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Abstract 

Our study is related on Compressive Sensing(CS), which is a famous signal processing 

framework used in many fields like image processing and machine learning. By CS, we can 

get compressed measurement of signal and reconstruct the original signal from it in 

polynomial time. This can be used as a blind sample-and-compression combined procedure 

or super-resolution method of the original signals. 

Belief Propagation, which is a message passing algorithm that works on graph model, 

evaluates marginal probability density function by propagating messages from a node to other 

nodes. If we consider set of variable nodes in bipartite graph as a sparse signal and set of the 

other nodes as a compressed measurement, we can use the Belief Propagation as a 

compressive sensing recovery algorithm. Furthermore, unlike other recovery algorithms, we 

can directly use prior distribution and can get the probabilistic distribution of original signal 

instead of just estimated values.  



 

- ii - 

In this study, a new compressive sensing recovery algorithm based on Belief Propagation, 

called CS-WBP is proposed and empirically compared with other Belief Propagation based 

recovery algorithms such as Approximate Message Passing(AMP) and canonical 

Compressive Sensing via Belief Propagation(CS-BP). This new algorithm can be used on 

specific sensing matrix which CS-BP cannot cover and show better performance than AMP 

for certain conditions. 
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1 Introduction  

1. 1. Compressive Sensing Overview 

1. 1. 1. Sampling Theorem to Compressive Sensing 

With developments of computer and digital signal processing, many signal processing has been 

done in digital domain. However, many natural signals that we would like to handle are analog 

signals. These analog signals must go through a converting stage called analog-to-digital-converting 

(ADC) to yield digital signals which can be processed in digital circuit. Nyquist-Shannon sampling 

theorem, or simply, sampling theorem has been used as a basic principle of ADC for a century. This 

theorem says that: 

 

If a function ( )f t  contains no frequencies higher than W , it is completely determined by 

giving its ordinates at a series of points spaced / 2W  seconds apart. [1] 

 

 i.e., we need to sample with sampling rate which is higher than two times of maximum frequency 

of target signal. Then, we can reconstruct original analog signal from the sampled signals. This limit 

of sampling rate, called Nyquist rate, is known to be a fundamental limit of ADC. 
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However, the sampled signals are often large in volume. Therefore, before for them to be stored or 

transmitted, they must go through a compression stage to reduce the size of the sampled signals. Then, 

there are natural question ariased by Donoho in [2]  

 

“Everyone” now knows that most of the data we acquire “can be thrown away” with almost no 

perceptual loss (…) why go to so much effort to acquire all the data when most of what we get 

will be thrown away? Can we not just directly measure the part that will not end up being thrown 

away? [2] 

 

In order to answer to the above question, compressed sensing (CS) [2] is developed and studied. CS 

starts from the inverse problem of underdetermined linear system, 

 =y Ax   

where y  is 1M ×  measurement vector, A is M N×  sensing matrix, x  is 1N ×  signal and 

M N< .  
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Figure 1 Compressive Sensing 

This type of ill-posed problem has infinitely many solutions so that we cannot recover x  from y  

given A  in general. But in CS, we can separate a specific solution using sparsity constraint. 

The terminology “sparse” means that almost elements are zero and only a few elements can have 

non-zero values. For example, sparse signal is a signal which has a few picks and remained values are 

all zero. The Compressive Sensing theory says that if a signal is sparse enough, information can be 

compressively acquired by the random projection in measurement without loss of information. Since a 

sparse signal has small amount of information compared with the size of signal, the compressive 

measurement by linear projection can store all signal information without loss. This statement can be 

expressed mathematically using information theory, 

 ( ) ( )H H≤x y  (1) 

where ( )H ⋅  operator means information theoretic entropy of random variable, which is the 

amount of information. (1) means that the amount of information that measurement vector y  can 
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hold is more than that of sparse signal vector x . Thus, measurement vector y  can save all 

information of x  without loss of information. 

Even if the signal is not sparse, we can transform the signal to another domain which makes the 

signal sparse. For example, sinusoidal wave in time domain is not sparse, but it has unique nonzero 

element in frequency domain and the other elements are all zero. In the cases like this, we call the 

domain “sparsifying domain” and the signal “compressible” signal. Using the orthonormal transform 

basis Ψ , we can express the 1N ×  non-sparse signal vector z  as a sparse vector ′x  and establish 

the CS problem. 

′=
′ ′ ′= = =

Ψz x
y Az A Ψz A x

 

 By assuming that the signal is sparse enough, we can distinguish unique solution for x . The 

sparsest vector among the feasible solutions will be the original signal. Here, we can establish the CS 

recovery problem as optimization problem like this: 

 
0

ˆ arg min  . . s t= =
x

x x y Ax   (2) 

where 
0

  ⋅  is L0 norm, which is defined as number of nonzero elements in a vector. However, in 

order to solve this L0 minimization problem, we have to search all possible nonzero pattern of signal. 

Even if we know K  which is the number of nonzero elements in x , checking all 
N
K

 
 
 

 possible 

nonzero pattern is NP-hard problem which cannot be solved in polynomial time. 
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 Instead, let’s consider minimum L1 norm reconstruction like this. 

1
ˆ arg min  . . s t= =

x
x x y Ax   (3) 

As you can see in Figure 2, L1 optimization is likely to give the sparse solution. Figure 2 shows the 

L1 and L2 balls with unit radius. Because of diamond-shape of L1 ball, minimum L1 norm solution is 

sparse in many cases while minimum L2 norm solution is hardly sparse. 

 

Figure 2. L1 and L2 balls with unit radius 

 

Using minimum l1 norm reconstruction, sparse signal with K  nonzero elements can be recovered 

using only log( / )M cK N K≥  length of measurement vector [3][4]. This L1 minimization problem 

in (3) is also called Basis Pursuit and it can be solve by linear programming called Basis Pursuit 

Denoising [5] with 3( )O N  computation. If y  is noisy measurement, we can reformulate (3) as like: 
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2

1 2
ˆ arg min  . . s t ε= − ≤

x
x x y Ax  

Or, equivalently,  

2

2 1
ˆ arg min  . . s t q= − ≤

x
x y Ax x  (4) 

(4) also called LASSO[6]. By bringing constraint to the objective, (4) becomes 

2

2 1
ˆ arg min λ= − +

x
x y Ax x ,  

which is well known convex optimization problem and there are many algorithms to solve this 

problem. 

 These CS recovery algorithms can be divided into two broad groups.  

(i) Greedy approximation algorithms 

Basically, greedy algorithms try to solve L0 norm regulation problem (2).However, finding the 

global minima of (2) is NP-hard problem. Greedy algorithms iteratively find local minima each 

iteration and the final result becomes an approximation of solution of (2). Matching Pursuit (MP) [8] 

and Orthogonal Matching Pursuit (OMP) [9] are typical greedy algorithms. Also, there are many 

variants of them and other related greedy algorithms such as Compressive Sampling Matching Pursuit 

(CoSaMP) [10], Subspace Pursuit (SP) [11] and Stage-wise Orthogonal Matching Pursuit (StOMP) 

[12].  

(ii) L1 Optimization based algorithms 
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 Algorithms of this type operate for solving BP problem (3) or LASSO problem (4). Since there 

were many studies about convex optimization, there are various methods for these problems. 

Traditional interior point method is the most basic one. For example, Kim et al. suggested a 

successful truncated Newton based interior point method for L1 regularized least squares [13]. Most 

of these algorithms use additional techniques for efficiency. Application of Alternative Direction 

Method (ADM) is a good example [14] while Iterative Shrinkage Thresholding Algorithm (ISTA) [15] 

and its improvement, Fast ISTA (FISTA) [16] are also efficient L1 optimization based algorithms. 

 

1. 2. Belief Propagation and Compressive Sensing 

1. 2. 1. Graph Model of Compressive Sensing 

Typical CS problem can be modeled as a graphical model. If we interpret the sensing matrix A  as 

a representation of relationship between nodes, we can say A  is a bipartite graph. 



 

- 8 - 

 

Figure 3 Factor graph model of compressive sensing 

 

In this graph, the weight of each branch is nonzero elements of sensing matrix. On the other hand, 

branches corresponding to zero elements are not displayed in the graph. A set of variable nodes means 

sparse signal vector x  and set of factor node means measurement vector y . If the sensing matrix is 

sparse, then each element of measurement vector y  will become a linear sum of just a few elements 

in signal vector x  and also there will be a few edges between a measurement node and signal nodes. 

We call this sparse and bipartite graph factor graph. 
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In the factor graphs, an element of y  can be expressed as a function of several elements of x . 

Thus, we do not need to consider global function of all elements of x  to calculate each element of y . 

Instead, calculating local functions and sharing the result will be enough because elements of y  are 

independent with each other. For example, in the Figure 3, it is difficult to calculate global function, 

1 2 3( ) ( , , ,...)f f x x x= =y x  

but calculating of local functions, 

1 3 5 2 4 6 1 4 5( , , ) ( , , ) ( , , )f x x x f x x x f x x x= × × ×y   

is much easier. Thus, we can consider using the sum-product message passing algorithm—which is 

a Belief Propagation (BP) suitable for the factor graph model[17]—for reconstruction of sparse signal 

x from measurement y. 

1. 2. 2. Belief Propagation 

Belief propagation (BP) is an efficient methodology for sharing statistical information over 

graphical models. In the BP, local result, called messages, are passed to other local nodes so that local 

nodes can use the result of other nodes to their operation. This procedure is called message passing. 
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Figure 4 Tree-structure and loopy structure 

Originally, BP was proposed to find exact solution of tree-structured graph problem [18], but it also 

gives approximate solution of general graph with loops[19]. Although it’s exact conditions for 

convergence are not well known, BP has been used to solve general bipartite graph problem such as 

decoding of Low Density Parity Check (LDPC) code[20]. And many other existing algorithms 

developed in the artificial intelligence, signal processing, and digital communications community use 

based on the BP. [17] In conclusion, BP is known to be exact on trees and accurate for locally tree 

like graphs. [20][21][22] 

BP has many message passing rules such as max-sum message passing and sum-product message 

passing. In my work, we are going to focus on sum-product type BP because of the reasons which will 

be presented in Section 2. Unless otherwise stated, all BP in this work is the sum-product type BP. In 

the BP, we use the probability density distributions as messages. This algorithm calculates marginal 

probability distributions of variable nodes in factor graph. Before explain the detail, we are going to 
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use the subscript i  to direct unspecified variable node, j  for unspecified factor node, v  for a 

specific variable node, and f  for a specific factor node. For example,  v fµ →  is a message from 

variable node vx  to factor node fy . 

The BP consists of these three steps: 

(i) Variable to factor(V2F) update  

At first, V2F message are updated. These messages are the probability distribution of vx  

conditional on all factor nodes except a target factor node fy  which means 

( )\{ }( | )
vX v n v ff x y  

where ( )n v  is a set of indices of factor nodes which are connected to the variable node vx . 

Since every factor node which is connected with vx  locally calculates the probability distribution 

of vx  and sends it to vx  as a factor to variable(F2V) message, the V2F messages become the product 

of these F2V messages except from target factor node. Figure 5 shows the calculation of V2F message 

from 1x  to 1y . 
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Figure 5 Calculation of V2F message 

This calculation can be expressed like 

( )\{ }

:v f j v
j n v f

µ µ→ →
∈

= ∏  

where ( )n v  is the set of factor nodes’ indices which are connected with vx  node. 

(ii) Factor to variable(F2V) update  

Secondly, F2V messages are updated. These messages are the conditional distribution of a variable 

node vx , given one factor node fy  and other variable nodes which means 

( )\{ }( | , )
vX v n f v ff x yx  

where ( )n f  is a set of indices of variable nodes which are connected to the factor node fy . 
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Since fy  has the probability distributions from all connected variable nodes ( )i n f fµ ∈ → , we can 

calculate F2V message f vµ →  by marginalizing the joint distribution with respect to the other 

variable nodes except vx . Figure 6 shows this calculation of F2V message from fy  to 1x . 

 

Figure 6 Calculation of F2V message 

This calculation can be expressed like 

( )\

( ) ( )\
( )\

( )
v

n f xv

f v n f i f n f x
i n f v

f dµ µ→ →
∈

= ∏∫
x

x x  

where ( )n f  is the set of variable nodes’ indices which are connected with fy  and ( )f x  is a joint 

distribution of variable nodes. From the relationship between the factor node and variable nodes, 

( )
f i

i n f
y x

∈

= ∑  

and  

 
( )\

v f i
i n f v

x y x
∈

= − ∑  (5) 

 

              

Marginalize     
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We can find the F2V message from fy  to vx . Let the random variable 
( )\

i
i n f v

R X
∈

= ∑ . Then (5) 

becomes 

v fX y R= −  

and finally the probability distribution of vX  will be ( ) ( )
vX v R ff x f y r= − , where the probability 

distribution of R  can be expressed as a convolution, 

( )\
( ) ( )

iR X ii n f v
f r f x

∈
= ⊗ . 

 

(iii) Posterior update 

By repeating (i) and (ii), messages are exchanged among all nodes. After all messages are converse, 

we can get the posterior distribution for each variable node by multiplying all F2V messages. Figure 7 

shows the calculation of 1x ’s posterior distribution. The posterior distribution is proportional to the 

product of F2V messages, 

( )

1( )v j v
j n v

f x
Z

µ →
∈

= ∏  

where Z  is a normalization constant. 
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Figure 7 Calculation of posterior distribution 

1. 2. 3. Using Belief Propagation on Compressive Sensing Recovery 

As mentioned in the section 1.1.1, there are many fast and precise CS recovery algorithms without 

using BP. However, there are some advantages of BP based algorithms. These advantages are mainly 

due to the suitability for Bayesian approach. 

(i) Direct use of prior information 

In many cases, probability distributions of signals are known in prior. Simply putting the initial 

messages of BP to prior distributions allow to enjoying the benefit of prior information—the better 

estimation. In many other recovery algorithms, we often have to customize many parts to apply the 

prior information.  

(ii) Output in the form of posterior distribution 

We can get posterior distribution while other algorithms give us just estimation values. Using these 

Bayesian inferences, we can know more about signals. For example, we can find the next-best 
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estimation as a precaution of failure. Or, we can present the statistical characteristics like confidence 

interval of estimation. 

But there are some difficulties to implement BP based algorithms. At first, sampling problem 

makes implementation difficult. In order to implement algorithm, it should be processed by Digital 

Signal Processing (DSP). Thus, continuous function such as probability density function (PDF) 

cannot be processed directly; it have to be sampled. If the graphs are weighted graphs, the expanded 

and shrunk version of PDF should be evaluated. For example, let ( )
ix if x  is the prior PDF of ix  

which is used as initial message from ix  node to factor nodes. Let’s remind (5). 

( )\
v f i

i n f v
x y x

∈

= − ∑  

If the edges have weight, then (5) becomes 

( )\
v f fi i

i n f v
x y a x

∈

= − ∑  

where jia  is weight of edge between a factor node jy  and a variable node ix . i.e., the ( , )j i th 

element of sensing matrix A . Then the random variable R  is defined as 

( )\
fi i

i n f v
R a X

∈

= ∑  

because 

f fv vy a X R= +  

and 
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fv v fa X y R= − . 

Let fi i ia X E= . To evaluate 
( )\

( ) ( )
iR E ii n f v

f r f e
∈

= ⊗ , we have to calculate ( )
i i

i
E i X

fi

xf e f
a

 
=   

 
 

which is fia − times expanded version of ( )
iX if x . Also, we have to calculate the probability 

distribution of f
v

fv

y R
X

a
−

=  to update F2V message, which is fia − times shrunk version of 

( )R ff y r− . Here, we face with interpolation issue to maintain the sampling rate. Since we store 

samples of ( )
iX if x ,  calculated ( )

i i

i
E i X

fi

xf e f
a

 
=   

 
 will be lost the value between two adjacent 

sample points. Because we have to know the values of these points to evaluate the exact messages, the 

interpolation of these points is needed—which causes interpolation errors. Without solution to these 

problems, we cannot implement BP based recovery algorithms. 
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Figure 8 Interpolation error 

Computational complexity is also a big problem. In belief propagation, we have to deal messages 

which are functions, not a few variables. It needs much computational cost to multiplying and 

marginalizing the messages. Specifically, if we store the probability distribution in l -length samples, 

the computational cost of convolution of these distributions which is needed to update message is 

( log )O l l . Moreover, we have to calculate messages for each edge. If the graph is not sparse enough, 

the computational cost will increase more and more. 
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2. Existing Belief Propagation-Based Algorithms 

2. 1. Examples of BP-Based Algorithms 

In the previous section I, we introduced some issues that BP-based algorithms have to solve. Here 

are some examples of BP-based algorithms which solve the issues successfully.  

2. 1. 1. Approximate Message Passing (AMP)  

Approximate Message Passing (AMP) [23] is a successful approximate BP-based algorithm which 

has good phase transition and competitive reconstruction speed. In this algorithm, the sensing matrix 

is a zero-mean i.i.d. Gaussian random matrix. Generally, dense sensing matrix like Gaussian matrix 

slows down BP process because more edges cause more calculations for messages. Furthermore, 

dense sensing matrix has too many cycles to become tree-like structure thereby causing failure of BP 

iteration. However, by Gaussian approximation, amount of messages significantly reduced. With 

some abuse of Central Limit Theorem (CLT), message becomes Gaussian distribution; so now we 

don’t have to deal whole PDF. i.e., everything we have to pass is just parameters, mean and variance. 

Moreover, by 1st order Taylor approximation, AMP much reduced its computational cost. In other 

hands, there is no sampling problem because we can generate marginal distribution from mean and 

variance of it because the distribution is known to be a Gaussian and the PDF of Gaussian random 

variable can be fully expressed by mean and variance. 

2. 1. 2. Compressive Sensing via Belief Propagation (CS-BP) 
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CS-BP[24] is also a good BP-based algorithm that overcomes complexity and sampling issues in 

different way. Unlike AMP, CS-BP does not use approximation but uses Non-parametric BP (nBP). 

Because non-parametric BP passes full PDFs as messages, output can be PDF of various shapes. For 

example, in AMP, output distribution will be always Gaussian or Laplace distribution although real 

distribution can be different. Another different point is that it works at sparse sensing matrix. Since 

this sparse sensing matrix has a few edges and hence a few loops so that nBP is suitable in terms of 

speed and performance. And finally, sampling problem is also solved by restricting nonzero elements 

of sensing matrix as 1 or -1. Expansion or shrink of messages doesn’t happen because of this. But this 

algorithm has a problem that estimation values can be chosen among sample points of prior PDF 

hence causing some quantization error. Bayesian Hypothesis Test-Belief Propagation (BHT-BP) [25] 

is an advanced type of CS-BP which removes quantization error successfully. BHT-BP used CS-BP 

algorithm to detect the sparse support set from noisy measurement and estimate the nonzero values in 

terms of MMSE using the detected support. 

 

2. 2. Drawbacks of Existing Algorithms 

These BP-based algorithms were successfully implemented and have been used, but there are some 

limitations. At large size and zero-mean i.i.d. matrix, AMP is known to converse quickly; otherwise 

may diverse. [26][27]. i.e., AMP cannot work at small size sensing matrix with far from zero mean. 

And, since AMP uses relaxed BP(r-BP) which is also called parametric BP, it cannot provide exact 
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marginal posterior distributions. The best think it can do is approximation of posterior distribution 

from mean and variance. So it is difficult to benefit from prior information and posterior distribution 

on AMP. CS-BP has drawbacks, also. It can work only on matrix which is consist of {-1, 0, 1}. From 

an implementation point of view, the sensing matrix is compressive sampling device like Spatial Light 

Modulator (SLM) in single pixel camera. [31] By the way, this type of sampling device is not easy to 

customize since it uses physical structure and materials. Thus, in many real applications of CS, 

sensing matrix is not a design factor but defined condition. Although CS-BP is an algorithm has many 

advantages, it is difficult to be used in various applications because of its restriction on sensing matrix. 
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3. Proposed Method: Compressive Sensing via Weighted Belief 

Propagation (CS-WBP) 

3. 1. Objective and Approach 

Although there are some BP-based algorithms such as AMP and CS-BP, they have limitations. At 

first, AMP is a good CS recovery algorithm but it lost one of main advantages of BP-based 

algorithms—Bayesian approach. AMP is difficult to exploit prior information and output is limited to 

the Gaussian distribution. It is also a problem that mean-removal technique [28] should be used to 

prevent performance decrease if the sensing matrix is a far-from zero-mean matrix. In the case of CS-

BP, a tight limitation on sensing matrix is the biggest problem. Since CS-BP (and BHT-BP, also) can 

only be used for ternary matrix consist of {-1, 0, 1}, it cannot used for various applications. Thus, we 

aimed to make a BP-based algorithm which can overcome these limitations. First of all, we used nBP 

so that we can exploit the prior information easily and get posterior distribution output. Then, our 

algorithm should cover non-ternary and nonzero-mean sensing matrix while treating computational 

complexity and sampling issue at the same time. 

3. 1. 1. Sparse and weighted sensing matrix  

To use nBP, we have to use graph of tree-like structure. At first, to reduce computational 

complexity holding on to nBP, we consider sparse sensing matrix. If the sensing matrix is sparse, then 

the graph will be more tree-like. It is already mentioned in Section I. In other hand, we considered 

non-uniform weights unlike that of CS-BP so that our algorithm becomes the extended version of CS-
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BP. i.e., the nonzero values of the sensing matrix are not restricted to 1 or -1. Then the graph becomes 

“weighted” graph. In fact, the original graph used in CS-BP can be called weighted graph because it 

can have -1 value, also. But we regarded that the magnitude of the weight which causes expansion or 

shrinking of PDF is more important than the sign of the value. This is the reason why we called 

sensing matrices we used are “weighted”. However, we cannot accept arbitrary weight value to satisfy 

the discretized signal and measurement model to implement. Here, we can know that the value of 

nonzero elements in sensing matrix should be an integer because the product ji ia x  have to be 

discretized. In conclusion, the sensing matrix becomes sparse and integer valued matrix which is 

called a sparse weighted graph.  

By using matrix of this type, we also can get benefit in terms of hardware implementation. To 

implement compressive sensing hardware devices, we have to design a physical structure of 

compressive sampler corresponding to the sensing matrix. But it is very complicated to make random 

structure of almost infinite degree of freedom which is known to be good. Instead, many studies on 

real-application choose pseudo-random or well-designed deterministic sensing matrices of low degree 

of freedom. Famous examples such as single-pixel camera [31] and lensless imaging system [32] even 

used just binary (0 or 1) pseudo-random sensing matrix. If we don’t think such extreme cases, it is 

more reasonable that the kind of value which an element in the sensing matrix can have should be 

limited. 

3. 1. 2. Quantized of signal and measurement    
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We assumed quantized signal model. It is mainly because of sampling problem. If the signal and 

message are quantized, we do not need to worry about interpolation error; because these distributions 

become probability mass functions (PMF) instead of PDFs. Simple zero-stuffing on empty points is 

enough to treat the interpolation issue. 

 

Figure 9 Zero stuffing 

We can easily find quantized signals in near. Quantized signal model can bring some advantage for 

these signals.  

(i) Digital samples 

First type of quantized signals is sampled digital data. Actually, a major benefit of Compressive 

Sensing is that we can combine sampling and compressing of natural signals. However, usage of CS 

is not restricted to ADC. Rather, nowadays it is used for many signal processing fields treat digital 

date such as machine learning [30] and image processing [29] under the name of Sparse 

Representation. 

(ii) Naturally quantized signals 
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The other type is naturally quantized signal. We often face naturally quantized signals. For example, 

counting data, which is sensing data about the numbers certain events are occurred is a typical 

naturally quantized data. Detecting, which is a process to distinguish whether a certain event is occur 

or not, also can be a part of counting. Microscopic measurement can be another example. It is well 

known physical phenomena that energy level of monochromatic light or electrons in an atom is 

quantized. 

In addition, most of these naturally quantized signals are non-negative. Number of events occurring, 

energy level and intensity are good examples of non-negative signals. In these cases, we can use this 

prior knowledge to improve the performance of algorithms by applying non-negative constraint.  

3. 1. 3. Non-negative constraint  

At section 3.1.1, we already mentioned that our most of target signals not only quantized but also 

non-negative. We aimed at applying our algorithm to this type of non-negative signal applications; 

our original targets were turbid media imaging[34] and spectral intensity measuring[35]. 

Sensing matrix is also non-negative in our scenario. Let’s remind section 2.2; a limitation of AMP 

is that it cannot work well on far from zero mean matrices. Non-negative matrix is a typical example 

of them. 

 

3. 2. System Model  
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(i) Sparse signal 

Our target signal model is quantized, non-negative, and sparse. 

{ }max0,1, 2,..., Nx∈x  

Here, maxx  is a positive integer since we assume the quantization level of the signal is one for 

simple calculation. If the quantization level is not one, then we can compensate the signal values by 

dividing and multiplying the quantization level at the input/output stages. In original CS-BP, x  was 

driven from i.i.d. two-state Gaussian-mixture model[36]. However, in our scenario, prior knowledge 

is a little bit different. Let the signal vector  

[ ]1 2
T

Nx x x=x   

is a realization of a series of i.i.d. random variables 

[ ]1 2
T

NX X X=X  . 

Here, ( )x i  can have two states—support set or not. Let the probability that i th element is support 

set be 

Pr( 1)is q= =  

then the probability that the element is not support set be 

Pr( 0) 1is q= = −  
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where 0 / 1q K N≤ = < . After whether support set or not is given, we can define conditional PMF for 

corresponding state and overall distribution 

| ( | 1)
i iX S i ip x s =  

| ( | 0)
i iX S i ip x s =  

| |( ) ( | 1) (1 ) ( | 0)
i i i i iX i X S i i X S i ip x q p x s q p x s= ⋅ = + − ⋅ =  

For example, we can consider a two state mixture model that | ( | 0)
i iX S i ip x s =  follows exponential 

distribution with very small mean and variance and | ( | 1)
i iX S i ip x s =  follows Poisson distribution. 

Unlike mixture Gaussian model, these conditional distributions do not need to follow Gaussian 

distribution. 

(ii) Sensing matrix 

Sensing matrix is also quantized, non-negative and sparse in our scenario. 

{ }max0,1, 2,..., M Na ×∈A  

Here, maxa  is a positive integer. If max 1a = , our sensing matrix will be same with that of CS-BP 

with nonnegative constraint. Sensing matrix of CS-BP become sparse and binary matrix under the 

nonnegative constraint. Figure 10 shows the difference between the sensing matrix of CS-BP and that 

of our scenario. (a) is the sensing matrix of CS-BP, which is a binary matrix. On the other hand, (b) is 

the sensing matrix where max 64a = . 
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Figure 10. Sensing matrices according to maxa . 

Finally, the quantized noisy measurement is here: 

( )round= +y Ax n  

where M∈n   is a white Gaussian noise vector. 

 

3. 3. Proposed Algorithms  

3. 3. 1. Algorithm description 

Finally, we introduce our recovery algorithm, Compressive Sensing via Weighted Belief 

Propagation (CS-WBP). Basically, this algorithm is non-ternary extension of CS-BP. CS-WBP 

operate alike CS-BP on {-1,0,1} matrices while it also can work on non-ternary matrices. Although 

we developed and tested this algorithm on non-negative signal and matrix condition, note that CS-

WBP can be used regardless of non-negativeness.  
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Here is the flow diagram of CS-WBP algorithm. Figure 11 shows that the process that CS-WBP 

estimate sparse signal from measurement. First, BP iteration with expansion/shrinking function is 

performed for the quantized measurement and input prior PMF. (If we don’t have any prior 

information, the prior PMF is initialized by uniform distribution.) As a result, the marginal posterior 

PMF of signal is obtained and used for Maximum a posteriori estimation of the signal. Note that we 

also can get marginal posterior PMF, not only the estimation value. This can be used for other propose; 

for example, we can apply the support detection and MMSE estimation scheme of BHT-BP in here. 

Any other Bayesian approach which can be done with posterior PMF can be applied easily. 

 

Figure 11 Flow diagram of CS-WBP. 

For explaining the detail iteration stage of CS-WBP algorithm, let’s remind original BP in section 1. 

The CS-WBP consists of these three steps: 

(i) Variable to factor(V2F) update  
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At first, V2F message are updated. These messages are the PMF of vx  conditional on all factor 

nodes except a target factor node fy  which means 

( )\{ }( | )
vX v n v fP x y  

where ( )n v  is a set of indices of factor nodes which are connected to the variable node vx . 

Since every factor node which is connected with vx  locally calculates the probability distribution 

of vx  and sends it to vx  as a factor to variable(F2V) message, the V2F messages become the 

product of these F2V messages except from target factor node. This calculation can be expressed like 

( )\{ }

1:v f j v
j n v fZ

µ µ→ →
∈

= ∏  

where ( )n v  is the set of factor nodes’ indices which are connected with vx  node and Z  is a 

constant called normalization constant which is used for normalizing the sum of V2F message 

become 1 so that it can be PMF. 

(ii) Factor to variable(F2V) update  

Secondly, F2V messages are updated. These messages are the conditional PMF of a variable node 

vx , given one factor node fy  and other variable nodes. i.e., 

( )\{ }( | , )
vX v n f v fP x yx  

where ( )n f  is a set of indices of variable nodes which are connected to the factor node fy . 
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Since fy  knows the PMF from all connected variable nodes ( )i n f fµ ∈ →  (i.e., V2F messages), we 

can calculate F2V message f vµ →  by marginalizing the joint PMF with respect to the other variable 

nodes except vx . This calculation can be expressed like 

( )\

( ) ( )\
( )\

1 ( )
v

n f xv

f v n f i f n f x
i n f v

P d
Z

µ µ→ →
∈

= ∑ ∏
x

x x  

where ( )n f  is the set of variable nodes’ indices which are connected with fy  and ( )f x  is a joint 

distribution of variable nodes and Z  is normalization constant. From the relationship between the 

factor node and variable nodes, 

( )
f fi i

i n f
y a x

∈

= ∑  

and  

 
( )\

fv v f fi i
i n f v

a x y a x
∈

= − ∑  (6) 

we can find the F2V message from fy  to vx . Let the random variable 
( )\

fi i
i n f v

R a X
∈

= ∑ . Then (6) 

becomes 

fv v fa X y R= −  

Let fi i ia X E= . Then ( )( )
i fi iE i a X fi iP e P a x=  which is fia − times expanded version of ( )

iX iP x . 

Then we can calculate  

( )\
( ) ( )

iR E ii n f v
P r P e

∈
= ⊗  

where ⊗  is the convolution operator. After get ( )RP r , finally we can evaluate the F2V message,  
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( )
v f

fv

f
X v y R

fva

y r
P x P

a−

 −
=   

 
 

which is fia − times shrunk version of ( )R fP y r− . 

Here, we need a function to treat expansion and shrinking of PMFs. The expansion and shrinking 

function can be defined like 

,
( ( ), )

0,

x x xP where
c c c

P x c
x xwhere
c c

ε

     =       = 
  ≠   

 

where c  is a scaling factor. If 1c ≥ , ( ( ), )P x cε  acts as expansion function and if 1c < , 

( ( ), )P x cε  acts as shrinking function. When it works as expansion function, it doesn’t interpolate but 

zero-stuff at the new points because ( )P x  is a discrete function. For example, let  

0.5 0
( ) 0.3 1

0.2 2

x
P x x

x

=
= =
 =

, 

and 

( ) ( ( ), )P z P x cε= . 

Then ( )P z  will become 
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0.5 0
0 1

( ) 0.3 2
0 3

0.2 4

z
z

P z z
z
z

=
 == =
 =

=

. 

Since ( )P x  is PMF, ( )P x  has zero value at the non-integer points. At this example,  

( 0.5) 0P x = = , 

therefore, 

( 2 1) ( 0.5) 0P z x P x= = = = = . 

(iii) Posterior update 

By repeating (i) and (ii), messages are exchanged among all nodes. After all messages are converse, 

we can get the posterior PMF for each variable node by multiplying all F2V messages. The posterior 

PMF is proportional to the product of F2V messages. Finally, the posterior PMF becomes 

( )

1( )v j v
j n v

P x
Z

µ →
∈

= ∏  

where Z  is a normalization constant. 

However, we have to consider the convergence issue at here. As mentioned in Section 1.2.2, we 

cannot guarantee the convergence of BP in tree-like structure with cycles. Furthermore, even if it 

converges, the speed of convergence is also can be a problem. The convergence speed of BP iteration 

directly effects on the running time of CS-WBP algorithm. Thus, we have to use termination 
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condition to guarantee the completion of BP iteration and to control the convergence speed. And 

damping technique also can be used to improve convergence in the practical implementation. We used 

termination condition which limits the maximum iteration of BP and allow finishing the iteration in 

early step when the variation of messages is ignorable. Also we used damping technique at the update 

of F2V messages.  

Here is the pseudo code of CS-WBP. 

CS-WBP Algorithm 

This algorithm iteratively calculates marginal posterior distributions of variable nodes, given graph, 

values of factor nodes, and prior distribution of each variable node.  

Input: 

Graph: 
11 1

1

N

N MN

a a

a a

 
 =  
 
 

A


  



 

Factor nodes: [ ]1 2
T

My y y=y   

Prior distributions: , ( )
iX prior iP x  

Output: 

Posterior distributions of variable nodes: ( )
iX iP x  

Definitions: 
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,
( ( ), )

0,

x x xP
c c c

P x c
x x
c c

ε

     =       


  ≠   


 

{   || max_ }termination updated posterior old posterior iteration iteration=   

α  damping coefficient, 0 1α< < . 

Initialize: 

,( ) ( )
i iX i X prior iP x P x←  

For all {1,2, , }v N∈   and {1,2, , }f M∈  , , ( )
vv f X prior vP xµ → ←  

Main Loop: 

Repeat  

For all {1,2, , }v N∈   and {1,2, , }f M∈  ,  

( )\
( ) * ( , )

fvZ fv v f fvi n f v
P z aε µ →∈

←  

1( ),
fvf v Z f fv

fv

P y z
a

µ ε→

 
← −  

 
 

( )\

(1 )v f v f j v
j n v f

µ αµ α µ→ → →
∈

← + − ∏  

while{~termination} 

( )

( )
iX i j v

j n v

P x µ →
∈

← ∏  
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 3. 3. 2. Computational complexity 

The computational complexity of BP recovery is 

( )log logO N Nl l  

where N  is length of signal and l  is length of messages. We need ( )O l  computations to 

calculate a V2F message. In other hands, we need ( log )O l l  computations if we use fast convolution 

for F2V update. V2f and F2V update also have to be done for ( )O N  times per one iteration, so 

overall complexity at an iteration becomes ( log )O Nl l . This iteration will be finished at (log )O N  

iterations in case of tree-like structure. [19] Overall, complexity of CS-WBP becomes 

( log log )O N Nl l . If we consider the l  as a constant, than it becomes ( log )O N N . 
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4.  Simulation Results and Analysis  

4.1.  Simulation setup 

To verify the performance of CS-WBP we conducted simulation experience with the algorithm. We 

used the non-negative integer valued signal with length 500N =  and the number of nonzero 

elements 50K = . i.e., we used signal of sparsity 0.1. The sensing matrix is generated by the product 

of irregular LDPC matrix with column degree of 5 and uniform discrete random mask in the interval 

[1, ]maxa . i.e., The sensing matrix has randomly selected 5 nonzero values in a column and the 

nonzero values are uniformly distributed over integers within [1, ]maxa . Note that we used a minor 

modification to prevent generations of matrix which contains “all-zero-rows”. If the sensing matrix 

has all-zero-rows, the net number of measurement decreased thereby causing the distortion of the 

results. The simulation was done for different maxa ’s, 1, 3, and 7. We use AWGN noisy 

measurements with Signal-to-Noise Ratio (SNR) conditions of 30dB and 50dB, and the simulation 

was done 100 times for each experimental point. As a parameter setting, we limited the maximum 

iteration by 30 times and used damping coefficient 0.5α = . We calculated the needed number of 

measurements for perfect recovery using the simulation result, while considering the cases that Mean 

Squared Error (MSE) is smaller than 0.01 as the cases of perfect recovery. For reference, Non-

negative Generalized AMP (NNGAMP) [Vila13] is compared. Actually, the NNGAMP is not a 

perfect partner for comparison because we didn’t use any mean-removal technique for the algorithm, 

just scaled the whole system so that the effective mean value of sensing matrix can be maintained 

while maxa  is varying. The mean-removal technique or other technique for stable operation of AMP 
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is a research issue which is receiving many attentions from many other researches like [33] and we 

also have interest. Thus, this performance comparison is not quite fair but it is worth observing the 

performance variation according to maxa . 

 

4.2.  Simulation Result 

Here is the simulation result at the SNR of 50dB. Figure 12 shows the MSE versus the number of 

measurements in a ratio to the length of signal according to the values of maxa . As we can see, the 

MSE performance of CS-WBP gets better while maxa  is increase. In the other hands, the performance 

of NNGAMP is stationary. This phenomenon is well displayed in the Table 1. The table shows the 

minimum measurements ratio for perfect recovery. The needed measurement ratio for perfect 

recovery by CS-WBP algorithm decreases from 0.28 to 0.26, and 0.24 while the maxa  increases to 1, 

3, and 7. This result means the performance of CS-WBP is improved by increasing maxa  because 

smaller measurement ratio means more tough condition for recovery. i.e., CS-WBP algorithm with 

max 1a =  cannot perfectly recovery the signal where the number of measurements is 120, while CS-

WBP with max 7a =  can. In other hand, the performance of NNGAMP is almost same regardless of 

maxa . 
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Figure 12 MSE versus number of measurements at SNR=50dB. 

 

 

Table 1 Measurements ratio for perfect recovery at SNR=50dB. 
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Here is the same simulation result but it is at the SNR of 30dB. Figure 13 shows the MSE versus 

the number of measurements in a ratio to the length of signal according to the values of maxa . As we 

can see, the MSE performance of CS-WBP gets worse while maxa  is increase, which is completely 

opposite against the case of SNR=50dB. In the other hands, the performance of NNGAMP is 

stationary. It also can be seen in Table 2. The table shows the minimum measurements ratio for 

perfect recovery. The needed measurement ratio for perfect recovery by CS-WBP algorithm increases 

from 0.4 to 0.5, and 0.7 while the maxa  increases to 1, 3, and 7. This result means the performance of 

CS-WBP degenerate by increasing maxa . In other hand, the performance of NNGAMP is almost same 

regardless of maxa . 

 

Figure 13 MSE versus number of measurements at SNR=30dB 
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Table 2 Measurement ratio for perfect recovery at SNR=30dB. 

 

4.3. Analysis 

Overall, the recovery performance of CS-WBP increased where SNR=50dB and it decreased where 

SNR=30dB according to the maxa . Then why these completely opposite results came out? First, let 

think about 50dB case. Actually, this case is almost same with noiseless case because we use the 

quantized measurements. If the intensity of all elements of noise vector are smaller than 0.5, the 

round-off version of noisy measurement and noiseless measurement will be same. We can calculate 

the probability that the event like this happens. Put the event E . Then the probability will become: 

1Pr{ } Pr{| | 0.5}
2 2

M

M

w

E w erf
σ

 
= < =   

 
 

where ( )erf ⋅  is the error function which is defined as  

2

0

2( )
x terf x e dt

π
−= ∫ . 
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When 0x ≥ , 
1erf
x

 
 
 

 is almost 1 until x  reaches some threshold value. After x  exceeds the 

threshold value, 
1erf
x

 
 
 

 start to decrease. Figure 14 shows it well. 

 

Figure 14 Plot of erf(1/x) 

We decided this threshold value as a point that 
1 0.999erf
x

  = 
 

. Since 11/ (0.999) 0.4erf − ≈ , 

the threshold value for wσ  become 
2

10
. i.e., if 

2
10wσ ≤ , the system will works like noiseless 

system because 

1Pr{ } 1
2 2

M

w

E erf
σ

 
= ≈  

 
. 

We can express the threshold value in terms of SNR. Since we defined the SNR as 

2 2[( ) ] / wE Y w σ− , we have to calculate 2[( ) ]E Y w−  first. 

From the signal model  

1 1 2 2j j j jN N jy a x a x a x w= + + + + , 
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we can derive the random variable Y  like as 

1 1 1 2 2 2

1

( ) N N N
Bi

k k
k

Y w BU X B U X B U X

U X
=

− = + + +

=∑



, 

where B  is a Bernoulli random variable with success probability 
L
M

, U  is an uniform discrete 

random variable from the interval max[1, ]a , and Bi  is a binomial random variable with N  times 

trials and success probability 
L
M

. Then we can find 2[( ) ]E Y w− . 

1
2 2 2 2 2

1
22 1

2 2max

1

2 2
2 2max max max

2

2 2 2
max max max

2

2 2 2 2
max

2

[( ) ] [ ( ) ] 2 [ ] [ ] [ ] ]

[( ) ] 2 [ ] )
2

( 1)(2 1) [ ] [ ] ( 1)
6 4

( 1)(2 1) ( 1)
6 4

4

N

k

N

k

E Y w E N BUX E B E U E X k

aLNE BUX E X k
M

a a a LLN E X E X N N
M M

a a a L N NLN
M M

a L N
M

λλ

λ

−

=

−

=

− = +

  = +    
   

+ +
= + −

+ + −
= +

≈

∑

∑

 

Then we can calculate the threshold SNR by 

2 2 2 22
max

2 2
,

100[( ) ]
8th

w th

a L NE Y wSNR
M

λ
σ
−

= ≈ . 

For example, in our simulation setting,  

max, 1 5000 37dBth aSNR = ≈ =  

max, 3 50000 47dBth aSNR = ≈ =  
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max, 7 250000 54dBth aSNR = ≈ =  

In conclusion, our system will operate like noiseless at higher SNR than this threshold; otherwise it 

will operate with noisy measurement. According to this threshold, the 50dB is almost noiseless case 

and 30dB is a clear noisy case. Then, let’s think these two cases separately. 

4.3.1. Noiseless case 

In the noiseless case, we can present an information theoretic necessary condition for perfect 

recovery. 

Condition 1. ( ) ( )MH X H Y
N

≤ . i.e, the entropy of signal should be less than the entropy of 

measurement, where x  and y  are drawn from i.i.d. random distribution X  and Y , respectively. 

proof) Let’s think about typical decoder. For the perfect recovery, the number of possible y  should 

be larger or same with the number of possible set of x . i.e., | | | |≤  . The cardinality of typical sets 

become asymptotically 

( )| | 2NH X=  

and 

( )| | 2MH Y=  

where N →∞ . Here, we can easily derive Condition 1. 

Let’s come back to our signal model. We can express the random variable Y  like as: 
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1

B

k k
k

Y U X
=

=∑  

where kU  is an uniform discrete random variable from the interval max[1, ]a  and B  is a binomial 

random variable with N  time of trials and success probability 
L
M

. Here, if maxa  increases, then 

the number of values Y  can have also increases so the entropy of Y , ( )H Y  increases. As a result, 

the sensing matrices with larger maxa  is more likely to satisfy the Condition 1 than the sensing 

matrices with smaller maxa . i.e., the sensing matrices with larger maxa  is better matrices than those 

with smaller maxa . Thus, the upper bound of recovery performance will be higher at the larger maxa . 

This inference is quite suitable to our observation for CS-WBP. 

4.3.2. Noisy case 

In the noisy case, we can explain the observed simulation result by Cramer-Rao Bound. 

Cramer-Rao Lower Bound: 

1ˆvar( )
( )

x
I x

≥  

where ( )I ⋅  is fisher information which is defined as 

2

2

( ; )( ) l y xI x E
x

 ∂
−  ∂ 

  

and ( ; )l y x  is a log-likelihood function. Since  

2

1( ; ) ( ) ( )
2

T

w

l y x c
σ

= − − − +y Ax y Ax , 



 

- 46 - 

2

2 2

2

( ; ) ( )( )

( [ ])

T

w

T

w

l y x trI x E E
x

tr E

σ

σ

  ∂
= − =   ∂   

=

A A

A A
 

Remind that  

2 2 2 22
max

2 2

100[( ) ]
8w

a L NE Y wSNR
M

λ
σ
−

= ≈ . 

From here,  

2 2 2 2
2 max

2

100
8w
a L N
M SNR

λσ = . 

And ( [ ])Ttr E A A  is the sum of column powers in A , which is 

max max( 1)(2 1)( [ ])
6

T a atr E LN + +
=A A . 

Finally we can calculate the fisher information. 

2
max max

2 2 2 2
max

2
max max

2 2
max

8 ( 1)(2 1)( )
600

( 1)(2 1)
75

LNM a a SNRI x
L N a

M a a SNR
LN a

λ

λ

+ +
=

+ +
=

 

Then the Cramer-Rao Lower Bound becomes 

2
max

max max

1ˆvar( )
( )

( 1)(2 1)

x
I x

ac
a a

≥

≥
+ +

, 
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which is an increasing function of maxa . It means that at the noisy case, the minimum value of MSE 

grows with increasing maxa . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

- 48 - 

5. Conclusion 

 In this thesis, we introduced a new nonparametric Belief Propagation based Compressive Sensing 

Recovery algorithm called Compressive Sensing via Weighted Belief Propagation (CS-WBP). 

Compressive Sensing (CS) is an emerging signal processing framework, which is consist of two parts, 

compressive signal acquisition and reconstruction of signal from compressive measurement. The main 

point of CS is that if a signal is sparse enough, the signal information can be compressively acquired 

by the random projection in measurement without loss of information. It is known that L1 norm 

minimization can recover the signal form measurement in polynomial time. Belief Propagation or 

Sum-Product Message Passing is an efficient methodology for sharing statistical information over 

graphical models. BP-based CS recovery algorithms have some advantages mainly due to the 

suitability with Bayesian approach. However, there are also some difficulty to implement BP-Based 

algorithms, which are sampling problem and computational complexity. Several BP-based algorithms, 

such as Approximate Message Passing (AMP), Compressive Sensing via Belief Propagation (CS-BP), 

and Bayesian Hypothesis Test using nonparametric Belief Propagation (BHT-BP). But they have 

limitations, AMP is hard to exploit Bayesian approach; in other hand CS-BP and BHT-BP have 

restriction about sensing matrix. Our proposed method, CS-WBP is overcome these limitations by 

extending the CS-BP algorithm so that it can work on more general sensing matrices than those of 

CS-BP. As a result, CS-WBP algorithm can exploit the prior information and the output of algorithm 

is form of probability distribution, which contains more information than just estimation value. 

Furthermore, CS-WBP can work on the sparse and weighted sensing matrices, which CS-BP cannot 
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use. Performance of our algorithm is closely connected with SNR and maxa , which defines the 

possible number of nonzero values that sensing matrix can have. If SNR is higher than threshold 

mentioned in Section 4, the recovery performance gets better with increasing maxa . In other hand, if 

SNR is lower than threshold, the performance gets worse with increasing maxa . 
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