite field
with a sufficiently large size, each coded packet will almost
surely become linearly independent of all previously received

coded packets and hence, innovative for every destination
[2]. The scheme is therefore almost surely throughput
optimal. Another benefit of fountain codes and RLNC is that
they do not require feedback about erasures in individual
links in order to operate.

However in these schemes, throughput optimality comes
at the cost of large decoding delays, as the receiver needs, in
general, to collect all coded packets in a block before being
able to decode. Despite this drawback, there are applications
which are insensitive to such delays. Consider, for example,
a simple software update (file download). The update only
starts to work when the whole file is downloaded. In this
case, the main desired properties are throughput optimality
and the mean completion time and there is often little
or no incentive to aim for partial “premature” decoding.
The completion time performance of RLNC for rateless
file download applications has been considered in [3]. In
[3], the mean completion time of RLNC is shown to be
much shorter than scheduling. Reference [4] considers time
division duplex systems with large round-trip link latencies
and proposes solutions for the number of coded packet
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transmissions before waiting for acknowledgement on the
received number of degrees of freedom.

There are applications where partial decoding can cru-
cially influence the end user’s experience. Consider, for
example, broadcasting a continuous stream of video or
audio in live or playback modes. Even though fountain
codes and RLNC are throughput optimal, having to wait for
the entire coded block to arrive can result in unacceptable
delays in the application layer. But, we also note that partial
decoding of packets out of their natural temporal order does
not necessarily translate into low delivery delays desired by
the application layer. The authors in [5, 6] have proposed
feedback-based throughput-optimal schemes to deal with
the transmitter queue size, as well as decoding and delivery
delays at the destinations. When the traffic load approaches
system capacity, their methods are shown to behave “grace-
fully” and meet the delay performance benchmark of single-
receiver automatic repeat request (ARQ) schemes.

There is yet another set of applications for which
partial decoding is beneficial and can result in lower delays
irrespective of the order in which packets are being decoded.
Consider, for example, a wireless sensor network in which
there is a fusion/command center together with numerous
sensors/agents scattered in a region. Each sensor/agent has to
execute or process one or more complex commands. Each
command and its associated data is dispatched from the
center in a packet. For coordination purposes, each agent
needs to know its own and other agents’ commands. There-
fore, commands are broadcast to everyone in the network. In
this application, in-order processing/execution of commands
may not be a real issue. However, fast command execution
may be crucial and therefore, it is imperative that innovative
packets arrive and get decoded at the destinations as quickly
as possible regardless of their order. As another example,
consider emergency operations in a large geographical region
where emergency-related updates of the map of the area need
to be dispatched to all emergency crew members. In such
situations too, updates of different parts of the map can be
decoded in any order and still be useful for handling the
emergency.

Finally, some applications may be designed in such a way
that they are insensitive to in-order delivery. This can be
particularly useful where the transport medium is unreliable.
In such a case, it may be natural to use multiple-description
source coding techniques [7], in which every decoded packet
brings new information to the destination, irrespective of
its order. In light of the emergency applications described
above, one can perform multiple-description coding for
map updates, so that updates of different subregions can be
divided into multiple packets and each packet can provide
an improved view of one region in a truly order-insensitive
fashion.

1.2. Contributions. In this paper, we are inspired by the
last set of order-insensitive packet delivery applications and
hence, focus on designing network coding schemes that,
with the help of feedback, can deliver innovative packets
in any order to the destination and also guarantee fast

decoding of such packets. As a first step towards such goal, we
limit ourselves to broadcast erasure channels, but emphasize
that the ideas can be extended to other more complicated
scenarios. We also consider the class of instantaneously
decodable network coding schemes, in which each coded
transmission contains at most one new source packet that a
receiver has not decoded yet. The rationale is that in an order-
insensitive application, any innovative packet that cannot
be decoded immediately incurs a unit of delay. Obviously,
one other source of delay is when a coded packet does not
contain any new information for a receiver and hence, is
not innovative. A similar definition of the decoding delay
was first considered in [8], where the authors presented a
number of heuristic algorithms to reduce order-insensitive
decoding delay. In this context, our main contributions are
the following.

(i) In Section 1.1, we have motivated the problem in
light of possible applications in sensor and ad
hoc networks. To the best of our knowledge, such
application-dependent classification of network cod-
ing delays did not previously exist in the literature.

(ii) In Section 3.1, we present a systematic framework
for the minimization of decoding delay in each
transmission subject to the instantaneous decodabil-
ity constraint. We show that this problem can be
cast into a special integer linear programming (ILP)
framework, where instantaneously decodable packet
transmission corresponds to a set packing problem
[9] on an appropriately defined set structure.

(iii) In Section 3.2, we provide a customized and efficient
method for finding the optimal solution to the set
packing problem (which is in general NP-hard).
Our numerical results in Section 6 show that for
reasonably sized number of receivers, the optimum
solution(s) can be found in a time that is linearly
proportional to the total number of packets.

(iv) In Section 4, we discuss decoding delay minimization
for an important class of erasure channels with
memory, which can occur in wireless communication
systems due to deep fades and shadowing [10]. We
show that the general set packing framework in
Section 3 can be easily modified to account for the
erasure memory. Our results in Section 6 reveal that
by adapting network coding decisions based on chan-
nel erasure conditions, significant improvements in
delay are possible compared to when decisions are
taken irrespective of channel states.

(v) In Section 5, we provide a number of heuristic
variations of the optimal search for finding (possibly
suboptimal) solutions faster, if needed. Our results in
Section 6 show that such heuristics work very well
and often provide solutions that are very close to
the search algorithm. Moreover, they improve on the
proposed random opportunistic method in [8].
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2. Network Model

Consider a single source that wants to broadcast some data
to N receivers, denoted by Ri for i = 1, . . . ,N . The data to
be broadcast is divided into K packets, denoted by mj for
j = 1, . . . ,K . Time is slotted and the source can transmit one
(possibly coded) packet per slot.

A packet erasure link Li connects the source to each
individual receiver Ri. Erasures in different links can be
independent or correlated with each other. Different erasures
in a single link can be independent (memoryless) or
correlated with each other (with memory) over time.

For memoryless erasures, an erasure in link Li can occur
with a probability of pe,i in each packet transmission round
independent of previous erasures.

For correlated erasures, we consider the well-known
Gilbert-Elliott channel (GEC) [11], which is a Markov model
with a good and a bad state. If the channel is in the good
state, packets can be successfully received, while in the bad
state packets are lost (e.g., due to deep fades or shadowing
in the channel). The probability of moving from the good
state G to the bad state B in link Li is bi � Pr(Ci,� = B |
Ci,�−1 = G) and the probability of moving from the bad state
B to the good state G is gi � Pr(Ci,� = G | Ci,�−1 = B),
where � is the time slot index. Steady-state probabilities are
given by PG,i � Pr(Ci = G) = gi/(bi + gi) and PB,i �
Pr(Ci = B) = bi/(bi + gi). Following [12], we define the
memory content of the GEC in link Li as 0 ≤ μi = 1 −
bi − gi < 1, which signifies the persistence of the channel
in remaining in the same state. A small μ means a channel
with little memory and a large μ means a channel with large
memory.

Before transmission of the next packet, the source
collects error-free and delay-free 1-bit feedback from each
destination indicating if the packet was successfully received
or not. A successful reception generates an acknowledgement
(ACK) and an erasure generates a negative acknowledgement
(NAK). This feedback is used for optimizing network coding
decisions at the source for the next packet transmission
round, as described in future sections.

In this work, we consider linear network coding [2] in
which coded packets are formed by taking linear combi-
nations of the original source packets. Packets are vectors
of fixed size over a finite field Fq. The coefficient vector
used for linear network coding is sent in the packet header
so that each destination can at some point recover the
original packets. Since in this paper we are only dealing with
instantaneously decodable packet transmission, it suffices
to consider linear network coding over F2. That is, coded
packets are formed using binary XOR of the original source
packets. Thus, network coding is performed in a similar
manner as in [13].

Definition 1. A transmitted packet is instantaneously decod-
able for receiver Ri if it is a linear combination of source
packets containing at most one source packet that Ri

has not decoded yet. A scheme is called instantaneously
decodable if all transmissions have this property for all
receivers.

Definition 2. At the end of transmission round � in an
instantaneously decodable scheme, the knowledge of receiver
Ri is the set consisting of all packets that the receiver has
decoded so far. The receiver can therefore, compute any
linear combination of the packets that it has decoded for
decoding future packets.

Definition 3. In an instantaneously decodable scheme, a
coded packet is called non-innovative for receiver Ri if it only
contains source packets that the receiver has decoded so far.
Otherwise, the packet is innovative.

Definition 4. A scheme is called rate or throughput optimal if
all transmissions are innovative for the entire set of receivers.

Definition 5. In time slot �, receiver Ri experiences one unit
of delay if it successfully receives a packet that is either non-
innovative or not instantaneously decodable. If we impose
instantaneous decodability on the scheme, a delay can only
occur if the received packet is not innovative.

Note that in the last definition, we do not count channel
inflicted delays due to erasures. The delay only counts
“algorithmic” overhead delays when we are not able to
provide innovative and instantaneously decodable packets to
a receiver.

As an example, if the knowledge of R1 is {m1,m2,m3},
receiving m1 ⊕ m2 will cause R1 to experience one unit of
delay, whereasm1⊕m2⊕m5 is innovative and instantaneously
decodable, hence does not incur any delay.

We note that a packet that is not transmitted yet
or transmitted but not received by any receiver can be
transmitted in an uncoded manner at any transmission slot
without incurring any algorithmic delay. In fact, this is
how the transmission starts: by sending m1 uncoded, for
example.

A zero-delay scheme would require all packets to be both
innovative and instantaneously decodable to all receivers.
Thus zero-delay implies rate optimality, but not vice versa. As
the authors show in [8, Theorem 1] for the case of N = 2 and
N = 3 receivers, there exists an offline algorithm that is both
rate optimal and delay-free. For N ≥ 4 the authors prove that
a zero-delay algorithm does not exist. By offline we mean that
the algorithm needs to know future realizations of erasures in
broadcast links. In contrast, an online algorithm decides on
what to send in the next time slot based on the information
received in the past and in the current slot. In this paper, we
focus on designing online algorithms.

3. Optimization Framework

3.1. Problem Formulation Based on Integer Linear Program-
ming. Instantaneous decodability can be naturally cast into
the framework of integer optimization. To this end, let us
fix the packet transmission round to � and consider the
knowledge of all receivers, which is also available at the
source because of the feedback. The state of the entire system
at time index � (in terms of packets that are still needed by
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the receivers) can be described by an N × K binary receiver-
packet incidence matrix A with elements

ai j =
{

1 if Ri needs mj ,

0 otherwise.
(1)

Columns of matrix A are denoted by a1 to aK . We assume
that packets received by all receivers are removed from the
receiver-packet incidence matrix. Hence, A does not contain
any all-zero columns.

Example 1. Consider N = 2 receivers and K = 3 packets.
Before the transmission begins, the receiver-packet incidence
matrix A is an all-one 2 × 3 matrix. If we send packet m1 in
the first transmission round � = 1 and assuming that only
receiver R2 successfully receives it, A will become

A =
[

1 1 1
0 1 1

]
. (2)

If we send packet m2 in the next transmission round � = 2
and assuming that only receiver R1 successfully receives it, A
will then be

A =
[

1 0 1
0 1 1

]
. (3)

The condition of instantaneous decodability means that at
any transmission round we cannot choose more than one
packet which is still unknown to a receiver Ri. In the example
above, at � = 3, we cannot send m1 ⊕m3 because it contains
more than one packet unknown to R1.

Let x represent a binary decision vector of length K
that determines which packets are being coded together. The
transmitted packet consists of the binary XOR of the source
packets for which xj = 1. More formally, we can define
the instantaneous decodability constraint for all receivers as
Ax ≤ 1N , where 1N represents an all-one vector of length
N and the inequality is examined on an element-by-element
basis (Note that although x is a binary or Boolean vector,
Ax is calculated in real domain. Hence, Ax ≤ 1N is in fact
a pseudo-Boolean constraint.). This condition ensures that
a transmitted coded packet contains at most one unknown
source packet for each receiver. A vector x is called infeasible
if it does not satisfy the instantaneous decodability condition.
In other words, x is called infeasible if and only if there
exists at least one p for which bp > 1 in Ax = b =
[b1, . . . , bp, . . . , bN ]T . A vector x is called a solution if and only
if it satisfies Ax ≤ 1N . In the rest of this paper, “Ax ≤ 1N” and
“x is a solution” are used interchangeably.

Now consider sets M1, . . . ,MK ⊂ {R1, . . . ,RN}, where Mj

is the nonempty set of receivers that still need source packet
mj . Note that these sets can be easily determined by looking
at the columns of matrix A. The “importance” of packet mj

can be, for example, taken to be the size of set Mj , which is
the number of receivers that still need mj .

We now formally describe the optimization procedure
that should be performed at the transmitter. Maximizing the
number of receivers for which a transmission is innovative,

subject to the constraint of instantaneous decodability, can
be posed as the following (binary-valued) integer linear
program (ILP):

max wTx

subject to Ax ≤ 1N , x ∈ {0, 1}K ,
(4)

where wT = (|M1|, . . . , |MK |). This is a standard problem
in combinatorial optimization, usually called set packing [9].
Here the universe is the set of all receivers and we need to
find disjoint (due to instantaneous decodability condition)
subsets Mj with the largest total size. In the (most desirable)
case when equality holds in Ax ≤ 1N for every receiver, we
also speak of a set partition. This is equivalent to a zero-delay
transmission.

In Section 4, we will consider other measures of packet
importance and discuss the role of w in tailoring the opti-
mization problem according to the application requirements
or channel conditions, such as memory in erasure links.

We assume that elements of w, which signify packet
importance, are all positive. If one has already found a
solution such as x1 = [x1, . . . , xp−1, 1, xp+1, . . . , xK ] with
wTx1 = v1, then changing this solution into x0 =
[x1, . . . , xp−1, 0, xp+1, . . . , xK ] by changing xp = 1 into xp = 0
can only result in a wTx0 = v0 strictly smaller than v1. We say
that given solution x1, x0 is clearly suboptimal and hence, can
be discarded in an algorithm that searches for the optimal
solution(s).

3.2. Efficient Search Methods for Finding the Optimal Solution
of (4). It is well known that the set packing problem is NP-
hard [9]. Here, we present an efficient ILP solver designed
to take advantage of the specific problem structure. Later,
we will see that for many practical situations of interest, our
method performs well empirically. Based on this framework,
we will also present some heuristics in Section 5 to deal with
more complicated and time-consuming problem instances.

We begin presenting our method by first defining
constrained and unconstrained variables.

Definition 6. Two binary-valued variables are said to be
constrained if they cannot be simultaneously 1 in a solution.
Or formally, xi and xj are constrained if for any x satisfying
Ax ≤ 1N , xi + xj ≤ 1 (Again, note that the addition of
variables takes place in real domain.). We also say that xj is
constrained to xi and vice versa. It can be proven that xi and
xj are constrained if and only if there exits at least one row
index p in A for which api = ap j = 1.

Definition 7. The set of all variables constrained to xi is called
the constrained set of xi and is denoted by Ci. That is,

Ci =
{
xj | j /= i,Ax ≤ 1N =⇒ xi + xj ≤ 1

}
. (5)

If xi and xj are not constrained to each other (xi /∈C j and
xj /∈Ci), then columns ai and a j in A cannot have nonzero
elements in the same row position. That is, for each row
index p, api = 1 ⇒ ap j = 0 and ap j = 1 ⇒ api = 0.
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Solve (Pk)

Save solution

Combine the solution
with previously

resolved variables

Solve
(Pk−ku−ks−1)

Resolve constraints
xj = 0 for xj in Cs

ks = |Cs|

xs = 1

Resolve
unconstrained set
xj = 1 for xj in U

ku = |U|

Unconstrained set

U = {xi | |Ci|= 0}

Most constrained

s = argmax |Ci|
i

Constrained set

Ci = {x | i�= j,Ax≤ 1N⇒
xi + xj ≤ 1}

N

Initialize

k = K

k = 1?
Y x1 = 1

Return [solution]

Return [solution(s)]

Combine the solution
with previously

resolved variables

Solve (Pk−ku−1)

xs = 0

Figure 1: A schematic of Algorithm 1 with greedy pruning for finding the optimal network coding solution of (4). Note that the algorithm
is recursive as it calls Pk−ku−ks−1 and Pk−ku−1 within itself.

Definition 8. A variable xi is said to be unconstrained if Ci =
∅. The set of all unconstrained variables is denoted by U and
is referred to as the unconstrained set.

If xi is an unconstrained variable, then for each row index p,
api = 1 ⇒ ap j = 0 for all j /= i (otherwise, xi and xj would
become constrained).

Example 2. Consider the following receiver-packet incidence
matrix A

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

One can easily verify the relations defined above. For
example, variables x1 and x3 are constrained because for
p = 1, ap1 = ap3 = 1. Variables x1 and x4 are not
constrained to each other because columns a1 and a4 do not

have a nonzero element in the same row position. Variable
x6 is unconstrained because no other column has a nonzero
element in rows 6 or 7. In summary, C1 = {x2, x3}, C2 =
{x1}, C3 = {x1, x4}, C4 = {x3} and C5 = C6 = ∅.

To design an efficient search algorithm, one needs to
efficiently prune the parameter space and reduce the problem
size. We make the following observations for pruning of the
parameter space.

(1) Unconstrained variables must be set to 1. In other
words, setting those variables to 0 does not contribute
to the optimal solution (note that the elements in w
are positive). In the above example, x5 and x6 must
be set to 1 because no other variable is constrained
to them (we will make this statement formal in the
optimality proof of the algorithm in the appendix).

(2) If a constrained variable is set to 1 all members of
its constrained set must be set to 0. In the above
example, setting x1 = 1 forces x2 and x3 to zero.
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(3) At a given step, the parameter space can be pruned
most by resolving the variable with the largest
constrained set.

Application of the third observation, in a search algorithm
results in greedy pruning of the parameter space. We note
that greedy pruning is only optimal for a given step of the
algorithm and is not guaranteed to result in the optimal
reduction of the overall complexity of the search.

We now make a final remark before presenting the
search algorithm. In particular, we have observed that
finding constrained sets for each variable in each step
of the algorithm can be somewhat time consuming. A
very effective alternative is to first sort matrix A, column-
wise, in descending order of the number of 1’s in each
column. Setting the “most important” head variable x1 (with
the highest |M1|) to 1 is likely to result in the largest
constrained set (because it potentially overlaps with many
other variables) and hence, many variables will be resolved
in the next recursion. We will refer to the approach based
on finding the largest constrained set as the greedy pruning
strategy and to the alterative approach as the sorted pruning
search strategy.

The greedy pruning search strategy is shown in Figure 1,
which with appropriate modifications can also represent the
sorted pruning variation. Let Pk denote the problem of
size k whose input is an N × k receiver-packet incidence
matrix Ak and whose output is a set of solutions of the form
x of length k which satisfy the instantaneous decodability
condition Akx ≤ 1N . The algorithms can be described as
shown in Algorithm 1.

In the appendix, we prove by structural induction that
Algorithm 1 is guaranteed to return all optimal solutions
of (4). However, we note that not every solution returned
by Algorithm 1 is optimal. The nonoptimal solutions can
be easily discarded by testing against the objective function
(4) at the end of the algorithm. We also note that in
Algorithm 1, we can simply remove those packets received
by every receiver from the problem. If there are K0

such variables, we can start step (1) above from k =
K − K0 instead of K . The Matlab code for both the
greedy and sorted pruning algorithms can be found at
http://users.rsise.anu.edu.au/∼parastoo/netcod/.

We conclude this section by a brief note on the computa-
tional complexity of Algorithm 1. Let us denote the number
of recursions required to solve the problem of size k by Ck.
According to Algorithm 1, this problem is always broken into
two smaller problems of size k − ku − ks − 1 and k − ku − 1.
Therefore, one can find the number of recursions required to
solve Pk by recursively computing Ck = Ck−ku−ks−1 +Ck−ku−1.
The recursion stops when one reaches a problem of size 1
(only one packet to transmit) where C1 = 1.

4. Adaptive Network Coding in the Presence of
Erasure Memory

Here, we present a generalization of the set packing approach
for coded transmission in erasure channels with memory.
The idea is that the importance of a packet mj is no

longer determined by how many receivers need mj , but by
the probability that mj will be successfully decoded by the
receivers that need it. In computing this probability, one can
use the fact that successive channel erasures in a link are
usually correlated with each other and hence, their history
can be used to make predictions about whether a receiver is
going to experience erasure or not in the next time slot. To
present the idea, we focus on the GEC model for representing
channel erasures. More general memory models for erasure
can also be incorporated into our framework.

We define the reward pi of sending a packet to receiver
Ri as the probability of successful reception by Ri in the next
time slot: pi = Pr(Ci,� = G | Ci,�−1), where Ci,�−1 is the state
of Ri in the previous transmission round (Statements like
“state of Ri” should be interpreted as the state of the physical
link Li connecting the source to Ri.). The total reward or
importance of sending packet mj is then

wj =
∑

i∈Mj

pi. (7)

The above weight vector gives higher priority to a packet mj

for which there is a higher chance of successful reception,
because the receivers that need mj are more likely to be in
good state in the next time slot. With this newly defined
weight vector, one can try to solve the optimization problem
given in (4) under the same instantaneous decodability
condition.

Remark 1. We conclude this section by emphasizing that the
optimization framework in (4) is very flexible in accom-
modating other possibilities for the weight vector w, which
can be appropriately determined based on the application.
For example, instead of allocating the same weight to a
packet needed by a subset of receivers, one can allocate
different weights to the same packet (looking column-wise
at A) depending on the priorities or demands of each user.
In the map update example described in the Introduction,
different emergency units can adaptively flag to the base
station different parts of the map as more or less important
depending on their distance from a certain disaster zone.
The task of the base station is then to send a packet
combination that satisfies the largest total priority. One
can also combine user-dependent packet weights with the
channel state prediction outcomes in a GEC. One possibility
is to multiply the probabilities pi by the receiver priority. It
could then turn out that although a receiver is more likely to
be in erasure in the next transmission round, it may be served
because of a high priority request.

5. Heuristic Search Algorithms

In Section 3.2, we proposed efficient search algorithms for
finding the optimal solution(s) of (4). However, there may
be situations where one would like to obtain a (possibly
suboptimal) solution much more quickly. This may be the
case, for example, when the total number of packets to
be transmitted is very large. Therefore, designing efficient
heuristic algorithms to complement the optimal search is
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(1) Start with the original problem of size k = K .
(2) if sorted pruning strategy is desired then
(3) Rearrange the variables in Ak in descending order of packet importance (number of 1’s in each column).
(4) end if
(5) Solve (Pk):
(6) if k = 1 then
(7) Return x1 = 1 (since the variable is not constrained).
(8) else
(9) if greedy pruning strategy is desired then
(10) Determine the constrained set for all variables x1 to xk .
(11) Denote the index of the variable with the largest constrained set by s and the cardinality of its constrained

set by ks.
(12) else
(13) Determine the constrained set for the head variable x1 with cardinality k1 and also the set of unconstrained

variables (Note that we have overused index 1 to refer to the head variable in the reordered matrix at each
recursion.). Set s = 1.

(14) end if
(15) Denote the cardinality of the unconstrained set U by ku.
(16) Set all the unconstrained variables to 1.
(17) Set xs = 1 and the variables in its corresponding constrained set Cs to 0.
(18) Reduce the problem by removing resolved variables. Reduce Ak accordingly.
(19) Solve (Pk−ku−ks−1) (Note that ku unconstrained variables are set to one, xs = 1 and ks variables constrained by xs

are set to zero, hence a total of ks + ku + 1 variables are resolved.).
(20) Combine the solution with previously resolved variables. Save solution.
(21) Set xs = 0.
(22) Reduce the problem by removing resolved variables. Reduce Ak accordingly.
(23) Solve (Pk−ku−1) (Note that ku unconstrained variables are set to one and xs = 0, hence a total of ku + 1 variables

are resolved.).
(24) Combine the solution with previously resolved variables. Return solution(s).
(25) end if

Algorithm 1: Recursive search for the optimal solution(s) of (4).

important. In this section, we propose a number of such
heuristics.

5.1. Heuristic 1—Weight Sorted Heuristic Algorithm. The
idea behind this recursive algorithm is very simple. As in
Algorithm 1, we start with the original problem of size
k = K . We then rearrange the columns of the matrix A
in descending order of |wj| (starting from the packet with
the highest weight). Note that this is different from the
sorted pruning version of the Algorithm 1, in which the
columns of A were sorted in descending order of |Mj| to
potentially result in large constrained sets. We then set the
head variable x1 = 1 and find its corresponding constrained
set C1 to resolve k1 = |C1| variables that are to be set
to zero. We then solve the smaller problem of size Pk−k1

and continue until the problem cannot be further reduced.
One main difference between Heuristic 1 and Algorithm 1 is
that at each recursion, the head variable is only set to one;
the other possibility of x1 = 0 is not pursued at all. In a
sense, this heuristic algorithm finds greedy solutions to the
problem at each recursion by serving the highest priority
packet. In this heuristic algorithm, all ku unconstrained
variables are naturally set to 1 in the course of the algorithm.
The computational complexity of this method is at worst
proportional to K , which can happen when there is no
constraint between packets.

5.2. Heuristic 2—Search Algorithm 1 with Maximum Recur-
sions/Elapsed Time. It is possible to terminate the recursive
search Algorithm 1 prematurely once it reaches a maximum
number of allowed recursions/elapsed time. If the algorithm
reaches this value and the search is not complete, it performs
a termination procedure whereby it heuristically resolves the
remaining unresolved packets in the current incomplete
solution. That is, it performs Heuristic 1 on a smaller
problem, which is yet to be solved. It then returns the
best solution that has been found so far. We note that
due the extra termination procedure, the actual number of
recursions/elapsed time can be (slightly) higher than the
preset value.

Two comments are in order here. Firstly, Algorithm 1
is designed to sort the matrix A based on the number of
receivers that need a packet. It only reverts to sorting the
unresolved variables based on the vector w in the termination
process. Secondly, if the maximum number of recursions is
set to one, Algorithm 1 just performs the termination process
and becomes identical to Heuristic 1.

5.3. Heuristic 3—Dynamic Number of Recursions. This
heuristic is based on Heuristic 2, where we dynamically
increase the number of allowed recursions as needed. At
each transmission round, we start with only one allowed
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recursion (effectively run Heuristic 1). If the throughput (Let
Q ⊂ {1, . . . ,N} denote the index of receivers that still need at
least one packet and RQ denote such receivers. The achieved
throughput at time slot � is defined as wTx/ f (RQ), where x
is the found solution and f (RQ) is an appropriate function
of receivers’ needs. For memoryless erasures f (RQ) = |RQ|
and for GEC’s f (RQ) = ∑

q∈Q |pq| (refer to Section 4 and
(7)).) is higher than a desired value, there is no need to
proceed any further. Otherwise, we can gradually increase
the number of recursions by an appropriate step size. This
heuristic stops when it either reaches the maximum allowed
recursions or when increasing the number of recursions does
not result in a noticeable improvement in the throughput.

6. Numerical Results and Secondary
Coding Considerations

We start this section by presenting end-to-end decoding delay
results for memoryless erasure channels. We then specialize
to erasure channels with memory. The end-to-end problem
is the complete transmission of K packets. End-to-end
decoding delay of a receiver is the sum of decoding delays for
the receiver in each transmission step. In the following, when
we say “the delay performance of method X”, we are referring
to the delay performance of the end-to-end transmission,
where method X is applied at each step.

In the course of presenting the results and based on
the observed trends, we will discuss some secondary coding
techniques and post processing considerations that can
improve the decoding delay. Throughout the analysis of this
section, we assume independent erasures in different links
with identical probabilities. Hence, we can drop subscript i
when referring to link erasure probabilities.

Figure 2 shows the median of decoding delay for the
transmission of K = 100 packets to N = 3 to N =
100 receivers. Channel erasures are memoryless and occur
with a high probability of p = 0.5 independently in
every link. The median of delay is computed across all
receivers and is, in fact, also the median across many
stochastic runs of the algorithms. The first curve from below
shows the delay obtained from Algorithm 1 (Throughout the
numerical evaluations, we used the sorted pruning version
of Algorithm 1.). The middle curve is the delay obtained by
performing Heuristic 1. The top curve shows a reproduction
of delay results reported in [8] which are based on a random
opportunistic instantaneous network coding strategy. In this
case, the transmitter first selects a packet needed by at least
one receiver at random. Then, it goes over other packets in
some order and adds a packet to the current choice only if
their addition still results in instantaneous decodability. In
comparison, Heuristic 1 performs noticeably better than that
in [8] and more importantly, is not much far away from the
results of Algorithm 1. This is specially important since for
some number of receivers, Heuristic 1 can run considerably
faster than Algorithm 1, which will be shown in the coming
figures shortly.

Figure 3 compares the mean delay performance of
different heuristics presented in Section 5 with that of
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Figure 2: Median of decoding delay for the transmission of K =
100 packets to N = 3 to N = 100 receivers. Channel erasures
are memoryless and occur with a high probability of p = 0.5
independently in every link. Algorithm 1, Heuristic 1 and random
Heuristic [8] are compared with each other.

Algorithm 1. Similar to the previous figure, mean delay is
computed across all receivers. The delay performance of
Heuristic 2, Heuristic 3, and Algorithm 1 are close, whereas
Heuristic 1 results in the largest delay. A careful reader may
notice that the end-to-end performance of Heuristic 2 is
at times better than Algorithm 1. While the difference is
practically insignificant, this deserves some explanation. The
end-to-end transmission problem involves making packet
transmission decisions at each step. While all algorithms
start with the same packet incidence matrix (all-ones),
due to packet erasures and as they make decisions about
transmission of packets at each step, they take diverging paths
in the solution space. As a result, they end up with different
packet incidence matrices to solve over time. Hence, it is
conceivable for an algorithm to make suboptimal decisions
at one or more steps and yet end up with a better end-to-end
delay than Algorithm 1 that strictly makes optimal decisions
at every step. Intuition suggests that an algorithm such as
Heuristic 1 that consistently makes suboptimal decisions is
unlikely to outperform Algorithm 1 end-to-end, which is
confirmed by the numerical results. However, an algorithm
such as Heuristic 2 which almost always makes optimal
decisions with only infrequent exceptions, may outperform
Algorithm 1. According to Figure 3, these perturbations in
end-to-end performance are practically insignificant and the
intuitive choice of the optimal or a largely optimal algorithm
at each step will result in the best end-to-end performance.

We note that the delays presented here (and also in the
following figures) are, in fact, excess median or mean delays
beyond the minimum required number of transmissions,
which is K . For example, a mean delay of 10 slots for K =
100 packets signifies on average 10% overhead, which is the
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Figure 3: Mean decoding delay for the transmission of K = 100
packets to N = 3 to N = 100 receivers. Algorithm 1 is compared
with Heuristics 1–3. Both Heuristics 2 and 3 perform very closely
to Algorithm 1. The maximum number of recursions for both
Heuristic 2 and 3 is set to 100.

price for guaranteeing instantaneous decodability. In other
words, one measure of throughput is th1 = K/(K + d),
where d is the mean delay across all receivers. An example
is shown in Figure 3. For up to around 15 receivers in the
system, Algorithm 1, Heuristics 2, and 3 ensure an average
throughput loss of 10%.

It is quite possible that Algorithm 1 returns multiple
network coding solutions all of which have the same
objective value wTx. A natural question that arises is whether
systematic selection of a solution with a particular property
is better than others in the presence of erasures in the
channel. Our experiments verify that indeed some secondary
post processing on the solutions can improve the end-to-
end delay. In particular, we compare two post processing
techniques: (1) selecting a solution which involves minimum
amount of coding (lowest number of 1’s in the solution
vector x) and (2) selecting a solution with maximum amount
of coding (highest number of 1’s in the solution vector x).
Figure 4 shows the effects of such processing on the overall
decoding delays. It is clear that maximum coding is not a
reasonable choice and results in worse delays compared with
minimum coding. We attempt to explain this behavior by
means of an example and intuitive reasoning. Let us assume
that there are K = 3 packets to be transmitted to N =
3 receivers and at the beginning of the third transmission
round, matrix A is given as follows

A =
⎡
⎢⎣

0 1 1
1 0 1
0 1 1

⎤
⎥⎦. (8)

It is clear that there are two optimal solutions: we can either
send packets m1⊕m2 or packet m3 by itself, where the former
involves coding and latter is uncoded. Now let us assume that
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Figure 4: The effect of post processing on mean delay. Whenever
Algorithm 1 returns multiple solutions, minimum amount of
coding should be chosen. Heuristic 1 is shown for reference.

we select the maximum coding strategy and send m1⊕m2. If
in the third transmission round only R2 successfully receives,
A will become

A =
⎡
⎢⎣

0 1 1
0 0 1
0 1 1

⎤
⎥⎦, (9)

and clearly the optimal solution is sending packet m3. If in
the fourth transmission round only R1 successfully receives,
A will become

A =
⎡
⎢⎣

0 1 0
0 0 1
0 1 1

⎤
⎥⎦, (10)

where it is evident that in the fifth transmission round, we
cannot find a packet which is innovative and instantaneously
decodable for all the three receivers. On the other hand,
one can verify that if we adopt a minimum coding strategy
and send packet m3 in the third transmission round, we
can always find innovative and instantaneously decodable
packets for all three receivers in the future regardless of
erasures in the channel. In summary, solutions with less
coding tend to cause less constrains on the problem in the
future.

It is noted in Figure 4 that the first solution returned
by Algorithm 1 performs almost the same as the minimum
coding solution. The reason for this is that Algorithm 1 first
ranks the packets based on the number of receivers that need
them. Therefore, the first solution picked by the algorithm
is likely to contain packets with largest constrained sets and
hence, many resolved packets are set to zero, which often
translates into small amount of coding. Throughout this
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Figure 5: Average number of recursions in Algorithm 1 and
Heuristics 1–3. The maximum number of recursions for both
Heuristic 2 and 3 is set to 100. By referring to Figure 3, we observe
that for small number of receivers, Heuristics 2-3 can provide same
decoding delays at a fraction of computational complexity.

section, unless otherwise stated, we have shown the delay
results based on the first returned solution of Algorithm 1.

It is interesting to analyze the actual number of recur-
sions that the search in Algorithm 1 takes to find the
optimum solution. This is shown in Figure 5 for K = 100
packets along with the number of recursions required in
Heuristics 1, 2, and 3. Algorithm 1 shows three modes of
behavior: low, medium, and high number of recursions.
When the number of receivers is larger than N = 20,
Algorithm 1 finds the optimal solution very quickly and
the number of recursions is very close to the number of
packets K . However, when the number of receivers is lower,
the constraints that each receiver imposes on the network
coding decisions cannot limit the search space enough and
hence, a large number of combinations have to be tested.
Obviously, Heuristic 1 has the lowest number of recursions.
Compared to Heuristic 2 with 100 fixed recursions, dynamic
Heuristic 3 can almost halve the number of recursions
with negligible effect on delay performance (see Figure 3).
By referring to Figure 3, we conclude that for the system
under consideration, the excessive number of recursions in
Algorithm 1 is not warranted as it does not result in any
noticeable delay improvement compared to Heuristics 2 or
3.

Figure 6 shows the effect of increasing the number of
packets on the computational complexity of Algorithm 1 in
terms of number of recursions to complete the search. Three
different numbers of receivers N = 20, N = 30, and N =
40 are considered. The complexity remains linear with the
number of packets for well-sized receiver populations (30
and 40 receivers). This is in agreement with observations
in Figure 5. When the number of receivers is not so large
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Figure 6: The effect of increasing the number of packets on the
computational complexity of Algorithm 1 in terms of number of
recursions. The complexity remains linear with the number of
packets for well-sized receiver populations (30 and 40 receivers).

(see the blue curve in Figure 6 for N = 20), we see a sudden
growth in complexity, in terms of number of recursions,
when K � 700 packets. In such situations, truncating the
number of recursion to be linear with the number of packets
(Heuristic 2) is a good alternative.

Figure 7 shows the impact of the number of packets
and also erasure probability on the decoding delay. The
normalized mean delay versus number of packets K is
plotted for three different erasure probabilities Pe = 0.5,
Pe = 0.4, and Pe = 0.2, which are still high erasure
probabilities. The number of receivers is fixed to N = 20.
The delay performance of Heuristics 1 and 3 are shown. A
few observations are made. Firstly, as expected, the delay
(both absolute and normalized measures) decreases as the
erasure probability decreases. Secondly, the difference in the
delay performance between Heuristics 1 and 3 decreases
as the erasure probability decreases. This trend has also
been observed for other number of receivers. Moreover, the
difference between heuristics and Algorithm 1 decreases with
erasure probability, which is not shown here for clarity of
figure. Finally, the normalized delay decreases as the number
of packets increases. We noted, however, that the absolute
delay may increase or decrease depending on the number of
receivers in the system. We attribute possible decrease in the
normalized delay to the fact that when there are more packets
to transmit, the transmitter has more options to choose from
and hence, encounters delays less often in a normalized sense.

An important question that may arise in practical
situations is how to choose the “block size” or the number
of packets that are taken into account for making network
coding decisions. If one has a total of K packets to transmit,
does it make sense to divide them into subblocks of smaller
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delay decreases as expected. The normalized delay decreases with K
for this particular N (this is not always the case).

sizes or does it make sense to treat them as one single block of
packets? The short answer is to include all “order-insensitive”
packets in making transmission decisions and only break
the packets into subblocks when the assumption of order
insensitivity between subblocks breaks down. In the extreme
case, an infinite number of order-insensitive packets provides
an infinite pool of packets to choose from that can satisfy the
demands of all receivers and are instantaneously decodable.
Figure 8 shows the end-to-end delay when the number of
packets in a block is finite and K = 100 packets is chosen as
the reference for comparison. We can see that although the
delay of transmitting λK packets, dλK , can be larger than that
of transmitting K packets dK , the delay does not increase by a
factor of λ. That is dλK < λdK and one does not benefit from
breaking λK packets into λ subblocks of size K packets each.
By treating λ subblocks of size K as one block of size λK , we
add more degrees of freedom in making decisions.

Now we turn our attention to the delay performance of
our algorithms in channels with memory. Figure 9 shows
the mean delay of different algorithms for K = 100 packets
and N = 3 receivers. The GEC parameters for all links are
identical with b = g. The horizontal axis shows the memory
content μ = 1 − 2b. The first curve from above shows
the performance of Algorithm 1 when the transmitter does
not take channel conditions into account in making coding
decisions. In other words, wj = |Mj| is used in Algorithm 1
as if the channel states were memoryless. For relatively
large memory contents, this method results in the largest
mean delay. The next curve shows the delay performance
of Heuristic 1. The next two curves, which are almost
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Figure 8: The effect of block size on the mean delay. If the delay of
transmitting K = 100 packets in Heuristic 1, d100, is taken as the
reference, we can see that the delay of including λ × 100 packets
in transmission is less than λd100. The same observation applies to
the delay of Algorithm 1. In general, it is recommended to include
all “order-insensitive” packets in making transmission decisions and
only break the packets into subblocks when the assumption of order
insensitivity between subblocks breaks down.

indistinguishable, show the performance of Algorithm 1
which takes channel states into account (using (7)) and
Heuristic 2 with 100 recursions. The last curve shows the
best delay that can be achieved by occasionally violating the
instantaneous decodability rule for one receiver in favor of
the other two receivers that are predicted to be in good state
in the next transmission round. More details can be found in
[14].

Figure 10 shows the delay performance of Algorithm 1
using packet weights according to (7) for N = 3 to N = 15
receivers. Both the mean delay and mean delay plus one
standard deviation of delay (across 1000 stochastic runs of
the transmission) are shown. As expected, the delay increases
as the number of receivers increases. Comparing the delay’s
standard deviation with its mean, we observe that when the
number of receivers is 3–5, the delay is relatively more variant
than when the number of receivers is 10–15. For example,
for N = 3 and μ = 0.984, the ratio of standard deviation to
mean delay is around 3.225/0.8183 � 4, whereas for N = 15
and μ = 0.94 this ratio reduce to only 7.35/22.49 � 0.33.
One should keep these variations in mind when designing
the transmission system.

We conclude this section with a brief look at the effect
of post processing on the delay performance in channels
with memory. Figure 11 shows different delays for N = 15
receivers and K = 100 packets. The figure confirms our
earlier finding that selecting the maximum amount of coding
among the optimal solutions provided by Algorithm 1 can
result in larger end-to-end delays. We also note that serving
the maximum number of receivers can have an adverse effect
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on the delay in GEC’s. To explain this, consider an example
where there are K = 2 left packets to be transmitted to
N = 100 receivers. Packet 1 is needed by R1 to R99 and packet
2 is needed by R99 and R100. Since both packets are needed
by R99, we can either send packet 1 or 2, but not both. Now
assume thatR1 to R99 are all predicted to be in good state with
probability 0.01 and R100 is predicted to be in good state with
probability 0.98, so that w1 = w2 = 0.99 according to (7).
Therefore, transmission of either packet seems to be equally
optimal. However, one can easily verify that the probability
of at least one receiver among R1 to R99 receiving packet 1
is only 1 − 0.9999 = 0.63, whereas the probability of either
R99 or R100 receiving packet 2 is 1 − 0.99 ∗ 0.02 = 0.9802.
Therefore, it makes sense to satisfy only two receivers, one of
which has a high priority due its good channel conditions.

7. Conclusions

In this paper, we provided an online optimal network coding
scheme with feedback to minimize decoding delay in each
transmission round in erasure broadcast channels. Efficient
search algorithms for the optimal network coding solution,
as well as heuristic methods were presented and their
delay and computational performance were tested in several
system scenarios. We found that adopting an optimized
approach using as much information about the channel
as possible, such as memory, leads to a significantly better
decoding delay. An interesting problem for future research is
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to relax the instantaneous decodability condition to L-step
decodability and investigate the delay-throughput tradeoff.

Appendix

Here we prove by structural induction that (a) every result
returned by Algorithm 1 is a solution of (4) and (b) the
set of solutions returned by the algorithm contains all the
optimal solutions. We note that the algorithm is designed to
discard infeasible vectors and those solutions that are clearly
suboptimal at each recursion to improve performance. The
latter is based on positiveness of the elements of w as
explained below.

The algorithm generates a binary tree. Each node rep-
resents a problem of size k and Pk, and branches into two
subproblems of size Pk−ku−ks−1 and Pk−ku−1. The former
subproblem is a result of setting xs = 1 and the latter a result
of setting xs = 0. A leaf is reached when we need to solve P1.
Without loss of generality let us assume that the variable to be
examined is the first variable (s = 1) which is followed by ks
variables (x2 to xks+1) that are constrained to x1, k−ku−ks−1
variables (xks+2 to xk−ku) that are constrained but not to x1,
and finally ku unconstrained variables xk−ku+1 to xk. This can
be easily accomplished by rearranging the columns of A.

For k = 1, it is clear that the only optimal solution
to P1 is x1 = 1 which is returned by the algorithm.
Hence, the minimal structure of the algorithm returns the
optimal solution and our claim is true for k = 1. The
induction hypothesis is that the two subproblems Pk−ku−ks−1

and Pk−ku−1 have only discarded infeasible vectors and
some suboptimal solutions. We need to prove that the same
statement applies to the parent problem Pk.

We first look at the left branch where x1 = 1. According
to the construction of the algorithm, any solution such as x1

of length k−ks−ku−1 provided by the left branch Pk−ks−ku−1

is appended by the parent problem Pk to form

x =
[

1, 0, 0, . . . , 0︸ ︷︷ ︸
ks

, x1, 1, 1, . . . , 1︸ ︷︷ ︸
ku

]
, (A.1)

where the head variable x1 is set to one, variables constrained
to x1 are set to zero and all unconstrained variables are set to
one. We first prove that x is indeed a solution and then show
that changing any element of x results in either an infeasible
or a clearly suboptimal x. We use Definitions 6–8.

(i) For

x =
[

1, 0, 0, . . . , 0︸ ︷︷ ︸
ks

, x1, 1, 1, . . . , 1︸ ︷︷ ︸
ku

]
, (A.2)

we write the condition Ax as a weighted sum of
columns of A. That is, Ax = 1a1 + A′x1 + 1ak−ku+1 +
· · · + 1ak, where A′ is a submatrix of A of size
N×(k−ks−ku−1), which is input to Pk−ks−ku−1, and
according to the induction hypothesis A′x1 ≤ 1N . But
since no variable in Pk−ku−ks−1 is constrained to x1, no
column in A′ and a1 can have ones in the same row
position. Therefore, 1a1 + A′x1 ≤ 1N .

(ii) Since xk−ku+1 to xk are unconstrained, no column
ak−ku+1 to ak can have ones in the same row position.
Hence, 1ak−ku+1 + · · · + 1ak ≤ 1N .

(iii) Using similar arguments, we can assert that no
column in A′ or a1 can have ones in the same row
positions as ak−ku+1 to ak do. Therefore, 1a1 + A′x1 +
1ak−ku+1 + · · · + 1ak ≤ 1N and x is a solution.

(iv) We now argue that variables x2 to xks+1 cannot be
anything other than zero. This directly follows from
the fact that x1 is constrained with xi for 2 ≤ i ≤
ks + 1 and hence, in any given solution they cannot be
simultaneously one.

(v) Since we have already found a solution x where the
first and last ku variables are one, we know that any
other solution such as x′ with one or more zeros
in these positions becomes suboptimal and can be
discarded. That is, wTx′ < wTx due to positiveness
of elements of w.

(vi) Finally, according to induction hypothesis, we know
that x1 cannot be changed into anything other than
what Pk−ks−ku−1 provides without making it either
infeasible or suboptimal.

In summary, for each solution x1 provided by the left
branch Pk−ks−ku−1, the constructed vector

x =
[

1, 0, 0, . . . , 0︸ ︷︷ ︸
ks

, x1, 1, 1, . . . , 1︸ ︷︷ ︸
ku

]
, (A.3)

is the only solution that is not trivially suboptimal.
Now we look at the right branch where x1 = 0. According

to the construction of the algorithm, a given solution such as
x0 of length k − ku − 1 provided by the right branch Pk−ku−1

is appended by the parent problem Pk to form

x =
[

0, x0, 1, 1, . . . , 1︸ ︷︷ ︸
ku

]
, (A.4)

where the head variable is set to zero and all unconstrained
variables are set to one. We need to show that for a given
x0 this is indeed a solution. We then show that changing
any element of x can only result in an infeasible vector, a
clearly suboptimal solution, or a duplicate solution already
provided by the left branch and hence, can be discarded. We
use Definitions 6–8.

(i) We write Ax as Ax = 0a1 +A′′x0 + 1aks+2 + · · ·+ 1ak ,
where A′′ is a submatrix of A of size N × (k − ku −
1), which is input to Pk−ku−1, and according to the
induction hypothesis A′′x0 ≤ 1N . Similar to the
arguments for the left branch, we can assert that no
column ak−ku+1 to ak corresponding to unconstrained
variables can have ones in the same row position.
Hence, 1ak−ku+1 + · · · + 1ak ≤ 1N . Furthermore, that
no column in A′′ can have ones in the same row
positions as ak−ku+1 to ak . Therefore, A′′x0+1ak−ku+1+
· · · + 1ak ≤ 1N and x is a solution.
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(ii) Since we have already found a solution x where the
last ku variables are one, we know that any other
solution such as x′ with one or more zeros in these
positions becomes suboptimal and can be discarded.

(iii) Finally, we show that any vector of the form

x′ =
[

1, x0, 1, 1, . . . , 1︸ ︷︷ ︸
ku

]
(A.5)

with a one in the first variable is either infeasible
or is already constructed based on solutions from
the left branch and hence, need not be consid-
ered twice. We consider two possibilities for x0 =
[x2, . . . , xks+1, xks+2, . . . , xk−ku]. If xi = 1 for any 2 ≤
i ≤ ks + 1, then we have already shown in the analysis
of the left branch that

x′ =
[

1, x0, 1, 1, . . . , 1︸ ︷︷ ︸
ku

]
(A.6)

is infeasible because x1 and xi are constrained to each
other. If none of x2 to xks+1 are one, then x′ will be of
the form

x′ =
[

1, 0, 0, . . . , 0, x1︸ ︷︷ ︸
x0

, 1, 1, . . . , 1︸ ︷︷ ︸
ku

]
(A.7)

for some x1. But, x1 has to be a solution of Pk−ks−ku−1.
Hence, considering vectors of the form

x′ =
[

1, 0, 0, . . . , 0, x1︸ ︷︷ ︸
x0

, 1, 1, . . . , 1︸ ︷︷ ︸
ku

]
(A.8)

does not lead to any new solution.

In summary, for each solution x0 provided by the right
branch Pk−ku−1, the constructed vector

x =
[

0, x0, 1, 1, . . . , 1︸ ︷︷ ︸
ku

]
(A.9)

is the only novel solution that is not trivially suboptimal.
By combining the arguments of left and right branch, the
induction claim is proven.
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