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Abstract

RGB images represent information using only three primary color channels: red,

green, and blue. In contrast, hyperspectral imaging utilizes a broader spectrum to

convey information, allowing hyperspectral face images to capture a wider range of

details, thereby enabling a more accurate assessment of facial features and skin condi-

tions. However, acquiring hyperspectral face images and building a substantial dataset

is challenging due to the need for expensive cameras, sophisticated setups, and con-

trolled environments. Currently available hyperspectral face datasets are limited in

the number of subjects and samples, making it difficult to generalize face recognition

systems that utilize hyperspectral imaging.

To address these limitations, this paper proposes enhancing the diversity of hyper-

spectral face datasets through various augmentation techniques. Specifically, the image

generation method StyleGAN2-ADA was employed to create new subjects and Face

Pose Augmentation was used to generate various poses for the same subject, thereby

increasing dataset diversity. Experiments were conducted based on the augmented hy-

– i –



perspectral face dataset to verify the impact of the proposed method on improving

the performance of face recognition systems. Experimental results demonstrate that

models applying the proposed augmentation method exhibit enhanced performance

compared to previous models, making a significant contribution to the advancement of

face recognition systems.
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국 문 요 약

RGB 이미지는 빨강, 초록, 파랑의 세 가지 기본 색상 채널만을 사용하여 정보를 표

현하는 반면, 초분광 이미징은 더 넓은 스펙트럼을 사용하여 정보를 표현한다. 이로써

초분광 얼굴 이미지는 보다 다양한 세부 정보를 포함하고 있어 얼굴의 특징과 피부 상태

를 더욱 정확하게 파악할 수 있다. 그러나 고가의 카메라와 정교한 설치, 그리고 제한된

환경에서의 촬영 등으로 인해 초분광 얼굴 이미지를 획득하고 충분한 양의 데이터를

구축하는 것은 어려운 일이다. 현재 공개된 초분광 얼굴 데이터셋은 객체와 샘플 수가

제한적이며, 이는 초분광 이미징을 활용한 얼굴 인식 시스템의 일반화를 어렵게 만든다.

이에 본 논문에서는 이러한 한계를 극복하기 위해 초분광 얼굴 데이터셋을 다양하게

증강하여 데이터의 다양성을 확보하고자 한다. 먼저, 이미지 생성 기법인 StyleGAN2-

ADA를활용하여새로운객체를생성하고,더불어 Face Pose Augmentation을이용하여

동일 객체에 대한 다양한 포즈를 변형시켜 데이터의 다양성을 향상시켰다. 이를 통해

증강된 초분광 얼굴 데이터셋을 기반으로 실험을 진행하고, 제안한 방법이 얼굴 인식

시스템의 성능 향상에 미치는 효과를 검증하였다. 실험 결과, 제안한 증강 방법을 적

용한 모델의 성능이 이전에 비해 향상되었으며, 이는 얼굴 인식 시스템의 성능 향상에

유의미한 기여를 한 것으로 나타났다.
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Chapter 1

Introduction

1.1 Motivation

Face recognition is a biometric technology used for identity verification, identifying

individuals based on their unique physiological characteristics. Face recognition systems

utilize computer vision and deep learning algorithms to extract facial features and com-

pare them to a stored database to verify or authenticate identity. These systems play a

crucial role in various fields. Firstly, in terms of security and user authentication, face

recognition is used in smartphones, laptops, and access control systems as a replace-

ment for passwords or PIN codes, providing a higher level of security. This addresses

the vulnerabilities of traditional authentication methods, such as password theft or

hacking. Additionally, face recognition systems are essential tools in public safety and

surveillance. They can identify specific individuals in real-time within large crowds in

public places such as airports, train stations, and stadiums, aiding in early detection of

potential threats and significantly contributing to crime prevention and investigation

[1]. Lastly, the importance of contactless authentication has been highlighted during

situations like the recent COVID-19 pandemic. Face recognition can verify identity

without physical contact, thereby reducing the risk of infection [2].

Hyperspectral imaging offers several advantages that overcome the limitations of
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RGB images. Firstly, hyperspectral imaging provides higher spectral resolution. By col-

lecting information from various wavelength bands, hyperspectral imaging allows for

more accurate recognition of unique facial features through detailed spectral informa-

tion obtained at each wavelength. This is beneficial for more accurately distinguishing

skin texture, pigmentation changes, wrinkles, and other features. Secondly, hyperspec-

tral imaging is less sensitive to changes in lighting and pose. This enables consistent face

recognition performance under various lighting conditions and pose variations. Thirdly,

hyperspectral imaging is resistant to spoofing techniques that deceive face recognition

systems. Because hyperspectral imaging can capture information beneath the surface,

it reduces recognition errors even when faces are covered or disguised. For example, by

identifying patterns in the blood vessels beneath the skin or structural features within

skin layers, hyperspectral imaging maintains high recognition performance despite ex-

ternal facial changes. Due to these advantages, hyperspectral imaging is considered an

important technology that can replace or complement traditional RGB image-based

face recognition systems, significantly enhancing their accuracy and reliability [3].

However, Acquiring hyperspectral face datasets presents several challenges. Hyper-

spectral imaging requires expensive cameras and sophisticated setups, and maintenance

is also complex. Additionally, specific conditions and controlled environments are re-

quired for shooting. For instance, consistent lighting conditions and a stable environ-

ment are necessary, making it difficult to reflect the diverse environmental conditions

of real-life scenarios. These limitations reduce the accessibility of dataset acquisition

[4, 5].
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Consequently, currently available hyperspectral face datasets have a limited number

of subjects. In face recognition systems, the size and diversity of the dataset play a cru-

cial role in training and evaluation. If the dataset is insufficient, it cannot adequately

reflect diverse facial features and environmental conditions, resulting in decreased per-

formance in practical applications and making generalization difficult. These limitations

are significant factors that hinder the advancement of hyperspectral image-based face

recognition technology.

1.2 Contribution

This paper explores the use of deep learning for dataset augmentation to over-

come the limitations of hyperspectral face datasets and to ensure diversity. Specifically,

StyleGAN2-ADA was employed to generate new hyperspectral face subjects, and an

embedding model-based subject identification method was proposed to distinguish the

new subjects. This approach allowed the overcoming of existing dataset limitations and

the acquisition of diverse hyperspectral face data. Additionally, Face Pose Augmenta-

tion technology was used to transform the same subject into various poses, further

increasing the diversity of the dataset.

Moreover, ensuring the diversity of the hyperspectral face dataset directly con-

tributed to enhancing the performance of the face recognition system. The model

trained with the augmented hyperspectral face dataset, along with the existing hy-

perspectral face dataset, was compared to the model trained only with the existing hy-

perspectral face dataset. The results showed that the model trained with the augmented
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dataset exhibited higher recognition performance. This indicates that the augmented

hyperspectral face dataset includes more diverse characteristics compared to the exist-

ing dataset, suggesting that data augmentation techniques can effectively address the

limitations of constrained datasets.

The structure of this paper is as follows. Chapter 2 provides background knowledge

on the differences between RGB images and hyperspectral imaging, applications of

hyperspectral imaging, and data augmentation techniques used in the research. Chapter

3 details the proposed data augmentation methodology and designs a hyperspectral face

recognition system to demonstrate the effectiveness of the data augmentation. Chapter

4 evaluates the results of the augmented dataset and the performance of the proposed

hyperspectral face recognition system. Finally, Chapter 5 summarizes the key findings

of the research, discusses the contributions and limitations of the study, and suggests

directions for future research.
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Chapter 2

Background

2.1 Overview of RGB and Hyperspectral imaging

RGB images represent images using three color channels: red, green, and blue. These

images are widely used in the fields of computer vision and digital image processing

and can be observed in digital cameras, smartphone cameras, monitors, televisions, and

more. Each channel is represented by values ranging from 0 to 255, and combinations

of these values can express various colors. RGB images provide color information in

the most intuitive way, operating most similarly to the human visual system.

Hyperspectral imaging utilizes light wavelengths in the visible spectrum (500-700nm)

and slightly into the near-infrared spectrum (700-1000nm) to analyze object charac-

teristics. It consists of hyperspectral cubes with 2-dimensional spatial information and

1-dimensional spectral information, where the images within the cube represent spatial

values captured at specific wavelengths. Hyperspectral imaging is utilized in various

fields such as medical diagnosis, environmental monitoring, agriculture, food safety

inspection, etc. Particularly in the field of face recognition, it enables more accurate

recognition by analyzing structural features of the skin layer, vascular patterns, etc. It

provides more information compared to RGB images and is used for more sophisticated

image analysis and processing.
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Figure 2.1: Hyperspectral spectrum

Figure 2.2: Hyperspectral Cube
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2.2 Applications of Hypersepctral Imaging

Hyperspectral imaging can be applied in various fields. The following are examples

of applications of hyperspectral imaging. Firstly, it can be utilized in the medical diag-

nosis field. By simultaneously measuring tissue structure and internal chemical charac-

teristics, it is used to monitor and assess the health status of tissues. This is beneficial

for analyzing tissue characteristics of tumors or measuring the shape of blood vessels

and oxygen saturation [6]. Secondly, hyperspectral imaging plays an important role

in the food industry. It is used for ingredient analysis, detecting contaminants, and

assessing freshness, thus improving food safety and quality to provide consumers with

safe products [7]. Thirdly, in the agricultural sector, hyperspectral imaging is used to

monitor the health status of crops and increase productivity. By analyzing the nutri-

tional status of crops, presence of pests, and growth status, appropriate management

and measures can be taken [8].

Especially in the field of face recognition, hyperspectral imaging enables the fol-

lowing applications. Firstly, it can measure skin pigmentation, oxygen saturation, and

hemoglobin concentration, allowing for differentiation of subtle differences even among

individuals with similar skin tones [9]. Secondly, hyperspectral imaging is effective in

preventing spoofing using the unique spectral signature of the face. Characteristics

such as vascular patterns beneath the skin or melanin distribution are difficult to tam-

per with, enhancing the security of face recognition systems by preventing forgery

and tampering. This is particularly useful in high-security areas for identity verifica-

tion or access control systems [10]. Lastly, hyperspectral imaging is less sensitive to
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changes in lighting conditions, maintaining consistent performance under various light-

ing conditions. This helps face recognition systems maintain high accuracy in diverse

environments such as outdoor, indoor, day, or night [11].

2.3 Hyperspectral Face Datasets

There are three main datasets commonly used for hyperspectral face recognition.

Firstly, CMU-HSFD [12], collected by Carnegie Mellon University, covers a wavelength

range from 450nm to 1100nm with 65 bands at 10nm intervals. The images have a res-

olution of 640x480 and include 54 subjects. This dataset was captured under various

lighting conditions to account for the impact of light on subject characteristics. Sec-

ondly, PolyU-HSFD [13], collected by Hong Kong Polytechnic University, spans from

400nm to 720nm with 33 bands at 10nm intervals. Images were obtained by varying an-

gles during capture, including frontal, left, and right views. However, the first 6 bands

of this dataset have very low signal-to-noise ratios and are not suitable for face recog-

nition. Additionally, 26 subjects have between 4 to 7 samples, while the remaining 23

subjects have 1 to 2 samples each. Lastly, UWA-HSFD [14] collected by the University

of Western Australia covers a wavelength range from 400nm to 720nm with 33 bands

at 10nm intervals. The images have a resolution of 1024x1024 and include 78 subjects.

This dataset has adaptively different exposure times based on the signal strength at

each wavelength, resulting in minimal noise interference, but it suffers from inter-band

alignment issues due to subject movement.

While these datasets provide valuable resources for hyperspectral face recognition
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research, they have certain limitations. The number of subjects in each dataset is lim-

ited. CMU-HSFD includes 54 subjects, PolyU-HSFD includes 48 subjects, and UWA-

HSFD includes 78 subjects, indicating a lack of diversity in the data. This inadequacy

in representing various races, ages, and genders may compromise the generalization

performance of models. Additionally, each dataset has technical issues. For example,

PolyU-HSFD has the low-signal band problem, and UWA-HSFD faces inter-band align-

ment issues due to subject movement and blinking. These technical problems can de-

grade the quality of the data. Furthermore, collecting hyperspectral datasets requires

expensive equipment and sophisticated installation. The high cost and complexity of

using and maintaining such equipment pose significant constraints on dataset construc-

tion.

2.4 Image Augmentation Techniques

As mentioned earlier, the size and diversity of hyperspectral facial datasets are

limited due to the difficulty and cost of data collection. To address this, we considered

using image augmentation techniques to increase the size and diversity of datasets at

minimal cost. The augmentation techniques used in this paper for hyperspectral facial

images are as follows.

StyleGAN2-ADA [15] is a variation of Generative Adversarial Network (GAN).

GAN consists of two neural networks: a generator G and a discriminator D. The ob-
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jective function of GAN is defined as:

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

Here, pdata(x) represents the distribution of real data, and pz(z) represents the dis-

tribution of latent space. The objective function V (G,D) controls the learning of the

generator and discriminator while maintaining balance between them. The generator

learns to maximize log(1 −D(G(z))) to make fake data look real, while the discrimi-

nator learns to maximize logD(x) to correctly distinguish between real and fake data.

Ultimately, the generator generates images that are indistinguishable from real data,

and the discriminator learns to classify fake images to the point where they cannot

be distinguished anymore. Through this process, GAN learns to generate data similar

to real data and learns the distribution of real data. However, training GAN with a

small dataset can lead to the problem of discriminator overfitting and divergence. This

means that the balance between the generator and the discriminator can be disrupted,

and the distribution of real data may not be well learned.

StyleGAN2-ADA addresses these issues by mitigating discriminator overfitting through

data augmentation. Only augmented images are used to train the discriminator and

generator, and the augmentation range is adaptively adjusted based on the discrimina-

tor’s output using augmentation probability p. This method enables effective learning

even with a small dataset. Additionally, there are 18 variations across six categories.

For instance, the dataset is diversified through methods such as image rotation, color

changes, and size adjustments.
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Face Pose Augmentation [16] was utilized to generate the same object in various

poses. A comprehensive facial detection and augmentation system was implemented

through facial detection, landmark detection, 3D facial alignment, and finally, the Face

Pose Augmentator. Specifically, RetinaFace was used to detect faces, Face Alignment

Network (FAN) identified key landmarks, and the 3D Dense Face Alignment (3DDFA)

model predicted the 3D pose of the face. Finally, the Face Pose Augmentator aug-

mented the facial pose based on the predicted 3D pose. As a result, this system pro-

vides a unified framework with high accuracy and performance in facial analysis and

augmentation. By using pretrained models, facial alignment and pose augmentation

can be performed without separate training processes.

2.5 Hyperspectral Face Recognition

Previous research on hyperspectral face recognition systems has focused on select-

ing optimal bands. Although hyperspectral face datasets consist of high-dimensional

facial data, each band can be used as an individual image in the dataset. When training

models, typically 30 images per person are used [3]. However, training with all wave-

length bands can decrease classification performance due to high correlation between

bands. Therefore, research has been conducted to select the optimal bands for face

recognition. Based on prior studies, this paper conducts research on augmenting face

recognition by selectively choosing the optimal wavelength bands.
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Chapter 3

Proposed Method

3.1 Overview of the Proposed method

The proposed method in this paper consists of two main components. First, StyleGAN2-

ADA is used to generate new subject faces, and an embedding model is employed to

determine if the generated faces are new subjects. Additionally, Face Pose Augmenta-

tion is utilized to enhance the dataset with various face poses of the subjects. Second,

the augmented dataset is used to train the hyperspectral face recognition system. Fig-

ure 3.1 illustrates the entire flowchart of the proposed method. Through preprocessing,

the size of the hyperspectral face dataset is adjusted to be used as input for both

the StyleGAN2-ADA training and the Face Pose Augmentation. To demonstrate the

effectiveness of the augmented hyperspectral face dataset, the face recognition perfor-

mance of models trained solely on the original hyperspectral face dataset was compared

with models trained on both the original and augmented datasets, using the same test

dataset for evaluation.
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Figure 3.1: Flowchat of Proposed Method
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3.2 Hyperspectral Face Image Augmentation System

3.2.1 Augmentation of New Subjects via StyleGAN2-ADA

The dataset used to augment new subjects is UWA-HSFD. We selected publicly

available datasets from the internet, while two other datasets were restricted. The

dataset used for training was based on the 650nm wavelength within the range of

400nm to 720nm. The process of capturing hyperspectral images took some time, re-

sulting in slight head movements and eye blinking in some images. These movements

caused minor alignment errors between wavelengths. Therefore, we selected the accu-

rately aligned 650nm wavelength for use. Additionally, images were preprocessed before

training by downsizing the resolution from 1024x1024 to 256x256.

The current hyperspectral face dataset comprises approximately 150 samples. Due

to the inadequate quantity for training StyleGAN2-ADA, transfer learning was per-

formed. A pretrained model was created by converting 70,000 images from the Flickr-

Faces-HQ Dataset (FFHQ) to grayscale, as hyperspectral imaging is typically ren-

dered in grayscale to visually represent reflectance data at specific wavelengths. Each

grayscale image visually represents reflectance at the corresponding wavelength.

To demonstrate that the subjects generated by StyleGAN2-ADA differ from existing

subjects, an embedding model was trained using only the existing hyperspectral face

dataset. The similarity between generated images and existing face images was quanti-

fied, and subjects were classified using the trained embedding model. The embedding

model was trained using MobileFacenet [17], which is based on the MobileNetV2 ar-

chitecture designed to reduce model size and increase computational efficiency using
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depthwise separable convolutions. Triplet loss [18] was employed in training with the

objective of minimizing the distance between positive embeddings and anchor embed-

dings, while simultaneously maximizing the distance between negative embeddings and

anchor embeddings. The triplet loss function is defined as:

L(A,P,N) = max
{
(||f(A)− f(P )||2 − ||f(A)− f(N)||2 + α, 0

}

Here, f(·) denotes the embedding function for each sample. A, P , and N represent

the anchor, positive, and negative samples respectively. || · || represents the L2 norm,

and || · ||2 signifies the squared L2 norm of a vector. This loss formulation ensures that

the distance between the positive embedding and the anchor embedding is at least α

smaller than the distance between the negative embedding and the anchor embedding.

Figure 3.2 visualizes the distances between the existing hyperspectral face dataset

using the trained embedding model, showing distances between the same subjects (blue

distribution) and different subjects (red distribution). Distances were computed using

cosine similarity, a measure that assesses similarity by calculating the cosine angle

between two embedding vectors. It produces values ranging from -1 to 1, with a value

closer to 1 indicating a higher degree of similarity between the vectors.

The equation for cosine similarity between two embedding vectors a and b is given

by:

cosine similarity =
a · b

∥a∥∥b∥

Here, a ·b represents the dot product of vectors a and b, while ∥a∥ and ∥b∥ represent
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Figure 3.2: Visualization of Classification Thresholds for Subjects

the norms of vectors a and b respectively. Normalizing both distributions, we derived

a threshold value of 0.8463 at the point of overlap between the two distributions,

to determine if images belong to the same subject. Subsequently, distances between

images generated by StyleGAN2-ADA and the existing hyperspectral face dataset were

calculated, classifying images with distances of 0.8463 or higher as new subjects.

3.2.2 Augmentation of Various Poses of the Same Subject via Face Pose

Augmentation

To augment the poses of existing hyperspectral face datasets and the datasets gen-

erated using StyleGAN2-ADA, 3DDFA was employed to estimate the 3D positions

and poses of faces. Based on these estimates, face images were adjusted according to

the given pose transformation values to generate images with various poses. The aug-
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mented images include the following configurations: pitch rotations of +10 degrees and

-10 degrees, and yaw rotations of +10 degrees and -10 degrees. In total, four differ-

ent pose images were augmented for each subject. Face Pose Augmentation utilized a

pre-trained model, with input image sizes of 256x256.

3.3 Hyperspectral Face Recognition System

The Table 3.1 presents the number of subjects and total samples in the training and

testing datasets. Each training dataset consists of a total of 115 existing hyperspectral

face images and 750 existing and augmented hyperspectral face images. The augmented

hyperspectral face dataset includes 35 new subjects, each with additional face images

depicting four different poses. To compare and evaluate the performance of the two

models, the same testing dataset comprising 15 subjects and a total of 30 samples was

utilized.

Training Dataset
Test Dataset

Original Dataset
Original and

Augmented Dataset
Number of Objects 63 98 15

Total Samples 115 750 30

Table 3.1: Datasets for the Hyperspectral Face Recognition System

Before training the models, the Multi-task Cascaded Convolutional Networks (MTCNN)

was employed to detect facial regions and extract aligned face patches. These extracted

face patches were used as the training dataset, and a loss function was optimized for

the embedding vectors generated by a specific extractor. The loss function utilized

was ArcFace [19], which minimizes the distance between embeddings of the same iden-
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tity while maximizing the distance between embeddings of different identities. ArcFace

normalizes feature vectors to unit length, introduces a margin considering angles be-

tween subjects, and minimizes the cross-entropy loss by calculating probabilities for

each subject using the softmax function. The Arcface loss function is defined as:

L = − 1

N

N∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑C

j=1,j ̸=yi
es cos(θj)

In this equation, L is the loss function, N is the number of samples in the dataset, s is a

scaling factor used to amplify the angular margin, m is the angular margin, which is a

hyperparameter, C is the total number of classes (subjects) in the dataset, θyi represents

the angle between the input feature vector and the weight vector corresponding to the

true class yi, and θj represents the angle between the input feature vector and the

weight vector corresponding to the j-th class, where j ̸= yi.

For feature extraction, the models MobileFacenet, Mobilenet-v2 [20], Shufflenet-v2

[21], and Efficient-Lite0 [22] were utilized. MobileFaceNet employs depthwise separa-

ble convolutions to reduce model size and computational cost while generating high-

dimensional embeddings to effectively measure facial similarity. Similarly, Mobilenet-

v2 utilizes depthwise separable convolutions to significantly reduce parameters and

computations, introduces residual connections for more stable and effective learning,

expands input channels at the beginning of each block using extended layers to learn

rich features, and then reduces them again for computational efficiency. Shufflenet-v2

utilizes channel shuffling to effectively mix features from different groups, designed

with a parallel processing structure for high operational efficiency, avoiding complex
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operations and replacing them with simpler ones to greatly improve execution speed.

Lastly, Efficient-Lite0 optimizes efficiency and performance by balancing the network’s

width, depth, and resolution, utilizing Mobile Inverted Bottleneck Convolution blocks

to enhance computational efficiency, and aiding in the automatic exploration of model

architectures through Neural Architecture Search to achieve optimal performance. All

four models are designed for efficient execution in mobile and embedded environments.

The trained models take images as input, extract features of each face, and trans-

form them into embedding vectors. All models utilized the Stochastic Gradient Descent

(SGD) optimization algorithm with a learning rate of 0.1 and a momentum of 0.9.

Weight decay was set to 5e-4 to prevent overfitting, and the MultiStepLR algorithm

was employed to decrease the learning rate by 0.1 at epochs 20, 35, and 45 to facilitate

model convergence.
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Chapter 4

Experiment and Results

4.1 Hyperspectral Face Image Augmentation System

4.1.1 Augmentation of New Subjects via StyleGAN2-ADA

To evaluate the models trained using StyleGAN2-ADA, the Fréchet Inception Dis-

tance (FID-Score) metric [23] was used to measure the difference between generated and

real images. During training, the augmentation probability was fixed at 0.6. The FID-

Score obtained without transfer learning, using only the hyperspectral face dataset,

was 54.61. After transfer learning with the hyperspectral face dataset, the FID-Score

improved to 40.12, indicating the benefit of transfer learning for training StyleGAN2-

ADA. Furthermore, using a trained embedding model to discern new subjects, out of 50

subjects generated by StyleGAN2-ADA, 35 were determined to be new subjects based

on a distance threshold of 0.8463 from the existing hyperspectral face dataset. Exam-

ples illustrating the original and augmented hyperspectral face datasets are depicted in

the figures. Figure 4.1 represents images from the original hyperspectral face dataset,

while Figure 4.2 depicts images generated by StyleGAN2-ADA that have a distance

greater than 0.8463 from the original dataset. It is evident from the figures that the

augmented hyperspectral face dataset differs from the original dataset. Figures 4.3 and

4.4 show images where the distance between the original dataset and the generated
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dataset is less than 0.8463. In each figure, the image on the left belongs to the original

dataset, while the image on the right belongs to the generated dataset. The distances

between the images are 0.6943 and 0.6782, respectively.

4.1.2 Augmentation of Various Poses of the Same Subject via Face Pose

Augmentation

Figure 4.5 presents examples of the original hyperspectral face dataset and the

augmented hyperspectral face dataset with varied poses. The first figure represents the

original hyperspectral face image, while the others depict images with pitch adjust-

ments of -10 degrees, yaw adjustments of -10 degrees, and yaw adjustments of +10

degrees, respectively. It is evident from the figures that the augmented hyperspectral

face dataset exhibits different poses compared to the original dataset.

4.2 Hyperspectral Face Recognition System

To evaluate the trained models, a dataset containing objects not present in the train-

ing dataset was used to assess the performance of open-set face recognition tasks, specif-

ically face verification and face identification [24]. Both tasks utilized a test dataset

comprising 19 pairs of images from the same subject and 416 pairs of images from

different subjects. Figure 4.6 and 4.7 illustrate the process of training and evaluating

face verification and face identification tasks, respectively.

For open-set face verification, evaluation metrics such as Accuracy and AUC were

used, as detailed in the Table 4.1. Overall, the performance of models trained with
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Figure 4.1: Original Dataset

Figure 4.2: Augmented Datset by StyleGAN2-ADA
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Figure 4.3: Dataset with a distance less than 0.8463 (Distance : 0.6943)

Figure 4.4: Dataset with a distance less than 0.8463 (Distance : 0.6782)

Figure 4.5: Original and Augmented Dataset via Face Pose Augmentation
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Figure 4.6: Open-set Face Verification

Figure 4.7: Open-set Face Identification
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the augmented hyperspectral face dataset in conjunction with the original dataset sur-

passed those trained solely with the original dataset. Particularly noteworthy was the

significant improvement in AUC performance for Shufflenet-v2, increasing from 0.7098

to 0.9619, indicating that the model exhibited high accuracy and sensitivity. This im-

plies the model’s ability not only to better identify the correct individuals in face

verification tasks but also to accurately distinguish incorrect individuals.

Evaluation Metric Description
Accuracy • The ratio of correctly classified samples in the entire

dataset

AUC
• Area Under the Curve
• Represents the area under the ROC curve which indi-
cates the performance of the model

TAR
@

FAR

• True Accept Rate @ False Accept Rate
• The ratio of correctly accepted genuine users without
rejecting them in the system

EER
• Equal Error Rate
• The point where the false accept rate and false reject
rate are equal, indicating the error rate at this threshold

Table 4.1: Metrics Used to Evaluate Face Verification

Accuracy performance improved on average by 0.0735, with the highest Accuracy

observed in MobileFacenet at 0.9609. Furthermore, the performance of Shufflenet-v2

significantly improved in TAR@FAR 0.100, reaching 0.6316. Lastly, the Equal Error

Rate (EER) decreased by an average of 0.1009, with the lowest value observed in

Mobilenet-v2 at 0.0252. Table 4.2 compares the verification performance of models

trained with the original hyperspectral face dataset and those trained with both the

original and augmented datasets.

For open-set face identification, the evaluation metric used was TPIR@FPIR. In
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face recognition, it is crucial not only to correctly identify the right individuals but

also to accurately reject incorrect individuals. This is important as misidentifying in-

dividuals in authentication systems can pose security risks. TPIR@FPIR is used to

evaluate both aspects. Overall, models trained with the augmented hyperspectral face

dataset alongside the original dataset outperformed those trained solely with the origi-

nal dataset. On average, there was a performance improvement of approximately 0.1617

in TPIR@FPIR, with Shufflenet-v2 showing the most significant improvement with

TPIR@FPIR 0.100 reaching approximately 0.353. Table 4.3 compares the identifica-

tion performance of models trained with the original hyperspectral face dataset and

those trained with both the original and augmented datasets.
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model metric base model proposed model

MobileFacenet

Accuracy (↑) 0.9448 0.9609
AUC (↑) 0.9530 0.9854

TAR @ FAR (↑)
0.001 0.2632 0.6316
0.010 0.7368 0.7895
0.100 0.8421 0.9474

EER (↓) 0.1606 0.1116

Mobilenet-v2

Accuracy 0.9241 0.9517
AUC 0.9467 0.9907

TAR @ FAR
0.001 0.0526 0.6316
0.010 0.4211 0.6842
0.100 0.8421 1.0000

EER 0.1151 0.0252

Shufflenet-v2

Accuracy 0.7103 0.8344
AUC 0.7098 0.9619

TAR @ FAR
0.001 0.0526 0.2105
0.010 0.0526 0.3684
0.100 0.2105 0.8421

EER 0.2770 0.1151

Efficient-Lite0

Accuracy(↑) 0.7517 0.8781
AUC(↑) 0.8467 0.9262

TAR @ FAR(↑)
0.001 0.0000 0.0526
0.010 0.1053 0.1053
0.100 0.5263 0.7895

EER(↓) 0.2170 0.1139

Table 4.2: Performance Evaluation via Open-set Face Verification

model metric base model proposed model

MobileFacenet TPIR @ FPIR (↑)
0.001 0.5882 0.7941
0.010 0.8529 0.8824
0.100 0.9118 0.9706

Mobilenet-v2 TPIR @ FPIR
0.001 0.4706 0.7941
0.010 0.6765 0.8235
0.100 0.9118 1.000

Shufflenet-v2 TPIR @ FPIR
0.001 0.4706 0.5588
0.010 0.4706 0.6471
0.100 0.5588 0.9118

Efficient-Lite0 TPIR @ FPIR
0.001 0.4706 0.5294
0.010 0.5000 0.5882
0.100 0.5882 0.9118

Table 4.3: Performance Evaluation via Open-set Face Identificaiton
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Chapter 5

Conclusion

In this study, a hyperspectral face recognition system was proposed, augmented by

generating new subjects using StyleGAN2-ADA and augmenting various poses using

Face Pose Augmentation. Utilizing the UWA-HSFD dataset, new face images were

generated and the limitations of the existing dataset were overcome through transfer

learning. MobileFacenet was used to classify 70% of the generated subjects as new

subjects. Additionally, by estimating the 3D position and pose of faces using 3DDFA,

four different images per subject were created, enhancing the diversity of the dataset.

Training various models on both the original and augmented datasets resulted in higher

overall performance metrics such as Accuracy, AUC, TAR@FAR, and EER. Moreover,

the identification metric TPIR@FPIR showed an average performance improvement of

0.1617. These results demonstrate the significant contribution of data augmentation

through StyleGAN2-ADA and Face Pose Augmentation to enhancing the performance

of hyperspectral face recognition systems.

However, this study has limitations in terms of the lack of diversity in the newly

generated subjects. This reflects issues such as the predominantly male composition

of the dataset, insufficient diversity in age groups and races, and the lack of diversity

in lighting conditions. Consequently, most of the generated images consist of the same

demographic of male subjects.
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Additionally, as the training and augmentation were conducted using only a single

band of the hyperspectral face dataset, the characteristics of faces across multiple

wavelength bands were not reflected. Moreover, the dataset is limited to the visible

light spectrum.

Furthermore, recent advancements in miniature hyperspectral cameras hold promise

for commercialization due to their compact size and affordability. Therefore, the plan

is to enhance the generalized performance of face recognition systems by acquiring

datasets covering various environments, lighting conditions, poses, and accessories us-

ing these miniature hyperspectral cameras. Additionally, the aim is to evaluate facial

characteristics using spectral barcodes from various wavelength bands.
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