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Abstract

We consider a framework of compressed sensing

systems over finite fields for discrete signals such

as bit streams for data storage and pixel images. In

this paper, we aim to investigate the number of

measurements needed in the compressed sensing

system over finite fields. We show that the

necessary and sufficient conditions for perfect

recovery of sparse signals are strictly identical as

the size of signals increases as well as the size of

the finite fields are varied.

I. Introduction

  Over the past few years, the idea of compressed
sensing (CS) has attracted considerable interest in

researchers from the fields of signal processing and

information theory. One of interesting discovery is

that a sparse signal can be recovered from a small

number of linear projection measurements. The

reconstruction of a sparse signal is performed

through optimization techniques such as linear

programming and greedy algorithms [1]-[3].

In this paper, we aim to theoretically investigate

the recovery performance of a sparse signal over

finite fields. Using the upper and lower bounds, we

investigate the requirement of the perfect recovery
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of sparse signals such as the necessary and

sufficient conditions in terms of the size of signals,

the number of measurements, and the number of

nonzero entries in sparse signals as well as the size

of finite fields.

This paper is partly presented in the original

letter [5] which more describes the derivation on

detail results and specific discussions.

II. Compressed Sensing System

We describe the following system model in the

finite field of the size  as  : Let ∈
 be a

signal vector of length  with sparsity , which

indicates the number of nonzero entries from 0 to 

in , ∈, and let ∈
× be an ×

sensing matrix with . The sensed signal  is

given as

  . (1)

Let  denote the set of all signals of length 

considered less than sparsity . And the size of the

set  is given by =
 




 , where ·

denotes the cardinality of the set. The sparse signal

is randomly and uniformly selected from the set .

We assume that the elements of the sensing matrix

 are independent and identically distributed (i.i.d.),

so that

Pr  , (2)

where  denotes the element of the i-th row and

j-th column of the sensing matrix where

   and   , and  denotes the
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dummy variable such as ∈ . All theoretical

analysis is carried out without considering

measurement noise.

III. Conditions on Perfect Recovery

In this section, we derive the necessary and

sufficient conditions on unique recovery of sparse

signals with high probability. We assume that the

decoder in our scheme decides the candidate signal

when it finds a sparsest feasible solution 

satisfying the condition (1) as follows,

min subject to   . (3)

where  is a feasible solution, and ∈ under the

condition as    ≤  . We define an

occurrence of error when a vector  is estimated

by satisfying   for ≠ . With these

assumptions, we investigate the probability of error

for unique recovery of sparse signals.

The error event  is defined as follows,

   ≠  ∈. (4)

Since a signal is randomly chosen from the set ,

the error probability is given by

Pr
 

∈

Pr , (5)

where Pr  is the probability that a

candidate  is a feasible signal. It is to be noted

that since the elements of the sensing matrix are

i.i.d., then, the probability is

Pr
  

 Pr, (6)

where  denotes the i-th row of . We compute

the probability as follows,

Pr
 , (7)

where the equality is from the fact that the

elements of uniformly random sensing matrices

defined in (2) are i.i.d.. Using the upper bounds, (5)

can be rewritten as

Pr
 

∈



≤
  

(8)

where · denotes the binary entropy.

Consequently, from the condition that the exponent

of (8) remains negative so that the probability of

error goes to 0 as →∞, we can derive the

following upper bound on ,

≥log


. (9)

Next, we derive the necessary condition for the

unique recovery of a sparse signal by using the

sensing matrix and the sensed signal. Using the

Fano's inequality [4], the probability of error Pr
is bounded as follows,

Pr≥log


, (10)

where · denotes the entropy. According to the

definition of conditional entropy, assuming that  is

independent of , we can rewrite (10) as follows,

Pr≥log


≥ 
log




(12)

where the inequality (a) is from the following,

≤≤. A vanishing probability of error

requires that

≥ log


 . (13)

We observe the limit conditions for the recovery of

sparse signals over finite fields. In fact, for large

values for  , both conditions (9) and (13) are

identical.

IV. Conclusions

In conclusion, we evaluated the recovery

performance of statistically and randomly chosen

sensing matrices to obtain the compressed signal.

For uniformly random sensing matrices, we obtained

the necessary and sufficient conditions for a unique

recovery of a sparse signal with high probability.
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