
Reduced-Complexity Orthotope Sphere Decoding
for Multiple-Input Multiple-Output Antenna System

Hwanchol Jang & Heung-No Lee
Dept. of Information and Communications,

Gwangju Institute of Science and Technology
Republic of Korea, 500-712

Email: hcjang@gist.ac.kr

Saeid Nooshabadi
Dept. of Electrical & Computer Engineering

Michigan Technological University
Houghton, MI 49931

Email: saeid@mtu.edu

Abstract—In this paper, we propose a maximum likelihood
(ML)-like performance reduced computational complexity sorted
orthotope sphere decoding (OSD), and zero forced (ZF) sorted
OSD algorithms for the spatial multiplexing (SM) in a multiple-
input multiple-output (MIMO) system. In comparison with the
original OSD our technique reduces the number of partial
Euclidean distance (PED) computations by up to 28%, and 25%
for QPSK and 16-QAM 4×4 MIMO systems, respectively.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems have
drawn great interest since the theoretical analysis showed that
the capacity can be increased significantly without additional
channel spectrum. This capacity increase can be used as a
means of obtaining the data rate required by communication
systems such as 3 Mbits/s Worldwide Interoperability for
Microwave Access (WIMAX) [1], used for broadband Wire-
less Metropolitan Area Networks (WMAN) specified by the
IEEE standard 802.16e [2]. Spatial multiplexing (SM) MIMO
systems can increase the data rate linearly with the number of
antennas without increase in channel bandwidth [3].

The mathematical model for a MIMO system with N
transmit antennas and M receive antennas is

r = Hs + n (1)

Here r = [r1, ..., rM]T denotes the received symbol vector.
H is a channel matrix with M ×N dimensions, each entry of
the H matrix is an independently and identically distributed
(IID) complex zero-mean variance 1, Gaussian random vari-
ables, CN(0, 1). Vector s = [s1, ..., sN]T is the transmitted
symbol vector, s ∈ ON where |O| is the number of constel-
lation points. Set of real and imaginary elements of O are
� = {�1,�2, · · · ,�√|O|}, and � = {�1,�2, · · · ,�√|O|},

respectively. The elements of the vector n = [n1, ..., nM]T are
complex zero mean additive white Gaussian noise (AWGN)
sources with variance σ2 = E(|si|2)/SNR.

Assuming perfect channel knowledge in the receiver, the
maximum likelihood (ML) detector in (2) achieves the mini-
mum probability of error. Although the ML detector provides
the optimal solution for SM, its huge computational complex-
ity makes its use impractical for most MIMO systems. For
example, in the 4×4 16-QAM system, the detector should

perform Euclidean distance calculations for 65536 candidate
vector symbols to detect a single vector symbol.

ŝ = arg min
s∈ON

‖r − Hs‖2 (2)

Sphere decoding (SD) [4] [5] has received considerable at-
tention as a lower complexity realization of the ML detection.
SD transforms the ML problem into an N -level tree search.
In SD, Euclidean distance of a vector symbol is accumulated
from partial Euclidean distances (PEDs) of a specific path from
level N (top) to level 1 (leaf). If any accumulated value of
PEDs, at a given node in the tree, is found to be greater than
the given sphere radius,

√
C, the search for the paths leading

from that node is halted without having to continue until the
leaf nodes. The sphere constraint (SC) is:

‖r − Hs‖2 ≤ C (3)

Starting with the initial value of
√

C, the radius is reduced
to the accumulated value of PEDs whenever a search reaches
a leaf node. With the updated radius, the search for the
remaining paths is continued. If no more reduction in

√
C

is possible, any path that last updated the radius is the ML
solution. If no path reaches the leaf level, the radius

√
C is

increased and the search restarts. Using the canceling (pruning)
of the search, SD offers a significant reduction in the number
of computations. However, the number of PED computations
is still huge for most practical MIMO systems.

There have been some studies to further reduce the com-
plexity of SD, while maintaining its ML performance. The
orthotope sphere decoding (OSD) [6] is one such efficient
algorithm. The OSD generates the smallest orthotope (hyper-
rectangle) which includes the inverse image of the hyper-
sphere of SD. Before doing the complex PED computations
OSD checks to see if a vector symbol lies within the orthotope
by using simple comparisons. This is called the orthotope
constraint (OC). The vector symbols which are outside the
orthotope are pruned from the search. Use of comparisons
allows for OSD to remove a considerable number of candidate
vector symbols for the list of PED computations.

In high data rate applications and noisy environment, the
computational complexity of OSD may still pose a limit on

978-1-4244-7773-9/10/$26.00 ©2010 IEEE 660

� �� �� �

��� � �

�

��

�

� ��

�

Fig. 1. The input space and output space for spherical decoding

its deployment for practical MIMO systems. To significantly
reduce the computational complexity of OSD, in this paper, we
propose two improvements to OSD. In the first improvement
we pre sort the candidate vector symbols before the OSD
processing. In the second improvement we provide an initial
guess of the

√
C through a zero forcing (ZF) solution.

The remaining of this paper is organized as follows. In
section II, SD algorithm is briefly reviewed. In section III,
the proposed sorted OSD and ZF sorted OSD algorithms are
developed. In section IV, the simulation results are presented
and discussed. Section V concludes the paper.

II. ORTHOTOPE SPHERE DECODING

Fig. 1 shows the mapping and inverse mapping between
the orthotope in the input space s and the parallelotope in the
output space r [6], [7] [8], [9]. The computational complexity
of SD is mainly due to large number of PED computations
to check if the constellation points in the input space are
located inside the hyper-ellipsoid. Note that hyper-ellipsoid is
the inverse image of hyper-sphere, determined by SC, through
the inverse mapping x = H†r, where (.)† denotes the pseudo
inverse operation. To remove the maximum number of con-
stellation points from the PED computation list, the smallest
orthotope which contains the hyper-ellipsoid is introduced in
OSD [6]. In OSD, the PED computation is preceded by the
orthotope pruning filter (OPF). For each constellation point,
OPF checks whether the point is inside the orthotope, which
is called orthotope constraint (OC). Only for points satisfying
OC, PED computations are performed. Mathematically OC is
defined as:

Δ2
�{sk} ≤ Cδk

2 and Δ2
�{sk} ≤ Cδk

2 (4)

where sk is the constellation point in the level-k, Δ2
�{sk} =

|�(sk) −�(xk)|2, Δ2
�{sk} = |�(sk) −�(xk)|2 with xk ∈ x

and δk = ‖H†(k, :)‖, with (k, :) denoting the k-th row of the
matrix.

In OSD constraining the orthotope to the minimum size, as
shown in Fig. 1, filters out a large number of points that are
outside the hyper-ellipsoid. The OPF operation is not complex
because the orthotope is aligned with the real and imaginary

�� �� �� � �� �

� � �� � ����� �� �

�� �� �

�� � ��� � � �

�� �� 	

�� �� � �� ��

�� �
� �

�� 	� �� �

��� �

� �
�
 �� �� ��� �� �

���������
�����

���������
������

����
���

������
���� ��

���
����������

�� ��

��
 �

�������
!��"

� ��
�� �

�������
!��"�

 �

Fig. 2. Orthotope sphere decoding

coordinate axes, only requiring simple comparison of real
numbers.

The procedure for OSD is similar to SD except for the OPF
preprocessing. When a path reaches a leaf in OSD, not only
the radius

√
C but also the OC for the OPF preprocessor is

updated. Fig. 2 describes the procedure for OSD. The squared

PED value of the lattice s in the k-th level is Dk =
N∑

i=k

|qi|2,

where qi is the i-th element of q = R(x−s), with R the upper
triangular matrix in the QR decomposition of H. The squared

Euclidean distance of a lattice point s is D1 =
N∑

i=1

|qi|2.

III. PROPOSED SORTED OSD

Under most conditions, the computational complexity of SD
algorithm is significantly reduced by the application of OSD.
However, when higher modulation schemes are used, or where
the noise is severe, its complexity of OSD is higher. To deal
with these situations we propose an improvement to the search
procedure. We call this sorted OSD.

A. Sorted OSD

It is well known that the complexity of SD can be reduced
by the order in which the constellation points are explored. The
Schnorr-Euchner (SE) [10] ordering minimizes the complexity
of SD by fast reduction of the radius, through the computation
of PEDs of all the children of a node whenever a search moves

661

�����
�����!#�$

%&�

��

'�����������
���$�%��������$

��

����(�� �������������������

����(����������������

���������
!���%��������$

Fig. 3. Modified sorted orthotope sphere decoding

TABLE I
GENERATION OF THE CONSTELLATION POINTS USING SORTED OSD

a Initialize*:

Sort � = {�1,�2, · · · ,�√
|O|},� = {�1,�2, · · · ,�√

|O|}
based on Δ2{�1} ≤ Δ2{�2} ≤ · · · ≤ Δ2{�√

|O|},

Δ2{�1} ≤ Δ2{�2} ≤ · · · ≤ Δ2{�√
|O|},

Put Δ2{�√
|O|+1

} = Δ2{�√
|O|+1

} = ∞
p = 1, q = 1

b Check for availability of new sk:

If Δ2{�p} > Cδk
2 and Δ2{�q} > Cδk

2

no more sk satisfying the OC
c Generate next sk:

If p �= 1 or q �= 1
If Δ2{�p+1} < Δ2{�q+1}

p = p + 1
If Δ2{�p} > Δ2{�q}

q = 1
Else

q = q + 1
If Δ2{�p} < Δ2{�q}

p = 1

sk = �p + j ∗ �q

* The “Initialize” part is executed only the first time a level is visited.

to a new node. In contrast to the SE ordering, in the proposed
OSD sorting the complexity of OSD is reduced by minimizing
the number of PED computations through radius reduction and
the ordering of the OPF operation.

Our analysis shows that in OSD, the number of PED
computations at a given level k, similar to SD, depends on the
search order of the constellation points. Whenever a search
reaches a leaf, the radius is reduced and the OC becomes
tighter. In an unordered OSD at the k-th level, the nodes
with a larger Δ�,�{sk} that pass the OPF may eventually
be pruned. Processing the nodes by their Δ�,�{sk} values
sorted in ascending order, will make sure that OC become
tight enough, when search reaches a leaf node. This results
in many nodes with the lager Δ�,�{sk} values to be pruned
without requiring their PED computation.

The sorted OSD replaces the highlighted portion of the
procedure in Fig. 2 with the one in Fig. 3. The details of
the three blocks in Fig. 3 are presented in three parts of the

algorithm described in Table I. Using this sorting algorithm,
the points that may lie outside the future orthotopes are moved
back on the queue so that they are pruned later without going
through the PED computation stage. Since the constellation
points are sorted by their Δ2

�,� values, we stop the check to
see if they are inside the orthotope as soon as one fails the
test. Because the values Δ2

�, Δ2
� are already obtained in the

OPF, the only operations needed here are simple comparisons.
Therefore, the overhead for the sorting is very small.

B. Sorted OSD with Initial Zero Forcing Radius
If the initial radius

√
C0 for the SD and OSD algorithms is

selected to be too small, no points will satisfies the SC or OC
tests. This results in discarding all the PED computations and
restarting the search with a larger initial radius. In the original
OSD, the initial squared radius, C0 = βσ2 is computed as a
function of noise power. The value of β for each noise power
level is determined by simulation [6]. This technique suffers
from two drawbacks. First, although the initial estimate of
C0 = βσ2 is optimum for each value of noise power; for
this estimate to work properly it requires recomputation of
the radius in each symbol period. This is especially true when
the noise power is large compared to the signal power, where
search failures are frequent, and hence, requiring restart of the
tree search. Secondly, to compute the optimal value of

√
C0

the receiver needs to have the knowledge of the noise power
σ2, that may not be readily available.

To reduce the computational complexity of OSD due to
frequent search failures in a noisy environment, the initial
radius needs to be set big enough. On the other hand, to have
a fast lattice reduction the radius should be set sufficiently
small. To choose an initial radius meeting this double sided
conditions we proceed as follows.

We define the optimum initial orthotope as the smallest
orthotope that contains at least one vector. The vectors which
are inside this orthotope form the smallest initial set of
lattice points to be searched. If the initial radius C0 is set
to the Euclidean distance to any vector inside this optimum
orthotope, the double sided conditions described above are
somewhat satisfied. The search that starts with this initial
radius is guaranteed to have a solution.

We propose to use ZF solution as the estimate for the initial
radius. The ZF solution does not require a knowledge of the
noise power, and it is one of the vectors inside the optimum
orthotope, as x = H†r. Also, since the ZF solution is likely
to be close to the ML solution, it leads to fast radius reduction
lowering the computational complexity.

It is easy to combine the ZF start with the OSD sorting
together. To use the ZF solution as the initial radius, we only
need to set the initial radius of sorted OSD search equal to
infinity. This will ensure that the sorting will generate the first
vector symbol with the ZF solution and the OPF and SC cannot
prune it from search because the radius is infinity.

IV. SIMULATION RESULTS

In terms of bit error rate (BER), the performance of the
proposed algorithm, like SD and OSD, is identical to ML

662

−6 −3.5 −1 1.5 4 6.5 9 11.5 14
0

10

20

30

40

50

60

70

80

90

100

SNR(dB)

Th
e

nu
m

be
r o

f P
E

D
 c

om
pu

ta
tio

ns
SD
OSD
sorted OSD
sorted OSD with ZF−start

Fig. 4. Mean numbers of PED computations for SD, OSD, the proposed
sorted OSD, and sorted OSD with ZF-start, for 4 × 4 QPSK system

across the whole SNR spectrum. To compare the computa-
tional complexity of four schemes viz. SD, OSD, sorted-OSD,
and sorted-OSD with ZF-start, we measured the number of
PED computations by simulation, averaged over 104 runs
of the channel. For a more accurate analysis, the number
of floating point operations are separated into multiplication
and the addition, because multiplication is usually a lot more
complex operation [11].

Fig. 4 to 5 show the number of PED computations per
received symbol vector, for two different MIMO systems, for
each of the four algorithms considered. The numbers of PED
computations for the proposed sorted OSD with ZF-start is
28%, and 25% less than that of OSD, for 4 × 4 QPSK, and
4 × 4 16-QAM systems, respectively.

Tables II to III present the number of floating point opera-
tions per received symbol vector for each algorithm considered
for two different MIMO systems. It is seen that for the most
complex scenario of lowest SNR, the reduction in the numbers
of floating point multiplications for the sorted OSD with ZF-
start are 40%, and 27% less than that of OSD, for 4×4 QPSK,
and 4 × 4 16-QAM systems, respectively. The corresponding
values for the floating point additions are 52%, and 29%.
However, in the high SNR condition the sorted OSD is a
preferred choice. That is because in high SNR the probability
of search failure is low, and the additional computation in
involved in starting the search from the ZF solution will only
increase the overall computational overhead.

TABLE II
MEAN VALUES OF THE FLOATING POINT MULTIPLY AND ADDS PER

RECEIVED SYMBOL VECTOR FOR SD, OSD, PROPOSED SORTED OSD,
AND SORTED OSD ZF-START, FOR 4 × 4 QPSK SYSTEM

SNR SD OSD Sorted OSD Sorted OSD (ZF)
(dB) Mult Add Mult Add Mult Add Mult Add

-6 620 861 629 1011 510 820 476 760
-1 428 584 421 661 370 577 356 557
4 269 348 256 368 226 327 241 349
9 186 223 168 208 157 203 170 217
14 161 184 141 157 136 162 140 160

V. CONCLUSION

This paper described the sorted OSD which has the ML-
like optimal performance. Using the proposed algorithm, we

−6 −3.5 −1 1.5 4 6.5 9 11.5 14
0

500

1000

1500

2000

2500

3000

SNR(dB)

Th
e

nu
m

be
r o

f P
E

D
 c

om
pu

ta
tio

ns

SD
OSD
sorted OSD
sorted OSD with ZF−start

Fig. 5. Mean numbers of PED computations for SD, OSD, the proposed
sorted OSD and sorted OSD with ZF-start, for 4 × 4 16-QAM system

TABLE III
MEAN VALUES OF THE FLOATING POINT MULTIPLY AND ADDS PER

RECEIVED SYMBOL VECTOR FOR SD, OSD, PROPOSED SORTED OSD,
AND SORTED OSD WITH ZF-START, FOR 4 × 4 16-QAM SYSTEM

SNR SD OSD Sorted OSD Sorted OSD (ZF)
(dB) Mult Add Mult Add Mult Add Mult Add
-6 13664 22506 10121 22146 8983 16540 7628 14198
-1 5930 9783 3589 8218 3153 5766 3195 5978
4 2778 4571 1658 3776 1494 2745 1565 2942
9 1511 2459 906 2008 753 1371 921 1713
14 746 1183 391 833 329 563 442 784

achieve a computational complexity that is significantly lower
than the original OSD for two MIMO systems considered.

REFERENCES

[1] WiMAX Forum, http://www.wimaxforum.org/home.
[2] “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air

Interface for Fixed and Mobile Broadband Wireless Access Systems
802.16e-2005, Amendment 2: Physical and Medium Access Control
Layers for Combined Fixed and Mobile Operation in Licensed Bands,”
2005.

[3] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela,
“V-blast: An architecture for realizing very high data rates over the rich-
scattering wireless channel,” in Proc. ISSSE, Sep 1998, pp. 295–300.

[4] B. Hassibi and H. Vikalo, “On sphere-decoding algorithm i. expected
complexity,” IEEE Trans. Signal Processing, vol. 53, no. 8, pp. 2806–
2818, Aug 2005.

[5] J. Jalden and B. E. Ottersten, “In the complexity of sphere decoding
in digital communications,” IEEE Trans. on Signal Processing, vol. 53,
no. 4, pp. 1474–1484, Apr 2005.

[6] C. Z. W. H. Sweatman and J. S. Thompson, “Orthotope sphere decoding
and parallelotope decoding - reduced complexity optimum detection
algorithms for mimo channels,” Signal Processing, vol. 86, no. 7, pp.
1518–1537, July 2006.

[7] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search
in lattices,” IEEE Trans. on Inf. Theory, vol. 48, no. 8, pp. 2201–2214,
Aug 2002.

[8] M. Taherzadeh, A. Mobasher, and A. K. Khandani, “Communication
over mimo broadcast channels using lattice-basis reduction,” IEEE
Trans. on Inf. Theory, vol. 53, no. 12, pp. 4567–4582, Dec. 2007.

[9] H. Samra and Z. Ding, “New mimo arq protocols and joint detection
via sphere decoding,” IEEE Trans. Signal Processing, vol. 54, no. 2, pp.
473–482, Feb. 2006.

[10] C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved prac-
tical algorithms and solving subset sum problems,” Math. Programming,
vol. 66, no. 2, pp. 181–199, 1994.

[11] D. A. Patterson and J. L. Hennesy, Computer Architecture: A Quantita-
tive Approach, 4th ed. Morgan Kaufmann, 2006.

663

