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Abstract

In this dissertation, we discuss two research fields. One is wideband signal sensing via
sub-Nyquist sampling of ultra-wideband multiband signals, and the other is the security
analysis of blockchains via the profitability analysis of double-spending attacks. In each
of the two fields, we provide new results by the virtue of approaching research problems

in novel perspectives.

In the field of sub-Nyquist sampling of ultra-wideband multiband signals, we propose a
novel idea, intentional aliasing method to improve the sampling performance of a sub-
Nyquist sampling system, called modulated wideband converter (MWC). MWCs have
been designed to exploit a set of fast alternating pseudo random (PR) signals. Through
parallel analog channels, an MWC compresses a multiband spectrum by mixing it with
PR signals in the time domain, and acquires its sub-Nyquist samples. Previously, the
ratio of compression was fully dependent on the specifications of PR signals. That is, to
further reduce the sampling rate without information loss, faster and longer-period PR
signals were needed. The implementation of such PR signal generators however results
in high power consumption and large fabrication area. With practical PR signals with

low complexity, the proposed intentional aliasing method is adopted to improve the



ratio of compression, which results in aliased modulated wideband converter (AMWC).
AMWOC can further reduce the sampling rate of MWC with fixed PR signals. The main
idea is to induce intentional signal aliasing at the analog-to-digital converter (ADC). In
addition to the first spectral compression by the signal mixer, the intentional aliasing
compresses the mixed spectrum once again. We demonstrate that AMWC reduces the
number of analog channels and the rate of ADC for lossless sub-Nyquist sampling
without needing to upgrade the speed or the period of PR signals. Conversely, for a
given fixed number of analog channels and sampling rate, AMWC significantly

improves the performance of signal reconstruction.

In the field of profitability analysis of double-spending attacks on blockchains, we
provide new mathematical tools for a precise profitability analysis, which enables us to
propose an algorithm for optimization of user parameters utilized to prevent double-
spending (DS) attacks. It was well understood that a successful DS attack is established
when the proportion of computing power an attacker possesses is higher than that of the
honest network. What is not yet well understood is how threatening a DS attack with
less than 50% computing power used can be. Namely, DS attacks at any proportion can
be a threat as long as the chance to make a good profit exists. Profit is obtained when
the revenue from making a successful DS attack is greater than the cost of carrying out
one. We have developed a novel probability theory for calculating a finite time attack
probability. This can be used to size up attack resources needed to obtain the profit. The
results enable us to derive a sufficient and necessary condition on the value of a
transaction targeted by a DS attack. Our result is quite surprising: we theoretically show

how a DS attack at any proportion of computing power can be made profitable. Given



one’s transaction value, the results can also be used to assess the risk of a DS attack. An

example of profitable DS attack against BitcoinCash is provided.

The results in the two fields can be integrated and utilized in a field of the Internet of
things (loT). To deal with huge amounts of data, IoT applications need energy-efficient
sensors and secure data management system. The intentional aliasing method
contributes to improve the efficiency of sensors, and the profitability analysis of double-
spending attacks contributes to improve the security of data management by

blockchains.

©2021
Jehyuk Jang
ALL RIGHTS RESERVED
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Chapter 1

Introduction

1.1. Motivation

The advances of electronic devices and wireless communication technologies have
facilitated small devices to communicate with each other. The Internet of things (loT)
depends on the reliability of data, i.e., it needs to collect and manage huge amounts of data
from all things connected to internet in order to optimize numerous problems arising in
various applications from industry to daily life [1]. This data reliability still has challenges
to be addressed such as the energy efficiency of sensors to obtain more high-quality data,
the capacity of data storage, the reliability and credibility of data, and secure management
of data for immutability [2], [3].

In this dissertation, we focus on two key technologies to solve the challenges of data

reliability, which are compressed sensing and blockchain.

Compressed sensing provides energy-efficient analog-to-digital sensors. Literature [3] have
reported real-world applications of the integration between I0T applications and
compressed sensing. Specifically, a compressed sensing system makes a compression of
analog signal which can be sparse in a certain domain of linear basis, and then digitizes it.
The compression should be lossless, which are supported by signal recovery algorithms
based on compressed sensing theory. This reduces the number of sensors required to obtain
a larger amount of data while keeping the original quality of data. A challenge on sensors
equipped with the compressed sensing is, however, an increased complexity of hardware
implementation due to additional functionality for the analog signal compression. In
Chapter 2 of this dissertation, we will propose an idea for a sensor in order to reduce the

hardware complexity and improve the performance of analog signal compression.



Blockchain provides immutable peer-to-peer distributed database. Blockchain is a chain of
data blocks, i.e., the previous block affects the contents of the next block. This structure
technically keeps data immutable. Specifically, in order to publish a block, a sufficient
number of peers must make a consensus for the process after checking the validity of block
contents. Thus, it is impossible for a peer to manipulate the contents of block published in
the past, and any change of block requires a consensus of a large number of distributed
peers. This distributed property not only improves the reliability and credibility of data but

also enables the secure management of data for immutability.

Examples of the integration between loT applications and blockchain have been surveyed
in [2]. In the literature, the authors reported that blockchain has increased the autonomy of
IoT devices by virtue of easy interaction with reliable information in transparent
distributed database. But they also pointed that challenges still remain. First, storage
capacity and scalability problem arise from the huge volume of blockchain database. It
requires newly participating peers to have large storage capacity, and therefore it
demotivates them. Second, anonymity and data privacy problem arise from the
transparency of blockchain, as many loT applications deal with confidential data obtained
from person such as e-health records. Last, security problem by network attacks is critical
as many real-world instances have been reported. Fortunately, a cryptographic technology,
zero-knowledge proofs would be helpful to solve the first and second problems.
Combining with the recent advances in zero-knowledge proofs [4], the capacity of data
storage can be dramatically reduced [5], and the privacy of data can also be kept. In
addition, in Chapter 3 of this dissertation, we will provide a security analysis for a type of
network attack called double-spending attack that will be helpful to improve the security of
blockchain.

1.2. Preliminaries

1.2.1. Compressed Sensing

A compressed sensing (CS) [6]-[10] is a signal processing framework that includes from

signal acquisition to post-processing. The signals of interest are sparse signals, which can



be sparsely represented in a particular domain. In other words, a signal is sparse if there
exists a domain on which the isomorphic projection has a small proportion of non-zero
values. In a sparse signals, only a few non-zero elements can have uncertainty, which
implies that they can be compressed into shorter-length measurements without any

perceptual loss [7].

A CS aims to convert a sparse analog-signal into a digital compression. A digital
compression is a result of analog encoding and has a shorter length than a directly-digitized
version. If an original signal is sparse enough and an encoding is well-designed, a short
digital compression can be decoded for a recovery of a directly-digitzed version. As a
result, compared to direct conversion of an analog signal to digital, obtaining a digital
compression from a CS reduces the number of sensors required for lossless digitalization.
Examples of applications include analog-to-digital conversion (ADC) of wideband radio
frequency signals at a sub-Nyquist sampling rate [11], [12], hyperspectral imaging [13],

holography [14], magnetic resonance imaging [15], and ultrasound imaging [16].

Formally, we express a signal by x e C", a linear encoding by A e C™" called a sensing

matrix, and a digital compression by y e C"™ called a measurement. We consider x is k

-sparse, which means there exists a unitary linear basis FeC™" for s=F'x such that
S has at most k nonzero entries supported by a set S of indices for the nonzeros. For

given y and A with m<n,aCS problem is to find an inverse solution x such that

y = AX. (1.2)

In general, there can exist infinitely many solutions of x, since the linear system of (1.1)
is underdetermined as the number of indeterminate variables in x is greater than the

number of observations in y. Thus, we need to relax the problem (1.1) to

y = ®@s, (1.2)

where @ = AF. The inverse problem now turns to finding the support set S. Once the

supports are given, the linear system (1.2) is equivalent to a overdetermined linear system



y=®,,, where s; eC*, i.e., the unique solution to minimize the L* norm |s4||, such

that the linear equations hold can be found.

To define the problem to find the supports S from the equations (1.2), Donoho has
defined a special function called L° “norm”, which counts the number of nonzero

s|,=>.".s’ [6]. For

elements. Formally, for a vector s of length n, the L° “norm”

(1.2), the problem to find the supports S can be solved by

arg msin [s[l, sty =s. (1.3)

A well-known result on the existence of the unique solution of (1.3) uses the spark of a
matrix. The spark of a matrix @ is the smallest number 1 such that there exists a set of

| columns in ® which are linearly dependent. In other words,

spark (®) = n51|0n||s||0 st. ®@s=0. The spark of a m-by-n matrix ® for m<n cannot

be not greater than m+1. A sufficient and necessary condition for the problem (1.3) to

have the unique solution is given by

spark (®)
—

k < (1.4)

If ® has the maximum spark, i.e., spark(®)=m+1, the condition (1.4) turns to

m> 2k . In short, if m>2k and ® has the full maximum, the underdetermined inverse

problem for (1.1) is well-defined.

Satisfying condition (1.4) the existence of unique solution, but does not provide a

practical algorithm to find it. The problem (1.3) is an NP problem. Candes et al. have

relaxed problem (1.3) to a sub-optimal L' norm minimization such that

arg min [s], sty =s (1.5)



for a small ¢ and have shown that the relaxation (1.5) has a unique and sparse solution
if @ has a special property, restricted isometry property (RIP) [17]. Including the solver
of (1.5), many practical algorithms such as greedy algorithms have been proposed [18].

In some applications, it is possible to acquire multiple snapshots of measurements.
Multiple measurements can be more helpful to find supports S, if they are independent.

nx|

We denote a bunch of | sparse signals Se®"™ and the corresponding measurements by

Y e C™" in arelationship
Y = ®S. (1.6)

We assume all 1 columns of S share a supports set S. For a fixed k, recovery of S
from the multiple measurement vectors (MMV) Y requires a smaller number m of
sensors than the single measurement vector (SMV) problem in (1.2). By Chen and Huo
[19] and Davies [10], a sufficient and necessary condition for the problem (1.6) to have

the unique solution is given by

spark (®)—1+rank ()
> :

k <

(1.7)

In short, for a MMV model, if ® and Y with m<k respectively has the maximum
spark m+1 and the maximum rank m, the condition (1.7) turnsto m=>k +1, which is
more relaxed than the condition m=>2k for a SMV model. The multiple snapshots can
replace some of sensors. Many practical algorithms to solve MMV recovery models have

been proposed [18].

1.2.2. Blockchain and Double-Spending Attacks

Blockchain is distributed data maintenance protocol working on a peer-to-peer network.
Early design of blockchain given in Bitcoin [20] by Satoshi Nakamoto mainly has focused
on secure storage of cryptocurrency transactions. But recent applications for example loT
have demanded blockchain as a data storage [2]. Publishing and distributing a new data

block or a modification of a previous data block requires a consensus of a large number of



unspecified peers. This distributed structure of blockchain with cryptographies makes data

transparent and immutable.

The data structure of blockchain is called chain. A chain consists of blocks, and a block is
composed of its block header and transactions. A transaction is a digital file which records
a data including an exchange of cryptocurrency. As a transaction is digital, the data in it
can be encrypted for privacy, e.g., ZCash (formerly Zerocash) [21]. Every block is chained
in series with previous blocks by a cryptographic hash function [22], i.e., in every block
header, the hash of the previous block is written. To chain a new block, a peer must make a

proof of examination of the validity of block and append the result into the block header.

The procedure of publishing a block follows a communication protocol called consensus.
There are many sorts of consensus depending on the type of the block validity proofs, e.g.,
Proof-of-Work (PoW), Proof-of-Stake (PoS), practical Byzantium fault tolerance algorithm
(PBFT) [23]. PoW picks a block validator through competition of computation resources.
PoW allows anyone having a computer to contribute to the consensus, but it also comes
with disadvantages. When the competition is overheated due to the increase of the number
of participants, excessive amount of computations are used, which in turn accelerates the
destruction of the natural environment by huge energy consumption. In addition, for a
newly launched blockchain, its small scale network can be centralized by the other large
blockchain networks that already have huge computational resources. Moreover, to prevent
a chain from being forked, blockchains equipped with PoW would set the period of block
generation to be long. These disadvantages are the reason why a blockchain equipped with
PoW cannot be easily commercialized. To overcome the disadvantages of PoW, PoS would
pick a block validator through competition of stakes. This mechanism may imply PoS
networks centralized by the rich. PBFT usually validates a block through communications
of permissioned committee members. Blockchains equipped with PBFT would limit the
number of committee members due to the delay by the communication of a lot of messages.
These pros and cons of the consensus methods are often called blockchain trilemma to
categorize them in three-folds such as decentralization, scalability, and security [24]. As no
consensus that solves the trilemma at once has been proposed up to the date, recent
blockchains often combines the existing consensus methods depending on applications
[25].



Throughout this dissertation, we focus on blockchains equipped with PoW. PoW requires a
peer to generate a proof of solving a cryptographic puzzle using a cryptographic hash
function. Specifically, a peer uses a hash function, where the input is a block data
combined with a changeable nonce value. The peer repeats making the hash until the
output is less than a given threshold while changing the nonce. Once the peer founds the
solution nonce, it appends it into the block header as a proof. Since cryptographic hash
functions are irreversible and behaves like a random function, PoW takes intractable
amount of computations. Blockchain system allows the first solver of cryptographic puzzle
to issue cryptocurrency, which incentivizes the participation of new peers into the
competition of PoW. After molding a block with the nonce and attaching it to the chain, the
updated chain is spread to a peer-to-peer network. Meanwhile, all peers who download a
new chain from the network need to make a decision whether to accept it or not. Only one
chain survives in their local storage. To resolve the confliction of existing two or more
different chains called forks, for example, a node is programmed to choose the longest
chain and discard the rests. This rule for PoW used in Bitcoin is called longest chain
consensus. There is also the other consensus for PoOW called GHOST used in Ethereum
[26]. A consensus resolves the conflict when two or more groups of peers temporarily hold

different forks due to network problems such as propagation delays.

The design goal of blockchain is to keep immutability of block contents. For example, in
blockchain with the longest chain consensus, a group of peers who try to modify a block
previously published needs to resolve the cryptographic puzzles for all the next blocks
chained after it, as the contents of the blocks have been changed. However, this
modification can be realizable, if a peer group invests a huge amount of computation
resources for running a cryptographic hash function which is comparable to the sum of
computation resources used by all the other peers in the network. If so, there is a possibility
to make the modified fork longer than the current longest chain called the status-quo chain
in order to convince the other peers. Attacks exploiting this weak point are called double-

spending attacks [20].

Double-spending (DS) attacks aim to double-spend cryptocurrency for the price of a goods
or services that has been already delivered. To double spend, attackers need to replace the

status-quo chain in the network with their new one, after taking the goods or services.



Nakamoto [20] and Rosenfeld [27] have shown that the higher computing power is
employed, the higher probability to make a DS attack successful is. In addition, if an
attacker invests more computing power than that invested by the honest network, a success
of DS attack is guaranteed. Such attacks are called the 51% attack. Unfortunately, for small
scale blockchins, double-spending attacks have been realized many times. For example, in
2018 and 2019 Verge, BitcoinGold, Ethereum Classic, Feathercoin, and Vertcoin suffered

from DS attacks and millions of US dollars were lost [28].

1.3. Dissertation Outline and Summaries

1.3.1. Dissertation Outline

In Chapter 2, we will discuss ultra-wideband sub-Nyquist sampling of multiband signals.
We will propose a compressed sensing-based analog-to-digital sensing system to improve
the energy efficiency of sensors. By the results of Chapter 2, we expect that our system can
contribute to solve the sensor efficiency problem by data reliability in 10T applications. In
Chapter 3, we will study the profitability of double-spending attacks on blockchains
equipped by PoW and applying the longest chain rule. One of our results gives a necessary
and also sufficient condition to economically motivate double-spending attackers. This can
be used to come up with a strategy, conversely, to demotivate the attackers [29]. The
results of Chapter 3 can contribute to solve the data immutability and credibility problems
by data reliability in 10T applications. Finally, Chapter 4 summarizes the contributions of

this dissertation and suggests future research directions.

1.3.2. Summary of Chapter 2

Prior works have given a practical solution for efficient sub-Nyquist sampling of multiband
signals spread over a wideband up to few gigahertzs. Increasing their receiving bandwith to
an ultra-wideband of tens of gigahertz, however, requires impractical hardware
implementation. In Chapter 2, we will propose a new idea to solve the problem, which is
intentional aliasing method. Specifically, to cover an ultra-wideband bandwidth, our
approach intentionally allows a well-controlled aliasing at the sampling device. This



intentional aliasing has the effect of replacing the requirement of impractical hardware, at
the cost of increased computational complexity in post-digital signal processing. Ideally,
with the proposed method, the sampling efficiency of a sub-Nyquist sampling system can

reach a theoretical limit without the aid of impractical hardware.

The contents of Chapter 2 have been partially published in [11], [30]:

[11] Jehyuk Jang, Sanghun Im, and Heung-No Lee, “Intentional aliasing method to
improve sub-Nyquist sampling system,” IEEE Trans. Signal Process., vol. 66, no. 12, pp.
3311-3326, Apr. 2018.

[30] Jehyuk Jang, Nam Yul Yu, and Heung-No Lee, “A study on mixing sequences in
modulated wideband converters,” in 2016 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), Washington DC, DC, USA, Dec. 2016.

1.3.3. Summary of Chapter 3

By Satoshi Nakamoto, it has been well known that running a majority portion of
computing resources, i.e., occupation of more computing resources by a party of attacker
nodes than honest full-nodes, always leads to the success of a double-spending attack [20].
What is less well-known, on the other hand, is the risk of double-spending attacks that use
a minority of computing resources, minority double-spending attacks. The success of
minority double-spending attacks is not guaranteed, but still it can be expected to bring
significant returns. In Chapter 3, we will provide mathematical tools to calculate the
expected profit of all double-spending attacks including ones running a minority of
computing resources. Our tools will enable us to derive sufficient and necessary conditions

for profitable double-spending attacks.

The contents of Chapter 3 have been partially published in [29], [31]:

[31] J.Jang and H.-N. Lee, “Profitable Double-Spending Attacks,” Applied Sciences, vol.
10, no. 23, p. 8477, Nov. 2020.



[29] J. H. Jang and H. N. Lee, “Transaction Verification System for Blockchain, and
Transaction Verification Method for Blockchain,” patent, PCT/KR2019/017571, Nov. 12,
2019.
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Chapter 2
Intentional Aliasing Method to Improve Sub-

Nyquist Sampling System

2.1. Introduction

Applications of electronic warfare (EW) systems, electronic intelligence (ELINT) systems,
or cognitive radios are demanding the observation of a multiband signal, i.e., a collection
of multiple narrow-band signals, each with different center frequencies, scattered across a
wide frequency range up to tens of gigahertz (GHz). The Nyquist sampling rate is twice the
maximum frequency of the wide range. When a multiband signal is sparse, i.e. consists of
a few narrow bands, the signal can be sampled without information loss at a sub-Nyquist
rate far less than the Nyquist rate. The theoretical lower limit of the rate required for
lossless sub-Nyquist sampling is the sum of the bandwidths, known as the Landau rate,
when the spectral locations of all the narrow-band signals are known [32]. When spectral

locations are unknown, the lower limit is doubled [33].

The modulated wideband converter (MWC) proposed by Mishali et al. [12] is a lossless
sub-Nyquist sampler that aims at achieving the theoretical lower limit of sampling rate.
Similar to other sub-Nyquist samplers proposed in [34]-[36], MWC exploits pseudo-
random (PR) signals, which periodically output pulsed patterns. MWC has multiple analog
channels, each of which consists of a PR signal generator, signal mixer, low-pass filter
(LPF) for anti-aliasing, and low-rate analog-to-digital converter (ADC) in sequence. The
system compresses a multiband spectrum through the mixing and LPF procedures,
following which it samples at a sub-Nyquist rate. The reconstruction of the input multiband
spectrum is guaranteed under some conditions of the compressed sensing (CS) theory [6]-
[10]. With the help of CS reconstruction algorithms in [33], [37] developed for the MW(Cs,
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it has been proved that an MWC can achieve the theoretical lower limit of the lossless sub-

Nyquist sampling rate.

However, to achieve the lower limit of the lossless sub-Nyquist sampling rate, the
previously proposed MWC by Mishali et al. relied on a high-end PR signal generator,
since it was the only spectral compressor. The ratio of spectral compression was fully
dependent on the oscillation speed and length of the pulsed patterns within a single period
of the PR signals. Specifically, to improve the compression ratio for a sparser multiband
signal, PR signals with a greater pattern length were required. In addition, the oscillation
speed should be faster than the Nyquist rate for a lossless compression. Unfortunately,
increasing the pattern length of a PR signal generator with tens of GHz-range switching
speed leads to difficult research problems in the field of chip engineering, such as high
power consumption and large fabrication area due to the high chip speed [38], [39], which

hinder the commercial availability of such a PR signal generator chip.

In this Chapter, we aim to reduce the lossless sub-Nyquist sampling rate for given practical
PR signals. To this end, we propose an aliased MWC (AMWC). The main idea of AMWC is to
break the anti-aliasing rule and induce intentional aliasing at the ADC of each spatial
channel by setting the bandwidth of the prior LPF to be greater than the ADC sampling rate.
In addition to the first spectral compression by the mixing and LPF procedures, this
intentional aliasing leads to another spectral compression under a certain relation between
the ADC sampling rate and bandwidth of the prior LPF. Through the two spectral
compression procedures, the compression ratio is improved without faster or longer PR
signals. Consequently, for a given and fixed PR signal generator, the lossless sub-Nyquist

sampling rate of AMWC is closer to the lower limit than that of MWC.

2.1.1. Related Works

Efforts to reduce the rate for lossless sub-Nyquist sampling with MWC closer to the
theoretical lower limit without upgrading the PR signal generators have been made in [40],
[41]. In [40], the authors proposed a method that channelizes the multiband spectrum into
few orthogonal subbands before mixing with the PR signals. Since the channelized signals
have a lower Nyquist rate than the original input, for a given oscillation speed and pattern
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length of PR signals, the method achieves a higher ratio of spectral compression. Although
the method led to a further reduction of the lossless sub-Nyquist sampling rate, it requires
additional hardware resources for the channelization, such as band-pass filters, local
oscillators, and a greater number of independent PR signal generators proportional to the
number of subbands. In [41], a method similar to that proposed in [40] was presented, in
which the input signal was divided into in-phase (I) and quadrature (Q) channels before
mixing it with PR signals. The lossless sub-Nyquist sampling rate can be reduced by the
same principle as in [40], although the authors did not mention this point. However, the

system also required additional hardware resources for the I-Q division.

The proposed AMWC achieves the same effect as in previous works [40], [41], i.e.,
reduction in the lossless sub-Nyquist sampling rate without upgrading the PR signal
generators, but unlike [15] and [16], it does not require additional hardware components.
To our knowledge, AMWC is novel in that no study has thus far improved the sub-Nyquist
sampling capability of MWC by improving the utilization efficiency of given hardware

resources.

In [42], [43], variations of MWC similar to AMWC that include aliasing at the ADC have
been investigated for analyzing channel capacity. Their main results indicate that
suppressing non-active subbands before spectral compression minimizes the loss of
information rate incurred by aliasing the noise spectrum. Interestingly, the authors of [43]
introduced a rule for determining the sampling rate of each spatial channel similar to that
of AMWC (see Section 2.3.2 for details). However, the rule was designed to make a fair
comparison with other filterbank-based systems by flexibly controlling the bandwidth of
subbands, rather than to exploit the aliasing at the ADC to reduce the lossless sub-Nyquist
sampling rate. Additionally, according to our results, the rule in [43] is insufficient and

aliasing at the ADC may lead to information loss.

2.1.2. Contributions

Our main contribution is that the anti-aliasing rule of MWC is shown to be unnecessary for
lossless sub-Nyquist sampling. We reveal a certain relationship between the ADC sampling

rate and bandwidth of the prior LPF so that AMWC can avoid the loss of signal information
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during the additional spectral compression. We demonstrate that, for given oscillation
speed and pattern length of PR signals, the sampling rate and analog channels of AMWC
required for the reconstruction of a multiband signal are further reduced. For given
sampling rate and number of analog channels, we show that the reconstruction

performance of AMWC for a multiband signal with a given sparsity is improved.

Additionally, we show that the benefits from intentional aliasing can be further
strengthened using a non-flat LPF. The non-flat frequency response of LPF results in a
different input-output relationship for each frequency component of the sub-Nyquist
samples of AMWC. Simulation results show that the reduction of lossless sub-Nyquist
sampling rate is boosted when the filter response is samples of a random distribution as the

input-output relationships of different frequency components become independent.
2.1.3. Contents of Chapter

The remainder of this chapter is organized as follows. In Section 2.2, we briefly introduce
MWC with the anti-aliasing rule and then discuss the performance limitation. In Section
2.3, we propose AMWC and derive its input-output relationship. The relationship between
the sampling rate of ADC and bandwidth of LPF to avoid information loss is also provided.
In Section 2.4, a revised input-output relationship of AMWC corresponding to the use of a
non-ideal LPF is provided. Simulation results are provided in Section 2.5. Section 2.6

concludes this chapter with summarizing contributions.

2.2. Modulated Wideband Converters (MWC)

Throughout this chapter, signals to be digitalized are multiband radio frequency (RF)

signals. An RF signal x(t) is a multiband signal if its spectrum X (f) on positive
frequency f >0 is composed of K; disjoint continuous bands of maximum bandwidth
B, for any K;eN and BeR" [12], [33]. We assume the center frequencies of K,

bands in X(f) are unknown. We assume that the maximum frequency of a target
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multiband signal does not exceed f ie, X(f)=0 for feZF, , where

max !

Favg [ fraxr frax ) » @Nd F ¢ is the complementary set of 7. We denote the

max? " max

Nyquist rate by fy,, =2f, ., . We assume spectrally sparse x(t) such that actual spectral

occupancy BK; is far smaller than the maximum frequency f__ ., i.e., BK; < f__ .

max !

To take samples x[N] of x(t) without loss, Nyquist sampling theorem provides a
sufficient condition for the sampling rate, which is the Nyquist sampling rate f,,, . Taking

samples of a signal at the Nyquist sampling rate prevent the spectrum from being aliased.

Another optimal sampling rate is Landau rate [32], which gives the minimum sampling
rate  BK; required for lossless sampling of multiband signals. When the center
frequencies of multi-bands are known, it is easy to realize a sampling system working at

the Landau rate: for each of K; bands in a signal x(t), we can modulate the signal in

order to shift the center of band to zero, take a low-pass filter of bandwidth B, and finally
take samples at rate B. Since multi-bands are fragmented and then respectively sampled

at a sufficiently high sampling rate, they are not aliased among themselves. Therefore, the

original signal x(t) can be reconstructed.

When the center frequencies of multi-bands are unknown, the minimum sampling rate
required for lossless sampling of a multiband signal x(t) is doubled from Landau rate,
i.e., the minimum sampling rate is 2BK; [33]. In this case, the realization of a sampling
system working at the minimum rate is quite challenging. When BK, < f, i.e., x(t)

is spectrally sparse, then compressed sensing theory [7] can be applied to realize a practical
sampling system for unknown center frequencies of multi-bands working near the

minimum rate.

MWC is a sub-Nyquist sampling system exploiting PR signals for spectral compression.
MWC consists of M analog channels in parallel (see Figure 2.1-(a)). Each channel consists

of a PR signal generator, a mixer, an LPF, and an ADC in sequence. Each PR signal p, (t)

for channel index i is T -periodic and outputs chips of an odd length L within a single
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period T, . Each chip lasts for a chip durationT, =TpL’1. We denote the chip speed by
f,£T," and the repetition rate of the PR signal by f, éTp‘l. The LPF has a cut-off

frequency W, /2, whereW, . denotes the bandwidth of the filter including negative

frequency. The LPF bandwidth is set tow . =qf,, where qis the channel-trading

LPF
parameter, an odd positive integer. Finally, we denote the sampling rate, which is equal at

every channel, by f,. The total sampling rate is the sum of sampling rates of all channels,

defined by f_, . = Mf

s,total = s "

MWC first compresses the input multiband spectrum using PR signals. After that, nonzero
subbands of the multiband spectrum are recovered by CS recovery algorithms. For the

successful CS recovery, all spectral components within the Nyquist range F,, of each
PR signal are needed to be independent, which requires a fast chip speed f > f, [12].

Throughout this chapter, we set f = f .
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Figure 2.1  Sampling system of AMWC. The system is equivalent to cMWC when p=1

and q'=q. In AMWC, the sampling rate is p -times lower than the filter bandwidth with
p >1 to intentionally induce aliasing.
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2.2.1. Conventional MWC

In the original paper [12] by Mishali et al., for lossless sub-Nyquist sampling, the ADC
followed the anti-aliasing rule, i.e., f,>W, .. This conventional rule has sufficed for

lossless sub-Nyquist sampling. We refer to MWC that follows the anti-aliasing rule as
conventional MWC (cMWC).

The input-output relationship of cMWC is given in [12]. The input x(t) at the i-th
channel is first mixed with the T -periodic PR signal p, (t) that periodically outputs a
sequence of L mixing chips. By the periodicity, the Fourier transform (FT) of p, (t) IS

an impulse train. The FT of the mixed signal s, (t)=x(t)p;(t) is the convolution * of

the two spectra:

S(1)2]

s(t)e* dt
“R(1)=X(1) @)

where ¢, for |=—o0,---,00 are the Fourier series coefficients of p;(t).The mixed signal
si(t) and X (f-If,) in (2.1) are filtered by the LPF H(f). We let H(f)=1 for
f € Flpe, and otherwise, H(f)=0,where F.. 2[-W /2, W, /2).Since X (f) is
band-limited by 7, the infinite-order summation in (2.1) is reduced to a finite order as

follows:

Yi(f)=S(f)H(f)

Lo+ 22
- f c X (f-If,) forf ey, @2

I=—(Lo+0p)

where L is computed by L,=(L-1)/2[12],and q, £(q—1)/2. Next, the ADC of rate

f,=T," takes samples of vy, (t), ie, y[n]=y, (t)| . By the conventional anti-

t=nT,
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aliasing rule, we set f, =W, ... Then, the discrete-time FT (DTFT) of y,[n] preserves

the spectrum of (2.2).

In (2.2), every subband X (f —If ) is spectrally correlated with nearby -1 subbands,
since the bandwidth W, is wider than the shifting interval f . To make them spectrally

orthogonal, the samples y;[n] are modulated and low-pass filtered in parallel through g

digital channels by

(2.3)

z,.[0]=| (w[n]e "™ )«h, [n]]

n=nq

for s=-g,,+,0,, where h [n] is a digital LPF with the cut-off frequency of f /2

and a flat passband response. The DTFT of (2.3) is

Z,, (e )= Zc,,ﬁ (f-If,)forf e, (2.4)

where £, =[—f, /2,f /2) . The subbands X(f-If,) in (24) are spectrally
orthogonal to each other, since the bandwidth equals the shifting interval. As X (f) isa
multiband signal, only a few subbands in (2.4) have nonzero values. If f >B , the

upper bound on the sparsity K of the subbands is K < 2K, since the uniform grid of

interval f = splits each band into two pieces at most.

Consequently, each analog channel outputs q different sequences, and therefore, cMWC
obtains totally Mq equations for input reconstruction. Depending on the number of

equations, it was shown in [12] that the input spectrum can be perfectly reconstructed.
Previously, to obtain more equations for a fixed number of channels M and for a given

specification f  for PR signal generation, cMWC has to rely on the increased sampling
rate f, =qf, by controlling the channel-trading parameter q. In this chapter, we aim to

show there is another way to obtain more equations and improve the input reconstruction
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performance, without the cost intensive ways of increasing the total sampling rate

f, o = Mf, Orreducing f_, or both.

s,total

2.2.2. Choosing PR Signals for Conventional MWC

In this subsection, we present a study on the hardware-friendly selection of PR signals,
which was published in [30].

Motivation In the MWC, the input signal is mixed with a multiple number of periodic PR
signals in parallel. PR signals play a significant role in recovering the input from the sub-
Nyquist samples by CS theory. In the original paper [12], instead of pseudo-random signals,
signals generated from independently drawn random Bernoulli sequences were used to
exploit a theoretical result of CS. However, in the perspective of implementation, such
true-random signal generators are inefficient, since it requires memory banks as many as
the chips of random sequences. In addition, even if one considers signal generators based
on pseudo-random sequences, it is still burdening to implement m independent

generators due to synchronization issues among them and large fabrication area.

Related Work For efficient generation of mixing signals, single well-designed base
sequence has been employed to generate all m mixing sequences by its random cyclic
shifts [44]-[46]. In the literatures, the CS recovery was guaranteed if the discrete Fourier
transform (DFT) elements of a base sequence have flat magnitudes. In [45] and [46], real-
and complex-valued sequences with flat spectra have been respectively chosen as the base
sequence. For enhanced noise robustness and memory efficiency, exclusive-OR operations
of the random cyclic shifts were exploited [44]. In the literature, the spectrum of a base

sequence was not restricted to be flat with the absence of theoretical performance analysis.

The prior works restricted their focuses on base sequences having flat spectra. Although it
is well known to construct non-bipolar sequences with flat spectra (e.g., ternary sequences
[47]), using arbitrary-valued sequences requires high complexity in implementation.
Meanwhile, it is conjectured that a bipolar sequence with flat spectrum exists only for
length 4. Instead, M-sequences and Legendre sequences with the nearly-flat spectra can be

considered [44], but their lengths are still inflexible. For example, m -sequences exist in
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lengths M =2"-1 for a positive integer n, and Legendre sequences exist in prime
lengths M suchthat M =3mod4.

Goal We scope the conventional MWC using random cyclic shifts of a base mixing
sequence, which is referred to as random partial Fourier structured MWC (RPFMWC). Since
the length of mixing sequence is a major parameter in deciding a sampling rate for the
lossless sampling, inflexible length of mixing sequences can increase the sampling rate
unnecessarily. Therefore, the flexibility in choosing the lengths of mixing sequences is

important for performance optimization.

We investigate the use of pseudo-random sequences supporting flexible choice of lengths
as the base sequence. In the perspective of flexible sequence length, using a bipolar
sequence having non-flat spectrum as the base sequence, e.g., a sequence randomly
generated and then fixed, would be a reasonable choice. Therefore, it is needed to
investigate the CS recovery performance of the RPFMWC with the bipolar base sequence

having non-flat spectrum.

Results We show that the CS recovery of the RPFMWC is guaranteed if and only if all

spectral elements of a base sequence are nonzero.

Theorem 2.1 (Theorem 1 in [30]) Consider sensing model (2.4). When m> O(K In*M )

where M is the length of base sequence, the reconstruction of at most K nonzero

subbands of X ( f) by L' norm minimization given in (1.5) is successful, if and only if

¢ has nonzero elements, i.e., X is invertible.

Theorem 2.1 is demonstrated by Monte Carlo experiments in Figure 2.2.
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Figure 2.2  Successful recovery rates of all nonzero subbands of X ( f) from RPFMWC for various lengths M of the base sequence

and numbers m of channels. The number of mutlibands is K, =4 .The sparsity of sensing model is K < 2Kj.
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2.2.3. Sampling Efficiency

In (2.4), MWC splits the input spectrum into many subbands along a uniform grid of a

splitting interval, and it then takes samples of the weighted sum of subbands. We denote

the splitting interval by f,. Note that the splitting interval of cMWC f

Lowwc €Quals f .
From the samples, a CS recovery algorithm (e.g., [10], [19], [37], [48]) finally recovers the
K nonzero subbands containing the split pieces of the K; multibands. Consequently,
the total sampling rate is consumed to take samples of K nonzero subbands of bandwidth
f,. This indicates that the total sampling rate required for lossless sampling by an MWC

would be at least f > 2Kf,, where the factor of 2 arises from the unknown supports

s, total
of the nonzero subbands. In contrast, a result in [33] states that, for a general sub-Nyquist
sampling system, the minimum requirement for lossless sampling of a multiband signal is

f >2K,B, where K B is the upper bound of the actual spectral occupancy of a

s, total
multiband signal. That is, when f, is far greater than B, MWC consumes a portion of the
total sampling rate inefficiently. Specifically, f, greater than B vyields a higher

probability for the K nonzero subbands to be comprised of unused bands, i.e., zeros. The

inefficient use of total sampling rate is illustrated in Figure 2.3.

Ideally, when the splitting interval f, becomes finer and closer to B while satisfying
f, > B, the sampling efficiency is improved, as shown in Figure 2.3. The efficiency is
maximized when Kf, =K,B . Based on this observation, we define the sampling

efficiency « of MWC as the ratio between the actual spectral occupancy of the multiband

signal and the total bandwidth of the recovered subbands, i.e.,

2 KB

Kf, (25)

(24

Note that, by the definition of K, « <1 always holds.
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In summary, improving « has two advantages. First, for the lossless sampling of a given

multiband signal, it would reduce the required total sampling rate f closer to the

s, total

theoretical minimum requirement f > 2K B . By the definition, the higher « closer to

s,total

1 indicates that a portion of f inefficiently consumed for taking samples of the

s, total

unused bands in Figure 2.3 is reduced. By the reduced f the number of channels M

s,total ?

or the sampling rate f, of ADC at each channel is reduced. Secondly, for given and fixed

f we will show throughout the rest of chapter that improving « vyields more

s,total !

independent equations for signal reconstruction, and thus, more complex multiband signals

with higher K can be recovered perfectly.
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Figure 2.3 Sampling system of AMWC. The system is equivalent to cMWC when p=1 and q'=q. In AMWC, the sampling rate is p

-times lower than the filter bandwidth with p >1 to intentionally induce aliasing.
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2.2.4. Limitation of Conventional MWC

For cMWC, the sampling efficiency depends entirely on the hardware capabilities of PR
signal generators, which may result in severe implementation problems. The sampling
efficiency of cMWC depends on the specifications of PR signal generators since f IS

I,cMWC

fixedto f . By the definition, the only way to improve the sampling efficiency ¢, of

CMWC has been to make the repetition rate f of the PR signals closer to B. As
discussed, the chip speed f, of PR signals should not be less than the Nyquist rate, i.e.,

f.> fo. Thus, from the relation f = f L', the chip length L is the only free

c

parameter to control f . Since B is usually far smaller than f to fit f closer to

NYQ !
B, a very long L is needed. However, in applications where f . reaches tens of

gigahertz, due to the extremely high chip speed f_, implementing PR signal generators

having a high chip length L poses problems in terms of power consumption and
fabrication area [38], [39]. Hence, other means to improve « without relying on the chip

length L of the PR signals are very important.

For example, suppose one is observing on-air radar signals of bandwidth up to B =30

[MHz] over an extremely wide observation frequency scope f . =40 [GHz]. This

setting is reasonable in radar systems [49], [50]. We discussed that the chip speed should

not be less than the Nyquist rate, i.e., f > f,,, where f,=80 [GHz]. Inthis example,
to achieve f ~B, the chip length needs to be L=2"-1. Although hardware
implementations of such PR signal generators having f, =80 [GHz] and chip length

greater than L =2"—1 were proposed in the literature [51], [52], they require very large
fabrication areas and high power consumption, which has hindered practical uses thus far.
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2.3. Aliased Modulated Wideband Converters (AMWC)

2.3.1. Problem Formulation

The goal of this section is to introduce the proposed sampling system which aims to

improve the sampling efficiency « with given and fixed specifications f , f,and L

for PR signal generation. Throughout this section, we assume small L and B and a

large fy,, = f., which implies f large enough compared to B and makes room for
improving « . Thatis, f > pB foranatural number p>1.Then, improving « can be

made without upgrading the PR signal generators and causing the said implementation
issues such as higher power consumption and larger fabrication area discussed in the
previous subsection. Thus, very wideband signals can be losslessly sampled using
commercially available PR signal generators and ADCs, while this was not possible in the

past with the conventional cMWC system.
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Multiband model

fuvo =18 [GHZ] B =30 [MHZ] Kg =10
System specification
L=2"-1 f, =142 [MHz] M =3
Parameters cMWC AMWC (with p=4)
Channel-trading parameter q=5 q'=19
Sampling rate [MHz] f,=f,0=710 f/=fqp™" =6745
Splitting interval [MHz] f, =1, =142 f,=f,p" =355
Sparsity K<2K; =20 K<2K; =20
Number of rows of X N =L =127 N =Lp =508
Total number of equations Mg =15 Mq' =57

Table 2.1 Sampling system of AMWC. The system is equivalent to cMWC when p=1 and q'=q. In AMWC, the sampling rate is p

-times lower than the filter bandwidth with p >1 to intentionally induce aliasing.
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2.3.2. Intentional Aliasing Method

The AMWC system is depicted in Figure 2.1. As mentioned already, compared to cMWC,
AMWC is designed to not satisfy the anti-aliasing rule at the ADC; rather, it is designed to
induce intentional aliasing by setting the bandwidth of LPF greater than the sampling rate.
In fact, in both cMWC and AMWC, an aliasing is introduced first by the mixer. The effect of

this first aliasing is shown in (2.2), where the mixer shifts, gives weights, and has the

signal spectrum X (f) overlapped with shifted versions of itself at intervals of f, . By

the second aliasing at the ADC, the overlapped spectrum is aliased again at intervals of

new sampling rate of AMWC f., which is smaller than the filter bandwidth. By adjusting
the relationship between f and f., the splitting interval f,, which is the interval at

which X () is split in the outputs of AMWC, is regulated.

Specifically, we set the new sampling rate f, of AMWC:

, g
fl="1f, (2.6)

p

where ' is the new channel trading parameter for AMWC and an odd number. The
bandwidth of LPF is W, =q'f,, and therefore, W, = pf] for the integer aliasing
parameter p>1. We will show that coprime p and q' with q' > p is necessary for

no information loss of X (f). The new sampling rate induces additional aliasing and

regulates the splitting interval f, to improve the sampling efficiency. We let
£t 2.7)

denote the least common shifting interval (LCS), which will become the splitting interval
of AMWC, i.e.,

_ ’
fI,AMWC = fp .
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With the introduction of new sampling rate f, in (2.6), it becomes easier to compare
AMWC with cMWC. Specifically, with the sampling rate fixed, the number of equations for
the input reconstruction obtained by cMWC and that by AMWC can be compared; with the
number of equations fixed, the sampling rates for the two can be compared. For a given
sampling rate f5’=q’fp/p, we will show in this section, the number of equations
obtained by AMWC is Mq'. For a given sampling rate f =qgf , from Section 2.2.1, the
number of equations obtained by cMWC is Mq. With the sampling rate fixed the same, i.e.,
f, = f,, we note that q'=qp. This implies that AMWC has p -times more equations than

that of cMWC. Table 2.1 presents an example of the increase in the number of equations of
AMWC. With the number of equations fixed, i.e., Mg=Mq’, on the other hand, AMWC

requires p -times smaller sampling rate than cMWC does.

In [43], a variation of MWC using a sampling rate similar to (2.6) was considered, to
analyze the noise factor incurred by the aliasing of subbands. There appear coprime
relations between p and Q' similar to that in this chapter. However, the purpose of
using coprime p and ' in [18] was completely different from that of this chapter, i.e.,

they regulated the splitting interval of the subbands to make a fair comparison with other
filterbank-based sampling systems with regard to the effect of noise. No relation between

p and g for lossless sampling and improving sampling efficiency was studied in [18].

To support intentional aliasing, AMWC requires an ADC with an operating bandwidth wider
than its sampling rate. Such an ADC can be implemented by using a wideband track-and-
hold amplifier (THA) developed by Hittite Corp. for the applications of EW and ELLINT
in [53]. This THA has an 18 GHz bandwidth and can be integrated at the front end of

commercially available ADCs of sampling rate up to 4 giga-samples per second.

To show that the AMWC obtains Mq’ equations, we observe the input-output relationships
of the aliased samples §i [n] in Figure 2.1. Without loss of generality, we assume q'=q

and f, = pf/. By the sampling theorem, the DTFT of '{/i[n] is the sum of shifts of

Y (f):
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M

Yi(e® ™)=Y Y (f-rf))

” (2.8)
G X (f —rf/=If JH (f —rf)),

r

Il
M
s

r=—ol

—00

where T’é(fs’)'1 and Y, (f) given in (2.2) is the spectrum of the output of the LPF

S

S

H (f). Within only a single period of Vi(ejz””s') in (2.8), ie, F(f,)=[f,, f,+ 1))
forany f, R, because the bandwidth of Y;(f) is limited by the LPF H (), most of
the shifts Y, (f —rf,) for sufficiently large |r| are zeros. In other words, there exist

(fo, R, R,) such that the infinite order of the outer summation in (2.8) is reduced to a

finite order, i.e.,

R, o

Yi(e ™) =303 o X (f —rf/=If, JH (f —rf)) (2.9)

r=R; I=—w

for feZ/(f,). Assuming H(f)=1 for feF, , if f,, R, and R, satisfy the
conditions of Lemma 2.2, the LPF responses in (2.9) are replaced with H(f —rfs’):l
for feZ/(f,). Note that, when p=1, i.e., no aliasing exists at the ADC, R =R,,

which is equivalent to cMWC.

Lemma 2.2. Equation (2.9) is equivalent to (2.8) if f,, R, and R, with R <R, eZ

satisfy
R,-R =p-1 (2.10)

and
f, = (RZ _gj £ (2.11)

Proof: See Appendix 2.A.
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We represent the shifting indices rf/+If in (2.9) intermsof the LCS f. Then,

Ri+p-1

Yi(el”™)= 3" >c, X (f—(rq'+lp)f;) (2.12)

for fe f;’( f,). To merge the inner and outer summations in (2.12), we use Lemma 2.3.

Lemma 23. If p and q are coprime, the linear combination rq'+Ip for

rep= {R1 R, + p—l} and | e2Z spans every integer.
Proof: We consider the following congruent relationship
k =rqg'(mod p). (2.13)

By modular arithmetic, if p and q are coprime, there always exists one-to-one

correspondence between r and k in the least residue system modulo p. Since |P|: P,
rq’(mod p) for reP in (2.13) spans every number in the least residue system of

modulo p.Hence, for reP and lez, rq'+lp=kmod p+Ip spansevery integer. M

By denoting k=rg'+Ip in (2.12), we have the equivalent relationship

0

Yi(e® ™) =3 di\ (R, p.0") X (f —ki;) (2.14)

k=—o0

for feZ/(f,), where d,, (R,p.q)are the new sensing coefficients of AMWC.
Proposition 2.4 provides the rule to obtain the coefficients d,, from the Fourier

coefficients ¢, of PR signals.

Proposition 2.4. For coprime p and q', let us define
" A 1 i 1
I(k;Rl, P.q )=E{k—q [((q) k—Rl)mod p+R1}}, (2.15)
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where (q')’l(mod p) is the multiplicative inverse of g’ modulo p. Equation (2.14) is

equivalentto (2.12) if
d; ( »P:q ) 1(kiR,p.a")" (2.16)
Proof: See Appendix 2.B.

In (2.14), the bandwidth of the subbands X (f —kf/) for feZ/(f,) equals f. andis
q" times wider than their shifting interval f. Therefore, every subband is correlated with

the closest q'—1 subbands. By making these subbands spectrally orthogonal, the M
relationships for i=1---,M are expanded to Mq' equations to enhance the input
reconstruction performance. A similar work was done for cMWC through (2.3) to (2.4),

which further divides the observing frequency domain J’Es’( f,) (2.14) into @' tiny
domains. Specifically, for u=0,---,q'—1, the u-th tiny frequency domain is defined by

F;(f,+uf ), where
Fi(fo) 2] fo, fo+ f7). (2.17)
Then, the corresponding divided outputs have relationships

'Y“i(U)(ejzﬂfT,;)
. (2.18)
=Y d (R.p.9) (f—kf,;)forfe]-“p'(fo+uf;),

k=—o0

for u=0,---,q'—1. Finally, we define the output Zi, (ejz”ﬁé) of AMWC as follows:

7 (ejZHfTF; ) é'ngu) (ejzfzrr;,)

f=f+m’

(2.19)

o0

=2 Ay )X (f-K;)

k=—o0
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for feZ;(f,). The final output zi [ﬁ} in the discrete-time domain can be obtained by

performing digital frequency modulation and low-pass filtering on 3~/i [n] as similarly

done for cMWC in (2.3). The specific design of the digital processing system is shown in
Figure 2.1-(b).

Consequently, in (2.19), the input X ( f) is split into spectrally orthogonal subbands at

intervals of f. Therefore, the splitting interval of AMWC equals the LCS f:
fI,AMWC = f;; é_p' (2.20)

which is p times lower than f By reducing the splitting interval by controlling the

I,ceMwC *

aliasing parameter p, the sampling efficiency of AMWC in (2.5) is improved. Figure 2.4

illustrates how AMWC regulates the splitting interval and improves the sampling efficiency.
In contrast, as discussed in Section 2.2.4, regulating the splitting interval of cMWC requires
a very costly solution of advanced PR signal generators with a larger chip length.

Consequently, both cMWC and AMWC obtain Mq = Mq'equations for input reconstruction,
although AMWC consumes a p -times lower total sampling rate (2.6). In Section 2.3.4, we

will show that the Mq' equations of AMWC are independent.
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(b) Output relationship between cMWC and AMWC (d) Input-output relationship of AMWC

Figure 2.4 Principle of improving the sampling efficiency by AMWC at a single analog channel is
illustrated, with setting q=3, q'=q, p=2, and m=3. At the first stage, the input spectrum X ( f) is
aliased by mixing it with the PR signal and low-pass filtering it. This aliased-version of X ( f) is depicted
as Y;(f). In (a), the main difference between cMWC and AMWC is how to take time-samples of Y;(f).
cMWC prevents the spectrum from being aliased in taking time-samples. AMWC, on the contrary, aims to

make the spectrum Y, ( f) intentionally aliased once again, as depicted as Yi ( f) in (b). In (c), as a result,
the splitting-interval of cMWC is f, whereas in (d), that of AMWC is halved to f . Thus, the sampling

efficiency of AMWC becomes doubled (as p=2).
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2.3.3. Input-Output Relationship of AMWC

For convenience of analyzing and solving linear simultaneous Mq’ equations (2.19), we

cast them as a matrix equation. To this end, we first reduce the infinite summation in (2.19)
to be finite. We then discretize the continuous spectra to form a matrix with a finite number

of columns.

Since X (f) is band-limited to fe#,, , within the limited frequency range

fe ]—“p'( fo) , the infinite summation order in (2.19) is reduced to a finite order as follow:

Ziu (%)
N, (2.21)
= z di,k+u (Rli p,q’)X (f _kfI,AMWC) forf Efp'( fO)’

K=N,

where N, and N, are, respectively, the smallest and largest index k of the subbands
X (f —Kf, e ) that contain some active value of X (f) within f e 7,,. Namely,

these indices N, and N, indicate X (f —kf, 4uc)=0 for k<N, and k>N,, and

thus help us obtain a matrix equation of (2.21) with finite dimensions. To mathematically

define N, and N,, note that the k-th subband X(f _kfI,AMWC) in (2.21) observes the

frequency range

p

F = [ fo =K awe fo =Ky amme + f’) (2.22)
of X (f).Then,theindices N, and N, are defined by

N, Zmin{k e Z: F, N Fyq # 2}

(2.23)
=min{k e Z: f, —kf, yue < fre}

and
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N, 2max{k e Z: 7, N Fyq # D) 0.2
2.24
=max{k eZ: f, —Kf, gy + f7 > Fro |,

respectively. Using the parameters and relations given in Table 2.2 and Lemma 2.2, the two
problems (2.23) and (2.24) turn into

N1=min{keZ:R2q’—W< k} (2.25)
and
NZ:max{k eZ:qu’—wjtl> k} (2.26)

respectively. As both q' and L are odd positive integers, the solutions of two problems
(2.25) and (2.26) are determined as follow:

q'+L)p

lequ'—( o+ (2.27)

and

(@-L)p

N, =R,q'- 5

(2.28)

Finally, the output spectrum Zi. (ejz””‘;) in (2.21) turns into a linear combination of

unknown subbands X(f ) for feZ(f,). The matrix-multiplication form

- kfl ,AMWC

Z=DX of (2.21) is provided by
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~ 2 fT!
ZLO(e p) dLNl dLNﬁi dLm
| : : : X(f-N,f;)
g j2x T;;
Zig (ej ) 3 dl,N1+(q’—1) dl,Nl+(q’—l)+1 dlsz+(Q'—1) X ( f- ( N, +1) f;;)
ZZ,O (ejZHfT,;) dzvN1 d2,N1+1 d2,N2 '
: : : : X (f-N,f;)
Zqu(eﬂ”m) dMNﬁW4) dMNﬁw4ﬁl o dMNﬁW4) AW cCNxo
2DeCMaxN
éze(cl\/lq'xoo
(2.29)

We denote the number of subbands, i.e., the dimension of matrix X, by N, which equals

N=N,-N,+1

IS (2.30)

Since X (f) consists of K, narrow bands over the wide Nyquist range, only a few of
its subbands X (f —kf, yuc) for feZ(f,) have nonzero values. Therefore, the

matrix X in (2.29) is row-wise sparse with a sparsity K relatedto K;.

To draw a relationship between the analytic result (2.29) and actually acquired samples

Zi,u[ﬁ:|, we convert the DTFT (2.29) to the DFT of ziy [ﬁ] by taking the frequency

samples of the infinite columns of Z and X. When the input is observed for a finite

duration T,, taking samples of the spectrum (2.21) at frequency intervals of Af =T *

does not cause any information loss. The samples of spectrum  Zi. (e"z”””') is obtained

by taking the DFT of the actually acquired time-samples z, [ﬁ} Consequently, for a

finite observation time T =2WT  for a sample length 2W , we rewrite the matrix-

multiplication form (2.29) as

Z,, = DX,y (2.31)
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where columns of z,, eC""* and X,, eC"* are sub-columns of Z and X,

respectively, at frequency intervals of Af . This concept will be exploited in Section 2.4 to

derive a revised input-output relationship of AMWC for using LPF with a non-flat

frequency response.
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Symbol Description and Relationship
f e maximum frequency of multiband signal
favo Nyquist rate of multiband signal, f,,, =2f
B K maximum bandwidth and number of the narrow bands in a multi-
'8 band signal
K number of nonzero subbands (sparsity), K <2Ky if f;/>B,
M number of analog channels
L length of PR chips within a single period
f. chip speed of PR signals, f = fy,
f, repetition rate of PR signals, f = fL
q, p channel-trading parameter, aliasing parameter
W e bandwidth of LPF, W .. =q'f,
f) least common shifting interval, f £ f p™>B
f. sampling rate of an ADC, f/=W_,p~
s ot total sampling rate, f, .., = Mf/
f, amwe splitting interval, f, \yuc = f,
A sampling efficiency, o, = KB

Kf I, AMWC

Table 2.2 Summary of AMWC Parameters (CMWC when p=1 and q
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2.3.4. Choosing the Aliasing Parameter

For a given total sampling rate, AMWC obtains more equations used for input reconstruction
than cMWC does. What remains is to check if the extended equations provide independent

information. We reveal a condition on the aliasing parameter p that necessitates the

linear system (2.29) to be well-posed for every K -sparse signal matrix X.

Proposition 2.5. There exists the unique solution of (2.29) for every K -sparse signal X

onlyif p and q' arecoprimeand q'>p.
Proof: See Appendix 2.C.

Proposition 2.5 gives a condition q'< p forcoprime p and ' that makes AMWC an ill-
posed system. This indicates that, within the set of coprime q' > p, there may be a subset

that makes AMWC guarantees the existence of unique solution of (2.29) for every K-

sparse signal matrix X.

In [10], a CS result states there exist the unique solution of a multiple measurement vector
(MMV) CS equation Z=DX forevery K-sparsesignal X if

2K < spark(D)—1+rank(X), (2.32)

where spark is the minimum number of linearly dependent columns in D. Meanwhile, the

spark of an Mq'-by-N matrix is upper bounded to Mq'+1 by the Singleton bound [54].
Based on these results, we find a sufficient condition on p and " from Monte Carlo

experiments in Section 2.5.1 (Figure 2.5) that maximizes the spark of D.

Main Result 2.6. Let Mq'> 2K . For every K -sparse signal X, there exists the unique

solution of (2.29), and therefore, AMWC does not lose any information of K -sparse signal

X,if p and q arecoprimeand q'>p.

Meanwhile, we choose p to minimize the maximum of the sparsity K, which is the

number of nonzero subbands of X (f) at splitting intervals f . The sparsity

_ !
ILAMWC — fp
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K is dependent on the center frequencies of K; multibands and their maximum
bandwidth B.When f, ., =B, every multiband occupies at most two subbands, which
implies K <2Kg. On the other hand, when f, ... <B, some multibands may occupy

more than two subbands, which provides an opportunity to increase K beyond 2K,;.

Hence, we recommend choosing the aliasing parameter p as

p< {EJ (2.33)

2.3.5. Improvement of Sampling Efficiency

We compare the sampling efficiencies of AMWC, ., and cMWC, ¢, defined in

(2.5). The sampling efficiencies are functions of the sparsity K, which is a random

variable in general. We denote the sparsity of cMWC and AMWC by K e and K e
respectively. To make them deterministic, we put assumptions on K, and K, that
in both cMWC and AMWC, the K; bands in X ( f)respectively occupies exactly one
subband, i.e., Ky =Kuywe = Kg. This occurs with high probability when f p™ > B

and the center frequencies of multibands are far enough apart from each other with a small
Kg.

Under the assumption above, the sampling efficiencies of cMWC and AMWC are obtained by

Xemwe = e85 _ E, (2.34)
Kowuc fiomuc T
and
KB pB
a = =— (2.35)
e Kae frame T
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respectively. Note that if p=1, AMWC and cMWC are completely identical, and
therefore o e = e - When p>1, the intentional aliasing of AMWC takes effect and

improves the sampling efficiency proportionallyto p.

2.4. Non-ldeal Low-Pass Filters

The input-output relationship in the previous section is based on the ideal LPF H(f)

having a flat pass-band response. However, in real applications, the pass-band response of
an LPF significantly fluctuates. In the case of cMWC, a post digital-processing technique to
equalize the effects of non-flat filter responses was proposed in [55]. Unfortunately, owing
to the aliasing at ADC, the equalizations cannot be applied to AMWC. In this section, we
instead provide a revised input-output relationship of AMWC based on the fluctuated LPF
G(f). Without loss of generality, we assume all analog channels use the same LPF. We

assume that the response G(f) is nonzero and known within the pass-band f e 7,

and is zero for f e £

. We derive a revised input-output relationship reflecting the

effect of G(f). Paradoxically, our empirical results in Section 2.5 conclude that, for a

given sampling efficiency, an irregularly fluctuated filter response is helpful to further

decrease the total sampling rate required for lossless sub-Nyquist sampling.

The derivation starts from substituting H ( f) inthe input-output relations of (2.8)-(2.12)

with G( f). Without loss of generality, we assume q'=q and f = pf,. Equation (2.9)

then turns into

R, oo

Vi ™) =3 Y e X (T -(ra'+Ip) £;)(f -ra'f))

(2.36)

for feZ/(f,), where R and R, are chosen from Lemma 2.2. By Lemma 2.3, we

substitute rq’+Ip = k and merge the outer and inner summations:
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Yi(e# ™) = NZ diy (R .0 X (=K )G(f =7, (k) f;) (2.37)

k=N,

for feF/(f,), where the sensing coefficients d, (R,p,q’), N,, and N, are,

respectively, computed from Proposition 2.4, (2.27), and (2.28). We define the function
y, of k that maps k in (2.37) to the corresponding rq" in (2.36) so that the two

equations are equivalent. Lemma 2.7 reveals the mapping rule for (k) :

Lemma 2.7. Under the conditions of Lemma 2.2 and Lemma 2.3, (2.36) and (2.37) are

equivalent if the mapping rule of y_is assigned by

7, (K)=k—=pl (k;R,, p,q"), (2.38)
where the picking regularity | (k;R;, p,q’) is defined in (2.15).
Proof: See Appendix 2.B.

As done in (2.14) to (2.19), the final outputs Ei,u[ﬁ] for u=0,---,q'-1 are obtained
by processing the time-samples §/i [n] of the spectrum (2.37) using the digital system

given in Figure 2.1-(b). Then, those spectra Zi. (ejz””’g) have the following input-output

relationships:

ZI,U (ejZ;sz;;)
N,

_ k:zmdi'“” (R p.0) X (f=kf )G (f+uf, -y, (k+u)f;) (2.39)
N,

= kZNlldi,m (Rup.@)G( f =7, (k,u) 1) X (f —KF})

for feF (f,), where y (k,u)£y,(k+u)-u.
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Consequently, the linear coefficients on the subbands X(f —kfrj) in (2.39) become

frequency-selective. To numerically solve (2.39), we discretize the continuous frequency,
as discussed in Section 2.3.3. We assume that the signal is observed for the finite duration

T, =2WT,, where 2W is the length of the discretized signal. Then, the samples of

spectrum are defined by

f=wT,*
N,
:k_zmd"“” [G(f =y (k) f)X(f —kf;)l:wl (2.40)
N
_ kzN: i (W] X (F —KF ) e

for wew= { fOTO,---,( f,+ f;;)To —1} , Where the frequency-selective sensing coefficients

b [W] are defined as

b(i,u),k [W] 2 di,k+uG ( f _7’(k’ U) f[;) (241)

f=wT,?

for we . Note that, by the relation between DFT and DTFT, the spectrum samples
(2.40) are obtained by taking the DFT as follows:

~ w1 ~ j ni wmo
Ziv[w]= D] zi,u[n]eJ2 "™ forwe W, (2.42)

n=0
where ziy [ﬁ] are the output sequences of AMWC.

For convenience, we represent the input-output relation of (2.40) for we W in a vector

form as

Z[w]=B[w]X[w], (2.43)
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where the elements of the output column vector Z[w]e C"" are Zi.[w] for row indices
i=1---,M and u=0,---,q'=1. The unknown column vector X[W]e(C“ consists of

X (f - kf;) for row indices k =N,,---,N,. The frequency-selective sensing matrix

f=wT,
B[w]eC""™" consists of by, [w] with row indices i and u and column index k.

The CS model (2.43) is called MMV with different sensing matrices, for which many
numerical solvers have been developed [8], [56].

The existence of unique solution of (2.43) depends on the spark of sensing matrixB[w].
Note that from (2.41), the elements of B[W] are multiplications of the elements of D

and the samples of the low pass filter G( f ) . In [57], Davies et al. proved that the spark of

a matrix from an independent continuous distribution achieves the Singleton bound with

probability one. When the filter response G(f) is designed to be irregular, i.e., its
samples are drawn from an independent random distribution, the spark of B[w] after
multiplication with the samples of G( f) should grow closer to achieving the Singleton

bound. When the spark of B[w] indeed achieves the Singleton bound and the condition

(2.32) holds, for every K -sparse signal X the unique solution to (2.43) always exists.
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Figure 2.5. Independency rates under various p and q' for which randomly selected Mg’ columns of the sensing matrix D e CY"" of AMWC are

independent. When p and q' are coprimeand q' > p, every selection of Mqg" columns is linearly independent.
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2.5. Simulation

2.5.1. Spark of Sensing Matrix

To support Main Result 2.6, the sufficiency of lossless sub-Nyquist sampling by AMWC, we

demonstrate that the sensing matrix D with coprime parameters q' > p achieves the

Singleton bound.

Monte Carlo experiments were performed under various settings of p and q'. With
L =127, we used the maximum length sequences of length L as the chip values of PR
signal for each channel i=1,---,M . We set the number of analog channels to M =3. For
5x10° independent trials, we randomly selected Mq’ columns of D and counted the

rate for which the selected columns are linearly independent.

Figure 2.5 shows how the linear independency of columns in D varies as p and g’
change. The white points in the plot indicate the pairs of p and q' where every
selection of Mg’ columns of D is linearly independent. The dark points indicate that at
least one selection of Mq' columns has linear dependency. The upper triangular area

indicates the region of (p,q’) with q' > p where all points except for the points that p

and g' are not coprime belong to the white set. That is, for coprime q > p, all the
selections of Mq' columns are linearly independent, and thus the spark of D achieves

the Singleton bound. This result is consistent with Proposition 2.5 and supports Main
Result 2.6.
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(a) Ky = 10, ideal low-pass filters

(¢) K = 10, random low-pass filters
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Figure 2.6. Rate of successful support recovery of cMWC and AMWC as a function of total sampling rate for various aliasing parameters p

and multibands K . The number of channels was fixed to M =3. Ideal ((a)-(b)) and random ((c)-(d)) low-pass filters were used.
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Figure 2.7. Rate of successful support recovery of cMWC and AMWC as a function of total sampling rate when SNR=3 [dB]. The number
of channels was fixed to M =3, and the number of multibands in X ( f) is fixed to K, =10. Ideal (a) and random (b) low-pass filters

were used.
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Figure 2.8. Rate of successful support recovery of cMWC and AMWC as a function of sampling rate of each channel for various aliasing
parameters p and the number of channels M . The number of multibands was fixed to K, =10. Ideal (a) and random (b) low-pass

filters were used
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2.5.2. Reduction of Total Sampling Rate

We demonstrate that, with the improved sampling efficiency, AMWC indeed reduces the
total sampling rate required for lossless sub-Nyquist sampling for given specifications of
PR signals. Additionally, when the frequency response of low-pass filters is drawn at
random, the reduction of total sampling rate is boosted. The reduction of total sampling

rate reduces the number of channels as well as the sampling rate of each channel.

For simulation, we generated real-valued multiband inputs x(t) as the sum of K,

narrow band signals of bandwidth B =5 [MHZ]. The energies of narrow bands are equal.
The center frequencies of narrow band signals were drawn at random, while those spectra

were not overlapped with each other. The maximum frequency of x(t) does not exceed

fox =10 [GHz]. The signals last for the duration T, =2WT, seconds with W =15. The

max

parameters of PR signals were L=127, f =2f L7 =157.48[MHz]. We used

maximum length sequences with different initial seeds as the chip values of PR signals for

channel indices i=1,---,M. We expressed the continuous signals in simulation on a dense
discrete-time grid with intervals of (Zq’fNYQ )71 seconds. The bandwidth of low-pass filters
and the sampling rate followed the parameter relations of AMWC, i.e., W . =q'f, and
f/= p~W,,. . We considered the ideal LPF H (f) with a flat passband response and the
non-ideal LPF G(f) with an irregular passband response. In simulation, the impulse
response of G( f) was drawn initially from the normal distribution, windowed to limit
the filter bandwidth, and then held fixed throughout the whole simulation. We call G ( f )
the random LPF with this irregular passband response. Under various settings of p, q',

and K; with coprime q'>p, we measured the rate of successful recovery of the

supports of X Dby the distributed CS orthogonal matching pursuit (DCS-SOMP)
algorithm [56]. For single supports estimation, DCS-SOMP was run for 2K, iterations. It

aimed to find one distinct support per each iteration out of K supports, givenK <2K,.

Once the supports are found, x can be reconstructed by the least squares. The successful
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support recovery was declared if S< S, where S and S are, respectively, the true and
found supports. The support recovery rate in simulations was defined as the number of

successful support recovery divided by total 500 trials with randomly regenerated x(t).

Figure 2.6 shows the support recovery rate of AMWC as a function of total sampling rate

when M =3.We set K, ={10,20}. Plots (a) and (b) are results of using the ideal LPF

H ( f ) It is demonstrate that compared to cMWC, AMWC reduces the total sampling rate

required for reconstruction of given multiband signals. Inversely, for a given total sampling
rate, AMWC takes sub-Nyquist samples of more multibands than cMWC does, without

information loss.

However, when p increases, although the sampling efficiency is improved proportionally
to p from (2.35), the total sampling rate does not decrease anymore. This is caused by
the lack of degrees of freedom in the sensing matrix D. The elements of D are made of

the Fourier coefficients ¢, of the PR signals, and most elements are repeatedly reused.

Although it was demonstrated in the previous sub-section that D has the maximum spark
and well preserves the sparse signal X, recovering X by non-optimal CS algorithms

requires D to have a large degrees of freedom [9]. This limitation is overcome by using

the random LPF G(f).

Plots (c) and (d) are the results of using the random LPF G(f). It is shown that AMWC

further reduces the total sampling rate required for successful support recovery as the

sampling efficiency improves. Consequently, the random response of G( f) enhances the

degrees of freedom of sensing matrices B[w] for different frequency indices w and

improves the recovery performance by the non-optimal algorithm DCS-SOMP. This
enhancement cannot be applied for cMWC, since the effect of random response becomes

removable by equalization [55].

In Figure 2.7, additive white Gaussian noise n(t) of SNR=3 [dB] was considered, where

the signal-to-ratio noise (SNR) in decibel is defined as SNR =10 log,, (||x||2/||n||2) We
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fixed Kz =10. Plots (a) and (b) are the results for using the ideal LPF and the random

LPF, respectively. Despite the additive noise, the results show that AMWC still reduces the

total sampling rate or improves the recovery performance. Including the results in Figure

2.8, we conducted more simulations under various SNR={-6,-3,0,3,12} [dB] but

omitted to repeat the plots as the graphs exhibit the similar pattern. Instead, we
summarized the minimal sampling point results in Table 2.3, where the minimal sampling
point is defined as the minimal total sampling rate which achieves the support recovery

rate of 90%. In the results, as p and/or SNR increase, the minimal sampling point gets

smaller, which is expected.

Figure 2.8 demonstrates that AMWC reduces the number of channels required for the

support recovery. We set K, =10 and compared the support recovery rates of cMWC and

AMWC for various M and given sampling rate of each channel. In plot (a), the support
recovery rate of AMWC slightly outperforms cMWC, although AMWC uses fewer channels
with a lower sampling rate of each channel than cMWC. Additionally, in plot (b), when the
random low-pass filter is used, AMWC using a single channel outperforms cMWC using six

channels.

As the increase in the number of rows in Z in (2.29) or in (2.43) by p-times, the

performance of AMWC is improved but the computational complexity (CC) for the support
recovery with AMWC inevitably increases as well. The CC of a compressed sensing

algorithm depends on the sizes of matrices in the linear inverse problem Z =DX. Let

Qequationr Qsampte + ANA Qgppang denote the number of rows and columns of Z and the
number of rows of X for cMWC problem, respectively. We make note of the report that

the CC of DCS-SOMP with cMWC s O ( Qa0 QuobendQuampie ) [56]- When the two total

equation

’
s, total

sampling rates f, ., of cMWCand f of AMWC are equal to each other, the number of

rows of Z of AMWC becomes pQ and that of X becomes pQ,,,.. . respectively,

equation

as discussed in Section 2.3.2. In addition, since the bandwidth of the subbands of AMWC is
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p -times narrower than that of cMWC, the number of columns of Z becomes P~ Q-

Thus, the CC of DCS-SOMP with AMWC is O ( D" Q00 Quuptans Qeample ) -
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SNR[dB] | LPF p=1 (CMWC) | p=2 (AMWC) | p=3 (AMWC) | p=4 (AMWC)

Ideal 6.142 4.016 3.622 3.898

0 Random 6.142 3.543 2,677 2.244
Ideal 6.142 3.543 3.622 3.425

3 Random 6.142 3.071 2.047 1535
) Ideal 5.197 3.071 2,677 2.953
Random 5.197 2508 1.732 1.535

Ideal 5.197 3.071 2,677 2.480

3 Random 5.197 2,508 1.732 1.299
Ideal 5.197 3.071 2,677 2.244

12 Random 5.197 2.126 1.732 1.063

Table 2.3 The Total Sampling Rate Required for 90% Support Recovery Rate with

Various SNR and Values of p. The floating numbers in cells indicate the minimal total
sampling rate in GHz which achieves the support rate recovery of 90%. The number of

analog channels and multibands were setto M =3 and K, =10, respectively.
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2.6. Conclusion

We proposed a new MWC system called AMWC which improves the sampling efficiency by
intentionally inducing an aliasing at the ADC. We showed that the improved sampling
efficiency leads to reduction on the sampling rate and number of channels required for
obtaining a certain number of equations for signal reconstruction. We provided conditions
that the sensing matrix of the equations obtained by AMWC achieves the Singleton bound,
and thus no loss from sampling is guaranteed. In summary, the improved sampling
efficiency of AMWC reduces the total sampling rate required for lossless sampling. In other
words, with fewer channels and less sampling rate of each channel than those of the
conventional MWCs, a multiband signal can be captured without information loss by
AMWC. Conversely, for given hardware resources, the input reconstruction with AMWC
outperforms the conventional MWCs. Extensive simulation demonstrated that AMWC
indeed reduces the total sampling rate or improves the reconstruction performance
significantly. Additionally, it was demonstrated that the benefits of AMWC are maintained in
various SNRs. Moreover, use of LPF with random passband response, it was shown,
further improves the sampling efficiency.

Appendices

Appendix 2.A  Proof of Lemma 2.2

With the relationship f .. = pf., the pass-band frequency of H( f —rfs’) in (2.8) is

pf,

b ,rfs’+7j. When we observe (2.8) only for a single period

given by fe[rfs’— 5

F!(f,), since W > !

S s !

some of H(f—rf)), the pass bands of which include the
frequency domain 7:5'( fo), can be replaced by the constant frequency response. Without

loss of generality, we set the pass-band response to one, i.e., H(f):l for felF.

Then, for reZ satisfying
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(2.44)

and

!
rf+

pzfs > f, 4, (2.45)

the shifts of filter responses in (2.8) are replaced with H(f—rfs’):l within

f e 7/(f,). Let R and R, be the minimum and maximum integers r satisfying (2.44)

and (2.45), respectively. Additionally, for (2.8) and (2.9) to be equivalent, we add some

conditionson R, and R,such that the pass bands of H(f —rf/) for r smaller than R,

and greater than R, have no intersection with f e Z/(f,). In other words, we have

following conditionson R, and R,:

(R, +1) f, - pzfs > f 4 f! (2.46)
and
(R -1) fs'+p7f53 f, (2.47)

so that H(f—rf/)=0 within feF/(f,) for r<R or r>R,. By combining (2.44)

and (2.46), we have a conditionon R, that

Rf_ P ¢ (2.48)
2
and from (2.45) and (2.47), we have a conditionon R, that
., pf{ :
R f/+ 25 =f,+ f. (2.49)
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Finally, combining (2.48) and (2.49) provides the conditions of Lemma 2.2. |

Appendix 2.B  Proofs of Proposition 2.4 and Lemma 2.7
Proof of Proposition 2.4

We track the input-output relation starting from (2.12):

R 0

vai(ejznfT;): 22: z Cile(f _(|p+rq') fp')

r=R, I=—x

for feJ—"s’( f,), where R, R,, and f; satisfy Lemma 2.2. Alternatively, by using

r'=r—R,, we have

T(e )= S S o X (1 -(p+(r+R)a) 1)
;:0 = (2.50)
=Y Y e X (1 =(+(r+R)a) 1)

for feZ/(f,), where R,—R =p-1 by Lemma 2.2. We replace the term (r'+R,)q’
in (2.50) by a combination of its quotient x_ (r’;q',R;) and remainder p,(r’;q',R;) by

divisor p, which are, respectively, defined by

#, (1, Rl)é{(m—:l)q’J (2.51)
and
Py (10, R)2((r'+R;)q")mod p. (2.52)

By substituting (r'+R,)q"=p-#,(r’;q' R )+p,(r’q,R,) into (2.50), we have

-59 -



¢ X (f=(lp+p-u(r)+p(r)f) (2.53)

o

() K ( f—(lp+p(r)) fp’)

for f e F/'(f,), where the notations ., (r’;q",R;) and p, (r’;q',R,) are simplified to
y(r’) and p(r’), respectively. When p and q' are coprime, by modular arithmetic,
there exists one-to-one correspondence between p(r’) and r’ modulo p. We arrange

the order of inner summation of (2.53) by introducing a utility variable

v p(r')e{0,--, p-1}:

<

i (ejz”rr;)

(2.54)

=]
LN

Il
M

| Ci,l—y(pgl(v;q’,Rl))X ( f _(Ip +V) fl;)

I
o

—o0 V

for f e Z/(f,), where the inverse p.*(v;q’,R;) of the remainder p,(r;q’,R;) modulo

p is computed by
Py (i, Rl)é<v(q’)*l— Rl)mod P, (2.55)

where (q’)’1 mod p is the multiplicative inverse of ' modulo p. We simplify the
expression p.*(v;q,R) to p~*(v). From Lemma 2.3, we can merge the inner and outer

summations of (2.54) as follows:

V(e ™)=Y iy X (f —ki;) (2.56)

k _
% !(kmod p))

for feZ/(f,).
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We now simplify the picking regularity of the coefficients Co) in (2.56), which is

defined by

(2.57)

=0 ) (2.59)

Thus, the proof is completed. |

Proof of Lemma 2.7

We track the input-output relation starting from (2.36):
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R, o

Vi ™) =2 Y e X (1 -(ra'+Ip) £;)(f -ra'f))

r=R, I=—w

for f e Z/(f,). Under the conditions of Lemma 2.2 and Lemma 2.3, by using r'£r-R,,

we have

i7i(ej2nﬂg)
= RZ,RI Y 6X (f-(p+(r+R)a) f,)6(f—(r'+R)at;) (2.60)

00

-

:Zi:ci',x(f ~(Ip+(r'+R) ) fp’)G(f —(r'+ Rl)q'frj)

00

r'=01

for f e}‘s'( f,). As done in (2.50) to (2.54), we introduce a utility variable vép(r’)
and substitute (r'+R,)q’' = p~y(p_1(v))+v into the inputs of X and G in (2.60). It

then follows

. o ci’J(k;Rlypyq,)X(f—(Ip+v)fFj)

PETRIZ G (pue ) ) 1)

(2.61)

for f e F/(f,). After merging the inner and outer summations based on Lemma 2.3, we

obtain (2.37)

)= S a0 Rt X (1-K8(1 7,0 1)

k

for feF/(f,), where y (k) isdefined by

7, (k)2 pu(p™(kmod p))+kmod p 262
= p,u(p’l(k))+kmod p.

By (2.58) and the definition of p(k) in (2.55), (2.62) turns into
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7,(K)=(p7(K)+R )0’
:q’[(kq‘l—Rl)mod p+R1]. (263)
By the definition of 1(k;R;, p,q') in (2.15), we finally have
7, (k)=k—=pl(k;R, p.q'). (2.64)
Thus, the proof is completed. |

Appendix 2.C Proof of Proposition 2.5

We first show that if p>q' for coprime p and ', at least two columns of D are

identical. Then, from a result in [10], this violates a necessary condition for the unique

existence of a K -sparse solution.

We first mathematically formulate the meaning of two columns of D being identical.

From Proposition 2.4 and (2.29), the entries di’kw(Rl,p,q') of D are picked from

where k and u in d represent the column and row position,

i,k+u

Ci"(k:Rlvp,Q’) '
respectively. To search for identical columns in D, we investigate the existence of pairs

(k*,a)*) of a column index k™ and shift index " suchthat d . =d . . forevery

row index ueQ={0,---,q'—1}. In other words, we find pairs (ka)) satisfying

| (k" +o +u;R, p,q') =1 (K +U;R, p,q'). (2.65)

for every ue @, where the function 1 is defined in (2.15). We use a computation result

of I(k)=1(k;R;, p.q') inthe second line of (2.59):

'(k)Z%—(p_l(k?;Rl)q,, (2.66)
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where p7 (k)£ p.'(k;q',R) is a function modulo p defined in (2.55) by
p;l(k;q’,Rl)é(k(q’)_l—Rl)mod p. By substituting (2.66) into (2.65), we rewrite (2.65)
as
I (k*+a)* +u): I (k* +u)
(2.67)

e pt(k +o +u)=p* (K +u)+?.

We show that, if p>q' and coprime, there exists at least one pair (ka)) of the

column index k* and shifting index @ that satisfy (2.67) for every row index ueQ.
Before proceeding, we check a computation of p‘l(k+q’+u) for every ue Q. By the

definition, it follows

p’l(k+q’+u):((k+q'+u)(q')‘l—Rl)mod p
(((k+u)(q1)fl_Rl)mod p+1)mod p (2.68)
:(pfl(k+u)+1)mod p.

Note that (2.68) indicates when " is chosen to (', it satisfies (2.67) , for k™ eZ

such that p~* (k" +u)< p-1.

What task remains is to show the existence k* satisfies p’l(k* +u)< p—1 for every
row index ue @, which implies the existence of identical columns in D and completes
the proof. To this end, we find a set of k(mod p) such that p*l(E+u) = p—1. From the

definition, we have

(2.69)
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Note that (R,—1)q’' is a constant. Since the right-hand side of (2.69) varies by ueQ,
the cardinality of set of k(modp) such that p‘l(EJru): p-1 is |Q|=q . Since
p>q , this implies there exists k"(modp)e{0,---,p-1} such that

p (k" +u)<p-1,and k" eZ suchthat p™*(k*+u)<p-1 existsas well.

Consequently, if coprime p>(q’, there must exist at least one pair of identical columns in
D. The existence of identical columns in D implies spark(D)=2. Theorem 2 in [10]

states that there exist the unique solution of a linear equation Z=DX for every K-

sparse solution X only if

. spark (D)—1+rank (X)
2

K

, (2.70)

where spark is the minimum number of linearly dependent columns in D . If

spark(D)=2, for signals X with rank(X)<2K -1, the condition p>q’ violates

(2.70). n
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Chapter 3

Profitable Double-Spending Attacks

3.1. Introduction

A blockchain is a distributed ledger which has originated from the desire to find a novel
alternative to centralized ledgers such as transactions through third parties [20]. Besides
the role as a ledger, blockchains have been applied to many areas, e.g., managing the
access authority to shared data in the cloud network [58] and averting collusion in e-
Auction [59]. In a blockchain network based on the proof-of-work (PoW) mechanism, each
miner verifies transactions and tries to put them into a block and mold the block to an
existing chain by solving a cryptographic puzzle. This series of processes is called mining.
But the success of mining a block is given to only a single miner who solves the
cryptographic puzzle for the first time. The reward of minting a certain amount of coins to
the winner motivates more miners to join and remain in the network. As a result,
blockchains have been designed so that the validity of transactions is confirmed by a lot of

decentralized miners in the network.

A consensus mechanism is programmed for decentralized peers in a network to share a
common chain. If a full-node succeeds in generating a new block, it has the latest version
of the chain. All of the nodes in the network continuously communicate with each other to
share the latest chain. A node may run into a situation in which it encounters mutually
different chains more than one. In such a case, it utilizes a consensus rule with which it
selects a single chain. Satoshi Nakamoto suggested the longest chain consensus for Bitcoin
protocol in which the node selects the longest chain among all competing chains [20].
There are also other consensus rules [23],[60], but a common goal of consensus rules is to
select the single chain by which the most computation resources have been consumed

based on the belief that it may have been verified by the largest number of miners.
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A double-spending (DS) attack aims to double-spend a cryptocurrency for the worth of
which a corresponding delivery of goods or services has already been completed. The
records of payment are written in transactions and shared in a network via the status-quo
chain. Thus, to double spend, attackers need to replace the status-quo chain in the network
with their new one, after taking the goods or services. For example, under the longest chain
consensus, this attack will be possible if an attacker builds a longer chain than the status-
quo. Nakamoto [20] and Rosenfeld [27] have shown that the higher computing power is
employed, the higher probability to make a DS attack successful is. In addition, if an
attacker invests more computing power than that invested by a network, a success of DS
attack is guaranteed. Such attacks are called the 51% attack.

In the last few years, unfortunately, blockchain networks have been recentralized [61],[62],
which make them vulnerable to DS attacks. To increase the chance of mining blocks, some
nodes may form a pool of computing chips. The problem arises when a limited number of
pools occupy a major proportion of the computing power in the network. For example, the
pie chart shown in Figure 3.1 illustrates the proportion of computing power in the Bitcoin
network as of January 2020. In the chart, five pools such as F2Pool, BTC.com, Poolin, and
Huobi.pool, occupy more than 50% of the total computing power of Bitcoin. In a
recentralized network, since most computing resources are concentrated on a small number
of pools, it could be not difficult for them to conspire to alter the block content for their
own benefits, if not aiming to double spend, more probable. Indeed, there have been a
number of reports in 2018 and 2019 in which cryptocurrencies such as Verge, BitcoinGold,
Ethereum Classic, Feathercoin, and Vertcoin suffered from DS attacks and millions of US

dollars have been lost [28].
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Figure 3.1. Computation power distribution among the largest mining pools provided by
BTC.com (date accessed: Nov. 24, 2020).

In addition to the recentralization, the advent of rental services which lend the computing
resources can be a concern as well [63]. Rental services such as nicehash.com which
provide a brokerage service between the suppliers and the consumers have indeed become
available. The rental service can be misused for making DS attacks easier. The presence of
such computing resource rental services make the cost, to make a profit from double
spending, significantly reduced. It is because renting a required computing power for a few
hours is much cheaper than building such a computing network. Indeed, nicehash.com
attracts DS attackers to use their service by posting one-hour fees for renting 51% of the
total computing power against dozens of blockchain networks on their website

cryptoS1.app.

Success by making DS attacks is possible but is believed to be difficult for a public
blockchain with a large pool of mining network support. By the results in [20] and [27], 51%

attack has been considered as the requirement for a successful DS attack [64]. This
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conclusion however shall be reconsidered given our result in the sequel that there are
significant chances of making a good profit from DS attacks regardless of the proportion of
computing power. The problem to consider, therefore, is to analyze the profitability of such

attacks.

The analysis of attack profitability requires the ability to predict the time an attack will
consume for a success, since the profit would be a function of time. Studies in [65]-[73]
provided DS attack profitability analyses, but their time predictions were not accurate.
Specifically, to make the time prediction easier, they either added impractical assumptions
to the DS attack model defined by Nakamoto [20] and Rosenfeld [27] or oversimplified the
time prediction formula (see Section 3.6 for details). Whereas, we follow the definition of
DS attack in [20],[27], and therefore we need to develop a new set of mathematical tools
for precise analysis of attack profitability that we aim to report in this chapter.

3.1.1. Contributions

We study the profitability of DS attacks. The concept of cut-time is introduced. Cut-time is
defined to be the duration of an attack attempt, from the start time to the end time of an
attack. For each DS attempt, the attacker needs to pay for the cost to run his mining rig. A
rational attacker would not, therefore, continue an attack indefinitely especially when
operating within the regime of less than 50% computing power. To reduce the cost, the
attacker needs to figure out how his attack success probability rolls out to be as the time
progresses. We define that a DS attack is profitable if and only if the expected profit, the
difference between revenue and cost (see equation (3.29)), is positive. Our contributions

are summarized into two-folds:

First, we theoretically show that DS attacks can be profitable not only in the regime of 51%
attack but also in the sub-50% regime where the computing power invested by the attacker
is smaller than that invested by the target network. Specifically, a sufficient and necessary
condition is derived for profitable DS attacks on the minimum value of target transaction.
In the sub-50% regime, we also show that profitable DS attacks necessitate setting a finite

cut-time.
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Second, we derive novel mathematical results that are useful for an analysis of the attack
success time. Specifically, the probability distribution function and the first moment
expectation of the attack success time have been derived. They enable us to estimate the
expected profit of a DS attack for a given cut-time. All mathematical results are
numerically-calculable. All the examples to find the theoretical results in this chapter are

provided in our web-site®.
3.1.2. Contents of Chapter

The remainder of this chapter is organized as follows. In Section 3.2, we define DS attack
scenario and sufficient and necessary conditions required for successful DS attacks. Also,
we define random variables that are useful in analyzing the attack profits. Section 3.3
comprises the analytic results of stochastics of the time-finite attack success. In Section 3.4,
we define the profit function of DS attacks, followed by new theoretical results about the
conditions for making them profitable. In Section 3.5, an example analysis of DS attack
profitability in sub-50% regime against BitcoinCash network is given. Section 3.6
compares our results with related works. In Section 3.7, by using Monte Carlo experiments,
we check the correctness of our mathematical results given in 3.3. Finally, Section 3.8

concludes the paper with a summary.

3.2. The Attack Model

We define DS attack that we consider throughout this chapter. We also define DS attack
achieving (DSA) time, which is the least time spent for an occurrence of double-spending.
The DSA time is a random variable derived from a random walk of Poisson counting

processes (PCP).

! https://codeocean.com/capsule/2308305/tree
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3.2.1. Attack Scenario

We extend a DS attack scenario which has been considered by Nakamoto [20] and
Rosenfeld [27]. Specifically, we additionaly investigate a time-finite attack scenario: an
ongoing attack can be stopped at a predetermined time for some profit. There are two
groups of miners, the normal group of honest miners and a single attacker. The normal

group works for the honest chain.

When the attacker decides to launch a DS attack, he/she makes a target transaction for the
payment of goods or services. In the target transaction, the transfer of cryptocurrency
ownership from the attacker to a victim is written. We denote t=0 as the time at which
the last block of the honest chain has been generated. At time t=0, the attacker
announces the target transaction to normal group so that normal group starts to put it into
the honest chain. At the same time t =0, the attacker makes a fork of the honest chain
which stems from the last block and builds it in secret. We refer to this secret fork as
fraudulent chain. In the fraudulent chain, a fraudulent transaction is contained which alters

the target transaction in a way that deceives the victim and benefits the attacker.

Before shipping goods or providing services to the attacker, the victim will obviously
choose to wait for a few more blocks on the honest chain in addition to the block on which
the his/her transaction has been entered, i.e., so-called block confirmation. Karame et al. in
[74] showed the importance of block confirmation: attackers are able to double-spend
against zero block-confirmation even without mining a single block on the fraudulent chain
at all. The number of blocks the victim chooses to wait for is referred to as the block

confirmation number N;. € N, which includes the block on which the target transaction is

entered.

The attacker chooses to make the fraudulent chain public if his/her attack was successful.

An attack is successful if the fraudulent chain is longer than the honest chain after the

moment the block confirmation is satisfied. We define two necessary conditions Q(l), Q(Z)

for a success of DS attack:
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Definition 3.1. A DS attack succeeds only if there exists a DS attack achieving (DSA) time
Tosa € (O,oo) such that

1. G": (block confirmation) the length of the honest chain for the duration of time Tosa

has grown greater than or equal to N, and

2. ¢%. (success in POW competition) the length of the fraudulent chain for the duration

of time T, has grown longer than that of the honest chain.

Rational attackers will not wait for his success indefinitely since growing the attacker’s
chain incurs the expense per time spent for operating the computing power. The attack thus
shall put a limit to the end time to cut the increase of loss. We refer to this end time as the

cut-time t , € R". A sufficient condition for the success of DS attack can be defined with

applying the cut-time t_,:

Definition 3.2. For a given cut-time t . e R", the success of DS attack is declared if and

cut

’ teut

only if there exists a DSA time Ty, €(0,t,,) at which G" and G in Definition 3.1

has been achieved.
3.2.2. Stochastic Model

We model the conditions in Definition 3.2 with a stochastic model. We fit the block
generation process using the PCP [75] with a given block generation rate 4 (blocks per
second). Including Nakamoto [20] and Rosenfeld [27], it has been most conventional to
analyze the block generation process of a blockchain using PCP. A rationale why the block
generation process is modeled as PCP is given in Bowden et al. [76], where experiments
show the fitness of PCP model to real data samples from a live network.

We denote the lengths of the honest chain and the fraudulent chain over time te (O,oo] by
two independent PCPs, H(t)eNO with the block generation rate A, (blocks per

second) and A(t)eN , With the block generation rate A,, respectively. Both processes
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start at the time origin t =0(at which the DS attack is launched) at which the both chains

are at the zero states, i.e., H(0)=A(0)=0. Each chain independently increases at most

by 1 at a time point. An increment of 1 in the counting process occurs when the pertinent
network adds a new block to its chain.

We represent the difference between A(t) and H(t)in a discrete-time domain as a
random walk S,eZ for ieN. For this purpose, we first define two continuous

stochastic processes M (t) and S(t), which are respectively defined as
M (t):=H(t)+A(t), (3.1)
and
S(t):=H(t)—-A(t). (3.2)
The first process M (t) is also a PCP [75] with the rate
d= Ayt A (3.3)

The second process S(t) is the continuous-time analog of the random walk S, €Z for

i e N such that

S, =S(T;), (3.4)
where T, is the state progression time defined by

To=inf{teR" :M(t)=i |, (3.5)

which increases as i increases. Random walk S, is a stationary Markov chain starting

from S, =0. The state transition probabilities [75] are given by
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p, = Pr(Si:n—1|SH:n)=£, (3.6)
A
and
. A
Py =Pr(S, :n+1|Si_1:n):Z, (3.7)

for all ieN and neZ . The state transition probabilities p, and p, are the

proportions of computing power occupied by the normal miners and that by the attacker,
respectively.

We define independent and identically distributed (i.i.d.) state transition random variables

A; € {+1} ~ Bernoulli( p,,) as
A =5-S.,, (3.8)
for ieN. Notethat S, = LZOAk :

The stochastic process S; is measurable with respect to a filtration F =o (A, A,,--+,A;),

i.e. the o -algebra generated by A, forall 1<k <i.Also, Givenevents {M (t)=i} for

i e N, we define a sequence of probability space (Q;,%,P,), where O, = {J_rl}i and P

is the probability measuer.

Definition 3.3. ADS attack DS( p,,t.,; Ngc ) is arandom experiment that picks a sample

weQ) .
3.2.3. DS Attack Achieving Time

Definition 3.4. For a given DS sample @ of DS(p,,t,;Ng) Which achieves the

necessary conditions ¢¥and G2 in Definition 3.1 at a state index i, we define the DSA

time T, by the state progression time T, defined in (3.5).
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To express Ty, as a random variable, we construct two events DJ.(l)ch and
DY cq,. One event set DY for je{Ny,Ng +1,-+,00} consist of DS samples
which achieves the block confirmation G at state j for the first time. The other event
set D for ie{j,j+L-,00 and je{Ng, Ny +1---,00} consists of @ which
achieves the success in the PoOW competition G"? at state i for the first time with
assuming that 6" has been already achieved at state j. Subsequently, we aim for the
samples a)eDgl)ﬂDi(i) to achieve the two conditions in Definition 3.1 at a state pair

(i, j) for the first time.

Formally, we first construct the set Dj(l) focusing only on the first j transitions A, for
k=1,--,j of DS samples @ with two requirements; one is that they must have N,
number of +1’s and j—N,. number of —1’s; and the other is that the j-th transition

A; mustbe +1 to guarantee that they have never been achieved in any states prior to the
state  j . The former requirement implies that all we Dj(l) hold
S, :ZiﬂﬂAi (0)=2Ng. —j . For example, when N, =2 and j=5 a sequence
(+1,—1, -1,-1, +1,---) of state transitions satisfies the first requirement, and also satisfies

S, =2Ng—j.

We next construct the set Di(i) which does not care about the first j transitions A, for
k=1,---, ], but only focuses on the interim transitions A, for m= j+1,---;i. By the
definition, all sequences @eD? must achieve G" before the j -th state, which
implies that they must hold S; =2N,. — j. The rest requirement for each @ e Di(i) is that
the state changes from the starting state S; =2N,. —j to the goal state S, =-1, while

any interim states S, remain non-negative; i.e., S, >0 foreach k= j+1,---,i—1.
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The sets Dj(l) for each j are mutually exclusive as each of which represents the first
satisfaction of the block confirmation condition exactly at the j-th state. For example, if
weDY then we DY since o already has achieved the block confirmation at the 5-th

state for the first time before reaching the 6-th state. The sets Di(j) for all (i, j) are also

mutually exclusive for the same reason. Thus, their intersections DJ.(l) N Df? for all (i, j)

are also mutually exclusive.

By Definition 3.4, the attack achieving time T, can be measured if there exist index
pairs (i, ) such that we DYNDY . By the mutual exclusivity of DY ND? for
indices i and j, if there exists such a pair (i,j), it must be unique. That is, if

we DY ND?, Ty, equals T.Asthe result, Ty, can be rewritten as follow,

(3.9)

T, if 3(i,j)eN* 0e DY NDY,
TDSA = ) ’
00, otherwise.

3.3. The Attack Probabilities

We aim to calculate the probability distribution function (PDF) of the DSA time Ty, .

Using this, the success probability of DS attack with a given cut-time t., can be figured

cut

out as the probability that T, <t . Also, the expectation of attack success time can be

cut *
calculated. The expected attack success time will be used in Section 3.4 to estimate the

attack profits.

From (3.9), the PDF of T, requires the probabilities of two random events; one is the
state progression time T, in (3.5); and the other is the event that a given state index i

satisfies w e D}l) ﬂDi(j). It has been well known that T, follows Erlang distribution [75]

given as
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f ()= (’Z} t_)l)l !eiﬁ (3.10)

for t>0. We provide the probability for the latter event, i.e., pyg,; = Pr(a) € DJ.(l) ﬂDi(j))

in the following Lemma 3.5:

Lemma 3.5. For a sample @ of random experiment DS(p,,t,.;Ng.), the probability

Posai = Pr(a) eDY ﬂDi(i)) can be computed as

Sl Tpza] T g ep e @
pDSA,i:jzzN;C NBC_]' CL;]-_NBC!ZNBC_ij py =+ 1 Py Pa ( )

forodd i>2Ng.,where C . is the ballot number [77] given by

m+1 (2n+m
Con=4n+m+1{ n
0, otherwise,

j, n,meZ"U{0}, (3.12)

and for 1<2N,. and for all even-numbered i, pys,; =0.

Proof: See Appendix 3.A.

By taking infinite summations of p.g,; in Lemma 3.5 for all indices ieN, we can

compute the probability P, thata DS attack will ever achieve the necessary conditions

in Definition 3.1.

Corollary 3.6. For a sample @ of random experiment DS(p,,t,;Ng. ) with t, =0,

the probability IP,,, has an algebraic expression

L Pr < Pas
P = . 2Ngc J_l (313)
DsA ~ 19 _ pANBc 1pHNBC Z (N :J AJ., Py > Pas
j=Ngc BC
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where
p, 2N, (3.14)
Proof: See Appendix 3.B.

From (3.9), the PDF of T, follows the PDF of T. at a given state index i, if at which

it holds that w e D’ ND?

', with the probability of pg,;. If there does not exist such an
index i, with the probability of 1-P,,, then T, =o . Thus, we can write a

(generalized) PDF f, ~ of Ty, as follow,

o0

fTDSA (t) = Z Posai fTi (t)

i=2Ngg +1 (3.15)
+(1-Ppgy ) S (t—0),

where &(t) is the Dirac delta function.

Proposition 3.7. The PDF  f._ has an analytic expression:

pAﬂ’rei/qLTt pA pH (ﬂ'rt)z e i=2Ngc i—1 )
fTDSA (t)= ((2N )| ) ’ ) (NJ _1] 2F3(a,b1 pApH (ﬂ,rt) )
. e AR (3.16)
e ( Py ﬂ’rt)NBC Padrt _ S ( pA’a’rt)I _ — 0
U (N [e 2 ]“L(l Fose )9 (=)

where | F, (a;b;x) is the generalized hypergeometric function (See Appendix 3.E for

definition) with the parameter vectors

| Ngc+1- i/2
] _[NBC +1/2- j/z} G40

and
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2Ny +2— |
b= Ngp.+1 | (3.18)
Noe +1/2

Proof: See Appendix 3.C.

By Definition 3.2, the probability P, that a DS attack DS(p,,t,;Ng ) succeeds

equals

IP)AS (tcut) = I:)r(TDSA < tcut) ' (319)

Note that for a special case of t,, =, P (t,,)="Pss,, Which coincides with the result

in Rosenfeld [27].

It will be shown to be convenient to define the attack success time T,; of a DS attack as

Tosas If Tosa <t
s :{ DSA DSA t (3'20)

not defined, otherwise.

A random variable for T, >t does not need to be defined since it is not useful. The

cut

PDF f.  of T, isjusta truncated version of f. (t) in (3.16) for O<t<t, witha

cut

scaling factor of P, . Formally, the PDF f; (t) equals

f.(t
L(), for 0<t<t,,,
£ ()=] P (3.21)

0, for t>t

cut*

The expectation of attack success time is computed as

tCLI!
jo tf,(t)dt

IPJAS (tcut ) (322)

ETAS (tcut ) =
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The following Proposition 3.8 gives an explicit formula of E,  for the special case when

Ly =0

Proposition 3.8. Let p, =max(p,, Py), P,=Mmin(p,,p,). If t,=0 , the
expectation E. (t,,) has a closed-form expression:
2N 1
~ BC J_l N
Z 1( ( jZ. +BCJ
Z NBC -1) Py

lim B, _(t,)= e , (3.23)

o = Posa

where

“(Nac—i+0) [ 2Nge =2JPn +1) . “(Ngemi
Z; = p,upy " py ‘”[ B _Jpp ]—JpA (Mecilp Moo (3.24)
M m

Proof: See Appendix 3.B.

3.4. Profitable DS Attacks

The previous probabilistic analyses in [20] and [27] show that the success of DS attacks is
not guaranteed when p, <0.5. However, DS attacks with p, <0.5 can be vigorously

pursued as long as they bring profit.

We analyze the profitability of DS attacks and to this end, we define a profit function P

of a DS attack DS(C, p,,t,,;Ng ), where C is the value of a fraudulent transaction, in

terms of revenue and operating expense (OPEX) of the computing power.

The OPEX X (e.g. the rental fee for the computing power) and the block mining reward

R tend to increase with respect to A, and the time t consumed during the attack. Thus,

X and R are expressed as functions of 4, and t, and they can be any increasing
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function; e.g., linear, exponential, or logarithm. We define X and R, respectively, as
follows:

A

X (A1) = ;//L\t(logX1 xz) (IogXS X, )t (3.25)

for real constants y >0, x,X,>1,and X;,X,>1,and

R(Aut):= .t (log, 1,) " (l0g, 1,) (3.26)

for real constants £ >0, r,r,>1, and r,r,>1. By setting the constants, one can

transform the the cost and reward functions in (3.25) and (3.26) into a form of linear,
exponential, or logarithm function depending on the real-world environment. We denote

theratioof y and £ by

w=py " (3.27)

With regards to P, if an attack succeeds, the revenue comes from C, as it is double-spent,

and R for the number of blocks minded during the time duration T, i.e., R(4,,T,s). In
this case, the cost is the OPEX for the time duration T,g, i.e., X (4,,T,). If the attack

fails, the cost is the OPEX X (4,,t,,) for the time duration t,, and there is no revenue.

cut ?

Hence, for a DS attack DS(C, p,,t,,; Ny ), we define P as follow,

b JCHR(A T )= X (A0 Tas). i Togs <ty (3.28)
~X (At ) otherwise.

Subsequently, the expected profit function is

EP

Pys (o) (C+E[R(A0Tos ) | =B X (A0 Tus ) )~ (1= Pys (1)) X (/IA,tcut)(3 2)
Pas (t) (C+E[R(40Tos ) ]) - By '

where [, isthe expected OPEX defined as
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Ey = Pas (ta ) B[ X (2 Tas ) ]+ (1 Ps (teu ) X (s taur)- (3.30)

Definition 3.9. A DS attack DS(C, p,,t,;Ng) is said to be profitable if and only if the

expected profit E, >0, where [E, isdefinedin (3.29).

The key factor in determining the profitability of DS attacks is the value C of the

fraudulent transaction. Thus, attackers would be interested in the minimum value required

for profitable DS attacks [78]. Definition 3.9 implies that a DS attack DS(C, Pasteues NBC)

is profitable if and only if C>C where the required value of target transaction C

Req. ! Req.

is

— IE‘x _
Cru =5 E[R(44Tos)]- (3.31)

Req.
AS

The following results in Theorem 3.10 and Theorem 3.11 focus on the case where both

X (44,t) and R(4,,t) are linearly increasing functions of 4, and t.

Theorem 3.10. Suppose X, =X, and X, =X, in (3.25), and r,=r, and r,=r, In

(3.26). Then, a DS attack DS(C,p,,t,;Ng) for any p,e(0,1) and for any

t,. €(0,00] is profitable if and only if C > C,,, , where
1-P, (t,,
CReq. = MylAtcut - (/J _1) yﬂ‘AIE'TAS (tcut ) (332)
PAS (tcut)

Proof: Substituting X, =X,, X;=X,, L =r,,and r,=r, into (3.31) resultsin (3.32). m

Theorem 3.10 shows that not only superior attackers with p, € (0.5,1) but also inferior
attackers with p, €(0,0.5) are able to expect profitable DS attacks once a high enough

value C greater than C__ of the target transaction is designed. The condition C__ in

Req. Req.

(3.32) can be pre-computed before carrying out an attack, as it stochastically estimates the

-82 -



future expected cost, for a given position p, (0,1) and a cut-time t,, of an attacker,

and a given set of network environment parameters » and f.

Table 3.1 and Table 3.2 list the resources including C By, and E; required for

Reg. ?
profitable DS attacks respectively using p,=0.35 and p,=0.4, when t , =cN.. A}
with c¢=4. Note that the expectation of the time spent for the block confirmation equals

NgcA;', and we let t , linear to it. In other words, as normal traders wait for N A"

cut

seconds on the average, attackers shall be tolerable as well and wait for the same scale of

time duration. Note that the P,, for N,. =1 issmaller than that for N,. =3 due to not

long enough t . We scaled the results by parameters A, and y, which we will explain

cut *

how to obtain from internet in the next subsection.

The following Theorem 3.11 is for the inferior attackers with p, € (0,0.5) and shows the

importance of setting a finite t_,.

Theorem 3.11. Suppose x, =X, and X,=x, in (3.25), and r=r, and r,=r, in
(3.26). Then, a DS attack DS(C, p,,t,,;Ng.) with p,e(0,0.5) is profitable only if

t

cut <.

Proof: For any p, €(0,0.5), it always holds that P,; <1. In this case, if t,, —oo then

cut

Cr., — oo from (3.32); i.e., infinite value C of fraudulent transaction is required for a

Req.

DS attack DS(C, p,.t.,;Ngc) to be profitable. Thus, for a DS attack with p, €(0,0.5)

to be profitable, a finite cut-time t,, <oo must be set. [

Theorem 3.11 shows that for p, €(0,0.5), setting t,, =co is expected to incur infinite
deficit. On the contrary, for p, e(0.5,1), what we have numerically checked out but

omitted due to space limitation is the result that [, is an increasing function of t_,; i.e.,
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setting t,, =oo isthe optimal choice in the superior attack regime. Applying p, € (0.5,1)

and t,, = into (3.32) leadsto P,; =1, andthus C., turnsinto

Req.
Creg. = (11 PAE, _, (3.33)

where a closed-form expression of K, is given in Proposition 3.8. In this case, if g >y ;

i.e.,, wu>1, DS attacks are always profitable regardless of C. According to nicehash.com,

most networks maintain g >y by the economic equilibrium. As the result, in addition to
the results in [20] and [27] that DS attacks with pAe(O.S,l)guarantee probabilistic

success, we show that such attacks guarantee economic gain as well.
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Block confirmation number (Ng. ) 1 3 5 7 9

Attack success probability (P, ) 0.315 0.279 0.218 0.170 0.132
Expected attack success Scaled by 7. -1
time (B, ) caled by A, 2.004 5.518 8.681 11.694 14.607
Expected OPEX (E, ) 1.815 5.487 9.440 13.588 17.859
Required value of target | S°e40Y 7y 0291y | 2071.(1-p) | 4675-(1-p) | 6297-(1-4) | 7.866-(1-u)
transaction (Cg;; ) +4.680 +16.68 +38.62 +73.84 +127.00

Table 3.1. Numerical computations of required resources for profitable DS attacks with p, =0.35 when t, =cN A" with c=4.
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Block confirmation number (N, ) 1 3 5 7 9
Attack success probability (P, ) 0.411 0.419 0.376 0.334 0.297
Expetﬁiea(tgf: 5;“30955 Scaled by 4, 1.953 5.338 8.434 11.418 14.325
Expected OPEX (B, ) 2.106 6.139 10.436 14.977 19.716
Required value of target | S°9DY 7|y 900 (10 4y | 3559.(1-p) | 5622-(1-4) | 7.612:(1-g) | 9.550-(1-p)
transaction (Cg;; ) +3.819 +11.10 +22.15 +37.25 +56.96

Table 3.2. Numerical computations of required resources for profitable DS attacks with p, =0.4 when t, =cN A" with c=4.
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3.5. Practical Example of Profitable DS Attacks against BitcoinCash

We analyze resources required for profitable DS attacks against BitcoinCash network. The

resources include the computing power proportion p,, expected OPEX [, , expected

attack success time K, , and the required value of fraudulent transaction Cg,, .

To this end, we first recall the parameters involved in block mining reward R and the

OPEX X . The parameters used in (3.25) and (3.26) are assumed to X, =X,, X, =X,,
r,=r,,and r, =r,which lead to linear functions X (4,,t) and R(A,,t) with respect to

A, and t. There are three more parameters: y, f,and A,™. From (3.25) and (3.26),
the parameter y is the expected cost for generating one block; and the parameter /S is

the reward per generating a block. Parameter A, is the average block generation time of

H

the honest chain. All the parameters are different for each blockchain network.

In BitcoinCash, the reward S per block mining was 12.5 BCH (without transaction fees),

which is around £ =0.44BTC per block mining (as of 26th Feb. 2020). The average

block generation time was fixed at A, =600 seconds.

The parameter » is obtainable from nicehash.com. BitcoinCash uses the SHA-256
cryptographic puzzle for which the unit of computation is hash. As of 26th Feb. 2020, the
rental fee for 1-peta (P) hashes per second for a day was around 0.017 BTC, which was
around 1.97-107 BTC per second. In other words, the rental fee was approximately
1.97-10% BTC per the computing of a hash. Referring to BTC.com, the network’s
computing speed is 3.57-exa (E) hashes per second; i.e., 3.57E-600=2142E hashes are

needed to generate one block on the average. As the result, the parameter » is obtained as

y =1.97-10% [BTC/hash]x 2142E [hashes/block mining]

. (3.34)
~0.422 [BTC/block mining].
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Note that it holds g>p . From (3.33), this relationship makes DS attack
DS(C, psito; Nge) with p,>05 and t, =oo always profitable regardless of the

value C of target transaction.

In case of DS attacks with p, <0.5, the cut-time t,, must be determined as a finite

cut
value for profitable DS attacks by Theorem 3.11. We set t,, =cN,. A, =12000 seconds
with c=4 and p, =0.35. We compute the resources required for profitable DS attacks
against BitcoinCash when N,. =5. Results are obtainable from the values in Table 3.1

and Table 3.2 by multiplying the scaling parameters y =0.422 and A4, =600 and by

substituting =By =1.04 and c=4.

As the results, we obtain P, ~0.218, E, ~5200 seconds, E, ~3.98 BTC, and

C.., ®16.22BTC. One can compute expected running time; i.e., the expected time spent

Req.
for a single DS attack attempt as P, B, +(1-1P,s )t » Which is around 2 hours and 55
minutes. That is to say, attackers can repeatedly perform n number of attacks every 2
hours and 55 minutes on the average. With the value C of target transaction, by the

strong law of large numbers, the multiple attack attempts will return net profit

NPy (o ) (C —Creq ) 8 N—> o0 with probability 1.

Req.

3.6. Related Works

By Nakamoto [20] and Rosenfeld [27], the probabilities have been studied that a DS attack

will ever succeed when there is no time limit, i.e., the cut-time is set to t,, =oo. Both of
them applied PCPs to model the growth of chains H(t) and A(t). On one hand, the
main difference between them was in probability calculations of the block confirmation
process G” in Definition 3.1. Rosenfeld applied the PCPs to both H(t) and A(t),
whereas Nakamoto assumed the time spent for H (t) > N, deterministic to simplify the

calculation. On the other hand, they both used the gambler’s ruin approach to obtain the
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asymptotical behavior of S, as i—o0 by manipulating the recurrence relationship

between two adjacent states. Namely, their results are based on an assumption that an
indefinite number of attack chances are given [65].

On the contrary, we introduce the cut-time t_, which generalizes analytical framework to

cut

the more interesting finite attack time and inferior attacker regime. By setting t_., infinite,

cut

the same result P, was obtained in [27] as well. By setting a finite t_, , our results shall

be useful when attack chances are limited due to limited amount of resources such as time
and cost. In addition, we show in Theorem 3.11 that DS attacks with p, <0.5 must set a
finite t_. in order to expect a non-negative profit. It shall be noted that there has been no

cut

intermediate result like pyg,; in Lemma 3.5. We use Lemma 3.5 to derive the novel

results.

Rosenfeld [27] and Bissias et al. [66] have analyzed the profitability of DS attacks. But
they put additional assumptions on the attack scenario to simplify the calculation of the
attack time. Specifically, Rosenfeld assumed the attack time to be a constant. Bissias et al.
assumed that the attack stops if either the normal peers or the attacker achieves the block
confirmation first. On the contrary, in our model, an attack can be continued for a random
attack time as long as it brings profit, even if the normal peers achieve the block

confirmation before the attacker does.

In Zaghloul et al. [67], the profit of DS attack has been analyzed. Interestingly, they have

discussed the need of cut-time for DS attacks with p, <0.5, which is theoretically proven

in this chapter in Theorem 3.11. They also calculated the profit of DS attacks with a finite
time-limit (see Section I1V-C in [67]), but their calculation was not as precise as ours in

three points:

cut

First, the probability of attack success within a finite time-limit, i.e., P, (t,,) in (3.19)

was never considered, which requires the distribution of the DS achieving time, i.e., Ty,

given in Proposition 3.7. Instead, their calculation used PP, referring to the result in
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Rosenfiled [66]. This contradicts their time-limited attack scenario, since Py, was

resulted from the assumption of infinite time-limit.

Second, they approximated costs and revenues of DS attack spent within a time-limit.
Estimation of the costs and revenues requires estimations of the numbers of blocks
respectively mined by honest nodes and attackers within a time-limit, but those were
assumed to be constant. This was due to the absence of the time analysis we provide in

Proposition 3.7.

Third, they assumed the average block generation rates A, A, respectively by honest

miners and by attackers are always the same. Since, the proportions p,, p, of

computing power occupied by the two groups can be quite different in general, such a
result is not very useful. We agree to their assumption that most blockchains control the
difficulty of block mining puzzle to keep the average speed of block generation constant,

and thus A4, can be considered as a constant. But A, should be left as a varying quantity
by p,. The fact is that the computing power invested by attacker cannot be monitored by

the honest network and thus it cannot be reflected in the difficulty control routine.

Budish [68] conducted simulations on the profitability of DS attacks only in the cases of
p, >0.5. Under the cases, a condition on the value of the target transaction that makes DS
attacks not profitable has been given based on the simulations. We give theoretical and

numerically-calculable results for any pAe(O,l), which do not require massive

simulations.

Gervais et al. [69] and Sompolinsky et al. [65] have used a Markov decision process (MDP)
to analyze profits from DS attacks. These works differ from our contributions in the

following regards:

First, they did not follow the DS attacks scenario considered by Nakamoto [20] and
Rosenfeld [27]. Instead, the scenario in [65] was a special case of the pre-mining strategy
which was introduced in [70] and [71]. We show that the success of DS attack under this

scenario is even more difficult to occur than the success of the DS attack under the
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scenario of Nakamoto and Rosenfeld (see Appendix 3.D for details). Also, the attack
scenario in [69] went even further by modifying the condition 6" for block confirmation

in Definition 3.1. Specifically, under GY, it s required for the honest chain to have added
Ng. blocks, while under their condition, it was the fraudulent chain to do so (see Section

3 of [69]). Thus, it was not ensured that the potential victim has shipped the goods or
service, and an attack success did not guarantee for the attacker to obtain the benefit of

attacking.

Second, one important new advance in this chapter is the derivation of the time analysis

f . given in Proposition 3.7. When one uses the MDP framework, one can obtain similar
information such as the estimations for the attack success time [E; , the future profit P

that an attacker will earn in the end, and the minimum value of target transaction Cg,, .

But using MDP, to make such estimations, would have required extensive Monte Carlo
simulations. Using our mathematical results, such estimations can be obtained without

Monte Carlo simulations.

In addition, we believe that our mathematical results can be utilized in the MDP
frameworks to improve the reliability of analyses. Conventionally, a rational user of an
MDP will make a decision at every state whether to stop or to continue the process by
comparing the rewards that will be incurred in the future by his/her decision. The rewards
for stop actions are clear because such actions are either an attack success or a give-up. The
reward for the continue action is complex because it needs to consider all the actions in all
future possible states as well. In [65] and [69], the rewards for the continue action were
over-simplified as they were evaluated only for the very next state and did not include the

estimation of the profits in further future actions. To improve the reliability, the PDF f,

in Proposition 3.7 can be used at any intermediate Markov state to estimate the future

profits. Specifically, the conditional expectation of the time left for an attack success T,
given T, >z can be calculated using f; , where z is the observable time elapsed for

reaching the current state. Once the time left is estimated, the estimation of future profits
can be updated by substituting it into (3.29). That is to say, at each state, the estimation of
profits can be updated and used as the rewards resulting from the continue action.
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Goffard [72] and Karame et al. [73] have derived the PDFs of attack success time, but none
of their DS attack scenarios matched with ours in Definition 3.1. In [72], Goffard derived
the PDF of catch-up time spent for the fraudulent chain to catch up with the honest chain
given that the length of honest chain is initially ahead by several blocks. The author used
counting processes such as order statistic point process and renewal process which are
more general than PCP, but there was no analytic result similar to what is given in

Proposition 3.7. In [73], Karame et al. derived the PDF of the first attack success time

under a fast-payment model which fixed N,. =0. To sum up, the attack success time in

neither analysis included the time spent for achieving the first condition g“): the block

confirmation should be realized.

3.7. Checking Formulas by Monte Carlo Experiments

To check the correctness of our mathematical result in Proposition 3.7, we conduct Monte
Carlo experiments with a simulation of DS attack. Proposition 3.7 gives a probability
distribution of the time spent for a success of DS attack. We compare the experimental
results with two formulas (3.19) and (3.21). Formula (3.19) gives the probability that a
DS attack succeeds within a cut-time. Formula (3.21) is a truncated version of Proposition

3.7, where the time domain is truncated by a cut-time.

A pseudo code of simulation is summarized in Table 3.3. This code aims to simulate the
stochastic behavior of DS attacks modeled in sub-section 3.2.2. We uploaded a MATLAB
implementation of this simulation on web-site?. The simulation takes inputs such as block

generation rates 4, and A, of a fraudulent chain and a honest chain respectively, a
block confirmation number Ng., and a cut-time t . The input A, can be replaced by

the computational proportion p, of attacker. The simulation results in two outputs: One

is an estimation Pas of the DS attack success probability within t_,, and the other is a

cut !

2 https://codeocean.com/capsule/2308305/tree
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sample vector fTAS of the time spent for a DS attack success within t . For each
combination of input parameters, we conducted the experiments for N =100000 times.
We fixed A, =1/600 blocks per second. For given Ng., we set t,, =4N. A", which is
a multiple of the expected time spent for the completion of a block confirmation, i.e.,

[\ P

Table 3.4 compares the probabilities of successful DS attacks. We varied block

confirmation number N e{3,5,7} and attacker’s computational proportion
p, €{0.25,0.3,0.35,0.4,0.45} . The values on the columns labeled “Calculation” were

obtained from calculations of P, in (3.19). The values on the columns labeled

“Experiment” were the estimations Pas obtained from Monte Carlo tests using Table 3.3.

The results show Pas well estimate P, with negligible errors. That is, the probability

calculation in (3.19) has been verified by the Monte Carlo experiments.

Figure 3.2 compares of the probability distributions of the time spent for a success of DS

attack. In subplot (a), we set attacker’s computational proportion p,=0.25, and in

subplot (b), we set p,=0.45. The bars on both subplots are the histograms of fTAS

obtained from the Monte Carlo experements in Table 3.3. Out of N =100000 trials, we
obtained 4584 samples for subplot (a) and 56951 samples for subplot (b). The differences

in the numbers of samples came from the differences of p, and the differences of the

success probability of DS attacks. We can obtain a sample of time spent for an attack
success only if an attack succeeds. The histograms were compared with the red curves on
both subplots, which are scaled versions of the calculation of equation (3.21). The results
show the red curves from the calculations well fit to the shapes of histograms. As the
results, the probability distribution in (3.21) has been verified by the Monte Carlo

experiments.
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Algorithm: Pseudocode of Monte Carlo experiments for double-spending attacks

1:

Input: Double-spending attack parameters 4,, A,, Ng.,and t
experiments N .

10:

11:
12:

13:
14:

15:
16:
17:
18:
19:

20:

21:
22:
23:
24:

and the number of

cut

Output: An estimation Pas of (3.19) and a histogram fr, for f (t) in (3.21).

Define a function exp(/l) that returns a sample in R* from an exponentional distri-
bution with the rate parameter 1 e R"

Define a function Iast(t,n) foranarray t ofentriesin R* that returnsthe n-th
entry from the last of t (if t isempty, itreturns O, and if n isomitted, n=1)

Define a function hist(t) forananarray t ofentriesin R* that returns a histo-
gram of t

Allocate an empty array t,s of entriesin R*
for n<1 to N
Allocate empty arrays t, and t, ofentriesin R”
while 1
Concatenate t, «[t, last(t,)+exp(4,)]

Concatenate t,, «[t, last(t,)+exp(4,)]

if last(t,)>t, then
break
end if
if |t,|>Ng. and last(t, )>last(t,) then
if |t,|=Ng +1 then
tps < last(t,,2)
else
tos < last(t,)
end if
if ty <t then

cut
Concatenate tyg <« [tps tps]

break
end if
end if
end while
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25: end for
26: ],I\DAS <—M
N
27: f1,, < hist(ty)

28: return Pas and fr,,

Table 3.3 A pseudo-code to simulate the stochastic behavior of double-spending attacks

modeled in sub-section 3.2.2.

NBC=3 NBC=5 NBC =7
Probabilities . ] ]
Calcula- Experi- Calcula- Experi- Calcula- Experi-
tion ment tion ment tion ment

p,=0.25 0.0896 0.0895 0.0451 0.0458 0.0230 0.0230

p,=0.3 0.1684 0.1681 0.1089 0.1107 0.0706 0.0713

p,=0.35 0.2793 0.2788 0.2180 0.2189 0.1696 0.1690

p,=04 0.4189 0.4208 0.3758 0.3775 0.3338 0.3313

p,=0.45 0.5765 0.5768 0.5679 0.5695 0.5516 0.5513

Table 3.4 Comparisons of the probabilities of successful double-spending attacks for
given block confirmation number N,. and attacker’s computational proportion p,
when cut-time is set to 4N,.4;' for A,'=600 seconds. The values on the columns

labeled “Calculation” are obtained from the calculation of equation (3.19). The values on

the columns labeled “Experiment” are obtained from Monte Carlo tests using Table 3.3.
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Figure 3.2. Comparisons of the probability distributions of the time spent for a success of double-spending attack when attacker’s computational proportion

is(@ p,=0.25 and (b) p, =0.45. Block confirmation number and cut-time are setto N,. =5 and t, =4N.A;' for A;'=600 seconds, respectively.

The bars on both subplots are histograms of fTAS obtained from Monte Carlo tests in Table 3.3. The red curves on both subplots are the calculation of

equation (3.21).
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3.8. Conclusions

We showed that DS attacks using 50% or a less proportion of computing power can be
profitable and thus quite threatening. We provided how much quantitative resources are
required to make a profitable DS attack. We derive the PDF of attack success time which
enables us to figure out the operating time and the expense of mining rigs. We verified our
mathematical results using Monte Carlo experiments. We provided MATLAB codes on the
website® for the numerical evaluation of expected profit function in (3.29) and for the
Monte Carlo experiments. We also listed an example of the minimum resources required
for a profitable DS attack, which is applicable to any blockchain networks by substituting

the network parameters », £, and A, . We also showed a more specific example of the

required resources against BitcoinCash network.

Our results quantitatively guide how to set a block confirmation number for a safe
transaction. The less the block confirmation number is, the less the minimum resource is
required for a profitable attack. A solution can be utilized by the network developers to
discourage such an attack. On the one hand, given a block confirmation number, we can
have the value of any transaction to be set below the required value of making a profitable
attack in a given network. On the other hand, given the value of transaction, the network
can provide a service to inform the payee with the least block confirmation number that

leads to negative DS attack profit.

% https://codeocean.com/capsule/2308305/tree
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Appendices

Appendix 3.A  Proof of Lemma 3.5

For a given sample @ and a given index i, we seek an intermediate index j and the
corresponding set D\ ND? to which wbelongs, i.e, @eDYND?. If such a set
exists, by the mutual exclusiveness of DJ.(l) ﬂDi(j) for integers j, it is unique. Thus, we

can write the probability p,,, as follow,

o <3 0P N120)

= > Pr(weDNDY)

j=Ngc

(3.35)

Note that D}”ﬂ(l)ﬁ?):;}) for i<2N,., since the minimum number of states for an

successful attack is 2Ng. +1; Ny. number of +1’s state transitions for the block
confirmation; and Ng. +1 number of -1°s state transitions for the success of PowW

competition. Thus, ppg,; =0 for i<2Ng..

We further explore DY and D*'. We divide the domain of state index j in (3.35)
into two exclusive domains; one is j<2Ng.; and the other is j>2N,.. First, for
j<2Ng., two sets D\Vand D are independent, since their requirements on the state
transitions are focusing on disjoint indices of state by their definitions. Formally,
Pr(a)eDf”ﬂDﬁ)): Pr(a)eDfl))Pr(a)lef)) . Second, we explore the domain
j > 2N, . By the definition of D", all @D satisfy ;= A, =2N, - j. Thus,

forevery j>2Ng., S, isalready negative, which impliesall oe Dj(l) satisfy both g

j
and G® at state j. The set D% =¢ for j>2N,. and j<i, since the state

S; =2Ng. — ] contradicts one requirement of Di(j): the interim transitions between the
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states j and i should be non-negative. For j>2N,. and j=i, let us set Di(j):Q

!

since there is no interim state to apply the requirement to. To sum up, D\’ ND? =D
for j>2N,. and i=j, and D}l)ﬂ(l)if))zgzﬁ for j>2N,. and i> j. Subsequently,

(3.35) is computed as

Posai = jZ%N:B:C Pr(a) € Dj(l))Pr(a) € D,(? )+ Pr(co € Di(l))- (3.36)

We now compute the ingredient probabilities Pr(a)e D}l)) and Pr(a)e D,(f)) in (3.36).

First, by the definition, all samples in D!’ must have Ny -1 number of +1’s state

transitions among the first j—1 transitions. And the rest of the j—1 transitions must be
valued by —1. In addition, the j-th transition must be valued by +1 so that the block

confirmation is achieved exactly at the j-th state index. As the result, the probability

Pr(a) € Dj(l)) equals the point mass function of a negative binomial distribution:

- |
Pr(a) e DJ.“)) :( J J p, e p, i Nee (3.37)

Second, computing the probability Pr(a)eDi(j)) starts from counting the number of

combinations of state transitions satisfying the requirements of set Di(j) . Recall the
- 2 -

requirements on every element of Di(J.), for j=Ng.,---,2Ng., are that the state starts

from the state S; =2N,. — j and ends at the state S, =-1 while all the i—j-1 interim

states remain nonnegative. The i-th transition should be A, =-1 so that the success of

PoW competition is achieved exactly at the state index i. The number of combinations of

such state transitions can be counted using the ballot number C_  — [77], which is the

number of random walks that consist of 2n+m steps and never become negative, starting

from the origin and ending at the point m. In our problem, the number of random walk
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stepsis 2n+m=i-j—-1 with m=2N,. —j. As a result, by multiplying the probabilities

p, and p, for state transitions, the probability Pr(a)eDi(j)) is computed as

Pr(0eD?)=C,,p.""p," (3.38)
where 2n+m=i-j-1 and m=2N, . —]j.
Finally, substituting (3.37) and (3.38) into (3.36) resultsin (3.11). |

Appendix 3.B  Proofs of Corollary 3.6 and Proposition 3.8

Proofs of Corollary 3.6
Taking infinite summations of p,,; forall indices i resultsin Py, :

0

PDSA: Z Ppsa.i (3.39)

i=2Nge+1

By substituting p,;in Lemma 3.5 into (3.39), the probability .., becomes

2Npc J—l © 5 pH Ngc o |—1 i
IEDDSAz Z Pa Z Ci—l .(pApH)2 + Z Pa -
N 1 N 1

j=Ngc \VBC ~ i=2Nge+1 p vec:ZNec™] Pa i=2Nge+1\ Npc —

(3.40)

By rearranging the indices i in the summations, we can obtain

ee J _1 = i+Npgc
]:EDDSA = Z N pAzCi,ZNBC—j ( PaPy )

j=Ngc BC -1 i=0
NBC - -
P, © (i-1 ] i ZNBC[ i—1 j :
+| A P, — P, |
( pAJ [i—%;c (NBC -1)"" i—%slc Nec —1) "

We define two generating functions as

(3.41)
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M, (x):= iCi,kXi’ (3.42)
and
G, (x)= i(ll(jx' (3.43)

By substituting M, and G, into (3.41), we can write

2Nge j-1 .
PDSA: z (N ij(pApH)N MZNBC—j(pApH)

i=Ngc BC -1
p Ngc 2Ngc |—1 . )
Pu G _ i
+[ij (pA NBC—l(pA) i—%c(NBc _J pA]

The function M, (x) is a generating function of the ballot numbers C,,, for which the

(3.44)

algebraic expression given in [79] is

2 k+1
M, (x) _Emj . (3.45)

Putting X=p,p, into M,(x) resultsin

Mk(pApH)=( 2 J

1+1-4p,py,

k+1
2 if p,<p
llteeon) (3.46)

k+1
2 .
, if >
{1+\/1—4(1—pH)pHJ P = P

k+1
(LJ
Pu )
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where p,, :=max(p,,p,). The function G, (x) is a generating function of binomial

coefficients, and the algebraic expression for it is given in [80]:

G (x)= FENCE (3.47)
Putting x=p, into G, (x) resultsin
k
G (P,)= pH_l(%J , (3.48)
H

Substituting (3.46) and (3.48) into (3.44) provides

Pron= 3 [ 70 pa(papa ) e[ B SE [T 1 aag)
DSA Ny —1 ALPAPH M Ny 1 A\

i=Ngc pA i=Ngc

We define p,, = min(pA, P, ), then the relationship p,p, = p, P, holds. By rearranging

the order of operands, we can obtain

Wee (j—1 p Nee p,( p Neo
P, =1- LR I UL LB N (3.50)
o J—ZNQC(NBC _J (ij § Pu (pMj §

which is equal to (3.13). [
Proof of Proposition 3.8

From (3.15) and (3.22), when t_, =oo, we obtain
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[ee]

lim [“tf, ()dt 2 B[T]Poss,

_ oo 0 _ i=2Ngc+l

i P AS (tcut ) IP)DSA

o0

2

T, pDSA,i
_ i=2Ngc+l //{T
- ’
IE])DSA

(3.51)

where E[T,]=i4,™ [75]. By substituting pgs,; in (3.11) into (3.51) and rearranging

the order of operands, we obtain

2Ngc o 20
Fospli, = Z( N, J 2 ('+1)CZ_NBC2NBC Pa?py?

J=Ngc i=2Ngc

w i 2Ngc -1 i (3.52)
+ i+1 i+1-Ngc n Ngc _ i+1 i+1-Ngc Ngc
i_é_l( )(NBC ) J P py i_%_l( )(NBC _J p, e py
By rearranging the indices of summations, we arrive at
2Nge © _
Ngc +1 Ngc - i
Posal2 Tas z ( _J Pu 'Z(ZH'ZNBC +1)Ci,2NBc*J'(pApH)
Ngc i=0
e\ e | o (3.53)
Py Sl7 ' j i ol ( -1 j i-N N
+ Pa| — 1+1 P, — i (R
A( DAJ i=%c:l( )(NBC -1 i%;c Ngc -1) " "

By substituting the generating functions Mk(x) and Gk(x) defined respectively in
(3.42) and (3.43), (3.53) becomes

2Ngc
— NBC +1
DSA TAS pH
BC

j=Ngc

'(ZZiCLZNBcj ( pA pH )i +(2NBC +l) IVIZNBij ( pA pH ))
i=0

Ngc .
Py I | i
G
+pA( pA] (i—%ll(NBC —1) pA + NBc*l( pA)]

S L i-N N
- I BC BC
Sl e,

i=Npc

(3.54)
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We use the following relationships,

iiCiykxi =xM (x)

i=0

and

and their derivatives are given by

, d . i
M, (X) ::&Mk (X):;ICLKX !

:(k+1)( 2 jm
V1-4x (1++1-4x

and

By substituting (3.55) and (3.56) into (3.54), we obtain

= J -1 Ngc +1 Ngc
ﬂ'TIEDDSAIE:‘TAS = z Pa Ph

j=Ngc NBC -1

'(ZpApHMéNBC—j ( pApH )+(2NBC +1)M2NBC—j(pApH ))

Ngc
+pA[&J (PG 1(Pa)+Gy, 1 (P4))

Pa

& . i-1 i—N N
_ i BC BC
> (NBC _J Pa " Py

i=Ng¢
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Putting X=p,p, into M;(x) in (3.57) resultsin

' ’ k+1 1 k+2
Mk(pApH)=Mk(pmpM)=1(_2p) {p—j . (3.60)
m M

Putting x=p, into G;(x) in (3.58) gives

(kpa*+p,¢)

k+2
Py

Gy (Ps)= (3.61)

By substituting (3.46), (3.48), (3.60), and (3.61) into (3.59), we finally obtain (3.23).m
Appendix 3.C Proof of Proposition 3.7

We use a generating function and generalized hypergeometric functions to compute the

infinite summations in (3.15).

By substituting ppg,; in (3.11) and f. (t) in (3.10) into (3.15), we arrive at

fr ()= (1=Pps )5 (t—o0) = JZEN: (NJBC_ ilj

i=Ngc

© E ﬂ iti’le’th
Y c, 0 2p.2 T (362)

i=2Ngg +1 T*NBCvZNBc*J (l —1)|

© i—1 S ﬂ’riti—le—/th
P N IR

i=2Nge +1 BC —

By rearranging the indices of summations and the order of operands, we obtain

j=2Ngc J -1
fr (1) (1-Ppss )5 (t—0) = > {N _J
j=Ngc BC
Neci ATZNBC+2i+lt2NBC+2ie—/1Tt (3 63)
(2Nge +2i)! '

Ngc +i+1

(Ciange s DA Py

P ) | e i1 CAET e (-1 A
(o) e (Z Lo ) i)
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We can define two generating functions as

S X
C,
)= 2,Cme (2Nge +2i)!

i=0

2 2N j)! ' (3.64)
® i+ - N '
N, J+1Z BC .J) X .
(i + 2Ny — j+1)1(2N, +2i)!
and
0 |—1 Xifl © | Xi
H = —= —. 3.65
(X) i=NBc(NBc _J(i_l)! i=%c:1[NBc _1]“ ( :
By substituting B(x) and H(x) into (3.63), we obtain
j=2Ngc J_]_
0= Fo)olt-2)= 3 7 o
j=Ngc BC
e (apu (40t ) B(pabi (A1) (3.66)

P ) CRE( 1) A
+(p_A) € LpAﬂTH(pAﬂ'Tt) i%c[NBC _JpA (i—l)!].

We replace function B(x) in (3.64) with the generalized hypergeometric functions (See

Appendix 3.E for definition). For this purpose, we first denote the sequences in B(x) by

_(2i+2Ng - ) 1
YT+ 2Nge — j+1) (2N +20)!

(3.67)

and

_ 1
fo T (2Nge — j+1)(2Nge )Y (368)

Next, the function B(x) can be rewritten as
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B(X)=(2Ng — j+1) i = j+l)ﬂ0[x +§1 X! &ﬂx2+--).(3.69)

0 1 /-0

The reformulated sequence in (3.69) is computed by

Bia (i+1+Nge — j/2)(i+1/2+ Ny — j/2) (3.70)
B (i+2+2Ng — j)(i+1+ Ny ) (i +72+ Ny ) (i +1) '

which has 2 polynomials in i on the numerator and 3 polynomials in i except for (i +1)
on the denominator. B(x) can be expressed in terms of a generalized hypergeometric

function ,F, [81] as follow,

B(X)=(2Ng — j+1) 3, ,F;(a;ib;:x)
1
T (2N !

F (a.3b,:x). (3.72)

where vectors a; and b, respectively defined in (3.17) and (3.18) are the constants in

the polynomials in i of the numerator and denominator in (3.70), respectively.

We use a closed-form expression of generating function H (x) in (3.65) given by

H()= Y (N ‘_J*—? =) (i—NXBic+1)!

It (NBC _1)!i=NBc*1

et (3.72)
(Nec-1)t
where the following relationship is used [82]:
Z’_‘—|=eX. (3.73)
[

i=0 1=

By substituting (3.71) and (3.72) into (3.66), we arrive at
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froe (1) = (1-Ppgy ) S (t—o0)

_Puke” (Papu (411)) _j_ZZN:B°£Nj_1 ]2F3(a,-;b,-; PP (4rt)')

(ZNBC )! i=Ngc BC -1
P Ngc . ( pA/lrt)NBc*l " 2Ngc i—1 ) ﬂTiti—l
H A AFATTY) APakt _ i 3.74
o B L e e <i—1>J e
pAﬂ’re%Tt(pApH (ﬂ’rt)z)NBc 12Nee -1 p
= (ZNBc)! ’ j=ZN;C [NBC _1] 2F3 (aj’bj' PaPy (ﬂTt) )
Nac Ngc -1 e
Pu | (PaAt)™ " e 1 RE At J
+| — e | Padr e — p, ——— |.
[ Aj [ ’ (NBC _1)! (NBC _1)!i_;sc ’ (I_NBC)!

We obtain (3.16) by rearranging the indices of the summations and the order of operands.m
Appendix 3.0 Comparison of Attack Success Probability with [65]

In [65], a different DS success condition other than the conditions in Definition 3.1 has

been used. Specifically, the only condition was to have the fraudulent chain to grow longer

than the honest chain by Ng., i.e., A(t)>H(t)+Ny (see Section 7 of [65]). We refer

to P

pre-mine

as the probability of satisfying this condition. The literature has shown that
satisfying this condition suffices a success of DS attack [65]. What they have not shown,

however, is that this condition is not a necessary one. Thus, we here aim to show that their

condition is indeed not a necessary condition, by showing that P, >P for all

pre-mine

p, €(0,0.5). First, it has been given that P

pre-mine

=(pa/py) ™" Under the condition of
[65], it is required that the fraudulent chain catches up with the honest chain with
additional N,. blocks. The catch-up probability has been derived by Nakamoto in [20]
using the gambler’s ruin approach as (pA/pH )k, where k is the number of blocks that

the honest chain leads by at the initial status. Next, we refer to an intermediate step in the

derivation of P, by Rosenfeld [27]:

Neeit (N +k—1 e |
Poss = Z[ ” ij““ pﬁ[%j 2 ( ” ij”“ P, (3.75)

k=0 k H k=Nge +2 k
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Finally, clear inequalities can be used to show P, >P

pre-mine *

Nect (N +k —1 p, )=
P> BC Jp Ngc P k (_A]
DSA ~ [ K H A .
S NBC +k—1j N k( Pa JNBCH
+ A
k—%JrZ[ k i A pH
Pa et NBC +k - 1 NBC k
> | — Z pA

(3.76)

Py k=0

Ngc +1
= (&} = Ppre—mine'
Py

For numerical example, when p, =0.35 and Ng. =5 the probabilities can be computed
asP,, =0.2287 and P =0.0244. As the gap is significant, it is shown that the DS

pre-mine

attack success condition defined in [65] was indeed only a sufficient condition, set to be

too strict.

Appendix 3.E  Generalized Hypergeometric Function [81]

For a variable z and a given set of coefficients f,,--, S, if the ratio of coefficients b,

can be expressed in terms of two polynomials A(n) and B(n) in n as follow,

B A(n)
4, " B(n)(n+1) &7

for all integer n>0, a power series Zn>o,6’nz” is a generalized hypergeometric series,

where the polynomials are in the forms of
A(n)=c(a +n)-(a, +n) (3.78)
and

B(n)=d (b +n)-(b, +n), (3.79)
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for real numbers ¢ and d and complex numbers a,---,a, and b,---,b, . The

p

generalized hypergeometric series is denoted by
(axb;z):=>  B.2", (3.80)
where a and b are the vectors of a,-,a, and bl,---,bq,respectively.

A generalized hypergeomteric series can be a generalized hypergeometric function, if it

converges. If p<qg+1, the ratio (3.77) goes to zero as n—oo. This implies the series

(3.80) converges for any finite value z and thus can be defined as a function.
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Chapter 4
Summary of Contributions and Future Research

Direction

4.1. Summary of Contributions

4.1.1. Contributions to Ultra-Wideband Sub-Nyquist Sampling of Multiband Signals

MWC has been a practical system of sub-Nyquist sampling of multiband signals spread over
a wideband up to one gigahertz. The sampling efficiency of conventional MWC is limited by
the speed and period of PR signals. Up to date, there has been no practical implementation
of a PR signal generator running at scores of gigahertz with a sufficiently long period of

chips. This impracticality hinders the input bandwidth of MWC.

We propose AMWC equipped with a new idea, intentional aliasing method. This idea
improves the sampling efficiency while using PR signals with a short period. AMWC allows
aliasing at ADC of MWC controlled by a parameter p. As the result, for a given
specification of PR signals, at the cost of increased computational complexity of OMP by
p’-times, AMWC improves the sampling efficiency by p-times. This also enables to

widen the input bandwidth of MWC for given practical hardware of PR signal generators.

Our new idea contributes to improve the efficiency of sensors (ADC). By simulations, we
showed that the improvement of sampling efficiency indeed leads to reduction on the
sampling rate and number of channels required for obtaining a certain number of equations

for signal reconstruction. We provided a condition on the control parameter p such that

the sensing matrix of the equations obtained by AMWC achieves the Singleton bound, and

thus no loss from sampling is guaranteed. In summary, the improved sampling efficiency
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of AMWC reduces the total sampling rate required for lossless sampling: with fewer
channels and less sampling rate of each channel than those of the conventional MWCs, a
multiband signal of the wider bandwidth can be captured without information loss by
AMWC. In other words, for given hardware resources, the input reconstruction with AMWC
outperforms the conventional MWCs. Also, it was demonstrated that the benefits of AMWC
are maintained in various SNRs. Moreover, use of LPF with random passband response, it
was shown, further improves the sampling efficiency.

4.1.2. Contributions to Profitability Analysis of Double-Spending Attacks on Block-
chains

Against blockchins based on PoW and the longest chain consensus, the success of a DS
attack depends on the amount of computing resources run by an attacker. It has been well
known that sub-50% DS attacks which use less computing resources than those used by
honest miners do not guarantee the success. Nevertheless, if a success of sub-50% DS
attack returns a high income compared to an expected cost, the attacker would repeat the
attack until an attack succeeds. Previous works have tried to calculate the expectation of
profit from sub-50% DS attacks based on stochastic models, but none of the works gave a
precisely calculable tool; all of them added some assumptions to the original DS attack
defined by Satoshi Nakamoto. To figure out how sub-50% DS attacks are threatening, we
studied mathematical tools for symbolic computation of the profitability of DS attacks.

As the results, first, we theoretically showed that DS attacks can be profitable if and only if
the value of transactions targeted by attacks are greater than the expected cost given in the
right-hand side of equation (3.32). For given amount of computing resources run by
attacker, this condition depends on the status of a blockchain network such as the block
rewards, the amount of computing resources run by honest miners, the cost-per-time of
mining rigs. In the sub-50% regime, we also showed that profitable DS attacks necessitate
setting a finite cut-time. Without stopping a sub-50% DS attack at an appropriate time, it is
never expected to return a profit. Second, we derived novel mathematical results that are
useful for an analysis of the attack success time. They enabled us to estimate the expected
profit of a DS attack for a given cut-time. All mathematical results are numerically-

calculable. We provided a software for the symbolic computation of (3.32).
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Our results contribute to improve the security of blockchains equipped with PoW. Our
results quantitatively guide how to set a block confirmation number for transaction to be
safe from a minority DS attack. The less the block confirmation number is, the less the
computing resources are required for a profitable DS attack. A solution can be utilized by
the network developers to discourage such an attack. On the one hand, given a block
confirmation number, we can have the value of any transaction to be set below the required
value of making a profitable attack in a given network. On the other hand, given the value
of transaction, a network can provide a service to inform the user of the least block

confirmation number that leads to make a DS attack return a negative profit.

4.2. Future Research Direction

In blockchain, a recent issue which hinders real-world applications from being practically
used is scalability problem. Scalability problem is a limitation in increasing the population
of users of a blockchain. There are many reasons for the problem, and one we aim to
discuss is the huge memory size of blockchain. As the more transactions are recorded in a
blockchain, the size accumulates. As of Apr. 2021, the size of Bitcoin blockchain exceeds
300G Bytes. Every full-node of Bitcoin needs to download the entire blockchain and store
it in local storage. This requires to newly joining full-nodes to have a large storage capacity
and thus demotivates them. In the perspective of the cloud of storages of all full-nodes, it is

not efficient to download the same data repeatedly.

In [83], Zhou et al. have summarized the problem of huge scales of blockchains. They
categorized solutions for this problem as storage scheme optimization. This category
includes inter-node cooperative schemes such as CUB [84] and Jidar [85]. Their main idea
Is to separate the parts of blocks in a chain and to assign them to different groups of full-
nodes. When each of the full-nodes is needed to check the validity of a chain, one node
asks to the other node to check the validity of missing data (blocks or transactions). That is,
they cooperate with each other. As the result, the CUB and Jidar release the burden of

storage capacity to a full-node and improve the efficiency of the storage cloud.
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When it comes to the compression of the whole chain, zero-knowledge proof also has been
used as a solution. In zero-knowledge proving protocols, to a verifier, a prover aims to
prove an NP statement composed of secret and open information without delivering the
secrets. Recent advances in zero-knowledge proofs have provided succinct protocols [86],
which have short length of proofs and low computational complexities for verification. As
the result, the length of proofs is far shorter than original NP statements, and the
verifications of proofs are done faster than verifying the NP statements themselves [87]. In
addition, recursive proof verification techniques enable [88], [89] to verify a collection of
many proofs at a single verification, which further reduce the net computational
complexity for the verifications of multiple proofs.

Mina protocol [5] is one of the blockchains exploiting the benefits of zero-knowledge
proof with the recursive proof verification proposed in [88]. They have claimed that the
size of the entire chain of Mina protocol is 22k Bytes, which is about ten millionths of the
size of Bitcoin. Mina protocol replaces all original data in a chain with proofs. This may
work well if all of data are just records of the ownership transfers of cryptocurrency. This
Is because if the proof for the previous transfer is verifiable, it is not necessary to refer to
the original record of the previous transfer at the time of the next transfer. However, recent
and future blockchains are called for playing a role of distributed database for general data.
Therefore, in addition to zero-knowledge proof, compressed sensing combined with CUB
or Jida is still needed to improve the scalability of blockchains.

In this dissertation, we have discussed compressed sensing and blockchain. The goal of
compressed sensing has been to remove redundancies in original data and to compress the
length of it. When a blockchain is used as data storage, storing the same chain to respective
storages of all full-nodes is redundant. To resolve this redundancy, we may be able to use
compressed sensing in CUB or Jidar to improve the assignment cooperative querying
schedules. In addition, compressed sensing may be applied to zero-knowledge proof, since
the two technologies has the similar goal of compressing data. The next research direction
can be to find the connection among the compressed sensing and the storage scheme

optimizations, and the zero-knowledge proof for efficient and secure data storage.
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