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Abstract

Low-density generator matrix (LDGM) codes have recently drawn researchers’ attention thanks to

their satisfying performance while requiring only moderate encoding/decoding complexities as well as

to their applicability to network codes. In this paper, we aim to propose a fast simulation method

useful to investigate the performance of LDGM code. Supported by the confidence interval analysis,

the presented method is, for example, 108 times quicker than the Monte-Carlo computer simulation

for bit-error-rate (BER) in 10�10 region.

& 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Systematic binary linear block codes generated by simple parity-check operations have
been of interest in the past due to the properties that the codes can provide good
performance while the encoding and decoding complexities can be managed to be low [1–3].
We study the class of low-density generator matrix (LDGM) codes. LDGM codes are

linear block codes with sparse generator matrix in systematic form. Codes of sparse
2.00 & 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

.jfranklin.2010.04.011

of C.-C. Chang and Z.-H. Mao was supported in part by the National Science Foundation, U.S.A.,

CMMI-0727256. The work of H.-N. Lee was in part supported by the Korea National Research

NRF) under Grant K20901000004-09E0100-00410, and in part by the National Science Foundation,

r Grant CMMI-0727256.

nding author. Tel.: þ82 62 970 2237; fax: þ82 62 970 2204.

dresses: ccchang@ntut.edu.tw (C.-C. Chang), maozh@engr.pitt.edu (Z.-H. Mao),

t.ac.kr, heungno@gmail.com (H.-N. Lee).

dx.doi.org/10.1016/j.jfranklin.2010.04.011
www.elsevier.com/locate/jfranklin
dx.doi.org/10.1016/j.jfranklin.2010.04.011
mailto:chc55@pitt.edu
mailto:maozh@engr.pitt.edu
mailto:heungno@gist.ac.kr
mailto:<!--ti-->heungno@gmail.com<!--/ti-->.3d


C.-C. Chang et al. / Journal of the Franklin Institute 347 (2010) 1368–1373 1369
generator matrices have been reported to be asymptotically bad due to the fact that the
minimum distance of the codes does not grow with code length [4]. Even with these
disadvantages, LDGM codes are still interesting not only because they can deliver
satisfying error-performance at moderate block length (e.g. a thousand) while the encoding
and decoding complexities are low, but also because there exist some new applications such
as joint source channel encoding systems [5] and network coding on the cooperative
wireless multiple access relay networks [6]; in all these systems the inherent systematic form
of LDGM codes make the codes very useful.

In this paper, we investigate the error-performance of regular LDGM code with the
simple binary phase shift keying (BPSK) modulation system. For a given code length,
the number of ones in columns and the number of ones in rows of the generator matrix
are the key design parameters for the encoder of LDGM codes, as these parameters
determine code rates and the error-performance. In order to select an LDGM code that
delivers the best performance, an extensive search on design parameter space is essential;
thus a fast simulation method for LDGM codes would be of great help.

We aim in this paper to propose a fast simulation method for LDGM codes which is
constructed using the general idea of density evolution [7,8]. On the one hand, the fast
method tracks the mean of log-likelihood ratio (LLR) samples and thus enables faster
evaluation. On the other hand, it exploits the inherent structure of LDGM codes.
The density evolution originally developed for LDPC codes [7] is computation intensive.
While it was used to determine the capacity of LDPC codes, as was done in [7], it is
generally not a good idea to use density evolution for bit-error-rate (BER) evaluation. This
is true for LDPC codes, but with a little surprise not for LDGM codes. There is a
significant structural difference between the parity-check matrices of two codes; as the
result, the idea of density evolution can be useful as a BER evaluation tool for LDGM
codes, removing the need for time-consuming Monte-Carlo simulation. To systematize this
approach, we include a confidence interval analysis which allows us to determine the
number of samples required for a targeted accuracy.

The rest of the paper is organized as follows. Section 2 briefly introduces LDGM codes.
The fast simulation method is presented in Section 3. Simulation results and discussions
are provided in Section 4. Section 5 gives the conclusion.

2. LDGM codes

LDGM codes are linear block codes with parity-check matrix H=[P ; I], where P is an
(n�k) by k sparse matrix and I is the (n�k) by (n�k) identity matrix. The index k denotes the
number of input bits and n denotes the length of the code. An LDGM code is called regular

if both the number of 1’s in a column in the P matrix and that in a row stay fixed for all
columns and rows. Though irregularity can provide performance improvement, regularity
could lead to simplified modular hardware implementation. The degree of a variable node,
denoted as dv, which is the number of ones in a column in the P matrix. Similarly, the degree

of a check node, dc, represents the number of ones in a row in the H matrix. Based on the
structure of H matrix, the code rate R of (dv, dc)-regular LDGM code is given by

R ¼ 1=ðdv=ðdc�1Þ þ 1Þ: ð1Þ

The degree of a variable node dv and the degree of a check node dc are the main design
parameters for LDGM codes. For a given code length n and design parameters (dv, dc), a P



C.-C. Chang et al. / Journal of the Franklin Institute 347 (2010) 1368–13731370
matrix can be obtained through random generation. The encoding complexity can be
maintained to be low due to the sparseness of the P matrix.
3. The fast simulation method

The simulation flow diagram of the fast simulation method is depicted in Fig. 1. As
shown in Fig. 1, we first obtain the initial LLRs of all-zero codeword from a discrete-time
Gaussian channel. We then feed the channel LLRs of the all-zero codeword to the
standard iterative decoder. After running the sum–product iterative decoding algorithm,
we obtain the posterior LLRs,LLRPs. Instead of determining the decoded bits from these
LLRPs as used for conventional decoding, we calculate the mean �a, aZ0, of the set of
LLRPs. In the method, we use (3) to determine the required number of LLRP samples for
reliable estimation of the mean value. If the number of samples is insufficient, we then feed
another all-zero codeword, and compute the mean �a cumulatively. When reaching suffi-
cient number of samples, we substitute the cumulative mean value into (2), and the error
performance of the LDGM coded BPSK modulation system is extracted. The discussion
and working principle of the fast simulation method is provided in the following.
We note that the value a evolves only up to a certain limit for LDGM codes after which

it stays at the same level no matter how many iteration are carried out further. This is one
of the distinct features of LDGM codes: The information provided by the parity-check
variable nodes always remains the same during the iterations. The reason for this is that all
those variable nodes which participate in a single parity-check cannot pass along any
extrinsic message to the check node. Extrinsic messages are generated by excluding the old
message. Thus, to those variable nodes that only have a single connection to the check
nodes, this is not possible. This causes obstruction to continued evolution of density and
hence results in error-floors. We show that this behavior can be well evaluated by our fast
evaluation system.
With the LDGM coded BPSK modulation system over Gaussian channels, we have the

output-symmetric channels. Then, we note that the distribution for channel LLRs is
symmetric and the symmetry is preserved throughout the message-passing decoding
algorithm [7]. Thus, we may treat LLRPs as Gaussian distributed samples with mean �a,
aZ0, and variance b2=2a, see Ref. [8]. Then, the error-probability which is the Gaussian
tail probability can be obtained by

Pe ¼

Z 1
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pU2a
p e�ðlþaÞ

2=2U2adl; ð2Þ

or by 0:5erfcð
ffiffiffiffiffiffiffiffi
a=4

p
Þ in the form of complementary error function.
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Fig. 1. The flow diagram of the fast simulation method.
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It is useful to determine the number of required LLRP samples such that the estimated
mean is accurate. For this, we resort to the confidence interval analysis, and obtain that

N ¼ 8664� ½erfc�1ð2PeÞ�
2; ð3Þ

where N is the required number of samples, erfc�1ðUÞ the inverse of the complementary
error function, and Pe the target error probability in simulation. For example, having the
number of samples around N=105 is sufficient to provide a BER result of Pe=10�10

region. We note that for the conventional Monte-Carlo computer simulation, if one wants
to collect one thousand bit errors to have a smooth BER curve in simulation, the required
number of LLRP samples is N 0C103=Pe, which requires N’=1013 for Pe =10�10. There-
fore, the presented method is about 108 times quicker in this example. In general, for a
target Pe the method is F times quicker, where F is defined as

F9
N 0

N
¼

103

8664� Pe � ½erfc�1ð2PeÞ�
2

ð4Þ

For more examples, we note FC4:2 when Pe=10�2, FC167 when Pe=10�4, FC1:0�
104 when Pe=10�6, and FC7:3� 105 when Pe=10�8.

The derivation of (3) can be elaborated as follows. The confidence interval for mean a of
a Gaussian distribution with known varianceb2 is given by CONF fx�erarxþ eg [9],
where x is the experimental mean of samples. The positive constant e is a tolerant error and
can be described by e ¼ cb=

ffiffiffiffiffi
N
p

, where N is the number of samples and c is a value
depending on the confidence level g. In particular, given a confidence interval, c is the value
satisfying P(�crZrc)=g where Z is the Gaussian distributed random variable with
mean 0 and variance 1. For example, c=3.291 when g=0.999. In the analysis, we choose e
to be e=0.1. The estimated mean within this chosen error tolerance results in a negligible
difference in the error probability (2) in the region of interest. In fact, e=0.1 results in the
same order of Pe when Pe is above 10

�14. For a given target error probability Pe, we note
that it is equivalent to investigate the Gaussian distribution with mean a=4� erfc�1(2Pe)
(from (2)) and variance b2=8� erfc�1(2Pe). Since e ¼ cb=

ffiffiffiffiffi
N
p

, for e=0.1, we obtain
N=(cb/e)2=8664� [erfc�1(2Pe)]

2.
We found the performance obtained from the fast simulation method shows good match

to the performance evaluated from Monte-Carlo simulation. In Section 4, we illustrate this
point and investigate the relationship between the key design parameters (dv,dc) and the
performance of LDGM codes.

4. Simulation results and discussion

Fig. 2 shows the results of Monte-Carlo computer simulation and the numerical results
for rate half, R=0.5 LDGM codes of length 4080. The parameters (dv,dc) used are (7, 8),
(8, 9), (9, 10), (10, 11), and (11, 12), respectively. Ten iterations are used in the standard log
ratio based message-passing decoding algorithm. The numerical results, we say in
comparison to simulation, are obtained from the fast evaluation method. The simulation

and the numerical results match almost perfectly at the error-floor regions, while for the
waterfall regions the simulation results are off a fraction of dB to the numerical results. We
note that this gap can be closed by increasing the number of iterations in Monte-Carlo
simulation.
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Fig. 2. Performance of rate 1
2
LDGM codes with code length 4080 under AWGN channels. The Sim curves are

obtained from Monte-Carlo computer simulation with 10 iterations. The Num curves are obtained from the fast

simulation method. A higher density code has a later waterfall region but a lower error-floor level.
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Fig. 3. Performance of rate 0.500 (10,11), rate 0.5238 (10,12), and rate 0.5455 (10,13) LDGM codes obtained from

the fast simulation method. The curves in the sub-figure are drawn with respective to SNR (Es/N0), while the

curves in the main figure are calibrated to Eb/N0. A higher rate code shows a later waterfall region but a slightly

lower error-floor level.
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Fig. 3 shows the numerical results for rate R=0.500, (10, 11), rate R=0.5238, (10, 12),
and rate R=0.5455, (10, 13), LDGM codes. We note that the higher the rate is, the larger
Eb/N0 gets for the waterfall region and the lower the error-floor gets. In fact, the error-
floors remain at the same level in terms of SNR (Es/N0), and are determined by the
minimum distance. From Ref. [10], the minimum distance of this code is determined by dv.
Since dv is 10 for all these codes, they all have the same minimum distance. As the rate
changes slightly with the variation of the parameter dc, the waterfall region is affected. We
note that the number of 1’s in the row of generator matrix dc determines the waterfall
region – the larger the dc, the later the waterfall region. The number of 1’s in the column dv

determines the error-floor level – the larger the dv, the lower the error-floor level.
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Therefore, in Fig. 2, it is also noted that a higher density code has a later waterfall region
but a lower error-floor level.

One major drawback of LDGM codes, as evidenced in the above examples, is relatively
high error floors. Recently, it has been shown that the error-floors of LDGM codes can be
lowered significantly through parallel or serial concatenation of LDGM codes, while
maintaining low encoding and decoding computational complexity [11,12]. We envision
that the presented fast simulation method can be extended to the performance analysis of
parallel or serial concatenation LDGM codes.

5. Conclusion

The presented performance evaluation framework provides the capability to quickly
assess the performance of LDGM codes. It is, for example, about 108 times quicker than
the Monte-Carlo computer simulation for bit-error-rate in 10�10 region. The new methods
shed lights on the error floor characteristics of LDGM codes. For rate around half codes,
we have shown that the number of 1’s in the columns of generator matrix determines the
error-floor level, whereas the number of 1’s in the rows determines the waterfall region.
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