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A Performance Bound on
Random-Coded MIMO Systems

Jingqiao Zhang, Student Member, IEEE, and Heung-No Lee, Member, IEEE

Abstract— A closed-form upper bound on the average error
probability is proposed for random block codes operating in
multi-input multi-output (MIMO) systems. The bound expo-
nentially decays to zero with increasing block length, and
the obtained error exponent proves consistent with Gallager’s
random coding exponent and the information-theoretic channel
capacity.

Index Terms— Union bound, random coding, error exponent,
MIMO system.

I. INTRODUCTION

M IMO systems have been attracting increasing research
interests since the information-theoretic channel ca-

pacity was identified by Telatar [1], and Foschini and Gans
[2]. One of the interests lies in the performance evaluation
of the MIMO system with discrete-alphabet inputs, since it
makes much practical sense. Canonical measures, such as the
information-theoretic capacity and Gallager’s random coding
arguments [3], can be easily extended to these discrete-input
systems. Nevertheless, as stated in [4], [5], these measures
generally need to be evaluated by Monte-Carlo methods
because of the involved expectation/integral over the high-
dimensional input signals, random fading and noises.

Similar to [3], we are concerned about the classical random
coding, and propose a closed-form union bound on the average
error probability of random coded MIMO systems. This bound
exponentially decays to zero with increasing block length for
any transmission rate less than the derived closed-form cutoff
rate. It proves effective in a variety of modulation and channel
scenarios by comparing with the canonical measures.

II. SYSTEM OF INTEREST

Consider an ensemble C of random block codes of length L
and rate Rc = K/L. Each code in the ensemble is constructed
by randomly selecting 2K codewords out of a total number
of 2L distinct bit strings of length L, without replacement.
The ensemble is composed of all |C| =

(
2L

2K

)
distinct codes

generated in this manner. It is assumed that each code C in
the ensemble is selected for use with equal probability.

As illustrated in Fig. 1, one random code is used to operate
in an M -transmit N -receive MIMO system. A codeword c is
uniformly chosen from the code for transmission. Each group
of MKb bits of c is modulated onto an M × 1 vector s of
symbols, whose entries take on values from a channel-symbol
constellation of size 2Kb . For example, Kb = 2 for 4PSK.
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Fig. 1. Random coded MIMO systems.

The collection of all J = 2MKb distinct groups of MKb bits is
denoted as {b0, b1, · · ·, bJ−1}, and that of the J corresponding
symbol vectors s as {s0, s1, · · ·, sJ−1}. We assume the symbol
vector s obeys the average energy constraint E‖sj‖2 = Es,
where ‖ · ‖ denotes the norm of a complex vector. For
convenience, assume L to be a multiple T of MKb. The
codeword c is finally transformed into an M×T space-time
word x = [x1 x2 · · · xT ], with xt ∈ {s0, s1, · · · , sJ−1} for
t = 1, 2, · · · , T .

In correspondence to each symbol vector s in x, an N × 1
vector y of receive signals is obtained:

y = Hs + n, (1)

where H is the N × M channel matrix whose entries are
independent Rayleigh distributed random variables, and n is
the N × 1 complex, spatially and temporally white Gaussian
noise with zero mean and variance N0. The channel matrix H
is assumed known at the receiver, and sampled independently
for each symbol vector s; i.e., the channel is ergodic.

III. BASIC DEFINITIONS

In this section, we introduce a couple of definitions based
on the formulation of the pairwise error probability. This will
facilitate our analysis on the union upper bound later.

The pairwise error probability from codeword c to codeword
c′ is defined as the probability that the receiver, when perform-
ing a maximum-likelihood (ML) binary decision between the
two, erroneously decides in preference of c′ when c is actually
transmitted. For a Rayleigh MIMO channel, the pairwise error
probability of the system in (1) is formulated as [6]

Pr(c → c′) ≤
T∏

t=1

(
1 +

1
4N0

‖xt − x′t‖2
)−N

, (2)

where xt and x′
t are the tth columns of the space-time words

x and x′ which are mapped from c and c′, respectively.
Definition 1 (Weight Profile): Any bit string c of length

L can be equivalently considered as a serial concatenation of
T sub-strings of length MKb from the set {b0, b1, · · ·, bJ−1}.
Denote δj(c) as the number of bj’s that appear in the string c,
for j = 0, 1, · · ·, J−1. The space-time word x modulated from
c is thus composed of a number δj(c) of symbol vectors sj .
The array δ̂ := (δ0(c), δ1(c), · · ·, δJ−1(c)) of these numbers
is defined as the weight profile of the bit string c.
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Definition 2 (Distance Profile): Consider two bit strings
c and c′ of length L which are modulated onto space-time
words x and x′, respectively. Denote δj,k as the number
of the corresponding columns of x and x′ that are (xt =
sj , x′

t = sk), for j, k = 0, 1, · · ·, J − 1. The array δ of these
numbers is defined as the distance profile between c and
c′. For simplicity, we denote δ := (δ0, δ1, · · ·, δJ−1), where
δj := (δj,0, δj,1, · · ·, δj,J−1), for j = 0, 1, · · ·, J − 1.

It is clear that the sum of δj(c)’s equals the total number
T of the columns of one space-time word. That is,

δj(c) ∈ {0, 1, · · ·, T} and
∑J−1

j=0
δj(c) = T. (3)

On the other hand, since δj,k denotes the number of the
combinations (xt = sj , x′

t = sk) and δj(c) counts up the
columns of x that xt = sj , we have

δj,k ∈ {0, 1, · · ·, δj(c)} and
∑J−1

k=0
δj,k = δj(c). (4)

Based on the definitions above, the pairwise error probabil-
ity of (2) can be concisely rewritten according to the distance
profile δ between the two codewords c and c′; i.e.,

Pr(c→c′)≤
J−1∏

j,k=0

⎡
⎣
(
1+

‖sj − sk‖2

4N0

)−N
⎤
⎦

δj,k

=:
J−1∏

j,k=0

β
δj,k

j,k , (5)

by grouping the like terms (xt − x′
t = sj − sk) in (2) under

each power exponent δj,k. The reason for defining δ as the
distance profile is thus clear: For a given signal-to-noise ratio
(SNR), δ completely determines the upper-bound formulation
of the pairwise error probability in (5).

IV. ERROR PERFORMANCE ANALYSIS

We next turn to the derivation of the union upper bound on
the error performance. The result is summarized as follows.

Theorem: Consider the random coded MIMO system in
(1). The average probability of ML decoding error over the
ensemble of random codes is upper-bounded by

P e ≤ 2−T ·E(R), (6)

where the error exponent E(R) is given by

E(R)=

⎡
⎣MKb− log2

⎛
⎝ 1

2MKb

2MKb−1∑
j,k=0

βj,k

⎞
⎠
⎤
⎦−R =:R0−R, (7)

with R = RcMKb denoting the transmission rate of the
system and R0 serving as the cut-off rate.

Proof: The average error probability over the ensemble of
random codes is upper-bounded by

P e ≤ 1
|C|

∑
C∈C

⎧⎨
⎩

1
2K

∑
c∈C

⎡
⎣ ∑

c′:c′∈C,c′ �=c

Pr (c → c′)

⎤
⎦
⎫⎬
⎭ (8)

≤ 1
2K |C|

∑
C∈C

∑
c: c∈C; c′:c′∈C,c′ �=c

⎡
⎣ J−1∏

j,k=0

β
δj,k

j,k

⎤
⎦, (9)

where the two outer sums in (8) are taken over the uniform
choices of (i) all codes C from the ensemble C, and (ii) all 2K

codewords c from the drawn code C, respectively. Conditioned
on the transmission of one codeword c ∈ C, the inner sum is
merely the union bound on the error performance, i.e., the

sum of the pairwise error probabilities from c to any other
codeword c′ ∈ C. Equation (9) is obtained according to (5).

It is clear the pilot codeword c in (8) and (9) should be
chosen from the 2K valid codewords within each drawn code.
From the perspective of all codes in the ensemble, however,
each and every 2L distinct bit strings of length L can be
considered as the pilot codeword at least once. From this point
of view, the order of the sums in(9)can be changed as follows:

P e≤ 1
2K |C|

∑
c∈GF (2)L

∑
c′:c′ �=c,(c,c′)∈C,C∈C

⎡
⎣ J−1∏

j,k=0

β
δj,k

j,k

⎤
⎦, (10)

where GF (2)L denotes the set of all 2L distinct bit strings
of length L. For a given c, the inner sum is to count in all
codewords c′�=c that coexist with c in the code of the ensemble.

Note that the bracketed term in (10) is completely deter-
mined by the distance profile δ. Thus, the sum over c′ can be
rearranged with respect to this metric:

P e≤ 1
2K |C|

∑
c∈GF (2)L

∑
δ:δ∈Ω(c),δ �=δ∗

Sδ(c)

⎡
⎣ J−1∏

j,k=0

β
δj,k

j,k

⎤
⎦ , (11)

where δ∗ denotes the unique distance profile between c and
itself; i.e., δ �= δ∗ is equivalent to c′ �= c. Ω(c) is the set of
all possible distance profiles δ associated with c. That is,

Ω(c) =
{
δ
∣∣δj ∈ Ωj(c), for j = 0, 1, · · ·, J − 1

}
, (12)

where

Ωj(c)=
{
δj

∣∣∣∣δj,k∈{0, 1, · · ·, δj(c)} ,
∑J−1

k=0
δj,k = δj(c)

}
.

(13)
For each δ, there are a number of codewords c′ in one code
that have this distance from a given c, and Sδ(c) is to add
up these numbers over each code that already contains c as a
codeword. Sδ(c) can be calculated by a combinatorial method:

Sδ(c)=
[
2K

2L
|C|

][
2K−1
2L−1

]⎡⎣J−1∏
j=0

(
δj(c)

δj,0, · · ·, δj,J−1

)⎤⎦for δ �=δ∗,

(14)
where the first term is the number of codes in the ensemble
that include c as a codeword. For each of these codes, the
second term indicates that 2K–1 bit strings out of 2L (other
than c) are also selected as codewords, and among all the 2L

available, the last term gives the number of the strings that
have a distance δ from c, i.e., satisfy the J constraints in (12).

Plugging (14) into (11)and ignoring the term δ �=δ∗, we have

P e≤ 1
2L

2K−1
2L−1

∑
c∈GF(2)L

∑
δ∈Ω(c)

J−1∏
j=0

[(
δj(c)

δj,0, · · ·, δj,J−1

)J−1∏
k=0

β
δj,k

j,k

]
.

(15)
Notice that for each given c, the J constraints in Ω(c) are

uncorrelated. The sum over δ in (15) can thus be simplified as
∑

δ∈Ω(c)

J−1∏
j=0

[(
δj(c)

δj,0, · · ·, δj,J−1

) J−1∏
k=0

β
δj,k

j,k

]

=
∑

δ0∈Ω0(c)

∑
δ1∈Ω1(c)

· · ·
∑

δJ−1∈ΩJ−1(c)

J−1∏
j=0

[(
δj(c)

δj,0, · · ·, δj,J−1

)J−1∏
k=0

β
δj,k

j,k

]

=
J−1∏
j=0

∑
δj∈Ωj(c)

[(
δj(c)

δj,0, · · ·, δj,J−1

)J−1∏
k=0

β
δj,k

j,k

]
=

J−1∏
j=0

(
J−1∑
k=0

βj,k

)δj(c)

(16)
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Fig. 2. Cutoff rate v.s. channel capacity (4 × 4 MIMO channels).

where the second equality is obtained by summing δj’s
separately over each term in the product, and the last equality
follows from the multinomial theorem in [7].

Plugging (16)into(15) and by simple manipulation, we have

P e ≤ 1
2L

2K

2L

∑
c∈GF (2)L

J−1∏
j=0

(
J−1∑
k=0

βj,k

)δj(c)

. (17)

Similar to c′, the sum over all bit strings c of length L can
be reorganized with respect to their weight profiles:

P e ≤ 1
2L

2K

2L

∑
δ̂∈Ω̂

Âδ̂

J−1∏
j=0

(
J−1∑
k=0

βj,k

)δj(c)

, (18)

where Ω̂ is the set of all possible weight profiles δ̂ and
according to (3) we have

Ω̂ =
{

δ̂

∣∣∣∣δj(c) ∈ {0, 1, · · ·, T} ,
∑J−1

j=0
δj(c) = T

}
. (19)

Âδ̂ is the number of bit strings of weight profile δ̂, i.e.,
the number of ways to arrange δj(c) sub-strings bj (j =
0, 1, · · ·, J − 1):

Âδ̂ =
(

T

δ0(c), · · ·, δJ−1(c)

)
. (20)

Substituting (20) into (18), we have

P e ≤ 1
2L

2K

2L

∑
δ̂∈Ω̂

(
T

δ0(c), · · ·, δJ−1(c)

)J−1∏
j=0

(
J−1∑
k=0

βj,k

)δj(c)

=
1
2L

2K

2L

⎡
⎣J−1∑

j=0

(
J−1∑
k=0

βj,k

)⎤
⎦

T

. (21)

where the last step is based on the multinomial theorem [7].
Finally, since Rc =K/L, T =L/MKb, and J =2MKb , we get

the result of (6) by rewriting (21) into an exponential form.

V. DISCUSSIONS

The upper bound of (6) exponentially decays to zero with
increasing block length L for any transmission rate leading to
a positive error exponent E(R), i.e., for any rate R less than
the threshold R0, which serves as a lower bound to the MIMO
channel capacity. Fig. 2 illustrates the difference between the
closed-form cutoff rate R0 and the channel capacity which is
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calculated according to the formulation in [4, Eq. (30)]. As
shown, R0 is always 2.5 ∼ 3.0 dB away from the channel
capacity, while the rate difference is at most 1.5 bits/channel-
use at the moderate SNR region. These SNR and rate gaps do
not vary much for different modulation and channel scenarios.

In Fig. 3, we compare the derived error exponent in (7) with
Gallager’s random coding exponent [3, Ch. 5]. The latter is
evaluated by the Monte-Carlo method proposed in [5]. The two
exponents have a good match in the straight-line region, where
the parameter ρ used in [3] to optimize the exponent always
equals one. The exponent (7) is thus thought to be able to
serve as a closed-form evaluation of Gallager’s random coding
exponent with ρ = 1, although we note that the underlying
reasoning to arrive at them are different. On the other hand, the
two exponents diverge when the transmission rate is close to
the channel capacity. The final difference between R0 and the
channel capacity is about 1 bit/channel use. This is consistent
with the result in Fig. 2.

VI. CONCLUSION

We propose an exponential-form union bound on the aver-
age error probability for random-coded MIMO systems. The
obtained error exponent leads to a closed-form expression
of the cutoff rate. The comparison with the MIMO channel
capacity and Gallager’s random coding exponent shows that
our results are effective for a variety of modulation and
channel scenarios.
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