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Abstract

Hyperspectral (HS) imaging systems have been extensively studied across various

research fields, including remote sensing, biomedical imaging, and medical diagnostics.

However, the bulkiness and time-consuming imaging process of conventional HS imag-

ing systems have hindered their integration into mobile applications. In this study,

we present a deep learning (DL)-based computational HS camera that integrates a mi-

crolens array (MLA) and a multilayer thin film filter array, enabling snapshot HS imag-

ing with compact and low-cost configuration. Instead of implementing multiple filter

arrays with multilayer structures across the complementary metal-oxide semiconductor

(CMOS) image sensor which leads to transmittance inconsistencies and complicates the

recovery process, we mount an MLA onto a single filter array with a CMOS image sen-

sor, effectively reducing reconstruction complexity. We employed DL-based point-wise

spectral reconstruction methods to recover an HS image. A synthetic spectral dataset

was used to train the model. To train the model by reflecting the measurement noise

in the real environment, we propose a data augmentation scheme using noise levels
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sampled from a uniform distribution. Our experimental results by the best-performing

model showed a 17-fold increase in reconstruction speed and a twofold reduction in re-

construction error with the proposed data augmentation scheme. By achieving snapshot

structure and efficient reconstruction with compact and low-cost hardware configura-

tion, the proposed system offers a promising solution for mobile applications such as

on-site detection and consumer electronics.
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국 문 요 약

초분광 이미징 시스템은 원격 감지, 의료 영상 및 진단을 포함한 다양한 연구 분야에

서광범위하게연구되어왔다.그러나기존초분광이미징시스템의큰부피와긴시간이

소요되는 이미지 획득 과정으로 인해 초분광 카메라의 모바일 기기로의 응용이 제한되

어 왔다. 이 연구에서는 마이크로렌즈 배열 (MLA)과 다층 박막 필터 배열을 통합하여

저비용/초소형의단노출시간에초분광이미징이가능한딥러닝기반계산초분광카메

라를 제안한다. 다층 구조의 필터 배열을 이미지 센서에 반복적으로 구현하여 투과율의

불일치를 야기하고 이미지 복원 과정의 복잡도를 높이는 대신, 이미지 센서에 단일 필터

배열과 MLA를 장착하여 초분광 이미지 복원 과정의 복잡도를 효과적으로 줄였다. 딥

러닝기반 point-wise스펙트럼복원방법을사용하여초분광이미지를복원했고,학습을

위하여 합성 스펙트럼 데이터 세트를 구성하였다. 실제 환경에서 측정 노이즈를 반영하

여 모델을 학습하기 위해 균일한 분포에서 샘플링한 노이즈 레벨을 사용하는 데이터

증강 방식을 제안한다. 실험 결과, 가장 성능이 좋은 모델을 통해 이미지 복원 속도가

17배 증가하고 제안된 데이터 증강 방식을 통해 복원의 오류가 2배 감소하였다. 제안된

시스템은 저비용/초소형의 하드웨어 구성 및 단노출 시간에 초분광 이미징이 가능한

구조와 효율적인 초분광 이미지 복원을 통해 실시간 감지 및 소비자 가전과 같은 모바일

– iii –



응용에 효과적인 해법을 제공한다.
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Chapter 1

Introduction

1.1 Motivation

A spectrum contains rich information that reflects the unique properties of ma-

terials, enabling their identification and analysis. Hyperspectral (HS) camera, which

provides both spectral and spatial information, has been broadly studied in various

research fields, such as remote sensing [1], precision agriculture [2, 3], medical imag-

ing [4, 5, 6], and face recognition [7, 8]. HS cameras reveal the details of the target

objects beyond the limits of human cognition by offering spectral-spatial information.

However, conventional HS cameras that rely on scanning methods [9] face challenges,

including a time-consuming imaging process, bulky size, high-cost configuration, and

high calibration effort. These limitations have hindered the integration of HS cameras

into mobile applications. Therefore, developing a snapshot spectral imaging system

that is compact and low-cost is essential for the widespread adoption of HS cameras.

One approach to achieving snapshot spectral imaging is using an array of cameras

and filters [10, 11, 12], inspired by the compound-eye imaging system. By arranging

optical filters with cameras, these systems can capture multiple images with properties

according to specific filters in a single exposure. Moreover, researchers have adopted

microlens array (MLA) [13, 14, 15, 16] into their systems for further compactness.
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Spectral imaging systems incorporating MLA and filter array are not only easy to

fabricate but also have flexibility for integration with detector arrays such as single

complementary metal-oxide semiconductor (CMOS) image sensors, thereby reducing

the cost of mass production and the size of the imaging system. This advantage facili-

tates the practical deployment of spectral imaging systems across various applications.

However, these filter arrays utilize band-pass filters which limit the spectral resolution

and light sensitivity. To mitigate these issues, the systems proposed in [10, 11] adopt

the computational approach for spectral reconstruction.

Extensive research in computational spectral imaging (CSI) systems has been con-

ducted to achieve snapshot structures with high spectral resolution [17]. Under the

theory of Compressed Sensing (CS) [18], the CSI systems encode input spectra into

compressed measurements using optical elements. Then, reconstruction algorithms are

employed to recover spectral images from measurements by solving optimization prob-

lems. These systems adopt iterative methods such as l1-norm minimization [19] and

two-point iterative thresholding (TwIST) [20]. These approaches are widely used for

spectral reconstruction in CSI systems. However, iterative algorithms often require

significant computational complexity and can be sensitive to the noise in the mea-

surements, which can lead to inaccurate reconstruction. As an alternative to iterative

approaches, CSI systems with deep learning (DL)-based spectral reconstruction meth-

ods have been introduced to mitigate these issues [21, 22, 23]. DL-based methods can

effectively replace traditional algorithms by providing fast, accurate, and robust spec-

tral reconstruction. While numerical optimization methods rely on predefined models
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and the assumption of sparsity, DL-based methods learn directly from data, allowing

them to achieve better performance in practical applications.

In recent years, optical filter-based computational HS imaging systems have been

developed, leveraging unique filter arrays and reconstruction algorithms to capture

detailed spectral data [19, 24, 25, 26]. Zhang et al. [24] introduced the Broadband

Encoding Stochastic (BEST) camera with a sliding 16-filter array and deep neural

network (DNN)-based reconstruction, while Kim et al. [19] used a Multilayer Thin

Film (MTF) filter array with a pinhole model and iterative optimization for spectral

reconstruction. Though compact and low-cost configuration, both approaches require

multiple exposures, increasing imaging time. Especially in [19], applying numerical op-

timization to each individual point of the image for spectral reconstruction increases

computational demands, resulting in a reconstruction time of approximately 1.8 hours.

In contrast, Yako et al [25] and Wen et al [26] realized spectral imaging with a sin-

gle exposure by monolithically integrating filter arrays with a CMOS image sensor.

Yako et al. [25] integrated Fabry-Pérot filter arrays onto a CMOS image sensor for

single-shot imaging, reconstructing HS images using TwIST. Wen et al. [26] employed

all-dielectric film filter arrays and designed a specialized DL-based model for HS im-

age reconstruction, named the Massively Parallel Networks (MP-Net). However, these

integrated designs require multiple implementations of the filter array with a multi-

layer structure across the CMOS image sensor, causing discrepancies in transmittance

among filter arrays. This inconsistency in fabrication complicates reconstruction algo-

rithms for both DL-based and numerical optimization methods. Either of these systems
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suffers from multiple exposures or transmittance discrepancy, with both factors leading

to increased complexity of the imaging and reconstruction.

1.2 Contribution

To mitigate these issues identified above, we introduce a DL-based computational

HS camera that integrates an MLA mounted onto an MTF filter array with a CMOS

image sensor, enabling snapshot HS imaging with a low-cost and compact configuration.

We utilize MLA to capture modulated images in a single exposure, thereby avoiding

implementing multiple filter arrays with multilayer structures that cause transmittance

discrepancy and increase reconstruction complexity. Instead of using time-consuming

numerical optimization algorithms for the reconstruction of HS images from the cap-

tured measurements, we adopt DL-based spectral reconstruction networks, including

CNN, ResCNN, U-Net, and ReSpecNN. To reflect measurement noise in real environ-

ments to our training dataset, we propose a data augmentation scheme with noise levels

sampled from a uniform distribution. Our work presents a fully tested and verified solu-

tion based on cutting-edge DL technology and HS imaging hardware developed in our

own research laboratory. We are confident in the practicality and feasibility of the pro-

posed method for mobile applications such as electronic devices and on-site detection,

addressing various challenges, including face anti-spoofing and food inspection.

The main contributions of our work are listed as follows:

• A new snapshot CSI system using an MLA and MTF filter array is proposed,

which has a compact size and cost-effective hardware configuration.
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• We adopt DL-based spectral reconstruction networks for spectrometers to recover

HS images and reduce reconstruction time.

• To reflect measurement noise in the real environment and improve the accuracy

of spectral reconstruction networks, we propose a data augmentation scheme with

noise levels sampled from a uniform distribution.
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Chapter 2

Related work

In this section, we introduce various approaches to snapshot spectral imaging aimed at

achieving a compact, low-cost design while maintaining high spectral resolution. These

approaches encompass the optical structures of spectral imaging systems and spectral

reconstruction techniques.

2.1 Multispectral Imaging with Microlens Array

Optical systems using MLA have been introduced for the past decades to achieve

the compact design of spectral imaging systems. R. Shogenji et al. [14] proposed a

multispectral imaging system based on a thin observation module by bound optics

(TOMBO), inspired by compound eye. By mounting the inference filter array onto

MLA, each microlens can capture an image modulated by each filter. They utilized 7

bandpass filters to realize multispectral imaging. M. Hubold et al. [27] present multi-

aperture system approaches to achieve snapshot multispectral imaging. They attached

a slanted linear variable filter (LVF) onto 11 × 6 MLA. Instead of placing LVF and

MLA in parallel, they tilted the LVF filter to obtain a linear spectral sampling between

neighboring channels of LVF. Their demonstrations show that the proposed system can

capture 66 spectral bands ranging from 450 nm to 850 nm with a compact module which

has a size of 60×60×28 mm3. X. Yu et al. [28] introduce a multispectral-panchromatic
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imager (MSPI) that utilizes a multispectral-panchromatic filter array (MSPFA) for

capturing both spectral images and panchromatic images. Unlike the multispectral

filter array (MSFA), their configuration includes all-band pass filters to acquire high

signal-to-noise ratio (SNR) images, enhancing the quality of spectral images. These

systems achieved snapshot spectral imaging while maintaining compact and low-cost

configurations. However, the filters adopted in these systems transmit a specific range

of wavelength thereby the spectral resolution is limited to the number of filters.

2.2 Computational Spectral Imaging

The CSI system is one approach for the high spectral resolution in a snapshot

spectral imaging system. Among CSI methods, the CASSI is the most popular ap-

proach [29, 30]. In CASSI, dispersive elements and coded aperture play crucial roles

in capturing spectral and spatial information. The dispersive elements, such as prism,

are responsible for separating the incoming light into its different wavelength com-

ponents by exploiting the principle of dispersion. By spatially dispersing the spectral

contents of the scene, the dispersive elements ensure spectral variations at each loca-

tion. Following this, the coded aperture is applied for a unique spatial encoding to the

incoming light, enabling CASSI to project 3D scenes with spatial and spectral infor-

mation into 2D measurements. To retrieve a full HS image from these measurements,

numerical optimization methods are used, enabling high-resolution spectral imaging

in a single exposure. However, these optimization methods are computationally heavy

and vulnerable to measurement noise of the system, reducing the effectiveness of spec-
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tral reconstruction. Moreover, the long optical path and bulky structure constrain its

potential for miniaturization. To mitigate these issues, Y. Zhao et al. [22] applied a

random printed mask and convolutional neural network (CNN), thereby reducing the

optical path of the system and increasing the reconstruction accuracy regardless of

the measurement noise. Also, Z. Yu et al. [23] employed a reflective coded aperture

to reduce the optical path and adopted a DL-based reconstruction method based on

3D CNN and U-Net structure, enhancing the reconstruction results. Despite these ef-

forts in the development of CASSI, achieving compactness while maintaining efficient

spectral reconstruction remains a challenge.

2.3 Filter-based Computational Spectral Imaging

Recently, the optical filter array-based HS camera has emerged as a distinct ap-

proach in the field of CSI. Unlike conventional systems that utilize bandpass filters,

these systems adopt the random filter array [31] where each filter within the array

has unique transmittance over the broad wavelength range. This feature allows recon-

struction algorithms to recover high-resolution spectral information and to cover a wide

working range. W. Zhang et al. [24] proposed a broadband encoding stochastic (BEST)

camera. They placed 16 random filters in front of a CCD camera and slid the filter

array to capture the images modulated by each filter. A deep neural network (DNN)

was applied to reconstruct the input HS image. C. Kim et al. [19] utilized a pinhole

camera model and MTF filter array with 36 filters to capture an HS image. They over-

lap the filters with a pinhole and slide them to capture modulated images. To recover
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the HS image, a numerical optimization method was applied to each point of the cap-

tured image. These methods successfully achieved both compactness and high spectral

resolution. However, the sliding procedure necessitates multiple exposures to capture

the full HS image. For further compactness and snapshot HS imaging, systems incorpo-

rating the filter array monolithically integrated onto a CMOS image sensor have been

proposed. M. Yako et al. [25] integrated a random array of Febry-Pérot filters across all

pixels of the CMOS image sensor. They applied the TwIST [20] algorithm to recover

HS images, enabling fast and high spatial resolution HS imaging in a single exposure. J.

Wen et al. [26] proposed an HS imager using all-dielectric films which is fully integrated

with a CMOS image sensor. They also proposed a reconstruction network, massively

parallel networks (MP-Net) to mitigate the issue of variability of transmittance. These

fully integrated structures have advantages including compactness and spatial resolu-

tion. However, the structure in which the filter array with multilayer structure is fully

integrated with the CMOS sensor requires multiple implementations of the filter array

across the entire area of the CMOS image sensor. This process is prone to fabrication

errors, causing discrepancies between the designed and actual transmittance of the fil-

ter array, thereby decreasing the accuracy of HS image reconstruction. Consequently,

reconstruction algorithms must consider these variations, which can complicate recon-

struction algorithms.
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2.4 Summary of Related Works

Previous filter-based spectral imaging systems utilizing band-pass filters are com-

pact and low-cost but limited in spectral resolution. Moreover, existing filter-based

CSI systems suffer from multiple exposures or multiple implementations of filter arrays

with multilayer structures, increasing imaging time and reconstruction complexity. To

mitigate these issues, we utilize an MLA and an MTF filter array to realize the snap-

shot structure. Instead of implementing multiple filter arrays with multilayer structures

onto a CMOS image sensor which complicates reconstruction, we mount an MLA onto

an MTF filter array with a CMOS image sensor. We employ DL-based spectral re-

construction networks [32, 33, 34, 35] and apply them to each individual point of a

measurement cube to recover the HS image. To reflect measurement noise in a real

device and enhance reconstruction performance, we utilize a data augmentation tech-

nique. This design achieves snapshot structure and efficient spectral reconstruction

while maintaining compact and low-cost hardware configuration, thereby highlighting

the suitability of the proposed system for mobile applications such as on-site detection

and consumer electronics.
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Chapter 3

Method

In this section, we discuss the proposed method. First, we describe the details of the

system concept and components including the MLA and the MTF filter array. Second,

we describe the system model to represent the proposed HS camera. Finally, we describe

the DL-based point-wise spectral reconstruction method for HS imaging.

3.1 System Architecture

Fig. 3.1 and 3.2 show the overall concept of the proposed system and HS imaging

procedure. Fig. 3.1 illustrates the concept of the proposed HS camera. An MTF filter

array and MLA are mounted onto a CMOS sensor, where each microlens corresponds

to a single filter within the array comprising a unit. The array consists of 36 units,

enabling the capture of 36 sub-images, each modulated by the corresponding filter’s

transmittance. An aperture stop is applied to prevent crosstalk between adjacent sub-

images. Fig. 3.2 shows the imaging process. As shown in 6× 6 sub-images in Fig. 3.2,

disparities are observed between the sub-images. Therefore, alignment is performed

using patch-matching algorithms as described in [10]. After alignment, the sub-images

are stacked into a cube and cropped to a size of 250×250, resulting in a measurement

cube with a size of 250×250×36. The DL-based spectral reconstruction network is

applied to all points of the measurement cube to recover the HS cube in the range
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Figure 3.1: Illustration of hardware configuration. The MTFs and MLA are attached
to the CMOS image sensor. 36 sub-images can be captured in a single exposure. The
aperture stop is applied to prevent crosstalk between the sub-images.

Figure 3.2: Schematic of the imaging process of the proposed system. The sub-images
are aligned based on the disparity and are cropped to obtain a measurement cube with
36 channels. The DL-based spectral reconstruction networks are used to recover the
HS cube.
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from 500 nm to 750 nm with 1 nm spacing. Therefore, we can obtain an HS image with

251 spectral bands.

Fig. 3.3 is the photo of the proposed HS camera and Fig. 3.4 shows the scale of

the fabricated MLA and MTF filter array. The MLA has a size of 5 × 5 mm2 with

each microlens featuring a radius of 250 µm, a focal length of 2 mm, a lenslet pitch

of 700 µm, a radius of curvature (ROC) of 1 mm, and an F-number of 4. The space

between adjacent microlenses is 200 µm. We employed an MTF filter array in [19]

as the filter array of the proposed HS camera. The scale of the MTF filter array is

4.5 × 4.5 mm2. Each MTF filter has a size of 400 × 400 µm2 and is spaced 300 µm

apart from the adjacent filter. Fig. 3.5 shows the enlarged image of the MTF filter

array (left), the transmittance of the 6th and 12th filters (center), and the heatmap of

the spectral sensitivity matrix (right). The transmittance of the filters was measured

over the wavelength range of 500 nm to 750 nm, and results exhibit distinct patterns

among the filters.

It is important to highlight that, in CS, it is well established that a random matrix,

that is sensing matrix with the randomly sampled entries, can capture sufficient infor-

mation about the input signal to recover it from the small number of measurements.

Such a sensing matrix can be realized for filter-based computational spectrometers by

designing the transmittance pattern of filters to produce random signal-like fluctuations

[31]. The fabrication of MTF filter arrays was conducted using the stencil lithography

process to follow this design principle [19], allowing each filter to have a unique pattern

of transmittance as shown in Fig. 3.5. This process involves changing the number and
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thickness of layers during the deposition process. To achieve the desired structure, 2

to 5 layers of different MTF filters were selectively removed using shadow masks. The

materials with high refractive index (TiO2) and low refractive index (SiO2) were alter-

nately deposited with each material deposited at different thicknesses. This deposition

process was repeated 19 times to complete the MTF filter array.
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Figure 3.3: Image of the proposed module.

Figure 3.4: Photograph of the MLA and the MTFs.

Figure 3.5: The characteristics of MTFs. Enlarged image of MTFs (left), examples of
transmission pattern of 6-th and 12-th filter (center), and the heatmap of transmission
matrix (right).
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3.2 System Model

Let us denote that Xi(r, c;λ) is an input spectrum at position (r, c) to be captured

by the i-th unit. We denote λ as a continuous wavelength. The measurement gi(r, c) is

represented as follows.

gi(r, c) =

∫
Ri(λ)Xi(r, c;λ)dλ (3.1)

Where spectral sensitivity Ri(λ) can be represented as Ti(λ)Q(λ). The Ti(λ) is a trans-

mission function of i-th MTF filter under i-th microlens of MLA and Q(λ) is a quantum

efficiency of the CMOS image sensor. Since the detector in the CMOS image sensor is

pixelated with pixel size ∆, the measurement gi(r, c) is sampled to yi(n,m) as follows.

yi(n,m) =

∫∫
gi(r, c)rect(

r

∆
− n,

c

∆
−m)drdc

=

∫∫∫
Ri(λ)Xi(r, c;λ)rect(

r

∆
− n,

c

∆
−m)drdcdλ

=

∫
Ri(λ)Xi(n,m;λ)dλ (3.2)

Where the sampled spectrum by i-th unit is Xi(n,m;λ) =
∫∫

Xi(r, c;λ)rect(
r
∆
−n, c

∆
−

m)drdc. Let us consider the K spectral bands in discrete form as λ = [λ1, λ2, ..., λK ], (K =

251), then we represent Eq. (3.2) into a linear equation as follows.
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yi(n,m) =
K∑
k=1

Ri(λk)Xi(n,m;λk)

= RiXi(n,m) (3.3)

Where Ri ∈ R1×K is a row vector with spectral sensitivity of i-th unit and Xi(n,m) ∈

RK×1 is an incident spectrum at pixel position (n,m) to be measured by i-th unit.

Considering that we have 36 units, there are linear equations for i = 1, . . . , 36. Be-

sides, lenses are placed at different positions of MLA, resulting in shifts of the object

between the sub-images as shown in Fig. 3.2. To align them in the exact location, we

calculate disparities between reference sub-image (i = 1) and destination sub-images

(i = 2, . . . , 36) using patch matching as described in [10]. We denote the disparity

between the reference sub-image and the i-th destination sub-image in the direction

of n axis as dni and of m axis as dmi . Then we calculate 35 disparities in each direc-

tion. With these disparities, we obtain aligned measurements as yi(n− dni ,m− dmi ) =

RiXi(n−dni ,m−dmi ). Since we aligned the measurements with the reference sub-image,

we rewrite Eq. (3.3) as yi(n− dni ,m− dmi ) = RiX1(n,m) = RiX(n,m). Therefore, we

express 36 linear equations in one matrix form as follows.


y1(n,m)

...

y36(n− dn36,m− dm36)

 =


R1(λ1) · · · R1(λK)

...
. . .

...

R36(λ1) · · · R36(λK)




X(n,m;λ1)

...

X(n,m;λK)


y(n,m) = RX(n,m) (3.4)
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Where y(n,m) ∈ R36×1 is a column vector with measurements of incident spec-

trum X(n,m) ∈ RK×1 at position (n,m), multiplied by spectral sensitivity matrix

R ∈ R36×K . Because the length of the incident spectrum vector is larger than that

of the measurement vector (36 < K), the system is underdetermined. Therefore, the

reconstruction of the HS image is an ill-posed problem.

3.3 DL-based point-wise spectral reconstruction

In this paper, we adopt DL-based spectral reconstruction networks [32, 33, 34, 35]

to reconstruct an HS image. These networks take measurements y as an input and

output the reconstructed spectrum X̂ These CNN-based models learn the mapping

from measurements to a target spectrum, enabling the reconstruction of the spectral

information. The input y is divided by its maximum value and fed into the model.

The model output reconstructed spectrum signal in normalized form between zero and

one, and then the value that was divided into the input is multiplied again to reflect

the intensity of the input spectrum. By applying this process to every point (n,m)

in the measurement cube, a full HS image can be reconstructed. This process can be

accomplished in a single forward operation of the model by exploiting batch processing,

making this approach computationally efficient.

3.3.1 Training Dataset

To train the models, we generated a synthetic dataset with 8,000 spectra for train-

ing the models. Each spectrum sample, denoted as X, is synthesized as a combination
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of Gaussian distribution functions with varying parameters including peek location,

height, and Full Width Half Maximum (FWHM). We used the Gaussian distribution

function, as it is generally used to represent spectral signals in nature. The number of

Gaussian functions in each combination is determined by sampling from a geometric

distribution with the probability parameter of 0.3. To ensure that there is at least one

function, we add one to the sampled value. The peak locations are sampled from a uni-

form distribution of integers from 500 to 750, meaning the spectra are reconstructed

at 1 nm intervals within the 500 to 750 nm range. The height of each peak is sampled

from a uniform distribution ranging from zero to one and the FWHM of each peak is

sampled from a uniform distribution with the interval [2, 50]. Finally, all Gaussian func-

tions are summed and normalized between zero to one thereby generating a spectrum

sample. To generate measurements y, X is multiplied by spectral sensitivity matrix

R, as described in Eq. (3.4). Then, measurements y is divided by its maximum value,

ensuring the maximum value within input vectors of the models to be one.

3.3.2 Data Augmentation with Uniform Noise Level

In this work, we propose a data augmentation scheme to mitigate the measurement

noise in the proposed HS camera. The data augmentation process is conducted as

follows.

ŷ = y + σn (3.5)
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Where ŷ ∈ R36×1 is a noisy measurement vector, and n ∈ R36×1 is a random noise

vector sampled from a normal distribution with zero mean and one variance. The scale

of the noise σ ∈ R+ is determined by the following equation.

σ =

√
E[y2]

10
SNR(dB)

20

(3.6)

The value of SNR is determined by sampling from a uniform distribution within the

range [a, b], which are the design parameters for this method. This process is repeated

each time the training samples are drawn from the dataset. Instead of sampling the

noise level from a single Gaussian noise distribution, we determine the noise level by

sampling from a uniform distribution. This prevents the model from being trained on

specific noise levels, improving the reconstruction accuracy.
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Chapter 4

Experimentation

For evaluation of the proposed system, we conducted experiments reconstructing the

HS image of the real scenes. We compare the reconstruction results using DL-based

methods [32, 33, 34, 35] based on the noise level configuration of the data augmenta-

tion scheme. Moreover, reconstruction results for both DL-based and a numerical op-

timization method, Sparse Recovery (SR) [19] are compared. The experimental setup

is described in the following paragraphs and summarized in Table 4.1.

4.1 Experimental Setting

Fig. 4.1 shows the experimental setup of the proposed camera for capturing HS

images. As targets, we captured the image of a checkerboard (ColorGauge Micro Target,

Image Science Associates) and a hand-made clay doll to see the ability to retrieve a

spectrum of multiple colors. A commercial spectrometer (Black-Comet, StellarNet) was

used to measure the reference spectra of reflected light from the target. A ring-shaped

LED light (Advanced Illumination) was used as a light source. We used a variable

aperture (SM2D25, Thorlabs) to prevent crosstalk among the adjacent sub-images.

Since our target wavelength range begins at 500 nm, we attached a 500 nm long-pass

filter on a C mount of the camera module. Fig. 4.2 shows the sub-image array, part of a

4000×3000 sized raw image. Each sub-image captured by microlens passes through the
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underlying MTF filter and is modulated according to the transmittance of the filter.

By aligning and cropping these sub-images as described in section 3.2, we can obtain

a 250 × 250 × 36 measurement cube, from which an HS image with a dimension of

250× 250× 251 can be recovered.

Figure 4.1: Experimental setup for the proposed computational HS camera.

Figure 4.2: Raw image captured by the proposed camera module.
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As reconstruction methods, we used DL-based spectral reconstruction networks

CNN, ResCNN, U-Net, and ReSpecNN and compared with SR. The DL-based mod-

els were trained on the synthetic dataset, minimizing the Mean Square Error (MSE)

between the reconstructed spectrum X̂ and target spectrum X. The following is the

equation of MSE.

MSE =
1

N
||X̂−X||22

Where N is the number of wavelengths. We conducted training using an NVIDIA RTX

TITAN GPU, Intel i7-11700, and the PyTorch framework. We utilized the Adam [36]

optimizer with a fixed learning rate of 0.0001, and a batch size of 1024 and trained

the models for 500 epochs. To demonstrate the effectiveness of our data augmentation

scheme, we compared the performance of the model under varying noise levels according

to Eq. (3.5) and Eq. (3.6) during training. We chose noise levels as follows: no additive

noise, fixed noise level (SNR of 15, 20, 25, and 30dB), and uniform noise level (range

of [10, 20], [10, 25], [15, 20], and [15, 25] dB). These parameters were determined based

on the assumption that the noise level in the proposed system is approximately 20 dB,

and they were selected to cover this range. The performance of reconstruction methods

was measured by the MSE value between reference spectra and reconstructed spectra.

Finally, we compared the reconstruction speed between the methods.
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Table 4.1: Summary of experimental setup.

Targets
Checkerboard

(ColorGuage Micro Target, Image Science Associates),
Clay Doll (handmade)

Commercial spectrometer
(reference spectra)

Black-Comet (StellarNet)

Image sensor IMX 226 (Sony)
Light source Ring-shaped LED light (Advanced Illumination)
Aperture SM2D25 (Thorlabs)

Long-pass filter 500 nm ∼
Baseline SR [19]

DL models (parameters)
CNN (1M) [32], ResCNN (3.5M) [33],

U-Net (18.5M) [34], ReSpecNN (4M) [35]
Fixed noise level 15 dB, 20 dB, 25 dB, 30 dB

Uniform noise level [10 dB, 20 dB], [10 dB, 25 dB], [15 dB, 20 dB], [15 dB, 25 dB]
Training samples 8000 spectra

Optimizer Adam [36]
Learning rate 0.0001
Batch size 1024
Epochs 500
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Chapter 5

Results and Discussion

5.1 Results of Spectral Reconstruction

Table 5.1: Average MSE values of reconstruction results in 18 colors on the checker-
board according to data augmentation configuration.

Model CNN ResCNN U-Net ReSpecNN
W/O Noise 0.22742 0.15252 0.02924 0.01532

Fixed Noise Level

15 dB 0.01867 0.06079 0.01776 0.0096
20 dB 0.01284 0.02989 0.01427 0.00994
25 dB 0.01875 0.0341 0.01493 0.00878
30 dB 0.02517 0.03482 0.01343 0.0117

Uniform Noise Level

10-20 dB 0.00904 0.03396 0.00823 0.00685
10-25 dB 0.01138 0.02897 0.0073 0.00878
15-20 dB 0.01505 0.0327 0.01373 0.00658
15-25 dB 0.01158 0.03242 0.00983 0.00733

Table 5.1 provides the average MSE values between the reference and reconstructed

spectra of 18 colors on the target checkerboard according to the noise level configuration

during training. Without data augmentation, all models show high MSE. On the other

hand, the fixed noise level configuration resulted in significantly reduced MSE in all

models. Specifically, both CNN and ResCNN achieved their best results with data

augmentation at a noise level of 20 dB SNR. Additionally, U-Net produced the lowest

MSE value at a noise level of 30 dB and ReSpecNN at 25 dB. Finally, configuration with

uniform noise level yielded the best results of all models. CNN showed an MSE value

of 0.00904 with noise levels ranging from 10 dB to 20 dB. ResCNN and U-Net showed
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MSE values of 0.02897 and 0.0073, respectively, with noise levels ranging from 10 dB to

25 dB. ReSpecNN achieved an MSE value of 0.00653 with noise levels ranging from 15

dB to 20 dB, resulting in a 2.3-fold reduction as compared to the configuration without

data augmentation. All the best MSE values obtained through data augmentation with

a uniform noise level were lower compared to the MSE values achieved under the fixed

noise level configuration.

Fig. 5.1 and 5.2 illustrate the reconstruction results of the checkerboard, using SR

and DL-based spectral reconstruction networks. DL-based spectral reconstruction mod-

els were selected based on the results in Table 5.1, each of which was the best model

according to the noise configuration. The colorized images synthesized at 500 nm, 550

nm, and 650 nm wavelengths from reconstructed HS images are presented in Fig. 5.1.

DL-based models that provide the best results under uniform noise level data augmen-

tation based on Table 5.1 are used to synthesize color images. Fig. 5.2 provides the

comparison between reference and reconstructed spectra at the four points on the tar-

get checkerboard (#1, #6, #10, and #15 shown in Fig. 5.1), with each row representing

the noise level configuration during training. The reconstruction results of 18 colors are

provided in the Appendix. Without any data augmentation, both CNN and ResCNN

failed to recover the spectra, whereas U-Net and ReSpecNN achieved slightly better

performance. However, both U-Net and ReSpecNN exhibited undesirable peaks and

noisy fluctuations in the reconstructed spectra. This failure occurs because the dataset

used for training the models does not account for the inherent noise of the system,

preventing the model from recovering the input signal from the actual measurements
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under the noisy environment. On the other hand, fixed noise level data augmentation

resulted in reduced MSE. However noisy fluctuations persisted in reconstructed spec-

tra by CNN, ResCNN, and U-Net. Furthermore, undesirable peaks remained in the

spectra reconstructed by ReSpecNN. In contrast, the uniform noise level configuration

yielded the most enhanced results. The noisy fluctuations and undesirable peaks were

significantly suppressed in the spectra reconstructed by CNN, U-Net, and ReSpecNN,

achieving performance comparable to that of SR.

Figure 5.1: Image of the color checkerboard (left) and colorized image (rest) of recon-
structed HS cube using 500, 550, and 650 nm band images.

Figure 5.2: Reconstructed spectra of four colors of the checkerboard (#1, #6, #10, and
#15 shown in Fig. 5.1). The MSE between the reconstructed and reference spectra is
written on the upper side of each graph.
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The proposed data augmentation method using sampled noise levels from a uni-

form distribution showed enhanced spectral reconstruction for DL-based methods. This

improvement is attributed to the fact that the models were effectively trained to the

inherent noise of the system through data augmentation with uniform noise levels.

Without the data augmentation (where σ is zero), the models learn the mapping from

measurement y to input spectrum X, that is, one-to-one mapping, thereby leading to

an inability to recover the input spectra from the unseen noisy measurements. Under

the fixed noise level configuration (where σ is constant), the models learn to map from

the vectors located at a distance σ||n||2 from the measurements y to input spectrum

X. It is a many-to-one mapping, where the vectors mapped to X have a ring-shaped

line with the radius of σ||n||2. Therefore, the model learns the noise distribution and

can reconstruct the input signal from the noisy measurements. To improve the ability

to recover input spectra under noisy measurements, in the proposed method, the scale

of noise σ is determined based on SNR levels sampled from a uniform distribution. As

a result, the vectors mapped to X form a ring-shaped region that covers broader noise

distribution compared to the fixed noise level configuration, allowing the models to be

trained on the inherent noise of the system effectively.

5.2 Results of Hyperspectral Image Reconstruction

Fig. 5.3, 5.4, and 5.5 show the image clay doll and HS image reconstructed by

5 different methods. DL-based spectral reconstruction models were selected based on

the results in Table 5.1, each of which was the best model under uniform noise level
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configuration. Fig. 5.3 shows the color image of the clay doll and Fig. 5.4 shows the

spectral reconstruction results of target points on the clay doll (#1 and #2 as shown

in Fig. 5.3). ResCNN shows noisy fluctuations, whereas the other models successfully

reconstructed target spectra. Fig. 5.5 shows the colorized image of the reconstructed

HS image (leftmost column) and grayscale band images at 500, 550, 600, 650, 700, and

750nm (the rest). CNN, U-Net, and ReSpecNN show results comparable to those of

the SR, whereas the noise remains in images reconstructed by ResCNN. Chromatic

aberration can be seen in all colorized images. Since the refractive angle varies de-

pending on the wavelength of light, the angle of incident light entering the filter varies.

This aberration distorts the transmittance of the filters, thereby hindering accurate HS

imaging.

Table 5.2 shows the average time duration of the HS imaging by 5 different methods.

The numerical optimization method, SR shows the slowest speed among CPU times.

ReSpecNN demonstrated the lowest reconstruction time on a CPU, achieving approx-

imately a 17-fold reduction. Moreover, reconstruction results of CNN, ResCNN, and

ReSpecNN accelerated by GPU show a time duration of less than a second. Further-

more, these networks are relatively lightweight, thereby video-rate HS imaging could

be realized by optimized implementation of the models, enabling the application in

real-time detection.

Table 5.2: Time duration of HS imaging.

SR CNN ResCNN U-Net ReSpecNN
CPU (seconds) 450 87 125 123 27
GPU (seconds) - 0.44 0.28 5.79 0.18
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Figure 5.3: Image of the clay doll

Figure 5.4: Reconstructed spectra at two points of the clay doll (#1 and #2 as shown
in 5.3).

Figure 5.5: Colorized images using 500, 550, and 650 nm band images and grayscale
images corresponding to different wavelengths (500, 550, 600, 650, 700, and 750 nm).
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Chapter 6

Limitations

Despite the improvements to the proposed system, still there is room for enhancement.

First, the spatial resolution is reduced due to inefficient utilization of the CMOS image

sensor area by the MLA. Second, an aperture is used to prevent crosstalk between

sub-images, which may compromise the system’s compactness. Exploring alternatives,

such as implementing a signal separator, could address this issue while maintaining

compactness. Third, the system exhibits chromatic aberration, which is not considered

in the current reconstruction algorithm, leading to a reduction in the quality of the

reconstructed HS images. Addressing chromatic aberration within the reconstruction

process could significantly enhance image quality.
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Chapter 7

Conclusion

In this study, we have developed a DL-based computational HS camera using an MLA

and MTF filter array. A total of 36 sub-images could be captured and processed by

aligning sub-images using disparity and cropping them into a size of 250× 250 pixels,

thereby producing a measurement cube with a size of 250 × 250 × 36. The DL-based

spectral reconstruction networks are applied to each individual pixel of a measurement

cube, producing an HS image with a dimension of 250 × 250 × 251. The developed

system improves the reconstruction efficiency while maintaining compact and low-cost

hardware configuration by adopting MLA and DL. Our system incorporating MLA can

capture an HS image in a single exposure without the requirement of multiple imple-

mentations of filter array with a multilayer structure, thereby reducing the complexity

of the reconstruction process. By leveraging batch processing, the DL-based spectral

reconstruction networks can recover an HS image with a single forward operation,

thereby increasing the efficiency of the HS imaging. The proposed data augmentation

scheme effectively represents real-world environmental noise. Sampling noise levels from

a uniform distribution during training enables DL models to learn the mapping from

noisy measurements to the target spectrum, thereby minimizing reconstruction error.

The experimental results demonstrated that the proposed method achieves an efficient

HS imaging system while maintaining a compact size and low fabrication cost. There-
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fore, the proposed HS camera can provide a promising solution for mobile applications

such as on-site detection and consumer electronics. In future work, we aim to use the

proposed camera to develop a real-time face anti-spoofing system.
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Appendix A

Spectral Reconstruction Results of 18 Col-

ors in the Checkerboard

Figure A.1: Color checkerboard with 18 colors.
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Figure A.2: Reconstruction results without data augmentation.
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Figure A.3: Reconstruction results with fixed noise level data augmentation.
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Figure A.4: Reconstruction results with uniform noise level data augmentation.
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