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Abstract—The concept of kinematic synergies is proposed to
address the dimensionality reduction problem in control and co-
ordination of the human hand. This paper develops a method for
extracting kinematic synergies from joint-angular-velocity profiles
of hand movements. Decomposition of a limited set of synergies
from numerous movements is a complex optimization problem.
This paper splits the decomposition process into two stages. The
first stage is to extract synergies from rapid movement tasks using
singular value decomposition (SVD). A bank of template functions
is then created from shifted versions of the extracted synergies.
The second stage is to find weights and onset times of the syn-
ergies based on l1 -minimization, whose solutions provide sparse
representations of hand movements using synergies.

Index Terms—Grasping, human hand, kinematic synergies,
l1 -minimization, rehabilitation, virtual reality.

I. INTRODUCTION

THE HUMAN hand has a large number of mechanical DOF,
which offers tremendous flexibility to perform skilled

finger movements. Such flexibility makes the control of the
hand very challenging. Nevertheless, the central nervous system
(CNS) seems to handle the complexity and high dimensionality
in movement control with amazing ease and absence of effort.
Researchers have been confronted by the high DOF control
problems when attempting to understand physiology behind the
movements and to mimic the CNS in various applications like
brain–computer interface (BCI), robotics, telesurgery, and neu-
roprosthesis. These problems have been addressed by different
theories on dimensionality reduction, many of which converge at
an endeavor of extracting synergies, to list a few relevant [1]–[7].

Synergies are hypothesized to address the key problems that
are posed to the CNS in control and coordination of avail-
able DOF. Though named the same, synergies have different
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meanings. In many contexts, synergies are common (shared)
spatiotemporal patterns in muscle activities or movement kine-
matics/dynamics. These patterns can be used as primitives or
building blocks, which can be combined to form complete move-
ments. In this paper, kinematic synergies observed in angular
velocity profiles of joint movements of the hand will be referred
to as hand synergies. Our definition of synergies is inspired
by d’Avella et al. [5] and can be interpreted by a convolutive-
mixture model for movement generation [8]. According to this
model (see Section II-A), commands in the form of impulse
trains originated in the CNS convolve with the pattern gener-
ators in the lower level neural and biomechanical systems to
result in the generation of hand movements. Synergies can be
viewed as impulse responses of these pattern generators.

The objective of this paper is to identify the hand synergies
through developing an effective algorithm to decompose the
joint-angular velocity profiles of the hand. Decomposition of a
limited set of synergies from numerous movements is a complex
optimization problem. One of our previous attempts [9] was to
use an iterative gradient-descent method to decompose hand
synergies following the approach of d’Avella et al. [5]. This
method simultaneously searches for the waveforms of syner-
gies and the parameters (weights and time shifts) characterizing
the recruitments of synergies in movements. However, it may
converge to local minima because of the nonconvex nature of
the optimization problem. Moreover, this method requires long
processing times, which make it inapplicable to time-critical
implementations such as BCI.

In order to reduce the computational load, we split the de-
composition process into two stages in this paper. The first
stage is to extract the waveforms of synergies from rapid move-
ment tasks using singular value decomposition (SVD) (details
given in Section II-C). A bank of template functions is then
created from shifted versions of the extracted synergies. The
second stage is to find the weights and onset times of the syn-
ergies. The optimization problem in this stage can be formu-
lated as an l1-minimization problem, which can be efficiently
solved by an interior-point method. The solutions to the l1-
minimization problem tend to select a sparse set of synergies or
shifted versions of synergies from the bank of template func-
tions constructed in the first stage. Compared with earlier meth-
ods [5], [9], the previous two-stage method greatly simplifies
the computation and favors time-critical applications. Further-
more, this method accounts for multiple recruitments of a single
synergy in a movement. Such reusability of a single synergy was
not considered in other models, to our best knowledge.

0018-9294/$26.00 © 2009 IEEE
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Fig. 1. Example of using three synergies (a) to construct joint-angular-velocity
profiles at (b) three joints.

II. METHODS

A. Model

An illustration of how synergies combine to form movement
is shown in Fig. 1. In this figure, weighted combination of three
time-varying synergies leads to the formation of a movement
profile. This can be numerically represented as

v(t) =
m∑

j=1

Kj∑

k=1

cjksj (t − tjk ) (1a)

or

vi(t) =
m∑

j=1

Kj∑

k=1

cjk sj
i (t − tjk ), i = 1, . . . , n. (1b)

In the previous equations, v(t) denotes [v1(t), . . . , vn (t)]′,
where ′ represents transpose, vi(t) (i = 1, . . . , n) represents the
angular velocity of the ith joint of the hand at time t, and n is
the total number of the considered joints of the hand; a kine-
matic synergy is denoted sj (t) ≡ [sj

1(t), . . . , s
j
n (t)]′, where j

ranges from 1 to m and m is the total number of synergies; Kj

is the number of repeats of the jth synergy used in v(t), and
cjk and tjk represent the amplitude coefficient and time shift,
respectively, of the kth repeat of the synergy sj (·). Note that in
Fig. 1, the first synergy is used twice (a shifted version of the
first synergy is used at the end of the movement). Accommo-
dating multiple recruitments of the same synergy can reduce the
DOF or dimensionality in movement control and thus reduce
computational load of the CNS.

The synergy-based movement generation can also be inter-
preted by a convolutive-mixture model proposed in [8]. The
angular velocities of finger joints can be modeled as convolu-
tive mixtures of some command signals represented by impulse
trains (see Fig. 2). A command impulse (originated in the higher
level neural system) evokes the activation of circuits in the neu-
ral system, then stimulates certain biomechanical structures, and
eventually creates a stereotyped angular change at each finger-
joint of the hand. This process can be viewed as the activation
of a synergy [see Fig. 2(a)] and is similar to the production
of impulse responses of a set of filters, each of which triggers
the movement of a specific finger joint. The filters or synergy

Fig. 2. Hypothesized model for generation of hand movement. (a) Kine-
matic synergy can be depicted as impulse responses of a set of filters. The
filters summarize the related neural–biomechanical structures that trigger finger-
joint movements in response to an impulse in the higher level neural system.
(b) Movement profile of the hand can be modeled as convolutive mixtures of
command impulses passing through the corresponding filters or synergy genera-
tors [8]. (c) Synchronous command signals (with the same onset time) in a rapid
movement.

generators characterize the related neural–biomechanical struc-
tures that are responsible for the movement of finger joints in
response to a command impulse. We assume that all the fil-
ters are linear and their impulse responses have finite durations.
Thus, a movement profile of the hand can be modeled as the su-
perposition of the impulse responses of the command impulses
passing through the corresponding filters residing in the neural
system and connected biomechanical system [see Fig. 2(b)]. A
similar idea was already studied in [10], where Tresch et al. pro-
posed that the CNS produces a range of movement through the
combination of a small number of “unit burst generators” orga-
nized within the spinal cord. Mason et al. hypothesized that the
eigenpostures or postural synergies may be represented in the
discharge of a population of hand-related motor and premotor
cortical cells [4].

Based on the earlier model, when the jth synergy genera-
tor is activated by an impulse with amplitude cj1 at time tj1
[see Fig. 2(a)], we obtain a hand movement with the following
angular-velocity profile:

v(t) = cj1sj (t − tj1).



286 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 57, NO. 2, FEBRUARY 2010

When the jth synergy generator is activated by a command
signal cj (t) containing a train of impulses with amplitudes cjk

at times tjk , k = 1, . . . , Kj , the angular-velocity profile of the
finger joints becomes

v(t) = (cj ∗ sj )(t) =
Kj∑

k=1

cjksj (t − tjk )

where ∗ represents convolution. When more than one synergies
are considered [see Fig. 2(b)], the convolutive-mixture model
can then be expressed by (1a) or (1b).

In the following, we will also consider a special type of
movements, i.e., rapid hand movements. The human subjects
performed these rapid movements to mimic the process of react-
ing to instantaneous impulses descending from the CNS. These
rapid movements minimize the reaction times and constrain the
synergies to combine instantaneously [see Fig. 2(c)]. Thus as a
special case of the current model, the angular-velocity profile of
a rapid movement can be achieved as a weighted summation of
synchronous synergies as expressed in the following equation:

v(t) =
m∑

j=1

cj0sj (t − t0) (2)

where the impulses of cj (t), j = 1, . . . , m, occur at the same
time t0 but may have different amplitude cj0 .

For different grasping tasks as described later in Section II-
B, we use superscript g (g = 1, 2, . . .) in vg (t) to distinguish
angular-velocity profiles of different movement tasks. If we shift
all vg (t) in time such that the movement onset times coincide
with t = 0, then the time of impulses, t0 , in vg (t) should be
the same for all g, but the amplitudes of impulses, denoted cg

j0 ,
may be different for different g. Therefore, for task g, (2) can
be rewritten as

vg (t) =
m∑

j=1

cg
j0s

j (t − t0) (3a)

or

vg
i (t) =

m∑

j=1

cg
j0s

j
i (t − t0), i = 1, . . . , n. (3b)

Then we can use SVD to extract the synchronous synergies.
Since sj (t − t0) has exactly the same waveform of sj (t), it is
equivalent to use sj (t − t0) (j = 1, . . . ,m) as the synergies.
From now on, we simply write sj (t − t0) as sj (t), ignoring the
t0 term.

B. Experiments

The experimental setup consisted of a right-handed Cyber-
Glove [11] equipped with 22 sensors that can measure angles at
all the finger joints. For the purpose of reducing computational
burden, in this study, we only considered ten of the sensors
that correspond to the metacarpophalangeal (MCP) and inter-
phalangeal (IP) joints of the thumb and the MCP and proximal
interphalangeal (PIP) joints of the other four fingers. These ten
joints can capture most characteristics of the hand in grasping
tasks. Note that the distal interphalangeal (DIP) joints were not

considered because the motions of the DIP and PIP joints are
highly dependent—it was observed that during natural move-
ments the flexion of the DIP joint of a finger is about two-thirds
of that of the PIP joint [12].

Ten right-hand-dominant subjects were tested in a set of be-
havioral tasks. The question of whether the handedness influ-
ences identification of synergies is not addressed in this paper.
The existence of postural synergies has already been shown ir-
respective of the handedness [13]. The influence of handedness
on kinematic synergies, though an interesting research question,
is beyond the scope of this paper.

A typical task consisted of grasping the objects of various
shapes and sizes. Objects (wooden and plastic) of different
shapes (spheres, circular discs, rectangles, pentagons, nuts, and
bolts) and different dimensions were used in the grasping tasks
and were selected based on two strategies. One was gradually
increasing sizes of similar shaped objects, and the other was
using different shapes. Start and stop times of each task were
signaled by computer-generated beeps. In each task, the subject
was in a seated position, resting his/her right hand at a corner of
a table and upon hearing the beep, grasped the object placed on
the table. At the time of the start beep hand was in rest posture,
and then the subject grasped the object and held it until the stop
beep. Between the grasps, there was enough time for the sub-
jects to avoid the affects due to fatigue on succeeding tasks. The
experiment was split into two phases, training phase and testing
phase, the difference in these two being the velocity of grasps
and types of grasps.

In the training phase, subjects were instructed to rapidly grasp
50 objects, one at a time, to mimic the process of reacting to
instantaneous impulses descending from the CNS. This was
repeated for the same 50 objects, and thus, the whole training
phase obtained 100 rapid grasps. Only these 100 rapid grasps
were used in extracting synergies.

In the testing phase, subjects were instructed to grasp the
previous 50 objects naturally (slower than the rapid grasp), and
then repeat the same again. So far, the tasks involved only grasp-
ing action. To widen the scope of applicability of the synergies,
subjects were also asked to pose 36 American Sign Language
(ASL) postures. Here subjects would start from an initial posture
and stop at one ASL posture. These postures consisted of ten
numbers (0−9) and 26 alphabets (A–Z), as shown in [14]. Note
that these movements are different from grasping tasks. This is
the testing phase which consists of 100 natural grasps and 36
ASL postural movements. The synergies derived in the training
phase were then used in the reconstruction of all movements in
the testing phase.

C. Analysis

Compared with the time-varying synergy model proposed in
our previous work [9], the current model (1a) allows repetitive
uses of synergies in a single movement. Although this brings
us closer to physiological reality, computationally the decom-
position of synergies becomes more difficult. We need to deter-
mine not only the shapes of the synergies but also their onset
times, amplitudes, and number of recruitments in the movement.
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Instead of iteratively adjusting both the shaping and timing of
the synergies simultaneously, we propose to take two steps: the
first step is to determine the morphology of synergies, and the
second step is to use the obtained synergies as templates to
decompose the hand movements.

Step 1 (Extraction of Synchronous Synergies Via SVD): Af-
ter obtaining the joint angles at various times from the rapid
grasps, angular velocities were calculated. These angular ve-
locities were filtered from noise. Only the relevant projectile
movement (about 0.45 s or 39 samples at a sampling rate of
86 Hz) of the entire angular-velocity profile was preserved and
the rest was truncated.

Next an angular-velocity matrix, denoted V , was constructed
for each subject. Angular-velocity profiles of the ten joints cor-
responding to one rapid grasp were cascaded such that each
row of the angular-velocity matrix represented one movement
in time. The matrix consisted of 100 rows and 39 × 10 = 390
columns:

V

=





v1
1 (1) · · · v1

1 (39) · · · v1
10(1) · · · v1

10(39)
...

...
...

...
...

...
...

vg
1 (1) · · · vg

1 (39) · · · vg
10(1) · · · vg

10(39)
...

...
...

...
...

...
...

v100
1 (1) · · · v100

1 (39) · · · v100
10 (1) · · · v100

10 (39)





(4)
where vg

i (t) represents the angular velocity of joint i (i =
1, . . . , 10) at time t (t = 1, . . . , 39) in the gth rapid-grasping
task (g = 1, . . . , 100).

Then, SVD [15] was performed on the angular-velocity ma-
trix V of each subject

V = UΣS (5)

where U is a 100-by-100 matrix, which has orthonormal
columns so that U ′U = I100×100 (100-by-100 identity matrix);
S is a 100-by-390 matrix, which has orthonormal rows so
that SS ′ = I100×100 ; and Σ is a 100-by-100 diagonal matrix:
diag{λ1 , λ2 , . . . , λ100} with λ1 ≥ λ2 ≥ · · · ≥ λ100 ≥ 0. Ma-
trix V can be approximated by another matrix Ṽ with reduced
rank m by replacing Σ with Σm , which contains only the m
largest singular values, i.e., λ1 , . . ., λm (the other singular val-
ues are replaced by zeros). The approximation matrix Ṽ can be
written in a more compact form

Ṽ = Um diag{λ1 , . . . , λm}Sm (6)

where Um is a 100-by-m matrix containing the first m columns
of U and Sm is a m-by-390 matrix containing the first m rows
of S. Denoting W = Um diag{λ1 , . . . , λm}, we have

V ≈ Ṽ = WSm . (7)

Then, each row of Sm is called a principal component (PC), and
W is called the weight matrix.

For easy comparison, let us name the elements of Sm in a
way similar to (4)

Sm

≡




s1

1(1) · · · s1
1(39) · · · s1

10(1) · · · s1
10(39)

...
...

...
...

...
...

...
sm

1 (1) · · · sm
1 (39) · · · sm

10(1) · · · sm
10(39)





(8)
and name the elements of W in the following way:

W =





w1
1 · · · w1

m
...

...
...

wg
1 · · · wg

m
...

...
...

w100
1 · · · w100

m




. (9)

According to (7), each row of V can be approximated by a linear
combination of the m PCs, and according to (7), (4), (8), and
(9), we have

vg
i (t) ≈

m∑

j=1

wg
j sj

i (t) (10)

for i = 1, . . . , 10, g = 1, . . . , 100, and t = 1, . . . , 39.
Comparing (10) and (3b), we can see that (10) has been writ-

ten in the form of (3b), and thus, the earlier SVD procedure has
found a solution to the synergy-extraction problem: the angular-
velocity profiles (obtained by rearranging all joints rowwise for
the PCs)





sj
1(1) · · · sj

1(39)
sj

2(1) · · · sj
2(39)

...
...

...

sj
10(1) · · · sj

10(39)




, j = 1, . . . ,m

can be viewed as a set of candidates of the synergies. According
to (7) or (10), these synergies can serve as “building blocks” to
reconstruct joint-angular-velocity profiles of hand movements.

To decide m, the number of PCs or synergies that we want to
use in reconstruction of the testing movements, we consider the
accuracy of approximation in (7) or (10). The approximation
accuracy can be measured by an index defined as

λ2
1 + λ2

2 + · · · + λ2
m

λ2
1 + λ2

2 + · · · + λ2
100

.

The larger this index is, the closer the approximation is. This
index also provides indication of the fraction of total variance
of the data matrix accounted by the PCs. To ensure satisfactory
approximation, the index should be greater than some threshold.
In this study, we used 95% as the threshold (a commonly used
threshold [15]) to determine the number of PCs or synergies
(i.e., m).

Step 2 (Decomposition of Hand Movements Via l1-
Minimization): The second step is to use the synergies obtained
from step 1) as templates to decompose the hand movements.
In the following, we consider a matrix representation of the
convolutive-mixture model. Such representation will ease the
formulation of the movement decomposition problem as an
l1-minimization problem.
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Let us assume for a subject m synergies were obtained.
The duration of the synergies is ts samples (ts = 39 in this
paper). Consider an angular-velocity profile of the subject,
{v(t), t = 1, . . . , T}, where T (T = 82 in this paper) repre-
sents the movement duration (in samples). This profile can be
rewritten as a row vector, denoted vrow , as follows:

vrow = [v1(1), . . . , v1(T ), . . . , v10(1), . . . , v10(T )].

Similarly, a synergy sj (·) can be rewritten as the following row
vector:

[sj
1(1), . . . , sj

1(ts), 0, . . . , 0, . . . , sj
10(1), . . . , sj

10(ts), 0, . . . , 0].

We add T − ts zeros after each sj
i (ts) (i = 1, . . . , 10) in the

previous vector in order to make the length of the vector the same
as that of vrow . If the synergy is shifted in time by tjk (tjk ≤
T − ts) samples, then we obtain the following row vector:

[0, . . . , 0, sj
1(1), . . . , sj

1(ts), 0, . . . , 0, . . . ,

0, . . . , 0, sj
10(1), . . . , sj

10(ts), 0, . . . , 0]

with tjk zeros added before each sj
i (1) and T − ts − tjk zeros

added after each sj
i (ts).

Then, we construct a matrix as shown in (11) (at the bottom of
this page) consisting of the row vectors of the synergies and all
their possible shifts with 1 ≤ tjk ≤ T − ts . Fig. 3 demonstrates
the construction of such a matrix.

With the previous notation, the model (1a) or (1b) can be
reexpressed as

vrow = cB (12)

where c denotes

[0, . . . , c11 , . . . , 0, . . . , c1K 1 , . . . , 0, . . . ,

cm1 , . . . , 0, . . . , cmKm
, . . . , 0]

with nonzero values cjk appearing at the (T − ts + 1)(j − 1) +
tjk th elements of c. The matrix B can be viewed as a bank or
library of template functions with each row of B as a template.
This bank can be overcomplete and contain linearly dependent
subsets. Therefore, for a given movement profile vrow and an
overcomplete bank of template functions B, there exists an
infinite number of c satisfying (12).

We hypothesize that the CNS’ strategy for dimensionality
reduction in movement control is to use a small number of

Fig. 3. Construction of the template matrix from synergies.

synergies and a small number of recruitments of these synergies
for movement generation. Therefore, the coefficient vector c in
(12) should be sparse, i.e., having a lot of zeros and only a small
number of nonzero elements. Therefore, we seek the sparsest
coefficient vector c such that cB = vrow .

Formally, we aim to solve the optimization problem

Minimize ‖ c ‖0 subject to cB = vrow (13)

where the l0 norm ‖ c ‖0 is the number of nonzeros in c. In
general, (13) is difficult to solve, because it requires enumer-
ating subsets of the bank B to find the smallest subset able to
represent vrow [16]. The complexity of such a subset search
grows exponentially with number of elements in the bank [16].

Instead of solving (13) directly, we can consider an approxi-
mation of it using l1-minimization

Minimize ‖ c ‖1 subject to cB = vrow (14)

where the l1 norm ‖ c ‖1 is the sum of the absolute values
of the elements of c. The l1-minimization problem (14) can
be considered as a kind of convexification of (13): (14) is the
closest convex optimization problem to (13) [16]. The added

B ≡





s1
1(1) · · · s1

1(ts) 0 · · · 0 · · · s1
10(1) · · · s1

10(ts) 0 · · · 0
0 s1

1(1) · · · s1
1(ts) · · · 0 · · · 0 s1

10(1) · · · s1
1(ts) · · · 0

...
. . .

. . .
. . .

. . .
... · · ·

...
. . .

. . .
. . .

. . .
...

0 · · · 0 s1
1(1) · · · s1

1(ts) · · · 0 · · · 0 s1
10(1) · · · s1

10(ts)
...

...
...

...
...

...
...

...
...

...
...

...
...

sm
1 (1) · · · sm

1 (ts) 0 · · · 0 · · · sm
10(1) · · · sm

10(ts) 0 · · · 0
0 sm

1 (1) · · · sm
1 (ts) · · · 0 · · · 0 sm

10(1) · · · sm
1 (ts) · · · 0

...
. . .

. . .
. . .

. . .
... · · ·

...
. . .

. . .
. . .

. . .
...

0 · · · 0 sm
1 (1) · · · sm

1 (ts) · · · 0 · · · 0 sm
10(1) · · · sm

10(ts)





. (11)
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Fig. 4. Fraction of variance accounted by increasing number of PCs or syner-
gies. Error bars indicate the standard deviation across subjects.

benefits of using l1-minimization include that it can produce
sparse solutions to cB = vrow [17].

Note that in (12) we ignored the measurement noise and
unmodeled nonlinearity. A more realistic form of (12) should
be

vrow = cB + n (15)

where n is a residue due to noise or inaccuracy of the model.
Because of this residue, we can no longer force vrow = cB
in (14). Therefore, we eliminate this constraint and add to the
cost function a penalty term that prescribes a high cost to those
values of c deviating from this constraint; we reformulate (14)
into the following optimization problem:

Minimize ‖ c ‖1 +
1
λ
‖ cB − vrow ‖2

2 (16)

where ‖ · ‖2 represents the l2 norm or Euclidean norm of a
vector and λ is a regulation parameter. In this study, we set
λ = 0.01λmax , where λmax denotes the l∞ norm of 2vrowB′—
see [18] for a detailed discussion on the determination of λ. Our
choice of the regulation parameter has been able to achieve a
reasonable balance between sparse solutions and good approxi-
mations to vrow = cB. This optimization problem, (16), can be
efficiently solved by modern interior-point methods [18].

III. RESULTS

A. Extraction of Synchronous Synergies

In the extraction of synchronous synergies (step 1), for all the
ten subjects, on average the first PC or synergy accounted for
approximately 80% of the total variance. The first and second
PCs together accounted for about 89% of the total variance. In
order to help determine how many PCs would suffice to account
for the variance of the entire training data, a PC-variation chart
is plotted in Fig. 4. Error bars indicate standard deviation across
the ten subjects. For most of the subjects the first six PCs or
synergies accounted for more than 95% of the total variance.
Beyond six PCs there was not much appreciable contribution of
higher order PCs in the total variance.

Angular-velocity profiles of six kinematic synergies obtained
for subject 1 are depicted in Fig. 5. Across the rows are the ten

Fig. 5. Six kinematic synergies obtained for subject 1. Each synergy is about
0.45 s in duration (39 samples at 86 Hz). Abbreviations: T, thumb; I, index fin-
ger; M, middle finger; R, ring finger; P, pinky finger; MCP, metacarpophalangeal
joint; IP, interphalangeal joint; PIP, proximal IP joint.

joints corresponding to the five fingers (two for each). These
synergies show that peak velocities of the grasp occurred at the
middle of the task. This reflects acceleration at the beginning
of the task, which was generally open loop. It was followed
by deceleration caused due to error feedback from sensory and
motor systems while reaching the precise position of object, and
finally closing of the grasp.

Given the initial posture, the temporal variation of postures
along each kinematic synergy can be calculated via integration.
Thus, temporal postural synergies were obtained from the ear-
lier kinematic synergies. A set of six such temporal postural
synergies obtained from subject 1 are depicted in Fig. 6(a). In
the figure, four postures are snapshots at 25%, 50%, 75%, and
100% of the task times, respectively. End posture of each syn-
ergy indicates the contribution of synergy in a particular type of
grasp. End postures of the six synergies for the remaining nine
subjects are shown in Fig. 6(b). As all the subjects performed
tasks on the same training objects, there were similarities in
synergies adapted, among the subjects.

B. Reconstruction of Hand Movements Via l1-Minimization

By linearly combining the extracted synergies, for each sub-
ject 100 natural (slower than rapid) grasping tasks and 36
ASL gesturing tasks which comprise the testing data, were
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Fig. 6. (a) Postural synergies of subject 1. Each row corresponds to the tempo-
ral profile of one synergy. Each posture is a snapshot taken at discrete time steps
(as indicated at the bottom of the figure) of the task. Synergies are arranged in
the order of their significance with the first row (first synergy) being the most
significant to the last row (last synergy) being the least significant. (b) Postural
synergies of subjects 2–10. Each row corresponds to the end postures of six
different synergies for one subject in the decreasing order of their significance
from left to right.

Fig. 7. Joint-angular-velocity profiles (in black) of a (a) natural grasping task
and an (b) ASL gesturing task are reconstructed (in red) by using six synergies
for subject 1. Postural snapshots are taken at discrete time steps for the previous
natural grasp and reconstruction (c) and for the ASL gesture and reconstruction
(d). See Fig. 5 for abbreviations of finger joints.

reconstructed. Examples of good reconstructions for natural
grasping and ASL gesturing tasks are shown in the Fig. 7. As
is clearly evident, the reconstructions were reasonably accurate
using six synergies.

The reconstruction errors were calculated for each subject
and each task for various numbers of synergies (PCs) by

∑n
i=1

∑T
t=1 [vg

i (t) − v̂g
i (t)]2

∑n
i=1

∑T
t=1 vg

i (t)2

where v̂g
i (t) (t = 1, . . . , T ) is the angular-velocity profile of task

g and finger joint i (i = 1, . . . , n) reconstructed using a given
number of synergies. Note that the previous reconstruction error
is not a direct measure of the approximation error (quadratic dif-
ference between the original and reconstructed angular-velocity
profiles) but expressed as a ratio between this approximation er-
ror and the size (also in quadratic sense) of the original angular-
velocity profiles. The calculated reconstruction errors are shown
in Fig. 8. The error bars indicate standard deviation across sub-
jects averaged across 100 testing tasks for natural grasping and
36 tasks for ASL gesturing. The number of PCs versus recon-
struction error plot also helps in determining the number of PCs.
Although it is up to one’s discretion about how many PCs can
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Fig. 8. Reconstruction error. The graphs illustrate the gradual decrease in the
reconstruction error while recruiting synergies. Error bars indicate the stan-
dard deviation across subjects and tasks. (a) Reconstruction of natural grasps.
(b) Reconstruction of ASL gestures.

be considered to account for appreciable reconstruction, in our
case six synergies proved sufficient for reconstruction of the
testing tasks. As a general observation, the reconstruction error
of ASL tasks was greater than that of grasping tasks implying
behavior specific nature of the synergies.

Fig. 9 shows the utilization of six synergies in reconstruction
of a natural grasping task and an ASL gesturing task. These
two tasks correspond to the tasks shown in Fig. 7(a) and (b), re-
spectively. Heights of stems indicate the weights, and locations
of stems indicate the shifts of particular synergy used in recon-
struction. Synergies less than 10% of the maximum weight were
not included. Discarding such synergies did not substantially al-
ter the reconstruction errors. Miniplots in Fig. 9(a) and (b) show
the shifted versions of synergies corresponding to locations of
stems. The recruitment time indicates the amount of right shift
of the synergy.

The previous results indicate that l1-minimization was ef-
fective in the optimal selection of synergies minimizing the
reconstruction error and, at the same time, using sparsest num-
ber of desirable synergies. In Fig. 9(a), sparsely selected shifted
versions of synergies (11 selected out of a total of 264 shifted
synergies) were used in reconstruction of the natural grasping
task. This indicates that the synergies obtained during rapid tasks
were able to reconstruct natural or slower movements. In con-
trast, in Fig. 9(b), the selected synergies, though still sparsely
distributed (14 selected out of the 264 shifted synergies), were
more than those used in the natural grasping task. Note that
gesturing ASL postures is different in behavior when compared
to grasping. Fig. 10(a) and (b) shows for subject 1 the num-
bers of synergy recruitments in reconstruction of 100 natural
grasping tasks and 36 ASL gesturing tasks. Also in Fig. 10(c),
a comparison is drawn between the numbers of recruitments
of the six synergies (averaged across tasks—error bars indicat-
ing the standard deviation) in grasping tasks and ASL tasks for
subject 1. It is observed that average recruitment of synergies
is more for ASL tasks than for grasping tasks. Thus, the results
indicate the behavior specific nature of the obtained synergies.
This is corroborated in Fig. 11, where a comparison of synergy
recruitments (averaged across tasks) between grasping tasks and
ASL tasks is shown for subjects 2–10.

Fig. 9. Utilization of six synergies in reconstruction of a (a) natural grasping
task [same as in Fig. 7(a)] and an (b) ASL gesturing task [same as in Fig. 7(b)].
Heights and locations of the stems indicate the weights and shifts, respectively,
of particular synergies used in the reconstruction. Previous miniplots indicate
the shifted versions of synergies corresponding to locations of stems. The re-
cruitment time indicates the amount of right shift of the synergy. Sparseness of
selection by l1 -minimization and multiple recruitments of synergies are evident
in the plots.

IV. DISCUSSION

A. Usage of Linear Convolutive-Mixture Model

In this paper, kinematic synergies were obtained based on a
convolutive-mixture model for generation of hand movements.
The model was then realized using l1-minimization in recruit-
ment of synergies. One might question the importance of these
higher level models (including those input–output or black box
models without touching details of internal system operations)
as there have been a lot of advances in neuroanatomy and neuro-
physiology that can furnish the detailed functionality at neural
and muscular levels. Growing importance of virtual reality and
BCI, in the field of prosthetics and rehabilitation, is in need of
similar higher level and computationally simpler models. For
instance, single neuron recordings from monkey’s motor cortex
have been used in decoding arm movements [19]. In such exper-
iments, where investigators record the central neural sources and
the peripheral end postures of arms, the application of input–
output models will play an important role. Although complex
models have been proved helpful in offline analysis, they are
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Fig. 10. Numbers of synergy recruitments in reconstruction of (a) 100 natural
grasping tasks and (b) 36 ASL gesturing tasks for subject 1. Red arrows in
(a) and (b) indicate the 74th grasping task [same as in Fig. 9(a)] and the 19th
ASL task [same as in Fig. 9(b)], respectively. (c) Comparison of the numbers of
recruitments of the six synergies (averaged across tasks—error bars indicating
the standard deviation) in grasping tasks and ASL tasks.

Fig. 11. Comparison of synergy recruitments (averaged across tasks) in grasp-
ing tasks and ASL tasks for subjects 2−10.

limited in online implementation as they demand lots of pro-
cessing time. Computationally efficient models are necessary
for BCI applications in real time.

The convolutive-mixture model offers more than curve fitting.
The model expresses joint velocity profiles of hand as a weighted
linear combination of time-varying movement modules or prim-
itives. These movement modules when visualized have physi-
ological significance [see the next section, and Fig. 6(a) and
(b)]. Eigenpostures or postural synergies were reported to have
physiological and anatomical significance by Mason et al. [4].
This implies that the model is not the same as rudimentary curve
fitting with random movements.

The linear nature of the current model may be questioned as
the neuromuscular system is nonlinear. However, considering a
linear approximation might give useful insight of the system.
Linear models have been employed by other studies. Humphrey
used a linear systems model to relate neuronal firing rates to
muscular torque [20]. Averbeck et al. [21] recorded neural ac-
tivity from ensembles of neurons in areas of parietal cortex; in
that study the linear model of hand kinematics outperformed
the nonlinear model suggesting a reasonably linear relation be-
tween the neural activity and the hand velocity. A linear model
by Moran and Schwartz [22] described a large portion of the
time-varying velocity and direction in motor cortical activity.
Moreover, the motor behavior of vertebrates has been approxi-
mated by linear combination of movement primitives [1], [23].
Following these studies, we consider using linear combination
of synergies in solving how the CNS simplifies the problem of
managing redundant DOFs of peripheral apparatus.

B. Velocity Profiles Versus Acceleration Profiles

Our model decomposed kinematic synergies in angular ve-
locity profiles of joint angles. This study cannot answer whether
neural signals encode velocity or acceleration—the question it-
self is debated in neurophysiology. Our model was motivated by
the following studies. Moran and Schwartz [22] found that the
time-varying speed of movement is represented in the cortical
activity. Averbeck et al. [21] used linear models to successfully
predict the hand velocity from the neural activities. Reports
based on analyses of both single neurons and neural assemblies
by Georgopoulos et al. [24] have provided evidence that neural
populations in the primary motor cortex code movement direc-
tion and velocity. Thoroughman and Shadmehr [3] and Imamizu
et al. [25] found that many Purkinje cells in the cerebellum si-
multaneously encode the direction and speed components of
velocity. Also, during reaching movements firing rates of 80%
of arm related mossy fibers correlated with joint angle, 33%
correlated with velocity, and only a few were related to acceler-
ation [26]. However, our model is not limited to velocity profiles.
Position profiles were used in a similar model by us in [8]. The
model can also be extended to acceleration profiles.

C. Time Scaling of Synergies

In this study time-shifted versions of synergies derived from
rapid movements were used in reconstructing natural (slower)
movements and ASL gestures. Intuitively, reconstructions will
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Fig. 12. Reconstruction of a dilated velocity profile. (a) Original velocity
profile, which is used as template function in the reconstruction. (b) Dilated
version of (a) (in black) is reconstructed (in red) from (a). (c) Utilization of (a)
in reconstruction, where heights and locations of the stems indicate the weights
and shifts, respectively, of the template function.

cost less number of synergies if time scaling, or in other words,
dilation of synergies is allowed. A test case is illustrated in
Fig. 12. A rapid joint velocity profile in Fig. 12(a) was used to
reconstruct a dilated version of it, as shown in Fig.12(b). Re-
cruitments of rapid joint velocity profile are shown in Fig. 12(c).
From Fig. 12(c), it is observed that adjacent recruitments occur
when the profile to be reconstructed is dilated. In Fig. 9(a) and
(b), recruitments of synergies in reconstruction of the natural
grasping and ASL gesturing tasks for subject 1 are shown. Ad-
jacent recruitments can be seen for the third synergy in the
grasping task and for the second, third, and fifth synergies in
the ASL task. There exists neurophysiological evidence that the
putamen of the basal ganglia in particular deals with scaling the
movements [27]. Learned movement patterns are preserved at
different speeds which is made possible by scaling of move-
ment patterns. Introducing dilation for synergies might reduce
the number of synergies recruited in reconstructions. But this
would increase the burden on selection of synergies as the bank
of synergies should not only accommodate shifted versions of
synergies but also include dilated versions of synergies and their
shifted versions. Although introducing dilation might improve
reconstruction error and utilization of synergies, it might hin-
der the performance of the algorithm in real time. Performance
tradeoffs in such conditions are to be analyzed. We view these
as a future scope.

D. Insights Obtained From Temporal Postural Synergies

The temporal postural synergies were calculated by integrat-
ing the kinematic synergies. In Fig. 6(a), for the third, fifth,
and sixth synergies in this subject, index finger acts as a mas-
ter in leading the movement and rest of the fingers follow it as
slaves. This concept has been observed previously and called en-
slaving [28]. Implementing such observations of biomechanical
constraints in prosthetic hands can greatly reduce the complex-
ity involved in computations. From the end postures in Fig. 6(a)

and (b), it is clearly evident that the synergies are all unique. As
a general trend across subjects, the synergies corresponded to
flexion, extension, and pinch. This was supported in the recruit-
ments of synergies in Fig. 10(a). The first grasping task, which
is a full hand grasp of a sphere recruited first synergy more often
than others. Flexion and extension synergies were recruited si-
multaneously to achieve intermediate closures of aperture. Also,
the 74th grasping task [see Fig. 7(a)] recruited the pinch (the
third) synergy as seen in Fig. 10(a) and is graphically verified as
a pinch grasp in Fig. 7(c). In all of these synergies, it is clearly
observed, as the size of the grasping object decreases the flexion
at metacarpal joints increases. In the first synergy for subject 1,
the metacarpal flexion was dominant when compared to other
synergies and got lesser and lesser as we moved down. Also, for
major movements only MCP joints were involved. For finer and
precise movements after major movements, proximal and distal
joints were recruited, respectively. This can be witnessed in the
third synergy for subject 1, suggesting hierarchical recruitment
of joints.

E. Multiple Recruitments of Synergies

In this paper, we have introduced the concept of multiple
recruitments of synergies. There have been similar models of
combination of movement primitives but none accommodated
the possibility of multiple recruitments of synergies. Latash
et al. [29] hypothesized that there are two types of libraries
under which synergies are grouped—one library for day-to-day
actions and the other library for learning novel actions—and that
these synergies are borrowed as necessitated by environmental
conditions. The current model facilitates the previous hypoth-
esis. Here, the same synergy can be borrowed from one of the
libraries more than once at different times with different am-
plitudes for execution of movement. A typical movement was
expressed as a linear combination of a primary movement and
delayed submovement in [30]. It was observed that the charac-
teristics of shape and symmetry of the primary movement were
similar to submovement. This implies that the same mechanism
can be accomplished by a single synergy used multiple times
avoiding use of two different primitives (one for primary and
other for submovement).

F. Role of Synergies in Rehabilitation, Robotics, and BCI

This paper presents synergies not only as a hypothetical con-
cept but with potential practical applications. Biologically in-
spired synergies are being used in stroke rehabilitation and in
regaining lost motor functions in movement disorders. The con-
cept of muscle synergies has been extended to examine the
electromyogram (EMG) patterns in patients with stroke [31].
This study examines whether the motor disturbances following
a stroke are the result of: 1) missing one or more synergies; 2) a
failure of supraspinal structures to provide the correct coefficient
of activation to one or more synergies; 3) a failure to select the
proper synergies to accomplish a specific goal; or 4) a change
in the balance of individual muscles within a given synergy.
Bimanual coordination is damaged in brain lesions and neuro-
logical disorders. Study of the eigenpostures in normal subjects
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during bimanual coordination and comparing them with biman-
ual eigenpostures of patients might have a potential contribution
for rehabilitation [13]. By training, if such lacking eigenpostures
are learned by patients, it might be possible to bring back the
missing bimanual coordination. It is expected that synergies will
provide immense help in future rehabilitation and diagnosis of
movement disorders [8].

Added to growing neurophysiological attention, synergies are
viewed to be crucial design elements in robotics. Based on the
principle that vertebrates recruit kinematic synergies managing
several joints, a control strategy for the balance of humanoid
robots has been developed by Hauser et al. [32]. This control
strategy reduces computational complexity while operating in
real time following a biological framework that the CNS uses
to handle numerous degrees of freedom. Biologically inspired
synergies have also been considered in the study of artificial
hands [33]. Moreover, synergies that facilitate data reduction
and dimensionality reduction will soon find place in telesurgery
and telerobotics [9].

BCI has been a promising technology for neural prosthesis.
Despite the progress, however, BCI is still limited by the avail-
able number of independent control signals that can be extracted
from human or primate brain. These pose limitations for brain
control of multidimensional prosthesis like robotic hands and
arms. Our study on synergies can be extended to address the
earlier limitation. For example, assuming that only three inde-
pendent control signals are available to us, we can use these
three signals to command control in the low-dimensional space
of synergies rather than in the high-dimensional space of joint
movements (whose DOF can be more than 10 for a robotic
hand). As shown in this paper, a small set of synergies suffices
to reproduce a wide range of hand movements with sufficient
flexibility. The authors are currently working on real-time con-
trol of virtual hand using synergies.

V. CONCLUSION

Based on a linear convolutive-mixture model for hand move-
ment generation, this paper developed a method for decom-
posing joint-angular-velocity profiles of hand movements into
kinematic synergies. The method split the decomposition pro-
cess into two stages: 1) extracting the waveforms of syner-
gies from rapid movement tasks using SVD, and 2) finding the
weights and onset times of synergies based on l1-minimization.
The kinematic synergies were hypothesized to serve as build-
ing blocks in movement generation and provide solutions to
the dimensionality reduction in control and coordination of the
hand. The modular organization of synergies may be due to in-
teractions between the higher level neural system (e.g., motor
cortex), lower level neural system (e.g., spinal cord), and biome-
chanical structure. However, the complex interactions between
these systems remain mysterious in the field of neurophysiology
even today. The model proposed here is not limited to kinematic
or postural synergies of any limb. It can be readily extended to
muscular synergies. It can also be extended to include dynamics
such as joint torques and forces to be useful in the design of

actuator for robotic or prosthetic hands. We view these as our
future scope.
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