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Abstract 

A spectrometer is a device that measures the intensity of light emitted or absorbed 

by an object as a function of wavelength. It is used in various research fields and 

industries, such as chemical analysis, remote sensing, and color inspection. Recently, 

spectral technology has attracted researchers’ attention because of its potential to 

improve the quality of life of ordinary citizens. However, spectrometers face several 

limitations that they are expensive, heavy, large in size, and require sophisticated 

manipulation. One approach to overcome these limitations is computational 

spectroscopy using multilayer thin films (MTF). The MTF can be realized to have 

unique transmission characteristics by controlling the thickness and number of layers 

and can be made small in size. In this dissertation, we present a computational 

spectrometer using multilayer thin films 

In the first half of this dissertation, we present the design, fabrication, and 

implementation of an MTF filter array for computational spectroscopy. In general, an 

MTF filter used in a filter-based spectrometer is designed in a bandpass type that only 

transmits a specific wavelength. To use a bandpass type filter as a spectrometer, a set of 

filters that continuously transmits signals of different wavelengths is required, and 
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plenty of filters are needed to cover a wide wavelength range. In addition, to achieve 

high resolution, it is necessary to fabricate a sophisticated filter with a narrow 

transmission width. Unlike band-pass filters, the proposed MTF filters were designed to 

transmit a signal in unique transmission patterns over a wide wavelength range. The 

MTF filters were fabricated all at once in the form of an array using a combinatorial 

deposition technique. By attaching the fabricated filter array to a complementary metal-

oxide-semiconductor (CMOS) image sensor, we built the device for computational 

spectroscopy. 

In the second half of this dissertation, we present the reconstruction of unknown 

spectra using computational approaches. An unknown incident spectrum is modulated 

by the fabricated MTF filter array and measured by a CMOS image sensor. The 

measured intensities are signals spectrally modulated by the unique transmissions of the 

MTF filters. The relation among the unknown incident spectrum, transmissions of MTF 

filters, and the measured intensities can be expressed in linear equations. Using a small 

number of linear equations, it is possible to reconstruct the unknown incident spectrum 

in high resolution from the measured intensities by applying computational approaches. 

We implement two computational approaches: numerical optimization based on L1 norm 

and deep learning based on convolutional neural network. Optical experiments were 

conducted to demonstrate the reconstruction performances of these two approaches 

using various kinds of light sources. Finally, the reconstruction performances of these 

two approaches in the noisy environments were comparatively analyzed through 

simulations. 
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국 문 요 약 

분광기는 어떤 물체가 방출하거나 흡수하는 빛의 세기를 파장에 따라 

측정하는 장치이다. 화학분석, 원격탐사, 색상 검사 등 다양한 연구 분야와 

산업계에서 분광기는 활용되고 있다. 최근, 분광 기술을 활용하여 민간 삶의 

질을 향상 시킬 수 있다는 잠재력으로 인해 연구자들의 관심을 받고 있다. 

그러나 현재의 분광기는 값이 비싸고, 무게가 무겁고, 크기가 크며, 정교한 

조작 필요와 같은 여러 한계에 직면해 있다. 이러한 한계를 뛰어넘기 위한 

하나의 접근 방법으로 다층 박막을 이용한 계산 분광기가 있다. 다층 박막은 

박막의 두께와 층수를 조절하여 고유한 투과 특성을 갖도록 구현할 수 

있으며 크기를 작게 제작 할 수 있다. 본 학위논문에서는 다층 박막 기반의 

계산 분광기를 제안한다.  

본 논문의 전반부에서는 계산 분광기를 위한 다층 박막 필터 배열 

설계와 제작 그리고 구현 방법에 대해 논의한다. 일반적으로 필터 기반 

분광기에 사용되는 다층 박막은 투과 특성이 특정 파장의 신호만 통과되는 

밴드패스 형태로 설계된다. 따라서 밴드패스 형태의 필터를 분광기로 

사용하기 위해서는, 연속적으로 서로 다른 파장의 신호를 투과하는 필터 

배열이 필요하며 넓은 파장 범위를 다루기 위해서는 무수한 필터가 

필요하다. 또한, 고해상도를 달성하기 위해서는 좁은 투과 폭을 가진 정교한 

필터 제작이 필요하다. 밴드패스 필터와 달리, 넓은 파장대역에서 신호를 
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다양한 형태로 투과시키는 필터들을 다층 박막을 통해 설계하였다. 설계된 

필터들은 조합 증착 기술을 사용하여 배열 형태로 한번에 제작되었다. 

제작된 필터 배열을 CMOS 이미지 센서에 부착하여 계산 분광을 위한 

장치를 구축하였다. 

본 논문의 후반부에서는 제작된 분광기를 통한 분광 신호 획득과 디지털 

신호처리를 활용한 고해상도 분광 신호 복원에 대해 논의 한다. 입력 광원은 

제작된 다층 박막 필터 배열에 의해 변조되고 CMOS 이미지 센서에 의해 

측정된다. 측정된 신호는 다층 박막 필터의 고유한 투과 특성에 의해 변조된 

신호이다. 미지의 입력 스펙트럼, 박막 필터의 투과 특성, 측정 신호 사이의 

관계는 선형 관계로 표현된다. 적은 수의 선형 관계들의 조합을 활용하고 

디지털 신호처리를 적용하여 측정된 신호에서 미지의 입력 스펙트럼을 

고해상도로 재구성 할 수 있다. L1 놈 기반의 수치최적화와 합성 곱 신경망 

기반의 딥러닝, 두 가지 디지털 신호처리 접근 방식을 구현하였다. 다양한 

종류의 광원을 사용하여 이 두가지 접근 방식의 재구성 성능을 입증할 광학 

실험을 수행하였다. 마지막으로 시뮬레이션을 통하여 잡음이 많은 환경에서 

이 두가지 접근 방식의 재구성 성능을 비교 분석하였다. 
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 Chapter 1  

Introduction 

 Research Background 

1.1.1. Optical Spectrometer 

Optical spectrometers [1] are instruments to measure light intensities with respect to 

wavelengths. The spectrometers have been used in various fields of industries and 

researches such as astronomy [2], chemical analysis [3], and remote sensing [4]. 

Typically, optical Spectrometers can be classified in two ways. First, they can be classified 

according to the working wavelength range. There are ultraviolet (200 - 400 nm), visible 

(400 - 700 nm), and infrared (700 nm - 1 mm) spectrometers. Second, they can be 

classified as structures of the spectrometers. There are grating-based spectrometers and 

filter-based spectrometers. 

Grating-based spectrometers use a diffraction grating, a movable slit, and a photodetector. 

A diffraction grating disperses a beam passed through the slit into various wavelengths. 

The detector captures the intensities of dispersed light with respect to wavelengths.  

Filter-based spectrometers use one or more optical filters to transmit the selected range of 

wavelength. As the beam passes through the filter, the desired spectral elements are 

transmitted. The intensity of the transmitted beam is measured by a photodetector. By 

changing optical filters, light intensities to wavelengths are measured.  

Spectrometers digitize the light intensities and give a plot of intensities with respect to 

wavelengths. 
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1.1.2. Compressed Sensing 

In the traditional sampling theory, the Nyquist-Shannon sampling theorem, the sampling 

rate should be at least twice the signal’s maximum frequency in order to reconstruct the 

signal without error. Compressed sensing (CS) [5] is an efficient signal processing 

framework that requires fewer samples than required by the Nyquist-Shannon sampling 

theorem to reconstruct the signal by finding a solution to the underdetermined linear 

system.  

There are two conditions for efficient reconstructions in the CS framework. First, the 

signal should be a sparse signal that a few coefficients are significant and the others are 

negligible, or sparsely represented in a certain domain, such as Fourier and wavelet. 

Second, the sensing matrix should have a small mutual coherence [6]. 

Let us denote the signal as 1N´Îx ¡  and the measurement matrix as M N´ÎA ¡ , then the 

sampled signal 1M´Îy ¡  is defined as follows: 

 =y Ax . (1) 

The equation (1) becomes an underdetermined system when we set M N< . The 

underdetermined system has a unique solution if the signal x  is sparse or sparsely 

represented by a sparsifying basis N N´ÎΦ ¡ , i.e., =x Φs , where 1N´Îs ¡ , then the Eq. 

(1) becomes: 

 = =y AΦs Ψs , (2) 

where, M N´ÎΨ ¡  is the sensing matrix and s  is a sparse signal. The solution of sparse 

signal ŝ  can be obtained by solving the numerical optimization problem, if the sensing 

matrix Ψ  satisfy the restricted isometry property (RIP) [7].  

 
1

ˆ arg min=
s

s s  subject to 2
e- £y Ψs , (3) 

where e  is a small non-negative constant. Then, the reconstructed signal x̂  is ˆΦs . 
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Over the past decades, researchers have been done a significant effort in applying the CS 

techniques in many applications such as medical imaging [8], hyperspectral imaging [9], 

and radar systems [10]. 

1.1.3. Deep Learning 

Deep learning [11] is a part of machine learning, which is based on artificial neural 

networks. These networks are trained to learn specific tasks, such as recognition and 

classification from large amounts of datasets. Deep learning has been applied to various 

fields, such as computer vision, speech recognition, and natural language processing, 

where they have achieved outperformance over the human being.  

Deep learning architectures consist of multiple layers of learnable nodes. Each layer is 

connected to the previous layer, conducting feature extraction and predictions. After going 

through the multiple layers, input data becomes the prediction of deep learning 

architectures. This process is called forward propagation. The input layer is where the input 

data is fed, and the output layer is where the final prediction or classification is made. 

Backpropagation uses gradient descent algorithms to calculate errors between predictions 

and ground truths. Then, the learnable nodes are adjusted by moving backward through the 

layers. By conducting the forward propagation and backpropagation, deep learning 

architectures are learned to improve errors of predictions and classifications. 

One of the most popular deep neural networks is convolutional neural networks (CNN) 

[12]. A CNN automates extracting features from the input data and conducts classification 

or regressions. This automated feature extraction makes deep learning architectures work 

well for computer vision applications. 

 Outline of this dissertation 

In this dissertation, we propose computational spectrometers based on multilayer thin films. 

We design and fabricate compact spectrometers based on the compressed sensing theory. 
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Then, computational approaches based on numerical optimization and deep learning are 

used to reconstruct spectra in a high resolution.  

In Chapter 2, we present the working principle of computational spectrometers. We will 

propose compressed sensing-based optical filters for the spectroscopy system to improve 

the efficiency of spectrometers. In Chapter 3, we propose multilayer thin films (MTF) for 

computational spectrometers. In Chapter 4, we demonstrate the MTF-based computational 

spectrometers using sparse recovery and deep learning approaches. The results of MTF-

based computational spectrometers are as follows [13]–[18]: 

[13] Cheolsun Kim, Woong-Bi Lee, Soo Kyung Lee, Yong Tak Lee, and Heung-No Lee, 

“Fabrication of 2D thin-film filter-array for compressive sensing spectroscopy,” Optics and 

Lasers in Engineering, Vol. 115, pp. 53-58, Apr. 2019. 

[14] Cheolsun Kim, Dongju Park, and Heung-No Lee, “Compressive sensing 

spectroscopy using a residual convolutional neural network”, MDPI Sensors, Vol. 20(3), 

Jan. 2020.  

[15] Cheolsun Kim, Pavel Ni, Kang Ryeol Lee, and Heung-No Lee, “Mass production-
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 Chapter 2  

Computational Spectrometers 

 Introduction 

The demand for spectrum information is increasing not only in research and development 

but also in the private sector. In response to this demand, researchers are trying to make 

spectrometers that are both small and inexpensive. These spectrometers could be used in 

various fields, such as medical systems, mobile applications, and remote sensing [4], [19], 

[20]. In particular, optical filter-based spectrometers do not need motorized or dispersive 

elements, and their filter array can be directly attached to a complementary metal-oxide-

semiconductor (CMOS) image sensor so that they can be easily miniaturized. However, 

there is a trade-off between size (for integrating filters) and spectral resolution with 

miniaturized spectrometers. The number of filters that can be integrated into a CMOS 

image sensor is limited due to its small sensing area. Thus, these spectrometers offer a low 

spectral resolution.  

2.1.1. Related Works 

Over the past decade, numerical optimization approaches [21], [22] have been adapted for 

filter-based spectrometers to improve spectral resolution. The spectral resolution in 

conventional filter-based spectrometers has been improved using sparse recovery based on 

numerical optimization [23]. New optical filters have been proposed that work well in 

numerical optimization approaches and achieve further improvements [24]–[31]. Unlike 

conventional optical filters, which selectively transmit incident light in specific 

wavelengths and reflect the remaining wavelengths, these filters, called random spectral 

filters, modulate and transmit incident light with unique spectral features in the entire 

wavelength ranges of interest. Various types of random spectral filters have been proposed, 

such as etalon filters [27], [32], quantum dot filters [26], photonic crystal slabs [29], [33], 



 - 6 -

and multilayer thin films (MTF) filters [13]. The spectral resolvability of computational 

spectroscopy has been successfully demonstrated using random spectral filters with low 

correlation among filters.  

Recently, deep learning [11] has been emerging as a promising alternative framework for 

numerical optimization approaches for computational spectrometers [14], [18], [34]–[37]. 

Kim, et al. first reported a convolutional neural network (CNN) to restore the spectra from 

compressively sampled intensities and compared the reconstruction performance between 

iterative numerical optimization approaches and the CNN via simulation [14], [18]. Real 

experiments for reconstructing light-emitting diodes (LEDs) using an U-net structure were 

first reported [34]. Reconstructions of the combination of narrow bands spectra using a 

programmable supercontinuum laser are demonstrated [36]. Hyperspectral imaging via 

DL-based filter design and spectra reconstruction was proposed [37].  

2.1.2. Contributions of this Dissertation 

Our main contribution of this dissertation is that we demonstrate computational 

spectrometers, which have a low cost, a compact size, a high resolution, a wide working 

range, and a fast operation time using multilayer thin films. We design multilayer thin 

films (MTF) filters based on the compressed sensing theory. We propose a mass production 

enable fabrication process for fabricating MTF filter arrays. We build a spectrometer by 

attaching the fabricated MTF filter array to a CMOS image sensor.  

Using the proposed spectrometer, we measure the intensities of an input light source into a 

digital signal. From the measured intensities, we reconstruct the spectra of the input light in 

a high resolution. As the computational approaches, we use sparse recovery based on 

numerical optimization, and a residual convolutional neural network (RCNN) based on 

deep learning. We formulate the problem of the underdetermined linear system for 

spectrometers and solve the problem using these computational approaches.  

We conduct numerical experiments for estimating the performances of the computational 

spectrometer. After numerical experiments, we perform optical experiments using various 

light sources, including monochromatic lights, LEDs, and a halogen lamp. The results 
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show good recovery performances over the light sources. In addition, we compare spectral 

reconstruction performances between sparse recovery and RCNN. 

 Principle of Computational Spectrometers 

2.2.1. Conventional Spectrometers 

Typically, there are two kinds of spectrometers according to optical structures. One is 

grating-based spectrometers. The other is filter array-based spectrometers. 

Grating-based spectrometers use diffractive optics, such as grating and prism, to spread an 

incident light with respect to wavelengths. Then, the intensities of the spread lights are 

measured by detectors (CCD or CMOS sensor). The measured intensities change into a 

digital signal. The spectrometer gives a plot of intensities to wavelengths as shown in Fig 

2.1(a). The grating-based spectrometers require diffractive optics and motorized equipment 

for spreading the incident light. In addition, a long light way is required to achieve enough 

spreading for a high resolution. Thus, the grating-based spectrometers have a bulky size 

and a high cost and require a sophisticated operation to use. 

On the other hand, filter array-based spectrometers use one or more optical filters to 

transmit the selected range of wavelengths (bandpass filters). As an incident light passes 

through the filter, the desired spectral elements are transmitted and the others are reflected. 

Using a set of filters that transmit different wavelengths and a CMOS image sensor, a 

filter-based spectrometer could be built. The filtered light intensities from the set of filters 

are measured by the CMOS image sensor. The measured intensities change into a digital 

signal. The spectrometer gives a plot of intensities to wavelengths as shown in Fig 2.1(b). 

The filter-based spectrometers have a compact size and a lightweight. Also, they have a 

fast acquisition time thanks to their snapshot structure. However, the filter-based 

spectrometers have a low spectral resolution due to the small number of filters integrated 

into the CMOS image sensor. In addition, it is difficult to fabricate sophisticated narrow 

bandpass filters in a uniform spacing. 
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Figure 2.1 Schematics of optical spectrometers [27]: (a) Grating-based spectrometer, (b) 

filter array-based spectrometer. (c) filter array-based computational spectrometer. 

2.2.2. Computational Spectrometers 

Figure 2.1(c) shows a schematic of a filter array-based computational spectrometer. The 

incident light is fed into a filter array and the filter array modulates the incident light in 

random spectral features. Unlike the bandpass filter that transmits specific wavelengths of 

the incident light, the filter array in the computational spectrometer transmits incident light 

with unique spectral features in the entire wavelength ranges of interest. The filter has a 

transmission function of multiple peaks with various full widths at half maximums 

(FWHMs) and has a large difference between maximal and minimal transmission in the 

transmission function. The filtered and modulated light intensities are measured by the 

CMOS image sensor. The measured intensities change into a digital signal. Using 

computational approaches, the digital signal could be reconstructed into a high resolution 

spectrum. Using the filters with random spectral features, we could capture the spectral 

information of incident light in a wide range of wavelengths without loss. In addition, the 

computational spectrometers require fewer filters than conventional filter array-based 

spectrometers. 
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2.2.3. Working Principle of Computational Spectrometers 

As the filter array for computational spectrometer, we use MTF filter array. Let us denote 

the transmission function of the i-th MTF filter in the wavelength range [ ]1 2, , , Nl l l=λ L  

as ( ) ( ) ( )1 2, , , .i i i i NT T Tl l l= é ùë ûT L  the intensity, iy , measured by CMOS image sensor 

for an unknown incident spectrum ( ) ( ) ( )1 2, , , ,
T

Nx x xl l l= é ùë ûx L  can be expressed as: 

 ( ) ( ) ( )
1

N

i i k k k
k

y T Q xl l l
=

=å  (4) 

where ( ) ( ) ( )1 2, , , NQ Q Ql l l= é ùë ûQ L  is the spectral response of CMOS image sensor in 

the wavelength range .λ  Let us set ( ) ( ) ( ) ,i k i k kR T Ql l l= where ( )i kR l  represents 

spectral sensitivity of the i-th filter of the CMOS image sensor at the wavelength ,kl the 

equation (4) becomes ( ) ( )1
.N

i i k kk
y R Ql l

=
=å  Considering an M number of filters, there 

is a set of M equations for 1, 2, , .i M= L  The set of M equations can be represented in 

matrix formation: 

 
( ) ( )
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where 1M´Îy ¡  is a column vector with measured intensities from M filters and 
M N´ÎR ¡  is the sensing matrix where each row represents the spectral sensitivity with 

respect to the wavelength. The spectral sensitivity can be calibrated by element-wise 

multiplication of the transmission functions of MTF filters and the spectral response of the 

CMOS image sensor. 

Conventional spectrometers read out y  as the incident spectrum .x  In order to make the 

measured intensities y as close as possible to the incident spectrum ,x  the sensing matrix 

R  should be an identity matrix with the dimension of ( ).N N M N´ =  This means that N 

number of filters are needed in conventional manners. In practice, it may be difficult to 
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fabricate a narrow FWHM filter and, since the number of filters required increases as the 

wavelength of interest increases, it is more challenging to make a compact spectrometer 

operating in a wide wavelength range. Unlike conventional filter-based spectrometers, 

computational spectrometers modulate and measure a wide wavelength range of the 

incident spectrum using a small number of MTF filters. We consider the sensing matrix R  

with dimensions ( ).M N M N´ <  The set of M equations becomes an underdetermined 

problem. Numerical optimization approaches [38]–[40] and deep learning approaches [35], 

[41] can be applied to restore the incident spectrum in high resolution by solving the 

underdetermined problem. Figure 2.2 depicts the working principle of the filter array-based 

computational spectrometer.  

 

Figure 2.2 Illustration of the working principle of the computational spectrometer. 
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 Chapter 3  

Multilayer Thin films (MTF)-based Computational 

Spectrometer 

 MTF Filter  

Thin films are basic components that have been applied in a variety of areas, including 

semiconductor devices, optical coatings, and solar cells [42]. The theoretical transmission 

function of a multilayer thin-film filter is given by [43] 

 ( ) ( )2 2
1

1, 1 ,2 TE TMT l q r r= - +  (6) 

where TEr  and TMr  are the reflection coefficients. Given a wavelength l  and the 

incident angle 1q , transmission function can be calculated using recursive routines shown 

in Table 3.1 

In Table 3.1, given the input of a wavelength l , a vector of l refractive indices 

{ }1 2, , , ln n n=n L  and a vector of 1l -  layer thicknesses { }2 3, , , ,ld d d=d L  a reflection 

coefficient r  is generated. Note that there are l layers considered in total. The first one is 

the layer of the air and the last one is the layer of the substrate. The light is assumed to be 

arriving from the air to the second layer in normal incidence. The first index 1n  in the 

vector n represents the refractive index of the air. The last one ln  in the vector n 

represents the refractive index of the substrate. The refractive indices of the intermediate 

thin-film layers are denoted by 2n  to 1ln - . The thickness of the air does not need to be 

considered. The thickness of the substrate is denoted by ld .  
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Table 3.1 Recursion for calculating reflection coefficients. 
Input: l , 1 0q = , { }1 2, , , ln n n=n L , { }2 3, , , .ld d d=d L  
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The thicknesses of the intermediate thin-film layers are denoted by 2d  to 1ld - . The 

incidence angle of the light passing from the k th to the k+1 st layer is kq , and kh  is the 

effective complex-valued index of the k th layer. A transmission function for a single filter 

is obtained by considering all wavelengths in the range of interest. An array of 

transmission functions for the M filters can be obtained by repeating this process where 

each filter 1 N
m

´ÎT ¡  for 1,2, ,m M= L  in Eq. (4) is generated from a unique set of 

refractive index and thickness vectors. 

3.1.1. MTF Filter Design  

 

Figure 3.1(a) Schematic of the MTF filter array. (b) Example of two transmission functions 

for MTF filters. 

To implement the proposed 2D filter-array, we numerically modeled the proposed 

spectroscopy method with reference to [43]–[45], and according to the following steps. (i) 

Generate the reference vector of layer thicknesses for the reference filter. (ii) Generate a 

vector of thicknesses for the other filter by randomly removing one to five layer 

thicknesses from the reference vector. (iii) Repeat the step (ii) 35 times to create a total of 

36 vectors of thicknesses. (iv) Use the recursion Table 3.1 and Eq. (6) to calculate the 

transmission functions for a new filter-array. (v) Use the mutual coherence m  to quantify 

the goodness of the sensing matrix of the designed filter-array. Mutual coherence is defined 

as 
,

max iji j
om @ , where ijo  is the ( ), thi j  off-diagonal element of the Gram matrix, 

* N N´ÎT T ¡ . *T  denotes the conjugate transpose of T. With these steps, we can generate 

a single set of 36 filters. By repeating these steps, multiple sets of 36 filters can be obtained. 
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Among these sets of filter-arrays, the set of filters with a smallest mutual coherence is 

selected.  

In the compressed sensing framework, a sensing matrix with a smaller mutual coherence is 

better than the one with a higher mutual coherence to capture the information of input 

signal to be reconstructed [6], [24]. A schematic of the proposed filter-array is shown in 

Fig. 3.1(a). Each time a layer is removed, the layers above and those below come together 

to form a single layer with two thicknesses added up. We consider two materials, high- and 

low-refractive index materials. Figure 3.1(b) shows the transmission functions for two 

designed filters generated by using two materials, SiNx and SiO2. In conventional 

spectroscopy, the transmission functions with a large spectral depth and a narrow spectral 

peak are preferred in order to prevent interference among measurements. In computational 

spectroscopy, each transmission function of the filter should be wide enough so that the set 

of the small number of filters fully senses the spectral information in the given wavelength 

range. 

Each filter shows several spectral peaks and rapid changes of transmission value with 

respect to wavelength. Therefore, each filter has a high optical throughput that the energy 

(intensity) which passes through the filter is higher than that with the conventional 

bandpass filter approach. In addition, fewer filters can be used to cover the entire 

wavelength range with the proposed method. For example, suppose 250 bandpass filters 

are used to cover the wavelength range from 500 nm to 1000 nm. Then, the bandwidth of 

the transmission function is 2 nm, according to the conventional bandpass filter design. In 

the proposed approach, the same range of wavelengths can be covered with only 36 

proposed filters. 

3.1.2. MTF Filter Fabrication 

We fabricated two kinds of MTF filter arrays. The first MTF filter array was fabricated by 

using combining combinatorial deposition and etching techniques. The second MTF filter 

array was fabricated by using only the combinatorial deposition technique. 

Fabrication of the first MTF filter array. Figure 3.2(a) shows the process in which the 

first MTF filter array is fabricated. This comprises two main parts; one is SiO2 film 
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deposition and the other is SiNx film deposition according to the specified thicknesses. 

Prior to depositing an SiO2 film, a 6 × 6 germanium (Ge) grid with elements of size 300 

μm and spacing 100 μm was formed on the glass using an e-beam evaporator to separate 

the filters. In this grid, SiO2 and SiNx layers were deposited with the width of 300 μm in 

each filter. Then, selective deposition was done as follow: An intentionally thick SiO2 film 

was deposited on the glass patterned with the Ge grid using plasma-enhanced chemical 

vapor deposition. The regions where the film should not be deposited were then removed 

by conventional photolithography, namely CF4/O2 reactive ion etching. The process 

pressure and radio frequency power were maintained at 50 mTorr and 50 W, respectively. 

The SiNx film deposition process was performed in the same manner as for SiO2. Finally, 

these two main steps, SiO2 and SiNx film deposition, were repeated 12 times each to lay 

down 24 layers. Figures 3.2(b,c) show a photograph of a fabricated MTF filter array and a 

monochrome image of the filter array, respectively. Each filter is composed of a different 

number of layers each with different thicknesses; therefore, each one has unique color due 

to its different transmission function. 

 

Figure 3.2 (a) Schematic of the first MTF filter array fabrication process. (b) Photograph of 

the fabricated first MTF filter array. (c) Monochrome image of the MTF filter array taken 

at the wavelength of 700 nm. 
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Fabrication of the second MTF filter array. We fabricated 169 identical filter arrays on a 

single wafer, as shown in Fig. 3.3(a). The filter array is the shape of a 6 × 6 square grid. 

The size of the square is 400 × 400 μm2, and the space between the squares is 300 μm. 

Accordingly, the size of the filter array is 4.5 × 4.5 mm2. To fabricate filter arrays, we used 

TiO2 and SiO2 as high and low refractive index materials, respectively. The refractive 

indices for TiO2 and SiO2 are approximately 2.5 and 1.45, respectively.  

Unlike etalon filters that were fabricated by changing the thickness of interspacing 

dielectric layers [46], [47], we fabricated the MTF filters by changing the number of layers 

and thicknesses of layers. An MTF filter with a unique transmission function can be 

obtained by repeatedly alternating the two materials and depositing them with different 

thicknesses. 36 MTF filters with unique transmission functions were fabricated by 

selectively omitting certain layers of different MTF filters using shadow masks during the 

deposition of the MTF filter array. By omitting an intermediate layer, the upper and lower 

layers sum up to form one layer with a different thickness. The deposition process for 

creating filter arrays follows. 

TiO2 and SiO2 films were deposited onto a borosilicate glass wafer whose refractive index 

is approximately 1.472 at 588 nm. In order to distinguish where the material should be 

deposited, shadow masks were used. The desired thickness of TiO2 is deposited on the 

desired locations using direct current (DC) magnetron sputter. For TiO2 deposition, a Ti 

target was sputtered in a mixture of argon (Ar) and oxygen (O2). The mixture gas flow of 

188 sccm of Ar and 12 sccm of O2 was utilized and the DC power was 700 W. The TiO2 

deposition is performed only on the desired region designated by the shadow mask. Then, 

the shadow mask is changed, with different patterns on the other mask, and we deposit 

SiO2 at the intended thickness. RF magnetron sputter was used for the SiO2 deposition. A 

Si target was sputtered in a mixture of Ar and O2. The mixture gas flow of 185 sccm of Ar 

and 15 sccm of O2 was utilized. The RF power was 300 W. The deposition is repeated 17 

additional times by changing the shadow mask and alternating between TiO2 and SiO2. 

Hence, we conducted ten individual depositions of TiO2 and nine individual depositions of 

SiO2. After completing thin film deposition, we coated the surface of the thin films with a 

photoresist. Germanium (Ge) was deposited over the entire wafer area using an e-beam 

evaporator. Lift-off of the photoresist was performed by soaking the deposited wafer in 



 - 17 -

acetone. When the photoresist was washed away, Ge deposited on the top of the photoresist 

was lifted off and washed. After lift-off, a square grid of Ge with the size and spacing of 

400 μm and spacing of 300 μm was formed. The wafer cleaning process was then 

performed, and, finally, the wafer was diced to produce MTF filter arrays. Figure 3.3(b) is 

a monochrome image of the fabricated MTF filter array illuminated by a halogen light 

source. The image was taken by the CMOS monochrome camera whose number of pixels 

is 1280 × 1024. As shown in Fig. 3.3(b), we measure uniform intensity using pixels under 

a single MTF filter. Also, the pixels have unique intensity according to the MTF filter. 

Using these unique intensities from MTF filters, we can reconstruct the spectrum of 

unknown incident light. Table 3.2 summarizes the comparison between the fabricated two 

MTF filter arrays. 

 

Figure 3.3 Fabricated the second MTF filter array. (a) 169 identical MTF filter arrays fab-

ricated in a single wafer. (b) Monochrome image of the fabricated MTF filter array illumi-

nated by a halogen light source. 
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Table 3.2 Comparison between the fabricated two MTF filter arrays 

 The first MTF filter array The second MTF filter array 

Number of Filters 36 36 

Number of Filter 
arrays 1 169 

Materials SiNx and SiO2 TiO2 and SiO2 

Methods The combinatorial deposition 
and etching The combinatorial deposition  

Thickness of layers 100 ~ 300 nm 100 ~ 300 nm 

Maximum layers 24 19 

Size of filter 300 um × 300 um 400 um × 400 um 

Size of filter array 2.5 mm × 2.5 mm 4.5 mm × 4.5 mm 
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 Implementation 

3.2.1. Implementation of MTF-based Computational Spectrometer 

 

Figure 3.4 MTF filter array-based computational spectrometer. (a) Photograph of the MTF 

filter array, which is directly attached to the CMOS image sensor. (b) Photograph of the 

CMOS image camera with the fabricated MTF filter array.  

The MTF filter array-based computational spectrometer consists of MTF filters and the 

CMOS image camera. By attaching the fabricated MTF filter array to the front of a CMOS 

monochrome camera, the MTF filter array-based spectrometer was built as shown in Fig. 

3.4. 

3.2.2. Optical Setups for MTF-based Computational Spectrometer 

Optical setups for experimental verification of the proposed spectroscopy system are 

shown in Fig. 3.5. Figure 3.5(a) depicts the optical setup for measuring transmission 

functions of the MTF filter array. The setup for testing the performance of the proposed 

system is shown in Fig. 3.5(b). The photographs of the optical setup and the CMOS image 

camera with the MTF filter array are shown in Fig. 3.5(c). During the optical experiments, 

we set the incident angle to filter array as normal incidence. Using a linear stage, a 

rotational stage, and optical mounting posts, we aligned the optical fiber with the CMOS 

image camera (E0-1312, Edmund Optics) for the normal incidence.  
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In Fig. 3.5(a), a halogen lamp (KLS-150H-LS-150D, Kwangwoo) was used to provide a 

continuous light spectrum. It was put into a monochromator (MMAC-200, Mi Optics) to 

produce a specific narrow wavelength band. Then, a fiber-optic collimator was used to 

form a beam of parallel light. The beam was fed into the CMOS image camera through the 

fabricated MTF filter array. With a single exposure, each filter modulated the light in a 

different pattern. The modulated light was read out by pixels of the CMOS image camera, 

yielding M = 36 distinct output signals y in Eq. (5). Each output signal was taken by 

summing up the modulated values of the pixels underneath the pertinent filter.   

 

 

Figure 3.5 (a) Schematic of the optical setup for measuring transmission functions. (b) 

Schematic of the optical setup for testing the performance of the proposed spectroscopy 

system. (c) Photographs of the optical setup and the CMOS image camera with the MTF 

filter array. 
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3.2.3. Characteristics of MTF-based Computational Spectrometer 

 

Figure 3.6 The experimental setup for measuring the transmission functions of the fabri-

cated MTF filter array. 

Before conducting spectral reconstructions, we first measured the transmission functions of 

MTF filters. A beam from the halogen light source was fed into a monochromator. From 

the monochromator, a monochromatic light with an FWHM of 4nm was generated. After 

passing through a collimator, the collimated monochromatic light was fed into the CMOS 

monochrome camera. Using the CMOS camera, we measured the light intensities with and 

without the MTF filter array. Then, the transmission T of i-th filter at wavelength kl  is 

calculated by: 

 ( ) ( )( ) ,
( ) ( )

i k i k
i k

i k i k

IWF BIT
IWOF BI

l ll
l l

-
=

-
 (7) 

where , ,i iIWF IWOF and iBI are intensity with i-th filter, intensity without i-th filter, and 

background intensity, respectively. Using the monochromator, we could generate series of 

monochromatic light at the peak locations from 500 to 849 nm with the step of 1 nm. We 

captured 350 pairs of monochrome images with and without filters in the wavelength range 

of 500 to 849 nm. Using Eq. (7), we could obtain transmission functions of 36 MTF filters. 

Figure 3.7(a) shows the measured two transmission functions of the second MTF filter 

array. The quantum efficiency of the CMOS image sensor is shown in Fig. 3.7(b). 
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Figure 3.7 (a) Two transmission functions of MTF filters. (b) Spectral response of the 

CMOS image sensor. (c) Spectral sensitivity of an MTF filter with the CMOS image sen-

sor, which can be calibrated by element-wise multiplication of the transmission function 

and the spectral response of the CMOS image sensor. 

After measuring the transmission functions, the spectral sensitivity of the MTF filter array 

was calibrated by element-wise multiplication of the transmission functions and the 

quantum efficiency of the CMOS image sensor as shown in Fig. 3.7(c). Figure 3.8(a) 

shows the heatmap of the sensing matrix R of the fabricated second MTF filter array-based 

computational spectrometer. Each row represents the spectral sensitivity with respect to 

wavelength. The correlation coefficients for each pair of two rows of the sensing matrix are 

shown as the upper triangular matrix in Fig. 3.8(b). The average value of the correlation 

coefficients is 0.231, which can be described as a weak or moderate correlation among 

sensitivities. With the weakly correlated spectral sensitivities, the incident spectrum was 

measured as unique intensities, which allow the reconstruction algorithms to work 

effectively. 
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Figure 3. 8 Heatmap of the sensing matrix. Each row represents the spectral sensitivity 

with respect to wavelength. (b) Upper triangular matrix of correlation coefficients which 

are pairwise compared among rows of the sensing matrix. 
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 Chapter 4  

Spectral Reconstruction 

 Spectral Reconstruction using Numerical Optimization 

4.1.1. Sparse Recovery 

For recovering an unknown spectrum, we use the sparse recovery-based l1-norm 

minimization. x  can be represented as the multiplication of a sparsifying basis 
N N´ÎG ¡ and a sparse signal 1,N´Îs ¡  i.e., .x = Gs  Then, Equation (5) becomes 

.y = RGs  The solution of the sparse signal, ŝ , can be retrieved by solving the following 

minimization problem with nonnegativity constraints: 

 2

2 1
min g+

s
y - RGs s  subject to 0ks ³ for 1,2, ,k N= L , (8) 

where g  is the non-negative regularization parameter and 
p

s  is defined as 

( )1

1
.

pN p
kk

s
=å  We use the collection of Gaussian distribution functions for the sparsifying 

basis G  [21]. The linear combination of Gaussian distribution functions represents the 

line shape of the spectrum. The retrieved spectrum x̂  is ˆ.Gs  

4.1.2. Optical Experiments 

We conduct optical experiments using the fabricated two MTF filter arrays. As for the 

wavelength ranges of interest, we considered 500-1000 nm for the first MTF filter array 

and 500-850 nm for the second MTF filter array.  
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Optical experiments of the first MTF filter array. To quantify the performance and 

explore the two-point resolution of the fabricated MTF filter array, we conducted 

computational experiments. The two-point resolution is the ability to distinguish the 

spectral peaks which are closely spaced. For the experiments, we generated mono-peak 

spectra and two-peak spectra as input spectra using the Gaussian function. A generated 

input spectrum x  was numerically modulated by multiplying the measured sensing 

matrix R  as shown in Eq. (1). Then, using the M-modulated signals (measurements) and 

the sensing matrix R , a reconstruction algorithm is used to recover the input spectrum. In 

the experiments, we considered that the input spectrum was a directly sparse signal. The 

mean-squared error (MSE) between the input spectrum and the reconstructed spectrum x̂  

was calculated. The MSE is defined as 2

2
ˆ N-x x . 

We firstly tested the spectral reconstruction performance of the fabricated filter-array with 

changing the full width at half maximum (FWHM) of the generated input signals. We 

made three noisy environments by adding the additive noise n to Eq. (5) as 

y = y + n = Rx + n%  where the signal to noise ratios (SNRs) were 20, 25, 30 dB. The SNR 

in decibels is defined as ( )2 2
2

10log Nsx  where s  is the standard deviation of the 

noise. The spectral reconstruction performances with respect to the FWHMs are shown in 

Fig. 4.1(a). For the two-peak spectrum, the distance between two peaks was determined as 

[ ]1.5 FWHM× , where [ ]×  is the nearest integer function. We averaged all the MSEs of the 

spectrum over the peak- locations from 500 nm to 999 nm in a given FWHM. As shown in 

Fig. 4.1(a), the mono-peak spectrum is reconstructed better than two-peak spectrum. As the 

FWHM increased, the performance of spectral reconstruction is degraded. This is due to 

the increased sparsity of the spectrum.  

Second, we verified the stability of noise along with the SNR conditions for the fabricated 

MTF filter array. As shown in Fig. 4.1(b), the reconstruction performance on the mono-

peak spectrum is better than that of the two-peak spectrum. In addition, when the FWHM 

is 1 nm, the reconstruction performance is better than the FWHM with 2 nm. Despite the 

additive noise, the results show that the fabricated filter array is robust to noisy 

environments. 
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Figure 4.1 (a) Computational reconstruction performance of the fabricated thin-film filter-

array with respect to the FWHM. (b) Computational spectral reconstruction performance of 

the fabricated thin-film filter-array with respect to the SNR. 

As depicted in Fig. 4.1, the reconstruction performance of the fabricated filter array 

depends on the FWHM and the SNR. For the two-point resolution, the MSE has the 

smallest value when the FWHM of the two-peak spectrum is 1 nm. The overall MSEs are 

small enough to use the fabricated filter array to conduct the optical experiments. 

Optical experiments were then conducted to evaluate the performance of the proposed 

system. Narrow-band monochromatic lights and LEDs were used as input light sources. To 

generate narrow-band light, a supercontinuum white light source (SuperK COMPACT, 

NKT Photonics) was placed in the monochromator, making a narrow band of light with a 

full width at half maximum (FWHM) of approximately 1 nm. These light sources were fed 

into the CMOS image camera through the filter array, simultaneously capturing the M 

differently modulated signals. The M-modulated signals and the measured sensing matrix 

R  were then used to solve Eq. (8). We used a Gaussian kernel matrix as the sparsifying 

basis G . The spectral waveform can be represented as a linear combination of Gaussian 

kernels, and a Gaussian kernel can be easily generated with two parameters, namely the 

peak location and the FWHM value [21], [23]. The l1_ls_noneg algorithm [38] was used as 

a reconstruction algorithm to solve Eq. (8) with non-negativity constraints. 
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Figure 4.2 Spectral reconstructions of several different input light sources. (a) Spectral re-

constructions of monochromatic lights (dots) compared with reference spectra (solid lines): 

600 nm (green), 700 nm (yellow), 800 nm (red), and 900 nm (purple). (b) Spectral recon-

structions of LEDs (dots) compared with reference spectra (solid lines): green LED (527 

nm), and red LED (635 nm). 

Figure 4.2 shows the reconstruction results for monochromatic lights and LEDs. For 

comparison, the reference spectrum and the reconstructed spectrum were normalized to the 

range between zero and one.  

The optical experimental results for monochromatic lights are shown in Fig. 4.2(a). In our 

optical experiment, we use four different monochromatic spectra, with spectral peaks 

located at 600, 700, 800, and 900 nm, respectively. The reference spectra are measured 

using an optical spectrum analyzer (AQ-6315B, Ando) which indicate actual spectral peak 

locations at 598.7, 700.4, 800.5, and 900.4 nm, respectively. Using the fabricated filter-

array computational spectroscopy with the reconstruction algorithm, the spectral peak 

locations are reconstructed at 599, 699, 799, and 901 nm, respectively. The mean FWHM 

of the reference spectra is approximately 1 nm, and the mean FWHM for the reconstructed 

spectra is approximately 1.4 nm.  

Figure 4.2(b) shows the spectral reconstructions of green (527 nm) and red (635 nm) LEDs. 

For the reference spectra, we measure the LEDs using a grating spectrometer (QE65000, 

Ocean Optics). The spectral peak locations for the reference LEDs are 527.6 nm (green 

LED) and 634.9 nm (red LED), and the reconstructed spectral peak locations are 531 nm 

(green LED) and 633 nm (red LED). The peak signal-to-noise ratios are 28.3 dB (green 

LED) and 31.7 dB (red LED).  
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Discussing Fig. 4.2, the spectra of reconstructed monochromatic lights show several 

negligible spikes. This is probably due to background noise in the optical experiments. But 

overall, the reconstruction results of the first MTF computational spectrometer for 

monochromatic lights and LEDs are similar to those of the grating spectrometer. 

Furthermore, the number of modulated signals is significantly small (M = 36) that the 

measurement to wavelength sample ratio is 36:500 (ratio between M and N).  

To further explore the performance of the first MTF computational spectrometer, we 

conducted the computational experiment on the fabricated filter array using a continuous 

light source, halogen lamp. For the experiment, we used the measured sensing matrix R . 

The conventionally measured spectrum of the halogen lamp was used as the input 

spectrum x . The modulated signals were generated by numerically multiplying the 

sensing matrix and the input spectrum. By solving Eq. (8), we reconstructed the continuous 

spectrum of light. In Fig. 4.3, we present computational spectral reconstruction of the 

halogen lamp. The peak signal-to-noise ratio is 43.8 dB. Due to the limitations of our 

optical components to reject the spectrum of the halogen lamp except for the wavelength 

range from 500 nm to 1000 nm, we could not perform the optical experiment on the 

continuous source. However, the computational reconstruction result of the halogen lamp 

indicates that the fabricated filter-array can be utilized for recovering the various kinds of 

spectra in the given wavelength range without limitations of the optical components. 

 

Figure 4.3 Computational spectral reconstruction of a halogen lamp (red dash line) com-

pared with the reference spectrum (black solid line) measured by a conventional spectrom-

eter. 
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Optical experiments of the second MTF filter array. The Before conducting optical 

experiments, we conducted simulations of dual-peak spectra reconstructions to analyze the 

dual-peak resolution of the fabricated MTF filter array spectrometer. Using Gaussian 

distribution functions, we generated a dual-peak spectrum x as shown in Fig. 4.4(a). The 

root mean squared error (RMSE), which is defined as 
2

2
,refer recon N-x x  was used to 

evaluate the performances. 

 

Figure 4.4 Simulation result of two-peaks spectra reconstructions using MTF filter array. (a) 

An example of two peaks spectra with an FWHM of 1 nm with 2 nm apart. (b) Reconstruc-

tion performances of two peaks spectra with respect to signal-to-noise ratios. 

The result of dual-peak spectra reconstructions with respect to SNRs is shown in Fig. 

4.4(b). We considered four kinds of dual-peak spectra. The FWHMs of a peak were 1 and 2 

nm, respectively and the gaps between peaks were 2 and 3 nm, respectively. For each kind 

of dual-peak, spectra were created by changing the location of dual-peak in the wavelength 

range of 500 to 849 nm. The reconstructions were performed on all these spectra, and 

RMSEs were calculated. We averaged the RMSEs and regarded the average RMSE value 

as the performance of the fabricated MTF filter array to reconstruct dual-peak in noisy 

environments. As shown in Fig. 4.4(b), the average RMSEs of dual-peak with the FWHM 

of 1 nm and the gap of 2 nm were 0.0268 for 30 dB, 0.0481 for 20 dB, and 0.0643 for 10 

dB, respectively. Similar performances were obtained from the other three kinds of dual-

peak spectra. We could find that the fabricated MTF filter array performs well to 

reconstruct dual-peak spectra in noisy environments. 
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After analyzing the dual-peak resolution of the MTF filter array in simulations, we tested 

monochromatic lights by varying the peak wavelength. The CMOS monochrome camera 

was used for measuring the intensities of test lights. The pixel size of the CMOS image 

sensor is 5.2 × 5.2 μm. Underneath each filter, there are approximately 60 × 60 pixels. 

However, considering a case where the layer’s location mismatch may occur during the 

fabrication process of the MTF filter, we excluded the boundary pixels. The averaged 

intensities from 30×30 pixels at the center of each filter were used for the spectral 

reconstruction experiments. Using a grating-based spectrometer (Black-Comet, StellarNet), 

monochromatic lights were measured for use as a reference.  

Figure 4.5 shows the reconstruction results for the monochromatic light. For ease of 

comparison, reference spectra and reconstructed spectra are normalized. Black solid and 

blue circles in Fig. 4.5 represent reference spectra and reconstructed spectra, respectively. 

Reference spectra have peak wavelengths at 510, 600, 650, 700, 750, and 840 nm with 

FWHMs of 4 nm. As depicted in the inset enlarged graph, the reconstructed spectra using 

the MTF filter array spectrometer matched the reference spectra. More specifically, 

differences of peak wavelengths between reference and reconstructed spectra were within 2 

nm. The RMSEs were 0.023, 0.023, 0.021, 0.035, 0.035, and 0.061, for wavelengths 510, 

600, 650, 700, 750, and 840 nm, respectively, as shown in Fig. 4.5(a)-(f). Table 1 presents 

the evaluation of monochromatic light reconstructions using Gaussian fittings. Over 

monochromatic lights, peak shifts and FWHMs were within 2 nm and 5.5 nm, respectively. 

Spectral reconstruction performance seems to degrade in the long-wavelength range due to 

the low spectral response of the CMOS image sensor and the monotonous spectral features 

of MTF filters. 
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Figure 4.5 Spectral reconstruction of monochromatic light sources. Monochromatic light with an FWHM of 4 nm at peak wavelengths of (a) 

510 nm, (b) 600 nm, (c) 650 nm, (d) 700 nm, (e) 750 nm, and (f) 840 nm. Black solid lines represent reference spectra which are measured 

by the grating-based spectrometer. Blue circles represent reconstructed spectra using the MTF filter array spectrometer. Red solid lines rep-

resent the results of Gaussian fitting. Light gray solid lines represent error between reconstructed and reference spectra.
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Table 4.1 Evaluation of monochromatic lights reconstructions using the Gaussian curve 

fitting 

Monochromatic 
light 510 nm 600 nm 650 nm 700 nm 750 nm 840 nm 

Peak Center 
(nm) 509.995 599.438 649.092 699.808 748.878 838.001 

Peak Shift (nm) 0.005 0.562 0.908 0.192 1.122 1.999 

FWHM (nm) 4.008 4.597 4.887 5.486 4.79 4.003 

 

We further explored the performance of the MTF filter array spectrometer using broadband 

light sources, such as LEDs and a halogen light source. Figure 4.6 shows the spectral 

reconstruction results. Black solid lines represent reference spectra, which are measured 

using the grating-based spectrometer. Colored circles represent reconstructed spectra using 

the MTF filter array spectrometer. Three single-color visible LEDs and one single-color 

infrared LED were used for spectral reconstruction experiments, as shown in Fig. 4.6(a)-

(d). A green LED (LED 525E, Thorlabs) with an FWHM of 32 nm was reconstructed with 

an RMSE of 0.021. An orange LED (LED 600L, Thorlabs) with an FWHM of 12 nm was 

reconstructed with an RMSE of 0.034. A red LED (LED 680L, Thorlabs) with an FWHM 

of 16 nm was reconstructed with an RMSE of 0.035. An infrared LED (LED 780E, 

Thorlabs) with an FWHM of 25 nm was reconstructed with an RMSE of 0.044. Similar to 

experimental results of monochromatic light, the reconstruction performance is relatively 

poor for spectrum in the long-wavelength range. In addition, we conducted the spectral 

reconstruction for combined LEDs (an orange LED and a red LED), as shown in Fig. 

4.6(e). A beam splitter is used to measure the light of the combined LED. The combined 

LED was reconstructed with an RMSE of 0.044. Finally, the spectral reconstruction of the 

halogen light source was conducted. The halogen light source, with an FWHM of 180 nm, 

was reconstructed with an RMSE of 0.034, as shown in Fig. 4.6(f). As evidenced by low 

RMSE values, reconstructed spectra agree well with reference spectra measured by the 

grating-based spectrometer. 
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Figure 4.6 Spectral reconstructions of LEDs and a halogen light source. (a) a green LED, (b) an orange LED, (c) a red LED, (d) an infrared 

LED, (e) Combined two LEDs (orange and red), and (f) a halogen light source. Black solid lines represent reference spectra which are 

measured by the grating-based spectrometer. Colored circles represent reconstructed spectra using the MTF filter array spectrometer. Light 

gray solid lines represent error between reconstructed and reference spectra. 
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4.1.3. Pinhole Imaging 

We demonstrated spectral imaging using the MTF filter array. As shown in Fig. 4.7(a), the 

pinhole imaging system was constructed by combining a pinhole (Edmund optics), whose 

aperture diameter is 150 μm, with the monochrome CMOS image camera. The MTF filter 

array was placed in front of the pinhole. A single filter was adjusted to the pinhole to allow 

an incident image to pass through the filter and pinhole, and the filtered image was 

measured by the CMOS image sensor. By changing filters using a linear translation stage 

(Newport), 36 filtered images are obtained. Bi-Color 8 × 8 LED matrix (Adafruit) was 

used to generate a target. We made a small display by connecting the LED matrix to an 

Arduino Uno (Arduino) and by controlling the color of the 64 blocks. The number “8” was 

represented by the LED cube. The upper blocks consist of green LEDs, and the lower 

blocks consist of red LEDs. Figure 4.7(b) shows a stack of the filtered 36 sub-images. A 

1280 × 1024 size image was reduced to a sub-image size of 350 × 300 by discarding 

unnecessary pixels. Thus, a data cube with 350 × 300 × 36 in size was obtained. Spectral 

reconstruction was performed for each pixel, and the data cube was restored with a size of 

350 × 300 × 350. It took ~1.8 h to reconstruct the data cube. As shown in Fig. 4.7(c), the 

reference spectra measured by the grating-based spectrometer are shown in solid black 

lines. As denoted pixels in Fig. 4.7(b), the reconstructed spectra of a pixel in the green 

LED block and a pixel in the red LED block are represented in Fig. 4.7(c) as green circles 

and red circles, respectively. The RMSE was calculated after normalizing reference spectra 

and reconstructed spectra. The green LED with an FWHM of 15 nm was reconstructed 

with an RMSE of 0.0315. The red LED with an FWHM of 20 nm was reconstructed with 

an RMSE of 0.0370. Figure 4.7(d) shows the monochrome image of reference and 

reconstructed monochrome images at 571, 600, and 638 nm. The pinhole imaging system 

also measured the monochrome image of reference without the MTF filter array. Since the 

spectral component of the red LED does not exist at 571 nm, only the upper blocks of the 

number “8” are shown in the reconstructed monochrome image at 571 nm. On the other 

hand, only the lower blocks of the number “8” are shown in the reconstructed monochrome 

image at 638 nm, where the spectral component of the green LED does not exist. Finally, 

nothing is displayed in the reconstructed monochrome image at 600 nm, where spectral 

components of the green and red LED do not exist. 
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Figure 4.7 Computational pinhole spectral imaging. (a) Schematic of pinhole imaging; The MTF filter array is placed in front of the pin-

hole camera. A single filter is adjusted to the pinhole and the filtered image is acquired. By changing filters, 36 filtered images are obtained. 

(b) 36 filtered images of 8 × 8 LED matrix showing the number “8”; The upper part consists of green LEDs and the lower part consists of 

red LEDs. (c) Point-wise spectral reconstruction: a pixel of a green LED block and a red LED block which are denoted in (b). Light gray 

solid lines represent error between reconstructed and reference. (d) Monochrome image of reference and reconstructed monochrome imag-

es at 571, 600 and 638 nm, respectively. 
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As proof-of-principle of the spectral imaging, we implemented the spectral scanning 

method on the pinhole imaging system. While reconstructed spectra of the pinhole spectral 

imaging match well with reference spectra, there are improvements to consider. In the 

spectral scanning method, the data cube acquisition time is long so that spectral smearing 

may occur in the case of a moving target. The non-scanning method, such as in snapshot 

spectral imaging systems, can solve these problems by acquiring the data cube in a single 

exposure. We assume that it is possible to construct a snapshot spectral imaging system 

combining the MTF filter array and a thin observation module by bound optics (TOMBO) 

[48]–[50] structure. This spectral imaging system requires a microlens array and a single 

separator but does not need the MTF filter to be as small as pixel size. Rather, the MTF 

filter should be made large so that many pixels are underlying the filter. The MTF filter 

array can be fabricated in scalable using stencil lithography techniques according to the 

spatial resolution of the spectral imaging system. 

4.1.4. Summary 

In summary, we fabricated two kinds of MTF filter arrays using lithography techniques and 

experimentally demonstrated the spectral resolvability of the two MTF filter array-based 

computational spectrometers. Although the MTF filter size was larger than that of the 

photonic crystal slabs [29], [33], it can be improved to a smaller size by using advanced 

lithography techniques and facilities. In addition, by using a higher refractive index 

material, the number of layers of the MTF filter can be reduced so that manufacturing 

efficiency can be improved. 

Using the random spectral features of MTF filters and numerical optimization techniques, 

we recover varied spectra from the visible range to the near-infrared range with 1 nm 

spacing. We tested light sources, including monochromatic lights, LEDs, and a halogen 

lamp. We showed good recovery performances. The spectral reconstruction performance in 

the near-infrared range is relatively inferior to the visible range, but it can be further 

improved by using a CMOS image sensor with a high spectral response in the near-infrared 

region. Also, computational spectral imaging with the MTF filter array was demonstrated 

using the spectral scanning method. The reconstructed data cube was found to match well 

with spatial and spectral references. However, to use the spectral imaging system in mobile 
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applications, a shorter data cube acquisition time is required. By utilizing the TOMBO 

structure with the MTF filter array, it is possible to construct a snapshot spectral imaging 

system that has a short acquisition time.  

Finally, the mass production of the MTF filter arrays is an important step towards the 

industrialization and practical uses of computational spectrometers. This study will be 

helpful for computational spectroscopy to be realized in various mobile applications, such 

as on-site detection, UAV-based remote sensing, and skincare. 

 Spectral Reconstruction using Deep Learning 

4.2.1. Deep Learning Architecture for Spectral Reconstructions 

Computational spectrometers mostly adopted numerical optimization approaches based on 

constraints that the light sources are sparse signals, or can be sparsely represented by a 

certain sparsifying basis. However, there is a limitation to sparsely representing all spectra 

with a fixed sparsifying basis. In addition, these approaches work well for precisely 

measured signals and handicraft parameters predetermined through prior information, such 

as sparsifying basis, line shapes, and full width at half maximums of spectra. Thus, the 

recovery performance of a spectrum could be biased depending on the variation in noise 

level and predetermined parameters. These limitations make it difficult to use 

computational spectrometers for practical and mobile applications.  

In this section, we propose deep learning (DL)-based computational spectrometer. As a 

configuration of the computational spectrometer, we employed the second MTF filter array 

of 36 filters and a CMOS image camera. The MTF filter array was fabricated through a 

wafer-level stencil lithography process, which can be scalable, reproducible, and mass-

produced. By directly attaching the MTF filter array to the CMOS image camera, the 

computational spectrometer was built. The incident light was modulated by the MTF filter 

array, where each filter had a unique transmission function. The filtered light through the 

MTF filter array was measured by the CMOS image camera with a single exposure. From 

the captured image, we extracted 36 compressively sampled light intensities. The 
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intensities were fed into a DL architecture and reconstructed as a spectrum of 350 elements. 

We collected 2,873 continuous spectra for training/validation/testing the DL architecture. 

After training, we tested the DL architecture performances using unused data in the 

training/validation process. The average root-mean-squared errors (RMSE) was 0.0237. 

The results of performance evaluations demonstrate that the proposed DL architecture 

performed well to continuous spectra. The proposed spectrometer is compact with a single-

shot structure and can be mass-produced. Besides, by applying the DL technique, it can 

have a high resolution, wide working range, fast reconstruction. Therefore, the proposed 

spectrometer can become a new form factor for on-site detection, such as food inspection, 

counterfeit document detection, and self-diagnosis. 

Figure 4.8(a) depicts a schematic of the experimental setup with the proposed spectrometer. 

A collimating beam from a halogen lamp is divided into two beams after passing through a 

color filter and a long pass filter. A spectrum of one split beam was measured using a 

commercial spectrometer and it was used as the ground truth (GT). The other beam was 

fed into the MTF filter array and modulated by the transmission functions of filters. The 

modulated intensities of the beam were captured by a CMOS image camera as a 

monochrome image with a single exposure. By connecting the spectrometer and CMOS 

image camera to a laptop using universal serial bus cables, we simultaneously collected the 

monochrome image and GT spectrum. The captured monochrome image had a size of 

1280 × 1024 pixels, and the ground truth spectrum is a signal of 350 elements measured at 

the wavelength range of 500-850 nm with 1 nm spacing. 

As shown in Fig. 4.8(b), we extract 36 intensities from the monochrome image. These 

intensities were fed into the DL architecture to be a reconstructed spectrum. The proposed 

DL architecture, residual convolutional neural network (RCNN), comprises a learnable 

sensing matrix and sets of convolution and dense blocks, and a residual connection. We 

trained the RCNN using the training dataset and test the resolving performance using the 

test dataset. Figure 4.8(c) shows examples of reconstructed test spectra using the trained 

RCNN. The RMSE between GT spectra (black dashed lines) and reconstructed spectra 

(solid green lines) was used as the performance evaluation metric. The reconstructed 

spectra agreed well with the GT spectra, as shown by the RMSE values written in the 

upper left of each plot (Fig. 4.8(c)). 
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Figure 4.8  DL-based single-shot computational spectrometer. (a) Schematic of the experimental setup. (b) DL architecture, RCNN, 

comprises convolution blocks, dense blocks, and a residual connection with a learnable sensing matrix. (c) Examples of reconstructed 

test spectra using a trained RCNN. The black dashed line represents ground truth spectra measured using a commercial spectrometer. 

The solid green line represents reconstructed spectra using the proposed spectrometer.
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Figure 4.8(b) depicts a schematic of RCNN. The 36 measured intensities were extended to 

a size of 350 by multiplying the transpose of the learnable sensing matrix. This extension 

allowed deep stacking of convolution blocks, which could be helpful in feature extraction. 

We used the sensing matrix as the initial value of the learnable sensing matrix. After going 

through a rectified linear unit (ReLU) activation function, the extended signal was fed into 

the sets of convolution and dense blocks. A convolution block comprised three pairs of 

convolutional layer and ReLU, and one average pooling layer. A series of three 

convolution blocks were stacked to perform feature extraction at various levels from the 

extended signal. The output of convolution blocks was flattened and fed into a set of dense 

blocks. A dense block comprised a dense layer, ReLU, and a dropout. A series of three 

dense blocks and a dense layer with a linear activation function were stacked to perform 

the spectral reconstruction. The output of dense blocks and the extended signal were 

summed by a residual connection to become a reconstructed spectrum. 

RCNN was trained to minimize a mean squared error between the reconstructed and GT 

spectra. By leveraging the residual connection, the stack of blocks learned the residue 

between extended signals and GT spectra. It was reported that learning residue is more 

effective than directly learning target spectra [41]. In addition, the residual connection 

prevents the gradient vanishing problem, which could stop the updating of DL 

architectures in the training process [51].  

For the hyperparameter selection, we monitored the performance of RCNN for every 

epoch during the training process using a validation dataset. As such, we could select the 

number of epochs before overfitting. The selected number of epochs was 500. The batch 

size and learning rates was 8 and 0.0005. In addition, we used regularization techniques, 

such as the l2-layer weight regularizer with 0.5, and dropout with 0.5. The number of 

filters and kernel size of all convolution layers was 64 and 3, respectively. The number of 

units in the four dense layers was 2,048, 1,024, 512, and 350 in that order (Fig. 4.8(b)). 
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4.2.2. Experimental Dataset 

 

Figure 4.9 Example of INFONET Colors dataset. (a) monochrome image illuminated by a 

light source. (b) corresponding spectrum of a light source. 
 

Table 4.2 INFONET Colors dataset. 

Dataset Training / Validation / 
Test Description 

INFONET 
Colors 2296 / 289 / 288 

Continuous spectra generated by modu-
lating a halogen source using color fil-

ters 

To train RCNN, we collected datasets comprising 2,873 pairs of monochrome images and 

corresponding GT spectra as shown in Fig. 4.9. By changing the combination of color 

filters (Color filter booklet, Edmund optics) in the experiment setup in Fig. 4.8(a), the 

spectrum of the halogen lamp was transformed into the spectrum of various waveforms. 

The CMOS image camera and halogen lamp were calibrated to capture the intensity of the 

halogen lamp in the range of 0 to 255, and the CMOS image sensor’s autocontrast function 

was turned off. The spectra were measured with a fixed integration time. As shown in 

Table 4.3, we randomly divided the dataset into training, validation, and testing datasets 

with the number of 2296, 289, and 288, respectively. Before training RCNN we conducted 

preprocessing of the dataset. The measured intensities from a monochrome image were 

divided by the maximum value of intensities, and the corresponding GT spectrum was 

min-max normalized. Therefore, we trained the RCNN to reconstruct the unknown spectra 
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in the form of the normalized intensity. We used the Adam optimizer[52] for training 

RCNN. The training process was completed within ~ 20 min. The trained RCNN was 

tested on the test dataset, and the test results came out within ~ 2 s. The training and testing 

were conducted on an Intel Core i7-5820K CPU computer with an NVIDIA GeForce RTX 

2060 graphics processing unit. 

4.2.3. Results 

Figure 4.10 shows the reconstruction results of the proposed DL-based computational 

spectrometer. The RMSE distribution of 288 test spectra is shown as a histogram in Fig. 

4.10(a). The average RMSE of test spectra was 0.0237. Three examples of the best and 

worst spectral reconstructions, denoted by a green box and blue boxes in the histogram, are 

shown in Fig. 4.10(b-c), respectively. The black dashed lines represent GT spectra and the 

solid colored lines represent reconstructed spectra. Based on the RMSE distribution in the 

histogram, RCNN recovered the test spectra well. Considering the worst examples, it 

seems that the reconstruction performances deteriorated due to poor signal quality and low 

intensity. In addition, the normalization of GT spectra of the low light intensity amplifies 

the noise in spectra, which deteriorated the reconstruction performances of RCNN. 
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Figure 4.10 Result of continuous spectra reconstructions. (a) Histogram of the RMSE distribution for the test dataset; average RMSE is 

0.0237. (b) Three examples of the best spectral reconstructions, which are denoted as a green box in the histogram. (c) Three examples of the 

worst spectral reconstructions, which are denoted as blue boxes in the histogram. The black dashed lines represent GT spectra. The solid 

colored lines represent reconstructed spectra. 
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Instead of training the RCNN using the normalized dataset, we additionally trained the 

RCNN using a scaled dataset. The datasets of measured intensities and GT spectra were 

divided by the maximum value from each dataset, respectively. e.g. 255 value from the 

monochrome image. Therefore, the datasets were transformed to fit within the scale of [1, 

0] and had information of relative intensities, which were not contained in the normalized 

dataset.  

Figure 4.11 shows the results of spectral reconstructions using the normalized and scaled 

datasets. The normalized and scaled test intensities extracted from monochrome images 

were compared with references (Fig. 4.11(a)). The references are simulated intensities 

calculated by multiplying GT spectra and the sensing matrix. For comparison ease with the 

normalized intensities, a reference was normalized. The solid red, black, and gray lines 

represent references, normalized intensities, scaled intensities, respectively. Although there 

were slight differences between the reference and normalized intensities, we could figure 

out that the waveform was matched with a good agreement. Differences may occur due to 

noise that can be measured during optical experiments and light intensity outside the 

wavelength range of interest. Figure 4.11(b) shows the reconstructed spectra using RCNN 

trained with the normalized dataset. The reconstructed spectrum of each row in Fig. 4.11(b) 

was obtained using the normalized test intensities of each row in Fig 4.11(a). The 

reconstructed spectra (solid green lines) are matched well with the GT spectra (black 

dashed lines). In addition, they were reconstructed to normalized spectra, and the 

waveforms of the spectra were depicted in detail. The reconstructed spectra using RCNN 

trained with the scaled dataset are shown in Fig. 4.11(c). The reconstructed spectra of each 

row were obtained using the scaled test intensities of each row in Fig. 4.11(a). The 

reconstructed spectra (solid blue lines) matched well with the GT spectra (black dashed 

lines). The relative intensities among the reconstructed spectra can be figured out. 

The trained RCNN with the normalized and scaled dataset can be employed differently 

depending on the applications. For example, the trained RCNN with the normalized dataset 

can be used for classification-related applications because it can recover spectra in detail, 

whereas the trained RCNN with the scaled dataset can be used for analytical applications 

where the relative intensity information is crucial, e.g., hyperspectral imaging. 
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Figure 4.11 Results of spectral reconstructions using the normalized and scaled datasets. (a) Test intensities extracted from monochrome im-

ages in real experiments are compared with references. The solid red lines represent normalized references for easy comparison with the 

normalized intensities (solid black lines). The solid gray lines represent scaled intensities. (b) Results of spectral reconstructions from the 

trained RCNN (solid green lines) using the normalized dataset compared with GT spectra (black dashed lines). (c) Results of spectral recon-

structions from the trained RCNN (solid blue lines) using the scaled dataset compared with GT spectra (black dashed lines). The recon-

structed spectra of each row in (b) and (c) were obtained using the normalized and scaled test intensities in each row of (a), respectively. 
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We conducted additional experiments for reconstructing transmission spectra of drinks 

using the RCNN trained with the normalized dataset. The samples of drinks were prepared 

using disposable polystyrene cuvettes capacity of 4 ml (Fig 4.12(a)). The pink, yellow, 

light yellow, blue, purple drinks are Vitaminwater[53]-Power C, Energy, Powerade[54]-

Mega Boltz, Mountain Blast, and Purple Storm, respectively. By replacing the color filters 

with the drink samples, the monochrome images and transmission spectra of drinks were 

measured using the experimental setup depicted in Fig. 4.8(a). The reconstructed 

transmission spectra of drinks in Fig. 4.12(a) are illustrated in Fig. 4.12(b–f). The black 

dashed lines represent the GT spectra and the solid colored lines represent the 

reconstructed spectra using RCNN. The solid gray lines represent the reconstructed spectra 

using sparse recovery. The RMSEs for each drink is written in the upper left corner of each 

graph. The average RMSEs of drinks was 0.0597 for RCNN, and 0.1648 for sparse 

recovery. RCNN shows better reconstructions than sparse recovery. The RMSEs of 

transmission spectra of drinks were lower than the reconstruction of color filter spectra 

because the transmission spectra through cuvettes with the light path of 10 mm filled with 

drinks were reconstructed using the RCNN trained using thin color filters but still showed 

acceptable performances.  

Although there is still room for improvements, we demonstrated that the proposed DL-

based computational spectrometer is applicable to the reconstruction of transmission 

spectra of drinks. Since complex optical components or long light paths are not required, 

the optical system (Fig. 4.8(a)) can be made compact. In addition, the MTF filter array can 

be mass-produced at low cost through wafer-level stencil lithography processing, so it can 

be fabricated as an inexpensive and compact sensor for mobile applications, such as on-site 

detection and simple diagnostic tests. 
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Figure 4.12 Reconstructions of transmission spectra of drinks. (a) Photograph of drink samples: Vitaminwater-Power C (pink), Vitaminwa-

ter-Energy (yellow), Powerade-Mega Boltz (light yellow), Powerade-Mountain Blast (blue), and Powerade-Purple Strom (purple). (b–f) Re-

constructed transmission spectra of drinks. The black dashed lines represent the GT spectra, and the solid colored lines represent the recon-

structed transmission spectra using RCNN. Solid gray lines represent the reconstructed spectra using sparse recovery. 
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4.2.4. Summary 

In this section, the DL-based computational spectrometer using the MTF filter array was 

proposed. The proposed spectrometer has advantages in two main aspects: hardware and 

software features. The footprint of the proposed spectrometer was compact by attaching the 

MTF filter array to the CMOS image camera. This is useful for mobile applications as it 

measures all filtered intensities in a single exposure. The MTF filter array can be mass-

produced at low cost by wafer-level stencil lithography processing. Unlike the 

conventional bandpass filters that transmit a specific light wavelength range, the MTF 

filters transmit light in a wide wavelength range, so the filters had a good light efficiency. 

In addition, the filters can provide spatial information, which can be developed into a 

hyperspectral imaging system.  

We reconstructed the continuous spectra with high resolution in the wide wavelength range 

(500–850 nm with 1 nm spacing) using the DL architecture RCNN. By adopting DL, the 

number of filters for covering the wide wavelength range could be reduced. Although there 

are iterative numerical optimization approaches for computational spectrometers, only a 

few cases showed the reconstruction for continuous spectra. In addition, iterative 

approaches work well for precise and fewer noise measurements otherwise. There are cases 

in which spectral reconstructions work well by selecting handicraft parameters using the 

prior information of a target spectrum, but it is difficult to find parameters that work for 

multiple spectra. Moreover, although RCNN requires training datasets, it is trained end-to-

end without the need for human intervention. It took ~20 min to train RCNN with 2,296 

training spectra. The trained RCNN reconstructed 288 test spectra with an average RMSE 

of 0.0237 in ~ 2 s. 

Although there is a limitation that the spectra are confined to continuous spectra, we could 

extend the spectra dataset using a monochromator to generate narrow peak spectra with 

different wavelength locations. 

In summary, we developed an MTF filter array spectrometer with RCNN. RCNN was 

trained to reconstruct the normalized or scaled spectra depending on the preprocessing of 

datasets. The reconstruction performance was experimentally demonstrated using the 
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spectra of color filters and drinks and showed good performances. We expect that the 

hardware of the proposed computational spectrometer can be fabricated to be scalable, and 

the software can be trained to be flexible in compliance with spectral applications.  

 Comparison between Numerical Optimization and Deep Learning 

4.3.1. Motivation 

Since not all signals can be represented as sparse signals on a fixed basis, therefore prior 

information on structural features of the spectral dataset is required to generate a best fit 

sparsifying basis in numerical optimization approaches. Furthermore, a high computational 

cost is required for numerical optimization approaches. Deep learning [11] has been 

emerging as a promising alternative framework for reconstructing the original signal from 

the compressed measurements. 

Mousavi et al. [55] was the first study on image recovery from structured measurements 

using deep learning. Moreover, a deep learning framework for inverse problems has been 

applied in biomedical imaging for imaging through scattering media [56], magnetic 

resonance imaging [41], [57], and X-ray computed tomography [58]. Kim et al. [18] 

reported the first attempt to use deep learning in computational spectroscopy. They trained 

a convolutional neural network (CNN) to output the reconstructed signal from the network. 

From here on the network reported by Kim et al. will be referred to as CNN. 

Unlike CNN [18] in which learnable layers were simply stacked and trained to directly 

reconstruct the original spectrum, we make a residual connection [51] between the input 

and output of CNN and train the network to reconstruct the original spectrum by referring 

to the input of the network. As a result, the network learns residuals between the input of 

the network and the original spectrum. It has been reported that it is easier to train a 

network when using residual connections than to train a plain network that was simply 

stacked with learnable layers [41], [51]. Lee et al. [41] analyzed the topological structure 

of magnetic resonance images and the residuals of MR images. They showed that the 

residuals possessed a simpler topological structure, thus making learning residuals easier 



 - 50 -

than learning the original MR images. In addition, He et al. [51] demonstrated with 

empirical results that the residual networks are easy to optimize and they achieved 

improvements in image recognition tasks. From these works, we hypothesize that adding a 

residual connection to CNN will improve the spectral reconstruction performance in 

computational spectroscopy.  

We propose a novel residual convolutional neural network (RCNN) for recovering an input 

spectrum from the compressed measurements in computational spectroscopy. The 

performance of the proposed RCNN was demonstrated using numerical experiments using 

synthetic and measured datasets. We compared the reconstruction performance of RCNN 

with those of existing reconstruction approaches such as reconstruction algorithms with a 

sparsity constraint, and CNN. Compared with the reconstruction algorithms, RCNN shows 

better reconstruction performances without the a priori knowledge of either a sparsifying 

basis or any spectral features of the spectral datasets. Moreover, RCNN shows stable 

reconstruction performances under noisy environments. Finally, compared to CNN, RCNN 

renders superior reconstruction performance and RCNN is trained faster than CNN. 

4.3.2. Deep Learning Architecture 

Typically, except for narrow-band spectra, a spectrum is not a sparse signal, and a fixed 

sparsifying basis cannot transform all spectra into sparse signals. Clearly, the use of a fixed 

basis may lead the sparse recovery to struggle, as no fixed basis will transform every signal 

into a sparse signal. In addition, the sparse recovery is time-consuming and takes a high 

computational cost. 

Our goal is to overcome the limitations of the sparse recovery in computational 

spectroscopy and recover various kinds of spectra using RCNN. Figure 4.13 shows the 

schematic of computational spectroscopy system using RCNN. This system consists of two 

parts: the compressive sampling and dimension extension, and the reconstruction using 

RCNN. In the compressive sampling and dimension extension, the measurement vector y 

is obtained from Eq. (5), which then transforms into 1N´Îx% ¡  using a linear 

transformation. A transform matrix N M´ÎA ¡  extends the M dimension of y to N 

dimension of x% , where x%  is a representative spectrum corresponding to x . We used x%  
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as the input for the reconstruction. RCNN learnt a non-linear mapping between x%  and x , 

and afforded a reconstructed spectrum 1ˆ N´Îx ¡ . The dimension extension by the 

transform matrix was used to make it easier for RCNN to extract features and reconstruct 

spectra from the non-linear mapping. 

 

Figure 4.13 Overview of computational spectrosocopy system including the proposed 

RCNN: An input spectrum is compressively sampled by the sensing matrix, and the 

dimension of measurements is extended by the transform matrix. RCNN is trained to 

recover the original spectrum from the extented measurements. 

As depicted in Fig. 4.13, RCNN comprises nine learnable layers, five of which are 

convolution layers, four are fully-connected layers, and one is a residual connection. 

Convolution layers are used for the feature extraction in the non-linear mapping between 

x% and x . Fully-connected layers are used for the spectra reconstruction. Each of the 

convolution layers has a set of one-dimensional learnable kernels with specific window 

sizes. The number of kernels and the window sizes are indicated in Fig. 4.13. After every 

convolutional layer, ReLU is used as an activation function, and the subsampling (Max 

pooling) is then applied. We stack the convolutional layer, the ReLU, and the subsampling 

five times. The output of the last subsampling is flattened and then fed into the subsequent 

four fully-connected layers. The first three layers are followed by the ReLU and dropout in 

sequence. The dropout is introduced to reduce the overfitting of RCNN. The output of the 

last fully-connected layer is fed into a linear activation function. The number of units in 
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each of the fully-connected layers is noted in Fig. 4.13. Moreover, we make the residual 

connection that the representative spectrum x%  and the output of the linear activation 

function are added up to the reconstructed spectrum x̂ . Consequently, x̂  is trained to 

become x. Given training data { }
1

ki
t i=

x , we train RCNN to minimize a loss function L. We 

use the mean squared error between the original tx  and recovered ˆ tx  as the loss function: 
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The non-linear mapping that x%  becomes x can be defined as ( )H =x x% . Because of the 

residual connection in RCNN, ( )H x% can be rewritten as ( ) ( )H F= +x x x% % % , where ( )F x% is 

the mapping of the learnable layers. The representative spectrum x%  is referenced by the 

residual connection, and then, ( ) ( )F H= -x x x% % % . In particular, the mapping of ( )F x%  is 

called a residual mapping; therefore, the learnable layers learn the residual of x and .  

Figure 4.14 depicts the manner in which a spectrum is recovered in CNN and RCNN. The 

learnable layers of CNN directly reconstruct the spectrum from the representative spectrum 

x% . Alternatively, RCNN reconstructs the spectrum by passing the representative spectrum 

x%  through the residual connection shown in Fig 4.14(b). Consequently, the learnable 

layers of RCNN learn to reconstruct residuals. 
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Figure 4.14 Descriptions of the spectrum recovery process: (a) CNN, (b) RCNN. 

We reconstructed 350 spectral bands (N = 350) using 36 thin-film filters (M = 36) whose 

sensing patterns have a spacing of 1 nm for wavelengths from 500 to 850 nm. We 

determined the sensing matrix R, assuming that the incident light falls onto the filters with 

normal incidence. As the transform matrix A , we used the Moore-Penrose inverse of the 

sensing matrix R, i.e., ( ) 1T T -
=A R RR  

4.3.3. Experimental Dataset 

To evaluate the performance of RCNN, we used two synthetic spectral datasets and two 

measured spectral datasets. The first synthetic dataset is composed of Gaussian distribution 

functions while the other is composed of Lorentzian distribution functions. These two 

synthetic datasets were selected as generally these types of functions are used to represent 

spectral line shapes. As shown in Figure 4.15, component functions are added to produce 

the spectra. We generated 12,000 spectra for each dataset. For each spectrum, the number 

of component functions was generated using a geometric distribution with the probability 

parameter p set to 0.3. We added one to the number of component functions to prevent the 

number of component functions from becoming zero. Then, we randomly set a location, a 



 - 54 -

height, and an FWHM of each peak. To set a peak location (nm), an integer number is 

randomly selected from a uniform distribution with the interval (500, 849). A random 

number from a uniform distribution in the interval (0, 1) is used for the height. An integer 

number for an FWHM (nm) is randomly drawn from a uniform distribution with the 

interval (2, 50). Finally, all of the component functions are summed to generate the 

spectrum. The height of each generated spectrum is normalized such that it is mapped from 

zero to one. 

 

Figure 4.15 Examples of two synthetic spectra: the solid purple line represents a Lorentzi-

an line shape spectrum and the solid black line represents a Gaussian line shape spectrum. 

As measured datasets, we used the US Geological Survey (USGS) spectral library version 

7 [59], and the glossy Munsell colors spectral dataset [60]. The USGS spectral library 

provides reflectance spectra for artificial materials, coatings, liquids, minerals, organic 

compounds, soil mixtures, and vegetation. We discarded any spectrum that has missing 

spectral bands. Then, we extracted the spectrum in the wavelength range of interest (500 to 

849 nm) from the wavelength range of the original spectrum (350 to 2500 nm). The 

measured wavelength range for the glossy Munsell colors spectral dataset, which contains 

the reflectance spectra of the glossy Munsell color chips, is 380 to 780 nm. The 

wavelength range of the original spectrum is different from the wavelength range of 
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interest. We determined to use the wavelength range from 400 to 749 nm to ensure each 

spectrum was set to 350 spectral bands. This selection of wavelengths is reasonable 

because the wavelengths are located in the center of the wavelength range of the original 

spectrum, and show different spectral features with respect to each spectrum. In addition, 

our aim is to show the reconstruction performance with respect to various kinds of spectra. 

Finally, each spectrum is normalized such that the height varies from 0 to 1. Overall 1473 

spectra from USGS spectral dataset and 1600 spectra from Munsell color spectral dataset 

were used for our simulated experiments. Table 4.3 lists the details of each of the spectral 

datasets. 

Data Preprocessing and Training. Given the sensing matrix, the spectral data are 

compressively sampled as the measurement vector y shown in Eq. (5), and then 

transformed into the representative spectrum x%  by multiplying the transform matrix A 

and y. 

In each spectral dataset, the number of training, validation, and test spectra are randomly 

assigned using a ratio of 4:1:1 for the synthetic and measured data sets, respectively. The 

validation spectra are used for estimating the number of epochs and tuning the hyper-

parameters. To train RCNN, we used the Adam optimizer [52] implemented in Tensorflow 

with a batch size of 16 and 250 epochs. The experiments were conducted on an NVIDIA 

GeForce RTX 2060 GPU. Training the architecture can be done in half an hour for each 

dataset. 
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Table 4.3 Description of the spectral datasets 

Dataset 
Training / 

Validation / Test 

Avg. number 

of nonzero 

values 

Description 

Gaussian dataset 
8000 / 2000 / 

2000 
336.8/350 FWHM (nm) on the interval [2, 50], Height on the interval [0, 1] 

Lorentzian dataset 
8000 / 2000 / 

2000 
349/350 FWHM (nm) on the interval [2, 50], Height on the interval [0, 1] 

USGS [59] 982 / 246 / 245 348.9/350 
350-2500 nm, 2151 spectral bands (we use 350 spectral bands in 

500-849 nm) 

Munsell colors 

[60] 
1066 / 267 / 267 349/350 

380-780 nm, 401 spectral bands (we use 350 spectral bands in 

400-749 nm) 
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4.3.4. Dictionary Learning for Sparse Recovery 

We evaluated the performance of conventional reconstructions using sparse recovery to 

benchmark the performance of RCNN. As shown in Table 4.3, the spectra for both the 

synthetic and measured datasets are dense spectra. Therefore, we must transform the 

spectra into sparse signals to solve Eq. (8). In this section, we considered methods to make 

a sparsifying basis Φ .  

First, we considered a Gaussian line shape matrix as a sparsifying basis. Each column of 

the matrix comprises a Gaussian distribution function whose length is N. A collection of N 

Gaussian functions works as a sparsifying basis N N´ÎΦ ¡ . We generate two Gaussian line 

shape matrices. Figure 4.16(a) shows the heatmap images for two Gaussian line shape 

matrices. Seven different FWHMs are used to generate the Gaussian distributions. Given 

an FWHM, Gaussian distributions are generated by shifting the peak location using a 

uniform spacing. To create a small dissimilarity between the two Gaussian line shape 

matrices, two of the seven FWHMs in Gaussian 1 were replaced with other FWHMs, thus 

producing Gaussian 2, as shown in Fig. 4.16(a). 

Second, learned dictionary [61]–[64] is used as a sparsifying basis. Given a training dataset

{ }
1

ki
t i=

x , we can derive a learned dictionary Φ  that sparsely represents the training data tx  

by solving the following optimization problem, known as the dictionary learning problem: 

 
1

2

2 1, , , 1
min ,

k
t t

k
i i i

t t t
i

t
=

- +å
Φ s s

x Φs s
K

 (10) 

where t  is a regularization parameter and i
ts  is ith sparse signal over the training dataset. 

By fixing an initial guess for the dictionary Φ  in Eq. (10), we obtain a solution for the 

sparse signals { }
1

ki
t i=

s . The dictionary is then updated by solving Eq. (10) using the 

obtained sparse signals. This process is iteratively repeated until convergence is reached 

and we derive the learned dictionary. We used three dictionary learning methods: method 

of optimal directions (MOD) [62], K-SVD [63], and online dictionary learning (ODL) [64]. 

The learned dictionaries are generated for each of the training datasets, and the 
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reconstruction performances are evaluated for each test dataset. Figure 4.16(b) shows 

learned dictionaries identified using the Gaussian training dataset. The learned dictionaries 

clearly depend on the dictionary learning methods used. Nevertheless, each column of the 

dictionaries shows a learned spectral feature from the training dataset.  

 

Figure 4.16 Sparsifying bases for the sparse recovery: (a) Gaussian line shape matrices and 

(b) learned dictionaries both from the Gaussian training dataset. 

4.3.5. Results 

To demonstrate the ability of RCNN to reconstruct spectra, we evaluated its performance 

using three different datasets: synthetic datasets, noisy synthetic datasets, and measured 

datasets. We used the same hyper-parameters of RCNN for each of these datasets. 

Moreover, we adopted l1_ls [38] as the fixed reconstruction algorithm in the sparse 

recovery. We compared the recovered signal with the original signal by calculating the root 

mean squared error (RMSE) and the peak signal to noise ratio (PSNR). In addition, the 

performances of five conventional sparse recovery methods and CNN were calculated. 
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The two synthetic data sets described in Table 4.3 were used to perform the signal recovery 

using sparse recovery and deep learning. Table 4.4 shows the average RMSE and PSNR 

for each of the seven methods evaluated. RCNN shows the smallest average RMSE for 

both the Gaussian and Lorentzian datasets of 0.0094 and 0.0073, respectively. Moreover, 

RCNN shows the largest average PSNR of 49.0 dB for the Lorentzian dataset. For the 

Gaussian dataset, the sparse recovery method with Gaussian 2 shows the largest average 

PSNR, 49.7 dB, which is slightly higher than the 47.2 dB for RCNN. Note that the minor 

difference between the two Gaussian line shape matrices results in considerable 

performance differences. However, reconstructions using the learned dictionaries show 

similar performance across all of the synthetic datasets. 
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Table 4.4 Avg. RMSEs and PSNRs over synthetic datasets 

 Sparse recovery Deep learning 

Dataset Gaussian 1 Gaussian 2 K-SVD MOD ODL CNN [18] RCNN [14] 

Gaussian    
dataset 

0.0226 

(43.1 dB) 

0.0112 

(49.7 dB) 

0.0172 

(40.3 dB) 

0.0174 

(40.3 dB) 

0.0161 

(41.1 dB) 

0.0132 

(40.5 dB) 

0.0094 

(47.2 dB) 

Lorentzian   
dataset 

0.0146 

(44.9 dB) 

0.0094 

(47.5 dB) 

0.0136 

(42.3 dB) 

0.0137 

(42.3 dB) 

0.0127 

(42.9 dB) 

0.0101 

(42.8 dB) 

0.0073 

(49.0 dB) 
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Figure 4.17 shows the reconstructed test spectra from each of the synthetic datasets. The 

solid red lines (i) are the input spectra from each dataset. RCNN is shown in dashed black 

lines (ii), while CNN is shown in solid orange lines (iii). The reconstructed spectra using 

sparse recovery with Gaussian 1 (iv), Gaussian 2 (v), and ODL (vi) are shown in solid 

green, blue, and purple lines in respectively. Because of the similar performance from each 

of the learned dictionaries only the ODL method is shown. The RMSE and PSNR of 

RCNN are 0.0138 (37.2 dB) for the spectrum from the Gaussian dataset and 0.0096 (40.4 

dB) for the spectrum from the Lorentzian dataset. For the selected spectra, RCNN achieves 

superior reconstruction performance compared with the other four reconstructions.  

Only sparse recovery with Gaussian 1 fails to recover the fine details of the input spectrum. 

One example of the poor ability of sparse recovery with Gaussian 1 to resolve the signal is 

the recovery of the peak at ~830 and 590 nm being recovered as two neighboring peaks in 

Figure 4.17(a) and (b), respectively. CNN was unable to capture the smoothness of the 

spectral features compared to the other methods.  

 

 

Figure 4.17 Spectral reconstructions of test spectra in synthetic datasets, (a) Gaussian da-

taset, (b) Lorentzian dataset. An input spectrum (solid red (i)) is compared with RCNN 

(dashed black (ii)), CNN (orange (iii)), sparse recovery: Gaussian 1 (green (iv)), Gaussian 

2 (blue (v)), and ODL (purple (vi)). The baselines are shifted for clarity. 
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RCNN was trained using the two measured datasets listed in Table 4.3, USGS and Munsell 

colors, and its reconstruction performance was evaluated. In addition, the signal 

reconstruction was performed using CNN and sparse recovery with five different 

sparsifying bases. Table 4.5 reports the average RMSE and PSNR for each of the seven 

methods. RCNN achieves the smallest average RMSE and the largest average PSNR for 

both datasets. In USGS dataset, the average RMSE and PSNR of RCNN are 0.0048 and 

52.4 dB, respectively. In addition, RCNN achieves 0.0040 for the average RMSE and 50.0 

dB for the average PSNR in Munsell colors dataset. Similar to synthetic datasets, all of the 

learned dictionaries provided similar reconstruction performances. In addition, the small 

differences between Gaussian 1 and 2 show large differences in the RMSE and PSNR. The 

average RMSE and PSNR of the learned dictionary methods approach the values of RCNN 

for Munsell colors dataset because Munsell colors dataset has simpler spectral features 

than the other datasets.  
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Table 4.5 Avg. RMSEs and PSNRs for the measured datasets 

 Sparse recovery Deep learning 

Dataset Gaussian 1 Gaussian 2 K-SVD MOD ODL CNN [18] RCNN [14] 

USGS [59] 0.0081  
(45.3 dB) 

0.0061  
(48.4 dB) 

0.0070  
(48.5 dB) 

0.0081  
(47.4 dB) 

0.0074 
(47.6 dB) 

0.0116  
(40.8 dB) 

0.0048  
(52.4 dB) 

Munsell colors 
[60] 

0.0068  
(44.6 dB) 

0.0050  
(47.5 dB) 

0.0040  
(49.8 dB) 

0.0040  
(49.9 dB) 

0.0042 
(49.5 dB) 

0.0076  
(43.0 dB) 

0.0040  
(50.0 dB) 
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Figure 4.18 shows the reconstruction results of one test spectra from each of the measured 

datasets. The spectrum for the organic compound dibenzothiophene in the USGS dataset is 

reconstructed in Figure 4.18(a). The spectrum of Munsell color 5 PB 2/2 is shown in 

Figure 4.18(b). The solid red lines are the input spectra (i). The results of RCNN are shown 

in dashed black lines (ii), and The results of CNN are shown in solid black lines (iii). The 

spectra of (iv) to (vi) are reconstructed spectra using the sparse recovery with Gaussian 1, 

Gaussian 2, and K-SVD. Because of the best performance of the K-SVD among the 

learned dictionaries only the K-SVD method is shown. 

The RMSE and PSNR for RCNN are 0.0069 (43.2 dB) for the spectrum from USGS 

dataset and 0.0077 (42.3 dB) for the spectrum from Munsell colors dataset. RCNN 

outperforms other approaches for the spectrum from USGS dataset. However, for the 

spectrum from Munsell colors dataset, the sparse recovery with K-SVD outperforms 

RCNN. RCNN achieves slightly larger RMSE and smaller PSNR. 

The performances of sparse recovery with Gaussian 2 is degraded for measured datasets 

compared with the performances for synthetic datasets. The measured datasets have rough 

spectral features unlike the smooth spectral features observed in the synthetic datasets. As a 

result, the sparse recovery with Gaussian 2 performs worse, because of its inability to 

represent rough spectral features using Gaussian distribution functions. The performances 

of sparse recovery with dictionary learning methods are improved for measured datasets 

compared with the performances of synthetic datasets. Because the number of spectra in 

measured datasets are smaller than the number of spectra in synthetic datasets. Therefore, 

finding the best-fit sparsifying basis for measured datasets is easier than finding the best-fit 

sparsifying basis for synthetic datasets using dictionary learning methods. Meanwhile, 

RCNN shows superior reconstruction performances regardless of the spectral features of 

datasets and the size of datasets. 
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Figure 4.18 Spectral reconstructions of test spectra in measured datasets: (a) spectrum of 

organic compound dibenzothiophene in USGS dataset, (b) spectrum of Munsell color 5PB 

2/2. The input spectrum (solid red line (i)) is compared with RCNN (dashed black (ii)), 

CNN (orange (iii)), sparse recovery: Gaussian 1 (green (iv)), Gaussian 2 (blue (v)), and K-

SVD (purple (vi)). The baselines are shifted for clarity. 

To verify the stability of RCNN, we evaluated the accuracy of the reconstruction at various 

noise levels. Gaussian white noise was added to the measurement vector 1M´În ¡  to Eq. 

(5). We considered six different noise levels whose signal-to-noise ratios (SNRs) are 15, 20, 

25, 30, 35, and 40 dB. Using Gaussian and Lorentzian datasets, we compared the 

reconstruction performance of RCNN with the sparse recovery using Gaussian 2, which 

shows the best reconstruction performances among sparse recovery methods in synthetic 

datasets. RCNN was evaluated with the same hyper-parameters that were used for the 

noise-free datasets. The average RMSE and PSNR for each of the six noise levels are 

shown in Table 4.6. While RCNN was trained using noise-free data, it outperformed the 

sparse recovery with Gaussian 2 at every noise level, which indicates that RCNN remains 

stable even with the noisy dataset
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Table 4. 6 Avg.RMSE and PSNR under various SNR (dB) with synthetic datasets 

 SNR (dB) 

Dataset Method 15 dB 20 dB 25 dB 30 dB 35 dB 40 dB 

Gaussian 

dataset 

Sparse recovery + 

Gaussian 2 

0.0796       

(22.7 dB) 

0.0482      

(27.1 dB) 

0.0308      

(31.2 dB) 

0.0215      

(34.8 dB) 

0.0166      

(37.9 dB) 

0.0138      

(40.7 dB) 

RCNN 
0.0671      

(24.2 dB) 

0.0401      

(28.7 dB) 

0.0251      

(32.9 dB) 

0.0171      

(36.6 dB) 

0.0130      

(39.8 dB) 

0.0110      

(42.4 dB) 

Lorentzia

n dataset 

Sparse recovery + 

Gaussian 2 

0.0817     

(22.6 dB) 

0.0483     

(27.1 dB) 

0.0300     

(31.2 dB) 

0.0201     

(35.0 dB) 

0.0147     

(38.5 dB) 

0.0119     

(41.4 dB) 

RCNN 
0.0689     

(24.1 dB) 

0.0404     

(28.7 dB) 

0.0243      

(33.1 dB) 

0.0157     

(37.1 dB) 

0.0113     

(40.6 dB) 

0.0091      

(43.4 dB) 



 - 67 -

4.3.6. Summary 

As shown in the results, we empirically demonstrate that RCNN outperforms the sparse 

recovery methods and the CNN over all datasets. The sparse recovery shows unstable 

performance because it is highly dependent on the sparsifying basis and spectral features of 

the dataset. This is a direct result of being unable to identify a fixed sparsifying basis that 

can transform any spectra into a sparse signal, which means the a priori structural 

information such as line shapes and FWHMs are required to select a consistent sparsifying 

basis. Learned dictionaries are used to cope with the problem of identifying a consistent 

sparsifying basis. The columns of learned dictionaries are composed of learned spectral 

features from the training dataset. While this shows an improvement in measured datasets, 

a learned dictionary is still limited to represent all the spectral features in the large dataset 

(i.e., synthetic datasets) using linear combinations of columns of the learned dictionary. For 

recovering spectra, RCNN does not require the a priori knowledge of a sparsifying basis or 

prior information of spectral features. During training, RCNN learns the spectral features 

using learnable layers, which enable it to recover the fine details for various kinds of 

spectra without identifying a sparsifying basis. 

RCNN is directly compared with CNN for the synthetic Gaussian dataset in Fig. 4.19(a) 

where the mean squared error is plotted with respect to the epoch. The mean squared error 

for CNN and RCNN are shown in solid black line and solid red line with square symbols, 

respectively. RCNN shows a lower mean squared error than that of CNN. Moreover, 

RCNN converges faster than CNN, indicating that RCNN optimizes the learnable layers 

quicker, as expected based on previous research using residuals [41], [51]. In contrast to 

the previous research that multiple residual connections were used in very deep neural 

networks to converge faster by avoiding the vanishing gradient problem, we achieve 

spectral reconstruction improvements even with one residual connection in moderate depth 

CNN. 

The reconstruction of an example spectrum with respect to the number of epochs is shown 

in Fig. 4.19(b). Black lines ((i) to (iv)) are the reconstructed spectra at 1, 50, 150, and 250 

epochs, respectively. The solid red line (v) is the original spectrum, and the series of 

reconstructed spectra for RCNN show that the reconstruction converged earlier than CNN. 



 - 68 -

The increased rate of convergence is because of the residual connection in RCNN. Overall 

the reconstruction performance of RCNN is an improvement over CNN. 

Note that both RCNN and dictionary learning for sparse recovery require a training dataset 

and an optimization process to learn the spectral features. While this is a time-consuming 

process, remember that when using a learned dictionary to recover spectra, an iterative 

reconstruction algorithm is required, which needs additional time and takes a large 

computational cost. The benefit of RCNN is that it gives a reconstructed spectrum 

immediately once the training is completed. 

 

Figure 4.19 (a) Mean squared error of Gaussian dataset with respect to epochs. Solid black 

line denotes validation error of CNN, and solid red line with square symbols denotes vali-

dation error of RCNN. (b) Reconstructions of a spectrum with respect to epochs where (i) 

to (iv) are epochs 1, 50, 150, and 250, respectively. Red line (v) denotes the original spec-

trum. 
 



 - 69 -

 Chapter 5  

Conclusions 

In this dissertation, we demonstrate MTF filter-based computational spectrometers. The 

computational spectrometers have a compact size, a high resolution, a wide working range, 

and a fast operation time. MTF filters are designed based on the compressed sensing theory. 

We propose a mass production enable fabrication process for fabricating MTF filter arrays. 

We build a spectrometer by attaching the fabricated MTF filter array to a CMOS image 

sensor. The spectrometer is compact and lightweight.  

Using the fabricated MTF filter-based spectrometers, we measure the intensities of an 

input light source into a digital signal. From the measured intensities, we reconstruct the 

spectra of the input light in a high resolution using computational approaches. As the 

computational approaches, we use sparse recovery based on numerical optimization, and a 

residual convolutional neural network (RCNN) based on deep learning. We formulate the 

problem of the underdetermined linear system for spectrometers and solve the problem 

using these computational approaches.  

We conduct numerical experiments for estimating the performances of the computational 

spectrometer. After numerical experiments, we perform optical experiments using various 

light sources, including monochromatic lights, LEDs, and a halogen lamp. The results 

show good recovery performances over the light sources. In addition, we compare spectral 

reconstruction performances between sparse recovery and RCNN over four kinds of 

datasets and noisy environments. Although there were limitations in showing the 

generalization of deep learning architectures, RCNN shows better reconstruction than the 

sparse recovery over all datasets. 

The demonstration of the MTF filter arrays for computational spectrometers is an 

important step towards the industrialization and practical uses of computational 
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spectrometers. This study will be helpful for computational spectroscopy to be realized in 

various applications. 

Finally, one advantage of filter-based spectrometers is that they could offer spatial 

information. Using a microlens array, and a separator, we could implement non-scanning 

spectral imaging systems. We assume that it is possible to construct a computational 

snapshot spectral imaging system combining the fabricated MTF filter array, a microlens 

array, and a separator. As a future research direction, we will focus on computational 

spectral imaging using the MTF filter array.  
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불평불만을 격없이 받아주신 상준이형께 감사드립니다. 제가 졸업을 앞두고 
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이기적으로 행동했을 수도 있는데, 그럼에도 많은 도움과 정보를 주신 주성이형, 

해웅이형, 재혁이형, Yaseen 형께 감사드립니다. 힘들 수 있는 연구실 생활을 뚝심 있게 

해내고 있는 하영이 졸업까지 얼마 남지 않았으니 힘내라 전하고 싶습니다. 이외에도 

Pavel 형, Wahidur 형, 형주, 성민이에게 감사의 마음을 전합니다. 마지막으로, 연구에 

전념할 수 있게 행정적 일들에 많은 도움을 주신 정우정 선생님께 감사의 마음을 

전합니다. 

연구실에서 함께 생활했던 영학이형, Zafar 형, Asif 형, 승윤이형, 대영이형, 

재원이형, 정이형, Rohit 형, 현준이형, 기원이형, 길준이형, 호현이형, 창윤이, 형성이, 

그리고 정현준 교수님 모두 감사드립니다. 그리고, 연구 과제를 같이 수행하면서 광학 

실험 경험을 쌓게 해주신 주건우 박사님, 이수경 박사님, 이용탁 교수님께 

감사드립니다.  

약 10 년 가까이 저와 기숙사 룸메이트를 하고 있는 병진이에게 고마움을 

전합니다. 룸메이트 때문에 고생을 겪는 사람들도 많은데 병진이 덕분에 편안한 

기숙사 생활을 할 수 있었습니다. 그리고, 광주과학기술원 학부부터 대학원 생활을 

같이한 동기들, 병진이, 민승이, 철기, 연수, 국성이, 재훈이, 락희 그리고 석준이 모두 

감사드립니다. 또한, 고등학교 동기이자 대학원 생활을 같이한 동주와 동현에게 

감사의 마음을 전합니다. 

마지막으로 사랑하는 지원이에게 감사의 마음을 전합니다. 박사과정 동안 옆에서 

큰 힘이 되어 주었습니다. 항상 고맙습니다. 앞으로 더욱 행복하게 잘 지내자! 

교수님, 가족, 애인, 동료분들의 도움과 헌신 덕분에 지금의 제가 있다고 

생각합니다. 다시 한번 감사의 마음을 드리며 더욱 노력하고 발전해 나가겠습니다. 

감사합니다. 


