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Abstract: In this paper, we aim to consider compressed 

sensing (CS) system over the Galois fields (GF). Sensing 

bounds based on the classical Gilbert Varshamov bounds 

are discussed. We obtain the spark of sensing matrices 

randomly generated in GF which can be used to give 

another perspective on the sensing bounds. A signal 

recovery algorithm based on posterior distribution updates 

is introduced. We anticipate this CS framework over GF 

will be useful for digital compressed sensing systems. 

 
Keywords: Compressed Sensing, Gilbert Varshamov bounds, 

Syndrome Decoding, Minimum distance, MAP algorithms.  

I. Introduction 

Compressed sensing has provided a new signal 

acquisition framework with which one can take samples 

of a given signal of interest while compressing it 

simultaneously. This compressed sample taking is done 

via linear projection of the given signal against a 

prescribed set of kernels, i.e., one linearly projected 

sample per kernel. In its standard form, this compressed 

sensing operation is developed over the field of real 

numbers. In this presentation, we are interested in the 

development of compressed sensing over the finite fields. 

Fundamental limits on sensing measurement 

requirements as we vary the size of the finite field will be 

discussed. When compressed sensing is put to work in 

digital systems, the signals and the kernels should be 

represented in a finite precision manner anyhow; thus, 

the study of compressed sensing over finite fields should 

be of interest for implementation point of view. We aim 

to present our understanding on compressive sensing via 

Gilbert Varshamov (GV) bounds, new results on average 

spark calculation results, and proposal of the a 

posteriori (AP) signal recovery algorithm, and provide 

discussion on how they are related with each other. 

We make note of existence of a few prior studies 

relevant to the content of this paper. Draper and 

Malekpour [2] have studied compressed sensing over 

finite fields and obtained fundamental bounds on sensing 

requirements using the error exponent analysis 

techniques of the channel coding theory. Ardestanizadeh, 

Cheraghchi, and Shokrollahi [6] have studied the 

question how much bit precision on the compressive 

measurements will be needed for good recovery of sparse 

signals of a finite size alphabet, say q . They assumed 

the use of Vandermonde frames [5] and obtained that the 

precision requirement is 2

2( log log )N

K
O K q K . Zhang 

and Pfister [4] discussed the connection between 

compressed sensing and error correction codes, and 

proposed the use of low density parity check matrices 

over GF(q) and a verification based iterative decoding 

schemes.  

II.  Compressed Sensing via Syndrome Decoding  

In this section, we aim to draw analogy between parity 

checking in coding theory and the under-determined 

equation in compressed sensing by recasting the basic 

compressed sensing equation  

 y F x  (1) 

as a coding theoretic parity-checking equation. Treat y as 

an 1M   syndrome vector, F as an M N  parity 

check matrix, M N , and x as an 1N   K-sparse error 

vector. Note that this model is valid for real, complex, 

and finite fields GF(q). Finite fields can be useful for 

implementing the CS system in digital forms, with a 

finite precision representation, say 
2log ( )q  bit precision, 

done to the coefficients of the elements of the sensing 

matrices and signals.  

We assume that K t  where t means the number 

of errors a given code defined by an F can correct. Let U 

= N – M. The rate R of the code is U/N. We can then find 

the N U generator matrix G from F using the 

relationship that FG = 0 (e.g. using Gaussian elimination 

on F) where 0 denotes the M U all zero matrix. Let  be 

the codebook—collection of all codewords. Each 1N   

codeword c can be generated by multiplying an arbitrary 

1U  message vector m to the generator matrix, i.e.,

c Gm . We assume c is sent over a noisy channel where 

the noisy channel introduces an additive random error 

pattern x to c, and the output of the channel is z = c + x.  

In this setting, parity checking on z shall return the 

zero syndrome, i.e.,  y F z F c x F x    , unless 

there is zero errors or the error pattern x is a codeword, 

i.e. x ; otherwise it will give a non-zero syndrome 

vector. The code is linear and hence it contains the 

all-zero codeword. The error correction capability of this 

code  can be parameterized by its minimum distance 

dmin. The minimum distance dmin is the minimum 

Compressed Sensing over Galois Fields: Sensing 

Bounds and Recovery Algorithms  
 

Heung-No Lee, JinTaek Seong, and Suje Lee 

Gwangju Inst. of Sci. and Tech.(GIST), Korea 

heungno@gist.ac.kr 

 

 

 

 

 

제15회 신호처리합동학술대회  
저자1 *  and  저자2**  

* **강원대학교 제어계측공학과, 춘천시 효자2동 192-1 

*author1@server.ac.kr and **author2@server.ac.kr 

mailto:author1@server.ac.kr
mailto:author2@server.ac.kr


2011年度 第 24回 信號處理合同學術大會論文集 第 24卷 1號 

 

 
- 2 - 

Hamming weight (the number of non-zero coefficients) 

of any codeword, since the code is linear, i.e.,    

 
min

0,

min ( )H
c c

d w c
 

. (2) 

But a codeword is a word that satisfies the parity check 

equation, i.e., 0F x  . From this observation, we may 

also write that 
mind  is also the smallest number d that 

there exists a set of d columns of matrix F  that are 

linearly dependent; this definition is the same as that of 

the spark in compressed sensing. This discussion will 

continue further in Section III. From the coding theory, 

we note that, a code defined by its parity check matrix F 

with dmin can correct all error patterns with weight 

smaller or equal to t, and t is given by 

 min min1

2 2

d d
t

   
. (3)  

Our discussion up to (3) implies that all K-sparse 

error vectors x can be uniquely determined from the 

syndrome equation y = F x as long as K t . Notice that 

this is a deterministic guarantee, rather than probabilistic, 

on the recovery of the sparse vectors. Such a code or a 

matrix F with dmin can be constructed. Namely, we can 

construct an F so that any collection of less than or equal 

to dmin – 1 columns of F is linearly independent. This 

means that dmin - 1 can be as large as the rank of F which 

is further upper bounded by M since M < N.  Hence, we 

have the Singleton bound, 

 
min 1d M  . (4) 

Those codes that achieve the Singleton bound with 

equality are called maximum distance separable codes.  

They include the repetition codes and Reed Solomon (RS) 

codes. Real- or complex-valued RS code like sensing 

matrix F with dmin can also be found. The examples are 

given in [5],[7]. From (4), we can obtain min 1

2 2 2

dM

N N N
  , 

by dividing both sides by 2N. By defining the 

compression ratio M
comp N

  and the error correction 

ratio (ECR) t
t N

 , we have  

 2comp t  . (5) 

We call (5) the CS Singleton bound. Any x whose 

sparsity ratio K
sp N

  is smaller than or equal to ECR 

(i.e., K t ), can be uniquely determined from syndrome 

y. Fig. 1 shows the CS Singleton bound.   

On the other hand, the Gilbert-Varshamov bound 

tells us the existence of a t error correcting linear block 

code. The rate R of such a code is given by, 

   1 ( )qR H    (6) 

where mind

N
 , N M

N
R   and ( )qH   is the q-ary 

entropy function. It is the lower bound on the rate 

required to have the relative minimum distance  . Eq. 

(6) can then be written as, 

 (2 )comp q spH                 (7) 

for [0,0.5]sp  . 

It is interesting to note that (2 )q spH   approaches 

the line with slope 2 as q increases. The required code 

rate can be as large as what this lower bound predicts for 

a long block length. It is then an upper bound on the 

redundancy. The number of check equations required for 

a sensing matrix to have the relative minimum distance is 

at most what this bound can tell us. One needs at most 

this much redundancy to be able to find at least a single 

sensing matrix with the relative minimum distance  . It 

can be shown that an ensemble of parity check (PC) 

codes, say ( , , , )s cN d d q block codes of length N, check 

degree 
cd , signal element degree 

sd , and GF(q), 

approach the GV bound from above as the degrees are 

increased. This is from our observation. Thus, GV 

bounds in fact work as a benchmark, instead of as an 

upper bound. The check degree and the signal element 

degree indicate the number of non-zero entries in any 

row of a sensing matrix and the number of non-zero 

entries in any column respectively. We focus on the cases 

in this paper that the degrees are fixed for each row and 

column. Thus, for a compressed sensing system with a 

large field GF( )q , the sufficient condition is close to  

 2comp sp  . (8) 

This means that if 2comp sp  , a good sensing matrix 

exists and can be found randomly. As the dimension of 

the system approaches infinity, a randomly selected code 

out of an ensemble will behave as good as what these 

bounds can predict, with probability getting close to 1. 

 

 

Figure 1 : Gilbert-Varshamov Compressed Sensing Bounds for 

Sensing Matrices over GF(q) and The Singleton Bound 
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III. The spark of Sensing Matrix over GF(q) 

In this section, we aim to find the ensemble average 

sparks of GF(q) LDPC codes. The spark of an 

M N  matrix is the smallest number S such that there 

exists a set of S columns of the matrix that are linearly 

dependent. One should note that spark of a sensing 

matrix and dmin for a parity check matrix are exactly the 

same. In fact, they are two different names for the same 

thing. From the Singleton bound, then, 1S M  .  

Finding the spark of a sensing matrix is of paramount 

importance in compressed sensing because it can provide 

a limit on how sparse a signal has to be for guaranteed 

unique recovery. For example, if the spark of a certain 

M N sensing matrix F is given to be S, then any signal 

x with sparsity K can be uniquely determined from the 

combinatorial L0 minimization routine, as long as 

2

SK  . That is, 
2

SK   is the sufficient condition for 

the L0 norm minimization solution, subject to y = Fx 

constraint, to return the unique solution. Otherwise, say 

2
1SK   for example, the solution is not unique, which 

can be easily proved. The L0 minimization is known as 

an NP-hard problem since it is combinatorial. The 

sufficient condition, thus, provides a meaningful 

benchmark on the required sparsity.  

Finding the spark of a matrix is thus desired, but it 

requires a combinatorial search and hence is an NP-hard 

problem by itself. In this paper, we find the average 

spark of an ensemble of sensing matrices. For a system 

with a large block length N, the average spark of an 

ensemble of sensing matrices is close to the spark of an 

individual sensing matrix randomly selected out of the 

ensemble. That is, it can be shown that the spark of an 

individual sensing matrix concentrates around the 

ensemble averaged spark.  

 

Theorem 1 : The average spark of an ensemble of 

GF(q) random sensing matrices, i.e., ( , , , )s cN d d q , is 

given by  

 



   
  

( , , , ) min {2, , }   

                      1 ln( 1) ln 0d

N
d

s c

N

v s

N d d q d N

d d q d

 

   

spark

 (9) 

where the variable 
dN  is a function of the check degree

cd  and it is given by 

  = Coeff ( ) c

N

d

d dN p x
 
 
 
 

 (10) 

where
0

( )
cd

i

i

i

p x p x


 , 
i

cd

i
p , for even i , 0

i
p  

for odd i, 0 ci d  ,  Coeffd  denotes the coefficient of 

the term
dx in the expansion of the argument polynomial, 

and we assume 
c

N
d

 is integer. 

 

IV. 

 

Signal Detection Algorithms 

In this section, we aim to discuss how to detect the sparse 

signal x measured from a sensing matrix F  selected 

randomly out of an ensemble ( , , , )s cN d d q  [3].  

The sparse signal values can be obtained by solving 

the following problem: 

 
GF( )

: argmax ( | , )   s.t.  = t t t
qt

x P x y C y F x





   (11) 

where 0,1, , 1t N  and the symbol “C” in the 

conditioning compartment means satisfaction of all the M 

“check” relations. The function ( | , )t tP x y C  is the 

posterior distribution, given the observation, and after 

enforcing the check relations. This posterior distribution 

is updated for each element of the signal x. 

 

Theorem 2: The aposteriori probability (AP) that the 

first value, 0 0 GF( )x q  , given the observation y and 

enforcing the checks (checks should be satisfied), is 

given by 

 

 

 

 0 , 0,0

1 ,

|
P( | , )

|

| , , ( | )

t

t

dc

i t t pp
xp t p

P x y
x y C

P C y

P C x x y P x y








  

 
 

  


 (12) 

We apply the same procedure and obtain the AP 

result for each element of x. A single round of calculation 

of the posterior distribution  P( | , ) :t t tx C  y
 

for each and every element, 0,1, , 1t N  , constitutes 

a single iteration. In a single iteration, therefore, all N 

different posterior distributions are updated once. We 

repeat this iteration multiple times. Why do we need 

iterations? Why can’t we be satisfied with a single 

iteration? This has to do with our choice on the density, 

controlled by the two degrees, of the sensing matrix. 

Choosing a sparse sensing matrix (small degrees) would 

be desired because when the matrix is sparse, the 

iterative algorithm works well, a lesson learned from the 

experience on the low density parity check codes. In a 

single iteration, only local information is gathered 

because of sparse connections. Through multiple 

iterations, it is hoped that and thus the algorithm is only 

sub-optimal, the entire information from observation y 

available via enforcing checking relations prescribed in 

the sparse matrix can be gathered. An enough number of 

iterations should be repeated before convergence can be 

seen on the value of each signal element.  

It can be shown that the check posterior results, i.e.,  
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 
,

0 , ,| , , ( | )
p

t p

i t t p t p

x

P C x x y P x y  in (12), can be  

obtained from a series of convolution operations of the 

probability distribution functions of the signal variables 

connected to the pertinent check 
pi

C . For example, 

suppose 
tx  is connected via its first check to x3 and x6, 

then it is the convolution of the two distributions, one for 

the signal element 
3x and the other for

6x . The 

convolution operations can be conveniently done in the 

frequency domain using FFT and IFFT. 

In [3], a couple of ideas on iterations based on 

identifying the support set detection are also included. 

One of them is aiming to obtain the posterior distribution 

of the state 
tS  of t -th signal element. A state value 

tS  

is binary, 1 for the non-zero value of 
tx , and 0 for the 

zero values. Then, the state posterior either 

 Pr 1| ,tS y C  and  Pr 0 | ,tS y C  can be updated 

in each iteration. The log ratio of the posterior 

probabilities on the state is maintained in each iteration. 

For the state posterior calculation, the prior information 

on signal sparseness is utilized. When the log ratio is 

greater than 0, then the pertinent state is more like to be 1; 

otherwise it is zero. At the end of each iteration, we can 

threshold the log ratios, determine the indices of 

non-zero states, and form an estimate of the support set. 

Once a support set estimate of size K is given, one can 

then attempt to solve the over-determined problem (by 

collecting only those columns of matrix F and those 

elements of x corresponding to the non-zero indices) and 

find a solution x . If this one is found to satisfy the 

observation, i.e., y F x , i.e., it is declared to be the 

solution; then the iteration can be put to stop.      

 

Figure 2 : Simulation results of a (N=1200, ds = 3, dc = 6) code 

with different field sizes, compared with the Gilbert-Varshamov 

bounds indicated by lines. 

V. Simulation Results 

Figure 2 shows the Monte Carlo simulation results 

of our MAP algorithms. The block length is N = 1200. 

The number of observation is M = 600; the maximum 

number of iterations is 20. For each sensing matrix, 

selected randomly out of  1200, 3, 6,s cN d d q  

ensemble, large enough signal vectors with sparsity K are 

simulated with an aim to obtain at least 1000 errors for 

each simulation point. In addition, the same procedure is 

repeated over for 50 matrix selections, and thus a little bit 

of averaging is also done for matrix selections within a 

particular ensemble. Also, indicated in the figure are the 

sparsities obtained from the Gilbert-Varshamov bounds 

for q=2, 4, 16 and 256 and for (3, 6) codes. They are 

indicated as the lines, at 65, 120, 175, and 230, 

respectively in Figure 2. In addition, Table I shows the 

sparsity of various rate 1/2 matrices. 

Table 1: The spark S and relative spark S/N (inside 

the parenthesis) obtained from Theorem 1 for (N=1200, 

dv, dc) ensembles and GF(q). The rate M/N is 1/2.  

 

We note that the sparsity limits obtained from simulation 

are much larger. Namely, they are 70, 130, 240, and 325 

obtained from simulation. The Singleton bound at 

N=1200 gives a spark of 600 for rate 1/2 code.  

 

VI. Conclusion 

We note that all three measures, the sparsity 

obtained from GV bounds, the ensemble average sparsity 

obtained from Theorem 1, and the simulation results of 

the iterative recovery algorithm, agree to the observation 

that as the field size q increases, a given sensing matrix 

of rate 1/2 can have large spark and thus can be used to 

detect the signals with a larger sparsity K. Simulation 

results show that the iterative algorithm can far surpass 

the predictions made by the average sparks as well as 

by the GV bounds, which is very interesting, and calls for 

further study. We also note that as the field size is 

increased, the compressed sensing bound is 2M K for 

unique recovery under the Singleton bound. A sensing 

matrix that satisfies this can be found easily from the 

random construction, and the iterative recovery algorithm 

introduced here can be used to even surpass it.    
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(dv, dc) 

code 

q=2 q=4 q=16 q=256 

(3,6)  32 (0.027) 64 (0.54) 108 (0.09) 121(0.10) 

(4,8)  78 (0.065) 146(0.12) 235 (0.20) 284(0.24) 

(5,10) 102 (0.085) 187(0.16) 294 (0.25) 370(0.30) 
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