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Abstract 

In this dissertation, we discuss two research fields. One is wideband signal sensing via 

sub-Nyquist sampling of ultra-wideband multiband signals, and the other is the security 

analysis of blockchains via the profitability analysis of double-spending attacks. In each 

of the two fields, we provide new results by the virtue of approaching research problems 

in novel perspectives. 

In the field of sub-Nyquist sampling of ultra-wideband multiband signals, we propose a 

novel idea, intentional aliasing method to improve the sampling performance of a sub-

Nyquist sampling system, called modulated wideband converter (MWC). MWCs have 

been designed to exploit a set of fast alternating pseudo random (PR) signals. Through 

parallel analog channels, an MWC compresses a multiband spectrum by mixing it with 

PR signals in the time domain, and acquires its sub-Nyquist samples. Previously, the 

ratio of compression was fully dependent on the specifications of PR signals. That is, to 

further reduce the sampling rate without information loss, faster and longer-period PR 

signals were needed. The implementation of such PR signal generators however results 

in high power consumption and large fabrication area. With practical PR signals with 

low complexity, the proposed intentional aliasing method is adopted to improve the 
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ratio of compression, which results in aliased modulated wideband converter (AMWC). 

AMWC can further reduce the sampling rate of MWC with fixed PR signals. The main 

idea is to induce intentional signal aliasing at the analog-to-digital converter (ADC). In 

addition to the first spectral compression by the signal mixer, the intentional aliasing 

compresses the mixed spectrum once again. We demonstrate that AMWC reduces the 

number of analog channels and the rate of ADC for lossless sub-Nyquist sampling 

without needing to upgrade the speed or the period of PR signals. Conversely, for a 

given fixed number of analog channels and sampling rate, AMWC significantly 

improves the performance of signal reconstruction. 

In the field of profitability analysis of double-spending attacks on blockchains, we 

provide new mathematical tools for a precise profitability analysis, which enables us to 

propose an algorithm for optimization of user parameters utilized to prevent double-

spending (DS) attacks. It was well understood that a successful DS attack is established 

when the proportion of computing power an attacker possesses is higher than that of the 

honest network. What is not yet well understood is how threatening a DS attack with 

less than 50% computing power used can be. Namely, DS attacks at any proportion can 

be a threat as long as the chance to make a good profit exists. Profit is obtained when 

the revenue from making a successful DS attack is greater than the cost of carrying out 

one. We have developed a novel probability theory for calculating a finite time attack 

probability. This can be used to size up attack resources needed to obtain the profit. The 

results enable us to derive a sufficient and necessary condition on the value of a 

transaction targeted by a DS attack. Our result is quite surprising: we theoretically show 

how a DS attack at any proportion of computing power can be made profitable. Given 
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one’s transaction value, the results can also be used to assess the risk of a DS attack. An 

example of profitable DS attack against BitcoinCash is provided. 

The results in the two fields can be integrated and utilized in a field of the Internet of 

things (IoT). To deal with huge amounts of data, IoT applications need energy-efficient 

sensors and secure data management system. The intentional aliasing method 

contributes to improve the efficiency of sensors, and the profitability analysis of double-

spending attacks contributes to improve the security of data management by 

blockchains. 
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국 문 요 약 

이 논문에서, 우리는 두 연구 분야에 관해 논의한다. 하나는 초 광대역 

다중대역 신호의 부분 나이퀴스트 표본화를 통한 광대역 신호 획득이며, 

다른 하나는 이중 지불 공격의 수익성 분석을 통한 블록체인의 보안성 

분석이다. 각각의 두 분야에서, 우리는 새로운 관점으로 연구 문제에 

접근하고 이에 따른 새로운 결과를 제공한다. 

초 광대역 다중대역 신호의 부분 나이퀴스트 표본화에 관하여, 우리는 

modulated wideband converter (MWC)라 불리는 부분 표본화 시스템의 표본화 

성능을 개선하기 위해 고의적 에일리어싱 방법이라는 새로운 아이디어를 

제안한다. MWC 는 빠르게 진동하는 유사랜덤 (PR) 신호들을 활용하는 부분 

표본화 시스템이다. MWC 는 여러 개의 병렬구조의 아날로그 수신 채널을 

통하여 PR 신호들과의 혼합을 통해 다중대역 신호를 압축시킨 후 부분 

나이퀴스트 표본들을 획득한다. 이전까지는 신호의 압축 비율이 PR 

신호들의 성능에 온전히 의존적이었다. 즉, 신호 손실 없이 표본화 속도를 

더 낮추기 위해서는, 더 빠르게 진동하고 더 긴 패턴을 주기로 갖는 PR 

신호들이 요구되었다. 그러나 이러한 PR 신호들의 생성기를 구현하기 

위해서는 큰 전력 소모를 감수해야 하고 넓은 공정 (fabrication) 면적의 

사용이 불가피하다. 실용적이며 구조가 단순한 PR 신호들이 사용되는 

MWC 의 압축 비율 개선을 위해 제안된 고의적 에일리어싱 방법을 
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채택하였으며, 이에 따라 에일리어싱 MWC (AMWC)라는 새로운 표본화 

시스템을 제안한다. AMWC 는 PR 신호의 성능을 개선하지 않아도 표본화 

속도를 더욱 줄일 수 있다. AMWC 의 핵심 아이디어는 아날로그 디지털 

변환기 (ADC)에서 고의적인 신호 에일리어싱을 유도하는 것이다. 

결과적으로, PR 신호와의 혼합과정이며 신호 압축이 발생 한 이후에 

고의적인 신호 에일리어싱을 통해 한번 더 압축하는 효과이다. 우리는 

시뮬레이션을 통해, AMWC 가 PR 신호의 성능 개선 없이 무손실로 신호를 

압축표본화 하기 위해 필요한 아날로그 채널의 수와 ADC 의 속도를 크게 

감소시킴을 실증하였다. 또한 역으로, 아날로그 채널의 수와 ADC 의 속도가 

고정되어 있을 때, AMWC 가 더 복잡한 다중대역 신호의 복원 성능을 크게 

개선함을 보였다. 

블록체인에 대한 이중 지불 공격의 수익성 분석과 공격 방지법에 관하여, 

우리는 수익성 분석을 위한 새로운 수학적 도구를 제공하며, 이를 통해 이중 

지불 (DS) 공격 방지에 활용되는 사용자 파라미터들을 최적화 하는 

알고리즘을 제안한다. 이전까지 DS 공격의 성공의 충분 조건이 공격자가 

점유한 계산 자원이 블록체인 네트워크의 계산 자원보다 큰 것임은 잘 

알려져 있었다. 반면 잘 알려지지 않은 것은 공격자가 50% 미만의 자원을 

점유하였을 때, 즉 블록체인 네트워크보다 적은 자원을 점유하였을 때 DS 

공격이 위협적일 수 있는지에 관한 연구 결과이다. 공격자가 얼만큼의 계산 

자원을 점유하고 있던, 이중지불 공격이 공격자에게 이윤을 가져다 줄 

가능성이 있다면, DS 공격은 위협적일 것이다. 이윤이란 DS 공격 수행의 

소요 비용보다 수익이 더 큰 경우 발생한다. 우리는 유한한 시간과 DS 

공격의 성공에 관한 확률 모델을 개발하였다. 그 결과를 활용하면 DS 

공격에 소요되는 비용과 시간의 규모를 예측 할 수 있다. 구체적으로, 
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우리는 DS 공격이 이윤을 창출 할 수 있도록 하는 거래의 금액에 대한 

필요충분 조건을 얻었다. 우리의 결과는 공격자가 어떤 비율의 계산자원을 

점유하고 있더라도 DS 공격이 이윤을 창출할 수 있음을 보였다. 이는 곧, 

거래할 금액이 주어지면, 사용자는 자신의 거래가 DS 공격으로부터 

안전한지 평가 할 수 있음을 의미한다. 우리는 결과를 실용적으로 활용하는 

예로써, BitcoinCash 를 상대로 DS 공격이 이윤을 발생시키기 위한 조건을 

계산하였다. 

서로 다른 두 분야에서 도출된 결과들은 Internet-of-things (IoT) 분야에서 통합 

및 활용 될 수 있다. IoT 어플리케이션들은 방대한 양의 빅데이터를 다루기 

위하여 에너지 효율이 우수한 센서와 안전한 데이터 관리 시스템을 필요로 

한다. 우리가 제안한 고의적 에일리어싱은 센서의 효율 개선에 기여하며, 

이중지불 공격의 수익성 분석은 블록체인에 의한 데이터 관리의 보안성 

개선에 기여한다. 
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 Chapter 1  

Introduction 

 Motivation 1.1.

The advances of electronic devices and wireless communication technologies have 

facilitated small devices to communicate with each other. The Internet of things (IoT) 

depends on the reliability of data, i.e., it needs to collect and manage huge amounts of data 

from all things connected to internet in order to optimize numerous problems arising in 

various applications from industry to daily life [1]. This data reliability still has challenges 

to be addressed such as the energy efficiency of sensors to obtain more high-quality data, 

the capacity of data storage, the reliability and credibility of data, and secure management 

of data for immutability [2], [3]. 

In this dissertation, we focus on two key technologies to solve the challenges of data 

reliability, which are compressed sensing and blockchain. 

Compressed sensing provides energy-efficient analog-to-digital sensors. Literature [3] have 

reported real-world applications of the integration between IoT applications and 

compressed sensing. Specifically, a compressed sensing system makes a compression of 

analog signal which can be sparse in a certain domain of linear basis, and then digitizes it. 

The compression should be lossless, which are supported by signal recovery algorithms 

based on compressed sensing theory. This reduces the number of sensors required to obtain 

a larger amount of data while keeping the original quality of data. A challenge on sensors 

equipped with the compressed sensing is, however, an increased complexity of hardware 

implementation due to additional functionality for the analog signal compression. In 

Chapter 2 of this dissertation, we will propose an idea for a sensor in order to reduce the 

hardware complexity and improve the performance of analog signal compression. 
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Blockchain provides immutable peer-to-peer distributed database. Blockchain is a chain of 

data blocks, i.e., the previous block affects the contents of the next block. This structure 

technically keeps data immutable. Specifically, in order to publish a block, a sufficient 

number of peers must make a consensus for the process after checking the validity of block 

contents. Thus, it is impossible for a peer to manipulate the contents of block published in 

the past, and any change of block requires a consensus of a large number of distributed 

peers. This distributed property not only improves the reliability and credibility of data but 

also enables the secure management of data for immutability. 

Examples of the integration between IoT applications and blockchain have been surveyed 

in [2]. In the literature, the authors reported that blockchain has increased the autonomy of 

IoT devices by virtue of easy interaction with reliable information in transparent 

distributed database. But they also pointed that challenges still remain. First, storage 

capacity and scalability problem arise from the huge volume of blockchain database. It 

requires newly participating peers to have large storage capacity, and therefore it 

demotivates them. Second, anonymity and data privacy problem arise from the 

transparency of blockchain, as many IoT applications deal with confidential data obtained 

from person such as e-health records. Last, security problem by network attacks is critical 

as many real-world instances have been reported. Fortunately, a cryptographic technology, 

zero-knowledge proofs would be helpful to solve the first and second problems. 

Combining with the recent advances in zero-knowledge proofs [4], the capacity of data 

storage can be dramatically reduced [5], and the privacy of data can also be kept. In 

addition, in Chapter 3 of this dissertation, we will provide a security analysis for a type of 

network attack called double-spending attack that will be helpful to improve the security of 

blockchain. 

 Preliminaries 1.2.

1.2.1. Compressed Sensing 

A compressed sensing (CS) [6]–[10] is a signal processing framework that includes from 

signal acquisition to post-processing. The signals of interest are sparse signals, which can 
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be sparsely represented in a particular domain. In other words, a signal is sparse if there 

exists a domain on which the isomorphic projection has a small proportion of non-zero 

values. In a sparse signals, only a few non-zero elements can have uncertainty, which 

implies that they can be compressed into shorter-length measurements without any 

perceptual loss [7]. 

A CS aims to convert a sparse analog-signal into a digital compression. A digital 

compression is a result of analog encoding and has a shorter length than a directly-digitized 

version. If an original signal is sparse enough and an encoding is well-designed, a short 

digital compression can be decoded for a recovery of a directly-digitzed version. As a 

result, compared to direct conversion of an analog signal to digital, obtaining a digital 

compression from a CS reduces the number of sensors required for lossless digitalization. 

Examples of applications include analog-to-digital conversion (ADC) of wideband radio 

frequency signals at a sub-Nyquist sampling rate [11], [12], hyperspectral imaging [13], 

holography [14], magnetic resonance imaging [15], and ultrasound imaging [16]. 

Formally, we express a signal by n∈x  , a linear encoding by m n×∈A   called a sensing 

matrix, and a digital compression by m∈y   called a measurement. We consider x  is k

-sparse, which means there exists a unitary linear basis n n×∈F   for 1−=s F x  such that 

s  has at most k  nonzero entries supported by a set   of indices for the nonzeros. For 

given y  and A  with m n< , a CS problem is to find an inverse solution x  such that 

 .y = Ax  (1.1) 

In general, there can exist infinitely many solutions of x , since the linear system of (1.1) 

is underdetermined as the number of indeterminate variables in x  is greater than the 

number of observations in y . Thus, we need to relax the problem (1.1) to 

 ,y = Φs  (1.2) 

where Φ = AF . The inverse problem now turns to finding the support set  . Once the 

supports are given, the linear system (1.2) is equivalent to a overdetermined linear system 
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=y Φ s  , where k∈s 
, i.e., the unique solution to minimize the 2L  norm 

2
s  such 

that the linear equations hold can be found. 

To define the problem to find the supports   from the equations (1.2), Donoho has 

defined a special function called 0L  “norm”, which counts the number of nonzero 

elements. Formally, for a vector s  of length n , the 0L  “norm” 0
0 1

: n
ii

s
=

=∑s  [6]. For 

(1.2), the problem to find the supports   can be solved by  

 0
arg min  s.t. .

s
s y = Φs  (1.3) 

A well-known result on the existence of the unique solution of (1.3) uses the spark of a 

matrix. The spark of a matrix Φ  is the smallest number l  such that there exists a set of 

l  columns in Φ  which are linearly dependent. In other words, 

( ) 00
: min  s.t. 0spark

≠
= =

s
Φ s Φs . The spark of a m -by- n  matrix Φ  for m n≤  cannot 

be not greater than 1m + . A sufficient and necessary condition for the problem (1.3) to 

have the unique solution is given by 

 
( ) .

2
spark

k <
Φ

 (1.4) 

If Φ  has the maximum spark, i.e., ( ) 1spark m= +Φ , the condition (1.4) turns to 

2m k≥ . In short, if 2m k≥  and Φ  has the full maximum, the underdetermined inverse 

problem for (1.1) is well-defined. 

Satisfying condition (1.4) the existence of unique solution, but does not provide a 

practical algorithm to find it. The problem (1.3) is an NP problem. Candes et al. have 

relaxed problem (1.3) to a sub-optimal 1L  norm minimization such that 

 1
arg min  s.t. =

s
s y Φs  (1.5) 
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for a small ε  and have shown that the relaxation (1.5) has a unique and sparse solution 

if Φ  has a special property, restricted isometry property (RIP) [17]. Including the solver 

of (1.5), many practical algorithms such as greedy algorithms have been proposed [18]. 

In some applications, it is possible to acquire multiple snapshots of measurements. 

Multiple measurements can be more helpful to find supports  , if they are independent. 

We denote a bunch of l  sparse signals n l×∈S Φ  and the corresponding measurements by 
m l×∈Y   in a relationship 

 .Y = ΦS  (1.6) 

We assume all l  columns of S  share a supports set  . For a fixed k , recovery of S  

from the multiple measurement vectors (MMV) Y  requires a smaller number m  of 

sensors than the single measurement vector (SMV) problem in (1.2). By Chen and Huo 

[19] and Davies [10], a sufficient and necessary condition for the problem (1.6) to have 

the unique solution is given by 

 
( ) ( )1

.
2

spark rank
k

− +
<

Φ Y
 (1.7) 

In short, for a MMV model, if Φ  and Y  with m k≤  respectively has the maximum 

spark 1m +  and the maximum rank m , the condition (1.7) turns to 1m k≥ + , which is 

more relaxed than the condition 2m k≥  for a SMV model. The multiple snapshots can 

replace some of sensors. Many practical algorithms to solve MMV recovery models have 

been proposed [18]. 

1.2.2. Blockchain and Double-Spending Attacks 

Blockchain is distributed data maintenance protocol working on a peer-to-peer network. 

Early design of blockchain given in Bitcoin [20] by Satoshi Nakamoto mainly has focused 

on secure storage of cryptocurrency transactions. But recent applications for example IoT 

have demanded blockchain as a data storage [2]. Publishing and distributing a new data 

block or a modification of a previous data block requires a consensus of a large number of 
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unspecified peers. This distributed structure of blockchain with cryptographies makes data 

transparent and immutable. 

The data structure of blockchain is called chain. A chain consists of blocks, and a block is 

composed of its block header and transactions. A transaction is a digital file which records 

a data including an exchange of cryptocurrency. As a transaction is digital, the data in it 

can be encrypted for privacy, e.g., ZCash (formerly Zerocash) [21]. Every block is chained 

in series with previous blocks by a cryptographic hash function [22], i.e., in every block 

header, the hash of the previous block is written. To chain a new block, a peer must make a 

proof of examination of the validity of block and append the result into the block header. 

The procedure of publishing a block follows a communication protocol called consensus. 

There are many sorts of consensus depending on the type of the block validity proofs, e.g., 

Proof-of-Work (PoW), Proof-of-Stake (PoS), practical Byzantium fault tolerance algorithm 

(PBFT) [23]. PoW picks a block validator through competition of computation resources. 

PoW allows anyone having a computer to contribute to the consensus, but it also comes 

with disadvantages. When the competition is overheated due to the increase of the number 

of participants, excessive amount of computations are used, which in turn accelerates the 

destruction of the natural environment by huge energy consumption. In addition, for a 

newly launched blockchain, its small scale network can be centralized by the other large 

blockchain networks that already have huge computational resources. Moreover, to prevent 

a chain from being forked, blockchains equipped with PoW would set the period of block 

generation to be long. These disadvantages are the reason why a blockchain equipped with 

PoW cannot be easily commercialized. To overcome the disadvantages of PoW, PoS would 

pick a block validator through competition of stakes. This mechanism may imply PoS 

networks centralized by the rich. PBFT usually validates a block through communications 

of permissioned committee members. Blockchains equipped with PBFT would limit the 

number of committee members due to the delay by the communication of a lot of messages. 

These pros and cons of the consensus methods are often called blockchain trilemma to 

categorize them in three-folds such as decentralization, scalability, and security [24]. As no 

consensus that solves the trilemma at once has been proposed up to the date, recent 

blockchains often combines the existing consensus methods depending on applications 

[25]. 
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Throughout this dissertation, we focus on blockchains equipped with PoW. PoW requires a 

peer to generate a proof of solving a cryptographic puzzle using a cryptographic hash 

function. Specifically, a peer uses a hash function, where the input is a block data 

combined with a changeable nonce value. The peer repeats making the hash until the 

output is less than a given threshold while changing the nonce. Once the peer founds the 

solution nonce, it appends it into the block header as a proof. Since cryptographic hash 

functions are irreversible and behaves like a random function, PoW takes intractable 

amount of computations. Blockchain system allows the first solver of cryptographic puzzle 

to issue cryptocurrency, which incentivizes the participation of new peers into the 

competition of PoW. After molding a block with the nonce and attaching it to the chain, the 

updated chain is spread to a peer-to-peer network. Meanwhile, all peers who download a 

new chain from the network need to make a decision whether to accept it or not. Only one 

chain survives in their local storage. To resolve the confliction of existing two or more 

different chains called forks, for example, a node is programmed to choose the longest 

chain and discard the rests. This rule for PoW used in Bitcoin is called longest chain 

consensus. There is also the other consensus for PoW called GHOST used in Ethereum 

[26]. A consensus resolves the conflict when two or more groups of peers temporarily hold 

different forks due to network problems such as propagation delays.  

The design goal of blockchain is to keep immutability of block contents. For example, in 

blockchain with the longest chain consensus, a group of peers who try to modify a block 

previously published needs to resolve the cryptographic puzzles for all the next blocks 

chained after it, as the contents of the blocks have been changed. However, this 

modification can be realizable, if a peer group invests a huge amount of computation 

resources for running a cryptographic hash function which is comparable to the sum of 

computation resources used by all the other peers in the network. If so, there is a possibility 

to make the modified fork longer than the current longest chain called the status-quo chain 

in order to convince the other peers. Attacks exploiting this weak point are called double-

spending attacks [20]. 

Double-spending (DS) attacks aim to double-spend cryptocurrency for the price of a goods 

or services that has been already delivered. To double spend, attackers need to replace the 

status-quo chain in the network with their new one, after taking the goods or services. 
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Nakamoto [20] and Rosenfeld [27] have shown that the higher computing power is 

employed, the higher probability to make a DS attack successful is. In addition, if an 

attacker invests more computing power than that invested by the honest network, a success 

of DS attack is guaranteed. Such attacks are called the 51% attack. Unfortunately, for small 

scale blockchins, double-spending attacks have been realized many times. For example, in 

2018 and 2019 Verge, BitcoinGold, Ethereum Classic, Feathercoin, and Vertcoin suffered 

from DS attacks and millions of US dollars were lost [28]. 

 Dissertation Outline and Summaries 1.3.

1.3.1. Dissertation Outline 

In Chapter 2, we will discuss ultra-wideband sub-Nyquist sampling of multiband signals. 

We will propose a compressed sensing-based analog-to-digital sensing system to improve 

the energy efficiency of sensors. By the results of Chapter 2, we expect that our system can 

contribute to solve the sensor efficiency problem by data reliability in IoT applications. In 

Chapter 3, we will study the profitability of double-spending attacks on blockchains 

equipped by PoW and applying the longest chain rule. One of our results gives a necessary 

and also sufficient condition to economically motivate double-spending attackers. This can 

be used to come up with a strategy, conversely, to demotivate the attackers [29]. The 

results of Chapter 3 can contribute to solve the data immutability and credibility problems 

by data reliability in IoT applications. Finally, Chapter 4 summarizes the contributions of 

this dissertation and suggests future research directions. 

1.3.2. Summary of Chapter 2 

Prior works have given a practical solution for efficient sub-Nyquist sampling of multiband 

signals spread over a wideband up to few gigahertzs. Increasing their receiving bandwith to 

an ultra-wideband of tens of gigahertz, however, requires impractical hardware 

implementation. In Chapter 2, we will propose a new idea to solve the problem, which is 

intentional aliasing method. Specifically, to cover an ultra-wideband bandwidth, our 

approach intentionally allows a well-controlled aliasing at the sampling device. This 
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intentional aliasing has the effect of replacing the requirement of impractical hardware, at 

the cost of increased computational complexity in post-digital signal processing. Ideally, 

with the proposed method, the sampling efficiency of a sub-Nyquist sampling system can 

reach a theoretical limit without the aid of impractical hardware. 

The contents of Chapter 2 have been partially published in [11], [30]: 

[11]  Jehyuk Jang, Sanghun Im, and Heung-No Lee, “Intentional aliasing method to 

improve sub-Nyquist sampling system,” IEEE Trans. Signal Process., vol. 66, no. 12, pp. 

3311-3326, Apr. 2018. 

[30]  Jehyuk Jang, Nam Yul Yu, and Heung-No Lee, “A study on mixing sequences in 

modulated wideband converters,” in 2016 IEEE Global Conference on Signal and 

Information Processing (GlobalSIP), Washington DC, DC, USA, Dec. 2016. 

1.3.3. Summary of Chapter 3 

By Satoshi Nakamoto, it has been well known that running a majority portion of 

computing resources, i.e., occupation of more computing resources by a party of attacker 

nodes than honest full-nodes, always leads to the success of a double-spending attack [20]. 

What is less well-known, on the other hand, is the risk of double-spending attacks that use 

a minority of computing resources, minority double-spending attacks. The success of 

minority double-spending attacks is not guaranteed, but still it can be expected to bring 

significant returns. In Chapter 3, we will provide mathematical tools to calculate the 

expected profit of all double-spending attacks including ones running a minority of 

computing resources. Our tools will enable us to derive sufficient and necessary conditions 

for profitable double-spending attacks. 

The contents of Chapter 3 have been partially published in [29], [31]: 

[31]  J. Jang and H.-N. Lee, “Profitable Double-Spending Attacks,” Applied Sciences, vol. 

10, no. 23, p. 8477, Nov. 2020. 
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[29]  J. H. Jang and H. N. Lee, “Transaction Verification System for Blockchain, and 

Transaction Verification Method for Blockchain,” patent, PCT/KR2019/017571, Nov. 12, 

2019. 
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 Chapter 2  

Intentional Aliasing Method to Improve Sub-

Nyquist Sampling System 

 Introduction 2.1.

Applications of electronic warfare (EW) systems, electronic intelligence (ELINT) systems, 

or cognitive radios are demanding the observation of a multiband signal, i.e., a collection 

of multiple narrow-band signals, each with different center frequencies, scattered across a 

wide frequency range up to tens of gigahertz (GHz). The Nyquist sampling rate is twice the 

maximum frequency of the wide range. When a multiband signal is sparse, i.e. consists of 

a few narrow bands, the signal can be sampled without information loss at a sub-Nyquist 

rate far less than the Nyquist rate. The theoretical lower limit of the rate required for 

lossless sub-Nyquist sampling is the sum of the bandwidths, known as the Landau rate, 

when the spectral locations of all the narrow-band signals are known [32]. When spectral 

locations are unknown, the lower limit is doubled [33]. 

The modulated wideband converter (MWC) proposed by Mishali et al. [12] is a lossless 

sub-Nyquist sampler that aims at achieving the theoretical lower limit of sampling rate. 

Similar to other sub-Nyquist samplers proposed in [34]–[36], MWC exploits pseudo-

random (PR) signals, which periodically output pulsed patterns. MWC has multiple analog 

channels, each of which consists of a PR signal generator, signal mixer, low-pass filter 

(LPF) for anti-aliasing, and low-rate analog-to-digital converter (ADC) in sequence. The 

system compresses a multiband spectrum through the mixing and LPF procedures, 

following which it samples at a sub-Nyquist rate. The reconstruction of the input multiband 

spectrum is guaranteed under some conditions of the compressed sensing (CS) theory [6]–

[10]. With the help of CS reconstruction algorithms in [33], [37] developed for the MWCs, 
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it has been proved that an MWC can achieve the theoretical lower limit of the lossless sub-

Nyquist sampling rate. 

However, to achieve the lower limit of the lossless sub-Nyquist sampling rate, the 

previously proposed MWC by Mishali et al. relied on a high-end PR signal generator, 

since it was the only spectral compressor. The ratio of spectral compression was fully 

dependent on the oscillation speed and length of the pulsed patterns within a single period 

of the PR signals. Specifically, to improve the compression ratio for a sparser multiband 

signal, PR signals with a greater pattern length were required. In addition, the oscillation 

speed should be faster than the Nyquist rate for a lossless compression. Unfortunately, 

increasing the pattern length of a PR signal generator with tens of GHz-range switching 

speed leads to difficult research problems in the field of chip engineering, such as high 

power consumption and large fabrication area due to the high chip speed [38], [39], which 

hinder the commercial availability of such a PR signal generator chip. 

In this Chapter, we aim to reduce the lossless sub-Nyquist sampling rate for given practical 

PR signals. To this end, we propose an aliased MWC (AMWC). The main idea of AMWC is to 

break the anti-aliasing rule and induce intentional aliasing at the ADC of each spatial 

channel by setting the bandwidth of the prior LPF to be greater than the ADC sampling rate. 

In addition to the first spectral compression by the mixing and LPF procedures, this 

intentional aliasing leads to another spectral compression under a certain relation between 

the ADC sampling rate and bandwidth of the prior LPF. Through the two spectral 

compression procedures, the compression ratio is improved without faster or longer PR 

signals. Consequently, for a given and fixed PR signal generator, the lossless sub-Nyquist 

sampling rate of AMWC is closer to the lower limit than that of MWC. 

2.1.1. Related Works 

Efforts to reduce the rate for lossless sub-Nyquist sampling with MWC closer to the 

theoretical lower limit without upgrading the PR signal generators have been made in [40], 

[41]. In [40], the authors proposed a method that channelizes the multiband spectrum into 

few orthogonal subbands before mixing with the PR signals. Since the channelized signals 

have a lower Nyquist rate than the original input, for a given oscillation speed and pattern 
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length of PR signals, the method achieves a higher ratio of spectral compression. Although 

the method led to a further reduction of the lossless sub-Nyquist sampling rate, it requires 

additional hardware resources for the channelization, such as band-pass filters, local 

oscillators, and a greater number of independent PR signal generators proportional to the 

number of subbands. In [41], a method similar to that proposed in [40] was presented, in 

which the input signal was divided into in-phase (I) and quadrature (Q) channels before 

mixing it with PR signals. The lossless sub-Nyquist sampling rate can be reduced by the 

same principle as in [40], although the authors did not mention this point. However, the 

system also required additional hardware resources for the I-Q division. 

The proposed AMWC achieves the same effect as in previous works [40], [41], i.e., 

reduction in the lossless sub-Nyquist sampling rate without upgrading the PR signal 

generators, but unlike [15] and [16], it does not require additional hardware components. 

To our knowledge, AMWC is novel in that no study has thus far improved the sub-Nyquist 

sampling capability of MWC by improving the utilization efficiency of given hardware 

resources. 

In [42], [43], variations of MWC similar to AMWC that include aliasing at the ADC have 

been investigated for analyzing channel capacity. Their main results indicate that 

suppressing non-active subbands before spectral compression minimizes the loss of 

information rate incurred by aliasing the noise spectrum. Interestingly, the authors of [43] 

introduced a rule for determining the sampling rate of each spatial channel similar to that 

of AMWC (see Section 2.3.2 for details). However, the rule was designed to make a fair 

comparison with other filterbank-based systems by flexibly controlling the bandwidth of 

subbands, rather than to exploit the aliasing at the ADC to reduce the lossless sub-Nyquist 

sampling rate. Additionally, according to our results, the rule in [43] is insufficient and 

aliasing at the ADC may lead to information loss. 

2.1.2. Contributions 

Our main contribution is that the anti-aliasing rule of MWC is shown to be unnecessary for 

lossless sub-Nyquist sampling. We reveal a certain relationship between the ADC sampling 

rate and bandwidth of the prior LPF so that AMWC can avoid the loss of signal information 
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during the additional spectral compression. We demonstrate that, for given oscillation 

speed and pattern length of PR signals, the sampling rate and analog channels of AMWC 

required for the reconstruction of a multiband signal are further reduced. For given 

sampling rate and number of analog channels, we show that the reconstruction 

performance of AMWC for a multiband signal with a given sparsity is improved. 

Additionally, we show that the benefits from intentional aliasing can be further 

strengthened using a non-flat LPF. The non-flat frequency response of LPF results in a 

different input-output relationship for each frequency component of the sub-Nyquist 

samples of AMWC. Simulation results show that the reduction of lossless sub-Nyquist 

sampling rate is boosted when the filter response is samples of a random distribution as the 

input-output relationships of different frequency components become independent. 

2.1.3. Contents of Chapter 

The remainder of this chapter is organized as follows. In Section 2.2, we briefly introduce 

MWC with the anti-aliasing rule and then discuss the performance limitation. In Section 

2.3, we propose AMWC and derive its input-output relationship. The relationship between 

the sampling rate of ADC and bandwidth of LPF to avoid information loss is also provided. 

In Section 2.4, a revised input-output relationship of AMWC corresponding to the use of a 

non-ideal LPF is provided. Simulation results are provided in Section 2.5. Section 2.6 

concludes this chapter with summarizing contributions. 

 Modulated Wideband Converters (MWC) 2.2.

Throughout this chapter, signals to be digitalized are multiband radio frequency (RF) 

signals. An RF signal ( )x t  is a multiband signal if its spectrum ( )X f  on positive 

frequency 0f >  is composed of BK  disjoint continuous bands of maximum bandwidth 

B , for any BK ∈  and B +∈  [12], [33]. We assume the center frequencies of BK  

bands in ( )X f  are unknown. We assume that the maximum frequency of a target 
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multiband signal does not exceed maxf , i.e., ( ) 0X f =  for NYQf ∈  , where 

[ )max max,NYQ f f−  , and NYQ
  is the complementary set of NYQ . We denote the 

Nyquist rate by max2NYQf f . We assume spectrally sparse ( )x t  such that actual spectral 

occupancy BBK  is far smaller than the maximum frequency maxf , i.e., maxBBK f . 

To take samples [ ]x N  of ( )x t  without loss, Nyquist sampling theorem provides a 

sufficient condition for the sampling rate, which is the Nyquist sampling rate NYQf . Taking 

samples of a signal at the Nyquist sampling rate prevent the spectrum from being aliased.  

Another optimal sampling rate is Landau rate [32], which gives the minimum sampling 

rate BBK  required for lossless sampling of multiband signals. When the center 

frequencies of multi-bands are known, it is easy to realize a sampling system working at 

the Landau rate: for each of BK  bands in a signal ( )x t , we can modulate the signal in 

order to shift the center of band to zero, take a low-pass filter of bandwidth B , and finally 

take samples at rate B . Since multi-bands are fragmented and then respectively sampled 

at a sufficiently high sampling rate, they are not aliased among themselves. Therefore, the 

original signal ( )x t  can be reconstructed. 

When the center frequencies of multi-bands are unknown, the minimum sampling rate 

required for lossless sampling of a multiband signal ( )x t  is doubled from Landau rate, 

i.e., the minimum sampling rate is 2 BBK [33]. In this case, the realization of a sampling 

system working at the minimum rate is quite challenging. When B NYQBK f
, i.e., ( )x t  

is spectrally sparse, then compressed sensing theory [7] can be applied to realize a practical 

sampling system for unknown center frequencies of multi-bands working near the 

minimum rate. 

MWC is a sub-Nyquist sampling system exploiting PR signals for spectral compression. 

MWC consists of M analog channels in parallel (see Figure 2.1-(a)). Each channel consists 

of a PR signal generator, a mixer, an LPF, and an ADC in sequence. Each PR signal ( )ip t  
for channel index i  is pT -periodic and outputs chips of an odd length L within a single 
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period pT . Each chip lasts for a chip duration 1
c pT T L−= . We denote the chip speed by

1
c cf T −


 and the repetition rate of the PR signal by 1
p pf T −
 . The LPF has a cut-off 

frequency 2LPFW , where LPFW denotes the bandwidth of the filter including negative 

frequency. The LPF bandwidth is set to ,LPF pW qf=  where q is the channel-trading 

parameter, an odd positive integer. Finally, we denote the sampling rate, which is equal at 

every channel, by sf . The total sampling rate is the sum of sampling rates of all channels, 

defined by ,s total sf Mf . 

MWC first compresses the input multiband spectrum using PR signals. After that, nonzero 

subbands of the multiband spectrum are recovered by CS recovery algorithms. For the 

successful CS recovery, all spectral components within the Nyquist range NYQ  of each 

PR signal are needed to be independent, which requires a fast chip speed c NYQf f≥  [12]. 

Throughout this chapter, we set c NYQf f= .  
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Figure 2.1  Sampling system of AMWC. The system is equivalent to cMWC when 1p =  

and q q′ = . In AMWC, the sampling rate is p -times lower than the filter bandwidth with 

1p >  to intentionally induce aliasing.  
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2.2.1. Conventional MWC 

In the original paper [12] by Mishali et al., for lossless sub-Nyquist sampling, the ADC 

followed the anti-aliasing rule, i.e., s LPFf W≥ . This conventional rule has sufficed for 

lossless sub-Nyquist sampling. We refer to MWC that follows the anti-aliasing rule as 

conventional MWC (cMWC). 

The input-output relationship of cMWC is given in [12]. The input ( )x t  at the i -th 

channel is first mixed with the pT -periodic PR signal ( )ip t  that periodically outputs a 

sequence of L  mixing chips. By the periodicity, the Fourier transform (FT) of ( )ip t  is 

an impulse train. The FT of the mixed signal ( ) ( ) ( )i is t x t p t=  is the convolution ∗  of 

the two spectra: 

 

( ) ( )
( ) ( )

( )

2

, ,

j ft
i

i

i l p
l

S f s t e dt

P f X f

c X f lf

p∞ −
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∞
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= ∗

= −

∫

∑



 (2.1) 

where ,i lc  for , ,l = −∞ ∞  are the Fourier series coefficients of ( )ip t .The mixed signal 

( )is t  and ( )pX f lf−  in (2.1) are filtered by the LPF ( )H f . We let ( ) 1H f =  for 

LPFf ∈ , and otherwise, ( ) 0H f = , where [ )2,  2LPF LPF LPFW W−  . Since ( )X f  is 

band-limited by NYQ , the infinite-order summation in (2.1) is reduced to a finite order as 

follows: 
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, ,  for ,

i i

L q

i l p LPF
l L q

Y f S f H f
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+
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=
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where 0L  is computed by ( )0 1 2L L= − [12], and ( )0 1 2.q q −  Next, the ADC of rate 

1
s sf T −=  takes samples of ( )iy t , i.e., [ ] ( )

s
i i t nT

y n y t
=

= . By the conventional anti-
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aliasing rule, we set s LPFf W= . Then, the discrete-time FT (DTFT) of [ ]iy n  preserves 

the spectrum of (2.2). 

In (2.2), every subband ( )pX f lf−  is spectrally correlated with nearby 1q −  subbands, 

since the bandwidth LPFW  is wider than the shifting interval pf . To make them spectrally 

orthogonal, the samples [ ]iy n  are modulated and low-pass filtered in parallel through q  

digital channels by 

  [ ]( ) [ ]


2
,

p s

p

j sf T n
i s i f

n nq
z n y n e h np−

=

   = ∗     (2.3) 

for 0 0, ,s q q= −  , where [ ]
pfh n  is a digital LPF with the cut-off frequency of 2pf  

and a flat passband response. The DTFT of (2.3) is  

 ( ) ( )
0

0
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, ,  for ,s

L
j fqT

i s i l s p p
l L

Z e c X f lf fp
+

=−

= − ∈∑   (2.4) 

where )2, 2p p pf f− 
. The subbands ( )pX f lf−  in (2.4) are spectrally 

orthogonal to each other, since the bandwidth equals the shifting interval. As ( )X f  is a 

multiband signal, only a few subbands in (2.4) have nonzero values. If pf B≥  , the 

upper bound on the sparsity K  of the subbands is 2 BK K≤ , since the uniform grid of 

interval pf  splits each band into two pieces at most. 

Consequently, each analog channel outputs q  different sequences, and therefore, cMWC 

obtains totally Mq  equations for input reconstruction. Depending on the number of 

equations, it was shown in [12] that the input spectrum can be perfectly reconstructed. 

Previously, to obtain more equations for a fixed number of channels M  and for a given 

specification pf  for PR signal generation, cMWC has to rely on the increased sampling 

rate s pf qf=  by controlling the channel-trading parameter q . In this chapter, we aim to 

show there is another way to obtain more equations and improve the input reconstruction 
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performance, without the cost intensive ways of increasing the total sampling rate 

,s total sf Mf=  or reducing pf , or both. 

2.2.2. Choosing PR Signals for Conventional MWC 

In this subsection, we present a study on the hardware-friendly selection of PR signals, 

which was published in [30]. 

Motivation  In the MWC, the input signal is mixed with a multiple number of periodic PR 

signals in parallel. PR signals play a significant role in recovering the input from the sub-

Nyquist samples by CS theory. In the original paper [12], instead of pseudo-random signals, 

signals generated from independently drawn random Bernoulli sequences were used to 

exploit a theoretical result of CS. However, in the perspective of implementation, such 

true-random signal generators are inefficient, since it requires memory banks as many as 

the chips of random sequences. In addition, even if one considers signal generators based 

on pseudo-random sequences, it is still burdening to implement m  independent 

generators due to synchronization issues among them and large fabrication area. 

Related Work  For efficient generation of mixing signals, single well-designed base 

sequence has been employed to generate all m  mixing sequences by its random cyclic 

shifts [44]–[46]. In the literatures, the CS recovery was guaranteed if the discrete Fourier 

transform (DFT) elements of a base sequence have flat magnitudes. In [45] and [46], real- 

and complex-valued sequences with flat spectra have been respectively chosen as the base 

sequence. For enhanced noise robustness and memory efficiency, exclusive-OR operations 

of the random cyclic shifts were exploited [44]. In the literature, the spectrum of a base 

sequence was not restricted to be flat with the absence of theoretical performance analysis. 

The prior works restricted their focuses on base sequences having flat spectra. Although it 

is well known to construct non-bipolar sequences with flat spectra (e.g., ternary sequences 

[47]), using arbitrary-valued sequences requires high complexity in implementation. 

Meanwhile, it is conjectured that a bipolar sequence with flat spectrum exists only for 

length 4. Instead, M-sequences and Legendre sequences with the nearly-flat spectra can be 

considered [44], but their lengths are still inflexible. For example, m -sequences exist in 
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lengths 2 1nM = −  for a positive integer n , and Legendre sequences exist in prime 

lengths M  such that 3mod 4M ≡ . 

Goal  We scope the conventional MWC using random cyclic shifts of a base mixing 

sequence, which is referred to as random partial Fourier structured MWC (RPFMWC). Since 

the length of mixing sequence is a major parameter in deciding a sampling rate for the 

lossless sampling, inflexible length of mixing sequences can increase the sampling rate 

unnecessarily. Therefore, the flexibility in choosing the lengths of mixing sequences is 

important for performance optimization. 

We investigate the use of pseudo-random sequences supporting flexible choice of lengths 

as the base sequence. In the perspective of flexible sequence length, using a bipolar 

sequence having non-flat spectrum as the base sequence, e.g., a sequence randomly 

generated and then fixed, would be a reasonable choice. Therefore, it is needed to 

investigate the CS recovery performance of the RPFMWC with the bipolar base sequence 

having non-flat spectrum. 

Results  We show that the CS recovery of the RPFMWC is guaranteed if and only if all 

spectral elements of a base sequence are nonzero. 

Theorem 2.1 (Theorem 1 in [30]) Consider sensing model (2.4). When ( )4lnm O K M≥ , 

where M  is the length of base sequence, the reconstruction of at most K  nonzero 

subbands of ( )X f  by 1L  norm minimization given in (1.5) is successful, if and only if 

σ  has nonzero elements, i.e., Σ  is invertible. 

Theorem 2.1 is demonstrated by Monte Carlo experiments in Figure 2.2.   
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Figure 2.2  Successful recovery rates of all nonzero subbands of ( )X f  from RPFMWC for various lengths M  of the base sequence 

and numbers m  of channels. The number of mutlibands is 4BK = .The sparsity of sensing model is 2 BK K≤ .
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2.2.3. Sampling Efficiency 

In (2.4), MWC splits the input spectrum into many subbands along a uniform grid of a 

splitting interval, and it then takes samples of the weighted sum of subbands. We denote 

the splitting interval by If . Note that the splitting interval of cMWC ,I cMWCf  equals pf . 

From the samples, a CS recovery algorithm (e.g., [10], [19], [37], [48]) finally recovers the 

K  nonzero subbands containing the split pieces of the BK  multibands. Consequently, 

the total sampling rate is consumed to take samples of K  nonzero subbands of bandwidth 

If . This indicates that the total sampling rate required for lossless sampling by an MWC 

would be at least , 2s total If Kf≥ , where the factor of 2  arises from the unknown supports 

of the nonzero subbands. In contrast, a result in [33] states that, for a general sub-Nyquist 

sampling system, the minimum requirement for lossless sampling of a multiband signal is 

, 2s total Bf K B≥ , where BK B  is the upper bound of the actual spectral occupancy of a 

multiband signal. That is, when If  is far greater than B , MWC consumes a portion of the 

total sampling rate inefficiently. Specifically, If  greater than B  yields a higher 

probability for the K  nonzero subbands to be comprised of unused bands, i.e., zeros. The 

inefficient use of total sampling rate is illustrated in Figure 2.3. 

Ideally, when the splitting interval If  becomes finer and closer to B  while satisfying 

If B≥ , the sampling efficiency is improved, as shown in Figure 2.3. The efficiency is 

maximized when I BKf K B= . Based on this observation, we define the sampling 

efficiency α  of MWC as the ratio between the actual spectral occupancy of the multiband 

signal and the total bandwidth of the recovered subbands, i.e., 

 .B

I

K B
Kf

α   (2.5)  

Note that, by the definition of K , 1α ≤  always holds. 
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In summary, improving α  has two advantages. First, for the lossless sampling of a given 

multiband signal, it would reduce the required total sampling rate ,s totalf  closer to the 

theoretical minimum requirement , 2s total Bf K B≥ . By the definition, the higher α  closer to 

1 indicates that a portion of ,s totalf  inefficiently consumed for taking samples of the 

unused bands in Figure 2.3 is reduced. By the reduced ,s totalf , the number of channels M  

or the sampling rate sf  of ADC at each channel is reduced. Secondly, for given and fixed 

,s totalf , we will show throughout the rest of chapter that improving α  yields more 

independent equations for signal reconstruction, and thus, more complex multiband signals 

with higher BK  can be recovered perfectly. 
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Figure 2.3  Sampling system of AMWC. The system is equivalent to cMWC when 1p =  and q q′ = . In AMWC, the sampling rate is p

-times lower than the filter bandwidth with 1p >  to intentionally induce aliasing. 
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2.2.4. Limitation of Conventional MWC 

For cMWC, the sampling efficiency depends entirely on the hardware capabilities of PR 

signal generators, which may result in severe implementation problems. The sampling 

efficiency of cMWC depends on the specifications of PR signal generators since ,I cMWCf  is 

fixed to pf . By the definition, the only way to improve the sampling efficiency cMWCα  of 

cMWC has been to make the repetition rate pf  of the PR signals closer to B . As 

discussed, the chip speed cf  of PR signals should not be less than the Nyquist rate, i.e., 

c NYQf f≥ . Thus, from the relation 1
p cf f L−= , the chip length L  is the only free 

parameter to control pf . Since B  is usually far smaller than NYQf , to fit pf  closer to 

B , a very long L  is needed. However, in applications where NYQf  reaches tens of 

gigahertz, due to the extremely high chip speed cf , implementing PR signal generators 

having a high chip length L  poses problems in terms of power consumption and 

fabrication area [38], [39]. Hence, other means to improve α  without relying on the chip 

length L of the PR signals are very important. 

For example, suppose one is observing on-air radar signals of bandwidth up to 30B =  

[MHz] over an extremely wide observation frequency scope max 40f =  [GHz]. This 

setting is reasonable in radar systems [49], [50]. We discussed that the chip speed should 

not be less than the Nyquist rate, i.e., c NYQf f≥ , where 80NYQf =  [GHz]. In this example, 

to achieve pf B≈ , the chip length needs to be 112 1L = − . Although hardware 

implementations of such PR signal generators having 80cf =  [GHz] and chip length 

greater than 112 1L = −  were proposed in the literature [51], [52], they require very large 

fabrication areas and high power consumption, which has hindered practical uses thus far. 
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 Aliased Modulated Wideband Converters (AMWC) 2.3.

2.3.1. Problem Formulation 

The goal of this section is to introduce the proposed sampling system which aims to 

improve the sampling efficiency α  with given and fixed specifications pf , cf , and L  

for PR signal generation. Throughout this section, we assume small L  and B  and a 

large NYQ cf f= , which implies pf  large enough compared to B  and makes room for 

improving α . That is, pf pB≥  for a natural number 1p > . Then, improving α  can be 

made without upgrading the PR signal generators and causing the said implementation 

issues such as higher power consumption and larger fabrication area discussed in the 

previous subsection. Thus, very wideband signals can be losslessly sampled using 

commercially available PR signal generators and ADCs, while this was not possible in the 

past with the conventional cMWC system.  
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Multiband model 
18 [GHz]NYQf =  30 [MHz]B =  10BK =  

System specification 
72 1L = −  142 [MHz]pf   3M =  

Parameters cMWC AMWC (with 4p = ) 

Channel-trading parameter 5q =  19q′ =  

Sampling rate [MHz] 710s pf f q=   
1 674.5s pf f q p−′ ′= .  

Splitting interval [MHz] 142I pf f= =  1 35.5I pf f p−= =  

Sparsity 2 20BK K≤ =  2 20BK K≤ =  

Number of rows of X  127N L= =  508N Lp= =  
Total number of equations 15Mq =  57Mq′ =  

Table 2.1  Sampling system of AMWC. The system is equivalent to cMWC when 1p =  and q q′ = . In AMWC, the sampling rate is p

-times lower than the filter bandwidth with 1p >  to intentionally induce aliasing. 
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2.3.2. Intentional Aliasing Method 

The AMWC system is depicted in Figure 2.1. As mentioned already, compared to cMWC, 

AMWC is designed to not satisfy the anti-aliasing rule at the ADC; rather, it is designed to 

induce intentional aliasing by setting the bandwidth of LPF greater than the sampling rate. 

In fact, in both cMWC and AMWC, an aliasing is introduced first by the mixer. The effect of 

this first aliasing is shown in (2.2), where the mixer shifts, gives weights, and has the 

signal spectrum ( )X f  overlapped with shifted versions of itself at intervals of pf . By 

the second aliasing at the ADC, the overlapped spectrum is aliased again at intervals of 

new sampling rate of AMWC sf ′ , which is smaller than the filter bandwidth. By adjusting 

the relationship between pf  and sf ′ , the splitting interval If , which is the interval at 

which ( )X f  is split in the outputs of AMWC, is regulated. 

Specifically, we set the new sampling rate sf ′  of AMWC:  

 ,s p
qf f
p
′

′ =  (2.6) 

where q′  is the new channel trading parameter for AMWC and an odd number. The 

bandwidth of LPF is LPF pW q f′= , and therefore, LPF sW pf ′=  for the integer aliasing 

parameter 1p > . We will show that coprime p  and q′  with q p′ >  is necessary for 

no information loss of ( )X f . The new sampling rate induces additional aliasing and 

regulates the splitting interval If  to improve the sampling efficiency. We let 

 p
p

f
f

p
′
  (2.7) 

denote the least common shifting interval (LCS), which will become the splitting interval 

of AMWC, i.e., ,I AMWC pf f ′= .  
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With the introduction of new sampling rate sf ′  in (2.6), it becomes easier to compare 

AMWC with cMWC. Specifically, with the sampling rate fixed, the number of equations for 

the input reconstruction obtained by cMWC and that by AMWC can be compared; with the 

number of equations fixed, the sampling rates for the two can be compared. For a given 

sampling rate s pf q f p′ ′= , we will show in this section, the number of equations 

obtained by AMWC is Mq′ . For a given sampling rate s pf qf= , from Section 2.2.1, the 

number of equations obtained by cMWC is Mq . With the sampling rate fixed the same, i.e., 

s sf f ′= , we note that q qp′ = . This implies that AMWC has p -times more equations than 

that of cMWC. Table 2.1 presents an example of the increase in the number of equations of 

AMWC. With the number of equations fixed, i.e., Mq Mq′= , on the other hand, AMWC 

requires p -times smaller sampling rate than cMWC does. 

In [43], a variation of MWC using a sampling rate similar to (2.6) was considered, to 

analyze the noise factor incurred by the aliasing of subbands. There appear coprime 

relations between p  and q′  similar to that in this chapter. However, the purpose of 

using coprime p  and q′  in [18] was completely different from that of this chapter, i.e., 

they regulated the splitting interval of the subbands to make a fair comparison with other 

filterbank-based sampling systems with regard to the effect of noise. No relation between 

p  and q′  for lossless sampling and improving sampling efficiency was studied in [18]. 

To support intentional aliasing, AMWC requires an ADC with an operating bandwidth wider 

than its sampling rate. Such an ADC can be implemented by using a wideband track-and-

hold amplifier (THA) developed by Hittite Corp. for the applications of EW and ELLINT 

in [53]. This THA has an 18 GHz bandwidth and can be integrated at the front end of 

commercially available ADCs of sampling rate up to 4 giga-samples per second. 

To show that the AMWC obtains Mq′  equations, we observe the input-output relationships 

of the aliased samples  [ ]iy n  in Figure 2.1. Without loss of generality, we assume q q′ =  

and s sf pf ′= . By the sampling theorem, the DTFT of  [ ]iy n  is the sum of shifts of 

( )iY f : 
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 (2.8) 

where ( ) 1
s sT f −′ ′


 and ( )iY f  given in (2.2) is the spectrum of the output of the LPF 

( )H f . Within only a single period of  ( )2 sj fT
iY e π ′  in (2.8), i.e., ( ) [ )0 0 0,s sf f f f′ ′+   

for any 0f ∈ , because the bandwidth of ( )iY f  is limited by the LPF ( )H f , most of 

the shifts ( )i sY f rf ′−  for sufficiently large r  are zeros. In other words, there exist 

( )0 1 2, ,f R R  such that the infinite order of the outer summation in (2.8) is reduced to a 

finite order, i.e., 

  ( ) ( ) ( )
2

1

2
,

s

R
j fT

i i l s p s
r R l

Y e c X f rf lf H f rfp
∞

′

= =−∞

′ ′= − − −∑ ∑  (2.9) 

for ( )0sf f′∈ . Assuming ( ) 1H f =  for LPFf ∈ , if 0f , 1R , and 2R  satisfy the 

conditions of Lemma 2.2, the LPF responses in (2.9) are replaced with ( ) 1sH f rf ′− =  

for ( )0sf f′∈ . Note that, when 1p = , i.e., no aliasing exists at the ADC, 1 2R R= , 

which is equivalent to cMWC. 

Lemma 2.2. Equation (2.9) is equivalent to (2.8) if 0f , 1R , and 2R  with 1 2R R< ∈  
satisfy  

 2 1 1,R R p− = −  (2.10) 

and 

 0 2 .
2 s
pf R f  ′= − 

 
 (2.11) 

Proof: See Appendix 2.A. 
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We represent the shifting indices s prf lf′+  in (2.9) in terms of the LCS pf ′ . Then,  

  ( ) ( )( )
1

1

1
2

,
s

R p
j fT

i i l p
r R l

Y e c X f rq lp fp
+ − ∞

′

= =−∞

′ ′= − +∑ ∑  (2.12) 

for ( )0sf f′∈ . To merge the inner and outer summations in (2.12), we use Lemma 2.3. 

Lemma 2.3. If p  and q′  are coprime, the linear combination rq lp′ +  for 

{ }1 1, , 1r R R p∈ + −    and l∈  spans every integer. 

Proof: We consider the following congruent relationship 

 ( )mod .k rq p′≡  (2.13) 

By modular arithmetic, if p  and q′  are coprime, there always exists one-to-one 

correspondence between r  and k  in the least residue system modulo p . Since p= , 

( )modrq p′  for r∈  in (2.13) spans every number in the least residue system of 

modulo p . Hence, for r∈  and l∈ , modrq lp k p lp′ + = +  spans every integer. ■ 

By denoting k rq lp′= +  in (2.12), we have the equivalent relationship 

  ( ) ( ) ( )2
, 1, ,sj fT

i i k p
k

Y e d R p q X f kfp
∞

′

=−∞

′ ′= −∑  (2.14) 

for ( )0sf f′∈ , where ( ), 1, ,i kd R p q′ are the new sensing coefficients of AMWC. 

Proposition 2.4 provides the rule to obtain the coefficients ,i kd  from the Fourier 

coefficients ,i lc  of PR signals. 

Proposition 2.4. For coprime p  and q′ , let us define 

 
( ) ( )( ){ }1

1 1 1
1; , , mod ,I k R p q k q q k R p R
p

− ′ ′ ′− − +
 

  (2.15) 
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where ( ) ( )1 modq p−′  is the multiplicative inverse of q′  modulo p . Equation (2.14) is 

equivalent to (2.12) if  

 ( ) ( )1, 1 , ; , ,, , .i k i I k R p qd R p q c ′′ =  (2.16) 

Proof: See Appendix 2.B. 

In (2.14), the bandwidth of the subbands ( )pX f kf ′−  for ( )0sf f′∈  equals sf ′  and is 

q′  times wider than their shifting interval pf ′ . Therefore, every subband is correlated with 

the closest 1q′ −  subbands. By making these subbands spectrally orthogonal, the M  

relationships for 1, ,i M=   are expanded to Mq′  equations to enhance the input 

reconstruction performance. A similar work was done for cMWC through (2.3) to (2.4), 

which further divides the observing frequency domain ( )0s f′  (2.14) into q′  tiny 

domains. Specifically, for 0, , 1u q′= − , the u -th tiny frequency domain is defined by 

( )0p pf uf′ ′+ , where 

 ( ) )0 0 0, .p pf f f f′ ′ + 
 (2.17) 

Then, the corresponding divided outputs have relationships  

 


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for 0, , 1u q′= − . Finally, we define the output  ( )2
,

pj fT
i uZ e p ′  of AMWC as follows: 
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for ( )0pf f′∈ . The final output ,i uz n  
  in the discrete-time domain can be obtained by 

performing digital frequency modulation and low-pass filtering on  [ ]iy n , as similarly 

done for cMWC in (2.3). The specific design of the digital processing system is shown in 

Figure 2.1-(b). 

Consequently, in (2.19), the input ( )X f  is split into spectrally orthogonal subbands at 

intervals of pf ′ . Therefore, the splitting interval of AMWC equals the LCS pf ′ : 

 , ,p
I AMWC p

f
f f

p
′=   (2.20) 

which is p  times lower than ,I cMWCf . By reducing the splitting interval by controlling the 

aliasing parameter p , the sampling efficiency of AMWC in (2.5) is improved. Figure 2.4 

illustrates how AMWC regulates the splitting interval and improves the sampling efficiency. 

In contrast, as discussed in Section 2.2.4, regulating the splitting interval of cMWC requires 

a very costly solution of advanced PR signal generators with a larger chip length. 

Consequently, both cMWC and AMWC obtain Mq Mq′= equations for input reconstruction, 

although AMWC consumes a p -times lower total sampling rate (2.6). In Section 2.3.4, we 

will show that the Mq′  equations of AMWC are independent.  
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Figure 2.4  Principle of improving the sampling efficiency by AMWC at a single analog channel is 

illustrated, with setting 3q = , q q′ = , 2p = , and 3m = . At the first stage, the input spectrum ( )X f  is 

aliased by mixing it with the PR signal and low-pass filtering it. This aliased-version of ( )X f  is depicted 

as ( )iY f . In (a), the main difference between cMWC and AMWC is how to take time-samples of ( )iY f . 

cMWC prevents the spectrum from being aliased in taking time-samples. AMWC, on the contrary, aims to 

make the spectrum ( )iY f  intentionally aliased once again, as depicted as  ( )iY f  in (b). In (c), as a result, 

the splitting-interval of cMWC is pf , whereas in (d), that of AMWC is halved to pf ′ . Thus, the sampling 

efficiency of AMWC becomes doubled (as 2p = ). 
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2.3.3. Input-Output Relationship of AMWC 

For convenience of analyzing and solving linear simultaneous Mq′  equations (2.19), we 

cast them as a matrix equation. To this end, we first reduce the infinite summation in (2.19) 

to be finite. We then discretize the continuous spectra to form a matrix with a finite number 

of columns. 

Since ( )X f  is band-limited to NYQf ∈ , within the limited frequency range 

( )0pf f′∈ , the infinite summation order in (2.19) is reduced to a finite order as follow: 
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2
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2
,

, 1 , 0, ,  for ,

pj fT
i u

N

i k u I AMWC p
k N

Z e

d R p q X f kf f f

p ′

+
=

′ ′= − ∈∑ 
 (2.21) 

where 1N  and 2N  are, respectively, the smallest and largest index k  of the subbands 

( ),I AMWCX f kf−  that contain some active value of ( )X f  within NYQf ∈ . Namely, 

these indices 1N  and 2N  indicate ( ), 0I AMWCX f kf− =  for 1k N<  and 2k N> , and 

thus help us obtain a matrix equation of (2.21) with finite dimensions. To mathematically 

define 1N  and 2N , note that the k -th subband ( ),I AMWCX f kf−  in (2.21) observes the 

frequency range 

 )0 , 0 ,,k I AMWC I AMWC pf kf f kf f ′ − − + 
 (2.22) 

of ( )X f . Then, the indices 1N  and 2N  are defined by 
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 (2.23) 

and 
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 (2.24) 

respectively. Using the parameters and relations given in Table 2.2 and Lemma 2.2, the two 

problems (2.23) and (2.24) turn into 

 ( )
1 2min :

2
q L p

N k R q k
′ + 

′= ∈ − < 
 

  (2.25) 

and 

 ( )
2 2max : 1

2
q L p

N k R q k
′ − 

′= ∈ − + > 
 

  (2.26) 

respectively. As both q′  and L  are odd positive integers, the solutions of two problems 

(2.25) and (2.26) are determined as follow: 

 
( )

1 2 1,
2

q L p
N R q

′ +
′= − +  (2.27) 

and 

 
( )

2 2 .
2

q L p
N R q

′ −
′= −  (2.28) 

Finally, the output spectrum  ( )2
,

pj fT
i uZ e p ′  in (2.21) turns into a linear combination of 

unknown subbands ( ),I AMWCX f kf−  for ( )0pf f′∈ . The matrix-multiplication form 

Z = DX  of (2.21) is provided by 
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 (2.29) 

We denote the number of subbands, i.e., the dimension of matrix X , by N , which equals 

 2 1 1
.

N N N
Lp

= − +
=

 (2.30) 

Since ( )X f  consists of BK  narrow bands over the wide Nyquist range, only a few of 

its subbands ( ),I AMWCX f kf−  for ( )0pf f′∈  have nonzero values. Therefore, the 

matrix X  in (2.29) is row-wise sparse with a sparsity K  related to BK . 

To draw a relationship between the analytic result (2.29) and actually acquired samples 

,i uz n  
 , we convert the DTFT (2.29) to the DFT of ,i uz n  

  by taking the frequency 

samples of the infinite columns of Z  and X . When the input is observed for a finite 

duration oT , taking samples of the spectrum (2.21) at frequency intervals of 1
of T −∆ =  

does not cause any information loss. The samples of spectrum   ( )2
,

pj fT
i uZ e p ′  is obtained 

by taking the DFT of the actually acquired time-samples 

,i uz n   . Consequently, for a 

finite observation time 2o pT WT ′=  for a sample length 2W , we rewrite the matrix-

multiplication form (2.29) as 

 2 2 ,W WZ = DX  (2.31) 
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where columns of 2
2

Mq W
W

′×∈Z 
 and 2

2
N W

W
×∈X 

 are sub-columns of Z  and X , 

respectively, at frequency intervals of f∆ . This concept will be exploited in Section 2.4 to 

derive a revised input-output relationship of AMWC for using LPF with a non-flat 

frequency response.  



 - 40 -  

Symbol Description and Relationship 

maxf  maximum frequency of multiband signal 

NYQf  Nyquist rate of multiband signal, max2NYQf f  

B , BK  maximum bandwidth and number of the narrow bands in a multi-
band signal 

K  number of nonzero subbands (sparsity), 2 BK K≤  if pf B′ ≥ . 

M  number of analog channels 

L  length of PR chips within a single period 

cf  chip speed of PR signals, c NYQf f=  

pf  repetition rate of PR signals, 1
p cf f L−=  

q′ , p  channel-trading parameter, aliasing parameter 

LPFW  bandwidth of LPF, LPF pW q f′=  

pf ′  least common shifting interval, 1
p pf f p B−′ ≥  

sf ′  sampling rate of an ADC, 1
s LPFf W p−′ =  

,s totalf  total sampling rate, ,s total sf Mf ′  

,I AMWCf  splitting interval, ,I AMWC pf f ′=  

AMWCα  sampling efficiency, 
,

B
AMWC

I AMWC

K B
Kf

α   

Table 2.2  Summary of AMWC Parameters (cMWC when 1p =  and q q′ = ) 
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2.3.4. Choosing the Aliasing Parameter 

For a given total sampling rate, AMWC obtains more equations used for input reconstruction 

than cMWC does. What remains is to check if the extended equations provide independent 

information. We reveal a condition on the aliasing parameter p  that necessitates the 

linear system (2.29) to be well-posed for every K -sparse signal matrix X . 

Proposition 2.5. There exists the unique solution of (2.29) for every K -sparse signal X  

only if p  and q′  are coprime and q p′ > . 

Proof: See Appendix 2.C. 

Proposition 2.5 gives a condition q p′ <  for coprime p  and q′  that makes AMWC an ill-

posed system. This indicates that, within the set of coprime q p′ > , there may be a subset 

that  makes AMWC guarantees the existence of unique solution of (2.29) for every K -

sparse signal matrix X . 

In [10], a CS result states there exist the unique solution of a multiple measurement vector 

(MMV) CS equation Z = DX  for every K -sparse signal X  if 

 ( ) ( )2 spark 1 rank ,K < − +D X  (2.32) 

where spark is the minimum number of linearly dependent columns in D . Meanwhile, the 

spark of an Mq′ -by- N  matrix is upper bounded to 1Mq′ +  by the Singleton bound [54]. 

Based on these results, we find a sufficient condition on p  and q′  from Monte Carlo 

experiments in Section 2.5.1 (Figure 2.5) that maximizes the spark of . 

Main Result 2.6. Let 2Mq K′ ≥ . For every K -sparse signal X , there exists the unique 

solution of (2.29), and therefore, AMWC does not lose any information of K -sparse signal 

X , if p  and q′  are coprime and q p′ > . 

Meanwhile, we choose p  to minimize the maximum of the sparsity K , which is the 

number of nonzero subbands of ( )X f  at splitting intervals ,I AMWC pf f ′= . The sparsity 

D



 - 42 -  

K  is dependent on the center frequencies of BK  multibands and their maximum 

bandwidth B . When ,I AMWCf B≥ , every multiband occupies at most two subbands, which 

implies 2 BK K≤ . On the other hand, when ,I AMWCf B< , some multibands may occupy 

more than two subbands, which provides an opportunity to increase K  beyond 2 BK . 

Hence, we recommend choosing the aliasing parameter p  as 

 .pf
p

B
 

≤  
 

 (2.33) 

2.3.5. Improvement of Sampling Efficiency 

We compare the sampling efficiencies of AMWC, AMWCα , and cMWC, cMWCα , defined in 

(2.5). The sampling efficiencies are functions of the sparsity K , which is a random 

variable in general. We denote the sparsity of cMWC and AMWC by cMWCK  and AMWCK , 

respectively. To make them deterministic, we put assumptions on cMWCK  and AMWCK  that 

in both cMWC and AMWC, the BK  bands in ( )X f respectively occupies exactly one 

subband, i.e., cMWC AMWC BK K K= = . This occurs with high probability when 1
pf p B−

  

and the center frequencies of multibands are far enough apart from each other with a small 

BK . 

Under the assumption above, the sampling efficiencies of cMWC and AMWC are obtained by 

 
,

,B
cMWC

cMWC I cMWC p

K B B
K f f

α = =  (2.34) 

and 

 
,

,B
AMWC

AMWC I AMWC p

K B pB
K f f

α = =  (2.35) 
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respectively. Note that if 1p = , AMWC and cMWC are completely identical, and 

therefore AMWC cMWCα α= . When 1p > , the intentional aliasing of AMWC takes effect and 

improves the sampling efficiency proportionally to p . 

 Non-Ideal Low-Pass Filters 2.4.

The input-output relationship in the previous section is based on the ideal LPF ( )H f  

having a flat pass-band response. However, in real applications, the pass-band response of 

an LPF significantly fluctuates. In the case of cMWC, a post digital-processing technique to 

equalize the effects of non-flat filter responses was proposed in [55]. Unfortunately, owing 

to the aliasing at ADC, the equalizations cannot be applied to AMWC. In this section, we 

instead provide a revised input-output relationship of AMWC based on the fluctuated LPF 

( )G f . Without loss of generality, we assume all analog channels use the same LPF. We 

assume that the response ( )G f  is nonzero and known within the pass-band LPFf ∈  

and is zero for C
LPFf ∈ . We derive a revised input-output relationship reflecting the 

effect of ( )G f . Paradoxically, our empirical results in Section 2.5 conclude that, for a 

given sampling efficiency, an irregularly fluctuated filter response is helpful to further 

decrease the total sampling rate required for lossless sub-Nyquist sampling. 

The derivation starts from substituting ( )H f  in the input-output relations of (2.8)-(2.12) 

with ( )G f . Without loss of generality, we assume q q′ =  and s sf pf ′= . Equation (2.9) 

then turns into 

  ( ) ( )( ) ( )
2

1

2
,

s

R
j fT

i i l p p
r R l

Y e c X f rq lp f G f rq fp
∞

′

= =−∞

′ ′ ′ ′= − + −∑ ∑
 (2.36)

 

for ( )0sf f′∈ , where 1R  and 2R  are chosen from Lemma 2.2. By Lemma 2.3, we 

substitute rq lp k′ + = and merge the outer and inner summations: 



 - 44 -  

  ( ) ( ) ( ) ( )( )
2

1

2
, 1, ,s

N
j fT

i i k p p p
k N

Y e d R p q X f kf G f k fp γ′

=

′ ′ ′= − −∑  (2.37) 

for ( )0sf f′∈ , where the sensing coefficients ( ), 1, ,i kd R p q′ , 1N , and 2N  are, 

respectively, computed from Proposition 2.4, (2.27), and (2.28). We define the function 

pγ  of k  that maps k  in (2.37) to the corresponding rq′  in (2.36) so that the two 

equations are equivalent. Lemma 2.7 reveals the mapping rule for ( )p kγ . 

Lemma 2.7. Under the conditions of Lemma 2.2 and Lemma 2.3, (2.36) and (2.37) are 

equivalent if the mapping rule of pγ  is assigned by 

 ( ) ( )1; , , ,p k k pI k R p qγ ′= −  (2.38) 

where the picking regularity ( )1; , ,I k R p q′  is defined in (2.15). 

Proof: See Appendix 2.B. 

As done in (2.14) to (2.19), the final outputs ,i uz n  
  for 0, , 1u q′= −  are obtained 

by processing the time-samples  [ ]iy n  of the spectrum (2.37) using the digital system 

given in Figure 2.1-(b). Then, those spectra  ( )2
,

pj fT
i uZ e p ′  have the following input-output 

relationships: 

 

 ( )
( ) ( ) ( )( )

( ) ( )( ) ( )

2

1

2

1

2
,

, 1

, 1

, ,

, , ,

pj fT
i u

N

i k u p p p p
k N

N

i k u p p p
k N

Z e

d R p q X f kf G f uf k u f

d R p q G f k u f X f kf

p

γ

γ

′

+
=

+
=

′ ′ ′ ′= − + − +

′ ′ ′ ′= − −

∑

∑

 (2.39) 

for ( )0pf f′∈ , where ( ) ( ),p pk u k u uγ γ′ + − .  
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Consequently, the linear coefficients on the subbands ( )pX f kf ′−  in (2.39) become 

frequency-selective. To numerically solve (2.39), we discretize the continuous frequency, 

as discussed in Section 2.3.3. We assume that the signal is observed for the finite duration 

2o pT WT ′= , where 2W  is the length of the discretized signal. Then, the samples of 

spectrum are defined by 

 

 [ ]  ( )

( )( ) ( )

( ) [ ] ( )

1

2

1

1

2

1

1

2
, ,

,

, ,

,

p

o

o

o

j fT
i u i u

f wT

N

i k u p p f wTk N

N

pi u k f wTk N

Z w Z e

d G f k u f X f kf

b w X f kf

p

γ

−

−

−

′

=

+ =
=

=
=

 ′ ′ ′= − − 

′= −

∑

∑



 (2.40) 

for ( ){ }0 0, , 1o p ow f T f f T′∈ + −   , where the frequency-selective sensing coefficients 

( ) [ ], ,i u kb w  are defined as 

 ( ) [ ] ( )( ) 1,, , ,
o

i k u pi u k f wT
b w d G f k u fγ

−+ =
′ ′−  (2.41) 

for w∈ . Note that, by the relation between DFT and DTFT, the spectrum samples 

(2.40) are obtained by taking the DFT as follows: 

  [ ] 





( )2 1 2 mod 2
2, ,

0

 for ,
nW j w W
Wi u i u

n

Z w z n e w
π−

=

 = ∈ ∑   (2.42) 

where ,i uz n  
  are the output sequences of AMWC. 

For convenience, we represent the input-output relation of (2.40) for w∈  in a vector 

form as 

  [ ] [ ] [ ],w w w=Z B X  (2.43) 
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where the elements of the output column vector  [ ] Mqw ′∈Z   are  [ ],i uZ w  for row indices 

1, ,i M=   and 0, , 1u q′= − . The unknown column vector [ ] Nw ∈X   consists of 

( ) 1
o

p f wT
X f kf

−=
′−  for row indices 1 2, ,k N N=  . The frequency-selective sensing matrix 

[ ] Mq Nw ′×∈B   consists of ( ) [ ], ,i u kb w  with row indices i  and u  and column index k . 

The CS model (2.43) is called MMV with different sensing matrices, for which many 

numerical solvers have been developed [8], [56]. 

The existence of unique solution of (2.43) depends on the spark of sensing matrix [ ]wB . 

Note that from (2.41), the elements of [ ]wB  are multiplications of the elements of D  

and the samples of the low pass filter ( )G f . In [57], Davies et al. proved that the spark of 

a matrix from an independent continuous distribution achieves the Singleton bound with 

probability one. When the filter response ( )G f  is designed to be irregular, i.e., its 

samples are drawn from an independent random distribution, the spark of [ ]wB  after 

multiplication with the samples of ( )G f  should grow closer to achieving the Singleton 

bound. When the spark of [ ]wB  indeed achieves the Singleton bound and the condition 

(2.32) holds, for every K -sparse signal X  the unique solution to (2.43) always exists.  
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Figure 2.5.  Independency rates under various p  and q′  for which randomly selected Mq′  columns of the sensing matrix Mq N′×∈D   of AMWC are 

independent. When p  and q′  are coprime and q p′ > , every selection of Mq′  columns is linearly independent. 
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 Simulation 2.5.

2.5.1. Spark of Sensing Matrix 

To support Main Result 2.6, the sufficiency of lossless sub-Nyquist sampling by AMWC, we 

demonstrate that the sensing matrix D  with coprime parameters q p′ >  achieves the 

Singleton bound. 

Monte Carlo experiments were performed under various settings of p  and q′ . With 

127L = , we used the maximum length sequences of length L  as the chip values of PR 

signal for each channel 1, ,i M=  . We set the number of analog channels to 3M = . For 
55 10×  independent trials, we randomly selected Mq′  columns of D  and counted the 

rate for which the selected columns are linearly independent.  

Figure 2.5 shows how the linear independency of columns in D  varies as p  and q′  

change. The white points in the plot indicate the pairs of p  and q′  where every 

selection of Mq′  columns of D  is linearly independent. The dark points indicate that at 

least one selection of Mq′  columns has linear dependency. The upper triangular area 

indicates the region of ( ),p q′  with q p′ >  where all points except for the points that p  

and q′  are not coprime belong to the white set. That is, for coprime q p′ > , all the 

selections of Mq′  columns are linearly independent, and thus the spark of D  achieves 

the Singleton bound. This result is consistent with Proposition 2.5 and supports Main 

Result 2.6.  
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Figure 2.6.  Rate of successful support recovery of cMWC and AMWC as a function of total sampling rate for various aliasing parameters p  

and multibands BK . The number of channels was fixed to 3M = . Ideal ((a)-(b)) and random ((c)-(d)) low-pass filters were used. 
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Figure 2.7.  Rate of successful support recovery of cMWC and AMWC as a function of total sampling rate when SNR=3 [dB]. The number 

of channels was fixed to 3M = , and the number of multibands in ( )X f  is fixed to 10BK = . Ideal (a) and random (b) low-pass filters 

were used. 
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Figure 2.8.  Rate of successful support recovery of cMWC and AMWC as a function of sampling rate of each channel for various aliasing 

parameters p  and the number of channels M . The number of multibands was fixed to 10BK = . Ideal (a) and random (b) low-pass 

filters were used 
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2.5.2. Reduction of Total Sampling Rate 

We demonstrate that, with the improved sampling efficiency, AMWC indeed reduces the 

total sampling rate required for lossless sub-Nyquist sampling for given specifications of 

PR signals. Additionally, when the frequency response of low-pass filters is drawn at 

random, the reduction of total sampling rate is boosted. The reduction of total sampling 

rate reduces the number of channels as well as the sampling rate of each channel. 

For simulation, we generated real-valued multiband inputs ( )x t  as the sum of BK  

narrow band signals of bandwidth [ ]5 MHzB = . The energies of narrow bands are equal. 

The center frequencies of narrow band signals were drawn at random, while those spectra 

were not overlapped with each other. The maximum frequency of ( )x t  does not exceed 

[ ]max 10 GHzf = . The signals last for the duration 2o pT WT ′=  seconds with 15W = . The 

parameters of PR signals were 127L = , 1
max2pf f L−= [ ]157.48 MHz ..  We used 

maximum length sequences with different initial seeds as the chip values of PR signals for 

channel indices 1, , .i M=   We expressed the continuous signals in simulation on a dense 

discrete-time grid with intervals of ( ) 1
2 NYQq f

−
′  seconds. The bandwidth of low-pass filters 

and the sampling rate followed the parameter relations of AMWC, i.e., LPF pW q f′=  and 

1
s LPFf p W−′ = . We considered the ideal LPF ( )H f  with a flat passband response and the 

non-ideal LPF ( )G f  with an irregular passband response. In simulation, the impulse 

response of ( )G f  was drawn initially from the normal distribution, windowed to limit 

the filter bandwidth, and then held fixed throughout the whole simulation. We call ( )G f  

the random LPF with this irregular passband response. Under various settings of p , q′ , 

and BK  with coprime q p′ > , we measured the rate of successful recovery of the 

supports of X  by the distributed CS orthogonal matching pursuit (DCS-SOMP) 

algorithm [56]. For single supports estimation, DCS-SOMP was run for 2 BK  iterations. It 

aimed to find one distinct support per each iteration out of K  supports, given 2 BK K≤ . 

Once the supports are found, x  can be reconstructed by the least squares. The successful 
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support recovery was declared if ⊆  , where   and   are, respectively, the true and 

found supports. The support recovery rate in simulations was defined as the number of 

successful support recovery divided by total 500 trials with randomly regenerated ( )x t .  

Figure 2.6 shows the support recovery rate of AMWC as a function of total sampling rate 

when 3.M = We set { }10,20BK = . Plots (a) and (b) are results of using the ideal LPF 

( )H f . It is demonstrate that compared to cMWC, AMWC reduces the total sampling rate 

required for reconstruction of given multiband signals. Inversely, for a given total sampling 

rate, AMWC takes sub-Nyquist samples of more multibands than cMWC does, without 

information loss. 

However, when p  increases, although the sampling efficiency is improved proportionally 

to p  from (2.35), the total sampling rate does not decrease anymore. This is caused by 

the lack of degrees of freedom in the sensing matrix D . The elements of D  are made of 

the Fourier coefficients ,i lc  of the PR signals, and most elements are repeatedly reused. 

Although it was demonstrated in the previous sub-section that D  has the maximum spark 

and well preserves the sparse signal X , recovering X  by non-optimal CS algorithms 

requires D  to have a large degrees of freedom [9]. This limitation is overcome by using 

the random LPF ( )G f . 

Plots (c) and (d) are the results of using the random LPF ( )G f . It is shown that AMWC 

further reduces the total sampling rate required for successful support recovery as the 

sampling efficiency improves. Consequently, the random response of ( )G f  enhances the 

degrees of freedom of sensing matrices [ ]wB  for different frequency indices w  and 

improves the recovery performance by the non-optimal algorithm DCS-SOMP. This 

enhancement cannot be applied for cMWC, since the effect of random response becomes 

removable by equalization [55]. 

In Figure 2.7, additive white Gaussian noise ( )n t  of SNR=3 [dB] was considered, where 

the signal-to-ratio noise (SNR) in decibel is defined as ( )2 2
10SNR 10 log x n . We 
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fixed 10BK = . Plots (a) and (b) are the results for using the ideal LPF and the random 

LPF, respectively. Despite the additive noise, the results show that AMWC still reduces the 

total sampling rate or improves the recovery performance. Including the results in Figure 

2.8, we conducted more simulations under various { } [ ]SNR= 6, 3,0,3,12  dB− −  but 

omitted to repeat the plots as the graphs exhibit the similar pattern. Instead, we 

summarized the minimal sampling point results in Table 2.3, where the minimal sampling 

point is defined as the minimal total sampling rate which achieves the support recovery 

rate of 90%. In the results, as p  and/or SNR increase, the minimal sampling point gets 

smaller, which is expected. 

Figure 2.8 demonstrates that AMWC reduces the number of channels required for the 

support recovery. We set 10BK =  and compared the support recovery rates of cMWC and 

AMWC for various M  and given sampling rate of each channel. In plot (a), the support 

recovery rate of AMWC slightly outperforms cMWC, although AMWC uses fewer channels 

with a lower sampling rate of each channel than cMWC. Additionally, in plot (b), when the 

random low-pass filter is used, AMWC using a single channel outperforms cMWC using six 

channels. 

As the increase in the number of rows in Z  in (2.29) or in (2.43) by p -times, the 

performance of AMWC is improved but the computational complexity (CC) for the support 

recovery with AMWC inevitably increases as well. The CC of a compressed sensing 

algorithm depends on the sizes of matrices in the linear inverse problem Z = DX . Let 

equationQ , sampleQ , and subbandQ  denote the number of rows and columns of Z  and the 

number of rows of X  for cMWC problem, respectively. We make note of the report that 

the CC of DCS-SOMP with cMWC is ( )2
equation subband sampleO Q Q Q  [56]. When the two total 

sampling rates ,s totalf  of cMWC and ,s totalf ′  of AMWC are equal to each other, the number of 

rows of Z  of AMWC becomes equationpQ  and that of X  becomes subbandpQ , respectively, 

as discussed in Section 2.3.2. In addition, since the bandwidth of the subbands of AMWC is 
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p -times narrower than that of cMWC, the number of columns of Z  becomes 1
samplep Q− . 

Thus, the CC of DCS-SOMP with AMWC is ( )2 2
equation subband sampleO p Q Q Q .  
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SNR [dB] LPF p=1 (cMWC) p=2 (AMWC) p=3 (AMWC) p=4 (AMWC) 

-6 
Ideal 6.142 4.016 3.622 3.898 

Random 6.142 3.543 2.677 2.244 

-3 
Ideal 6.142 3.543 3.622 3.425 

Random 6.142 3.071 2.047 1.535 

0 
Ideal 5.197 3.071 2.677 2.953 

Random 5.197 2.598 1.732 1.535 

3 
Ideal 5.197 3.071 2.677 2.480 

Random 5.197 2.598 1.732 1.299 

12 
Ideal 5.197 3.071 2.677 2.244 

Random 5.197 2.126 1.732 1.063 

Table 2.3  The Total Sampling Rate Required for 90% Support Recovery Rate with 

Various SNR and Values of p . The floating numbers in cells indicate the minimal total 

sampling rate in GHz which achieves the support rate recovery of 90%. The number of 

analog channels and multibands were set to 3M =  and 10BK = , respectively.  
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 Conclusion 2.6.

We proposed a new MWC system called AMWC which improves the sampling efficiency by 

intentionally inducing an aliasing at the ADC. We showed that the improved sampling 

efficiency leads to reduction on the sampling rate and number of channels required for 

obtaining a certain number of equations for signal reconstruction. We provided conditions 

that the sensing matrix of the equations obtained by AMWC achieves the Singleton bound, 

and thus no loss from sampling is guaranteed. In summary, the improved sampling 

efficiency of AMWC reduces the total sampling rate required for lossless sampling. In other 

words, with fewer channels and less sampling rate of each channel than those of the 

conventional MWCs, a multiband signal can be captured without information loss by 

AMWC. Conversely, for given hardware resources, the input reconstruction with AMWC 

outperforms the conventional MWCs. Extensive simulation demonstrated that AMWC 

indeed reduces the total sampling rate or improves the reconstruction performance 

significantly. Additionally, it was demonstrated that the benefits of AMWC are maintained in 

various SNRs. Moreover, use of LPF with random passband response, it was shown, 

further improves the sampling efficiency. 

Appendices 

Appendix 2.A  Proof of Lemma 2.2 

With the relationship LPF sf pf ′= , the pass-band frequency of ( )sH f rf ′−  in (2.8) is 

given by ,
2 2

s s
s s

pf pff rf rf
′ ′ ′ ′∈ − +  

. When we observe (2.8) only for a single period 

( )0s f′ , since LPF sW f ′> , some of ( )sH f rf ′− , the pass bands of which include the 

frequency domain ( )0s f′ , can be replaced by the constant frequency response. Without 

loss of generality, we set the pass-band response to one, i.e., ( ) 1H f =  for LPFf ∈ . 

Then, for r∈  satisfying 
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 02
s

s
pfrf f
′

′− ≤  (2.44) 

and 

 0 ,
2

s
s s

pfrf f f
′

′ ′+ ≥ +  (2.45) 

the shifts of filter responses in (2.8) are replaced with ( ) 1sH f rf ′− =  within 

( )0sf f′∈ . Let 1R  and 2R  be the minimum and maximum integers r  satisfying (2.44) 

and (2.45), respectively. Additionally, for (2.8) and (2.9) to be equivalent, we add some 

conditions on 1R  and 2R such that the pass bands of ( )sH f rf ′−  for r  smaller than 1R  

and greater than 2R  have no intersection with ( )0
C

sf f′∈ . In other words, we have 

following conditions on 1R  and 2R : 

 ( )2 01
2

s
s s

pfR f f f
′

′ ′+ − ≥ +  (2.46) 

and 

 ( )1 01
2

s
s

pfR f f
′

′− + ≤  (2.47) 

so that ( ) 0sH f rf ′− =  within ( )0sf f′∈  for 1r R<  or 2r R> . By combining (2.44) 

and (2.46), we have a condition on 2R  that 

 2 0 ,
2

s
s

pfR f f
′

′− =  (2.48) 

and from (2.45) and (2.47), we have a condition on 1R  that 

 1 0 .
2

s
s s

pfR f f f
′

′ ′+ = +  (2.49) 
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Finally, combining (2.48) and (2.49) provides the conditions of Lemma 2.2. ■ 

Appendix 2.B  Proofs of Proposition 2.4 and Lemma 2.7 

Proof of Proposition 2.4 

We track the input-output relation starting from (2.12): 

  ( ) ( )( )
2

1

2
,

s

R
j fT

i i l p
r R l

Y e c X f lp rq fp
∞

′

= =−∞

′ ′= − +∑ ∑  

for ( )0sf f′∈ , where 1R , 2R , and 0f  satisfy Lemma 2.2. Alternatively, by using 

1r r R′ = − , we have 

 

 ( ) ( )( )( )

( )( )( )

2 1
2

, 1
0

1

, 1
0

s

R R
j fT

i i l p
r l
p

i l p
r l

Y e c X f lp r R q f

c X f lp r R q f

p
− ∞

′

′= =−∞

− ∞

′= =−∞

′ ′ ′= − + +

′ ′ ′= − + +

∑ ∑

∑∑
 (2.50) 

for ( )0sf f′∈ , where 2 1 1R R p− = −  by Lemma 2.2. We replace the term ( )1r R q′ ′+  

in (2.50) by a combination of its quotient ( )1; ,p r q Rµ ′ ′  and remainder ( )1; ,p r q Rr ′ ′  by 

divisor p , which are, respectively, defined by 

 ( ) ( )1
1; ,p

r R q
r q R

p
µ

′ ′+ 
′ ′  

 
  (2.51) 

and  

 ( ) ( )( )1 1; , mod .p r q R r R q pr ′ ′ ′ ′+  (2.52) 

By substituting ( ) ( ) ( )1 1 1; , ; ,p pr R q p r q R r q Rµ r′ ′ ′ ′ ′ ′+ = ⋅ +  into (2.50), we have 
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 ( )
( ) ( )( )( )

( ) ( )( )( )

2

1

,
0
1

,
0

sj fT
i

p

i l p
l r

p

pi l r
l r

Y e

c X f lp p r r f

c X f lp r f

p

µ

µ r

r

′

−∞

′=−∞ =

−∞

′−
′=−∞ =

′ ′ ′= − + ⋅ +

′ ′= − +

∑∑

∑∑

 (2.53) 

for ( )0sf f′∈ , where the notations ( )1; ,p r q Rµ ′ ′  and ( )1; ,p r q Rr ′ ′  are simplified to 

( )rµ ′  and ( )rr ′ , respectively. When p  and q′  are coprime, by modular arithmetic, 

there exists one-to-one correspondence between ( )rr ′  and r′  modulo p . We arrange 

the order of inner summation of (2.53) by introducing a utility variable 

( ) { }0, , 1v r pr ′ ∈ −  : 

 

 ( )

( )( ) ( )( )1
1

2

1

, ; ,
0

s

p

j fT
i

p

pi l v q R
l v

Y e

c X f lp v f

p

µ ρ−

′

−∞

′−
=−∞ =

′= − +∑∑
 (2.54) 

for ( )0sf f′∈ , where the inverse ( )1
1; ,p v q Rρ− ′  of the remainder ( )1; ,p r q Rr ′  modulo 

p  is computed by 

 ( ) ( )( )11
1 1; , mod ,p v q R v q R pρ −− ′ ′ −  (2.55) 

where ( ) 1 modq p−′  is the multiplicative inverse of q′  modulo p . We simplify the 

expression ( )1
1; ,p v q Rρ− ′  to ( )1 vρ− . From Lemma 2.3, we can merge the inner and outer 

summations of (2.54) as follows: 

  ( )
( )( )

( )
1

2

, mod

sj fT
i pki k pk p

Y e c X f kfp

mρ −

∞
′

 
− =−∞  

′= −∑  (2.56) 

for ( )0sf f′∈ . 
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We now simplify the picking regularity of the coefficients ( ),i Jc ⋅  in (2.56), which is 

defined by 

 
( ) ( )( )

( )( )

1
1

1

; , , mod

.

kJ k R p q k p
p

k k
p

mρ

mρ

−

−

 ′ − 
 
 

= − 
 



 (2.57) 

Meanwhile, by the definitions of the quotient ( )µ ⋅  and remainder ( )ρ ⋅ , we have 

 

( )( ) ( )( )

( )( ) ( )( )( )( )
( )( ) ( )( )( )

( )( )( )

1
11

1 1
1 1

1 1
1

1
1

1 mod

1

1 mod .

k R q
k

p

k R q k R q p
p

k R q k
p

k R q k p
p

ρ
mρ

ρρ

ρρρ 

ρ

−
−

− −

− −

−

 ′+
 =
  

′ ′= + − +

′= + −

′= + −

 (2.58) 

By substituting (2.58) into (2.57),  

 

( )
( )( )

( )( )

( )( ){ }
( )

1
1

1

1
1

1
1 1

1

mod; , ,

1 mod

; , , .

k R qk k pJ k R p q
p p p

k R qk
p p

k q k q R p R
p
I k R p q

ρ

ρ

−

−

−

′+ ′ = + − 
 

′+
= −

 ′ ′= − ⋅ − +
 

′=

 (2.59) 

Thus, the proof is completed.   ■ 

Proof of Lemma 2.7 

We track the input-output relation starting from (2.36): 
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  ( ) ( )( ) ( )
2

1

2
,

s

R
j fT

i i l p p
r R l

Y e c X f rq lp f G f rq fp
∞

′

= =−∞

′ ′ ′ ′= − + −∑ ∑  

for ( )0sf f′∈ . Under the conditions of Lemma 2.2 and Lemma 2.3, by using 1r r R′ −
, 

we have 

 

 ( )
( )( )( ) ( )( )

( )( )( ) ( )( )

2 1

2

, 1 1
0

1

, 1 1
0

sj fT
i

R R

i l p p
r l
p

i l p p
r l

Y e

c X f lp r R q f G f r R q f

c X f lp r R q f G f r R q f

p ′

− ∞

′= =−∞

− ∞

′= =−∞

′ ′ ′ ′ ′ ′= − + + − +

′ ′ ′ ′ ′ ′= − + + − +

∑ ∑

∑∑

 (2.60) 

for ( )0sf f′∈ . As done in (2.50) to (2.54), we introduce a utility variable ( )v rr ′
  

and substitute ( ) ( )( )1
1r R q p v vµ r−′ ′+ = ⋅ +  into the inputs of X  and G  in (2.60). It 

then follows  

  ( ) ( ) ( )( )
( )( )( )( )

1
1 , ; , ,

2

1
0          

s

p pi J k R p q
j fT

i
l v p

c X f lp v f
Y e

G f p v v f
p

µ ρ

−∞ ′
′

−
=−∞ =

 ′− +
 =  ′⋅ − + 
 

∑∑  (2.61) 

for ( )0sf f′∈ . After merging the inner and outer summations based on Lemma 2.3, we 

obtain (2.37) 

  ( ) ( ) ( ) ( )( )2
, 1, ,sj fT

i i k p p p
k

Y e d R p q X f kf G f k fp γ
∞

′

=−∞

′ ′ ′= − −∑  

for ( )0sf f′∈ , where ( )p kγ  is defined by 

 
( ) ( )( )

( )( )

1

1

mod mod

mod .

p k p k p k p

p k k p

γ mρ

mρ

−

−

+

= +



 (2.62) 

By (2.58) and the definition of ( )1 kρ−  in (2.55), (2.62) turns into 
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( ) ( )( )

( )

1
1

1
1 1mod .

p k k R q

q kq R p R

γ ρ−

−

′= +

 ′= − + 
 (2.63) 

By the definition of ( )1; , ,I k R p q′  in (2.15), we finally have 

 ( ) ( )1; , , .p k k pI k R p qγ ′= −  (2.64) 

Thus, the proof is completed.   ■ 

Appendix 2.C  Proof of Proposition 2.5 

We first show that if p q′>  for coprime p  and q′ , at least two columns of D  are 

identical. Then, from a result in [10], this violates a necessary condition for the unique 

existence of a K -sparse solution.  

We first mathematically formulate the meaning of two columns of D  being identical. 

From Proposition 2.4 and (2.29), the entries ( ), 1, ,i k ud R p q+ ′  of D  are picked from 

( )1, ; , ,i I k R p qc ′ , where k  and u  in ,i k ud +  represent the column and row position, 

respectively. To search for identical columns in D , we investigate the existence of pairs 

( ),k ω∗ ∗  of a column index k∗  and shift index ω∗  such that 
, ,i k u i k u

d d
ω∗ ∗ ∗+ + +

=  for every 

row index { }0, , 1u q′∈ −   . In other words, we find pairs ( ),k ω∗ ∗  satisfying  

 ( ) ( )1 1; , , ; , , .I k u R p q I k u R p qω∗ ∗ ∗′ ′+ + = +  (2.65) 

for every u∈ , where the function I  is defined in (2.15). We use a computation result 

of ( ) ( )1; , ,I k I k R p q′  in the second line of (2.59): 

 ( )
( )( )1

1 ,
k R qkI k

p p
ρ− ′+

= −  (2.66) 
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where ( ) ( )1 1
1; ,pk k q Rρρ − − ′

  is a function modulo p  defined in (2.55) by 

( ) ( )( )11
1 1; , mod .p k q R k q R pρ −− ′ ′ −  By substituting (2.66) into (2.65), we rewrite (2.65) 

as 

 
( ) ( )

( ) ( )1 1 .

I k u I k u

k u k u
q

ω

ωρ ω ρ

∗ ∗ ∗

∗
− ∗ ∗ − ∗

+ + = +

⇔ + + = + +
′

 (2.67) 

We show that, if p q′>  and coprime, there exists at least one pair ( ),k ω∗ ∗  of the 

column index k∗  and shifting index ω∗  that satisfy (2.67) for every row index u∈ . 

Before proceeding, we check a computation of ( )1 k q uρ− ′+ +  for every u∈ . By the 

definition, it follows 

 

( ) ( )( )( )
( )( )( )( )

( )( )

11
1

1
1

1

= mod

mod 1 mod

1 mod .

k q u k q u q R p

k u q R p p

k u p

ρ

ρ

−−

−

−

′ ′ ′+ + + + −

′= + − +

= + +

 (2.68) 

Note that (2.68) indicates when ω∗  is chosen to q′ , it satisfies (2.67) , for k∗ ∈  

such that ( )1 1k u pρ− ∗ + < − . 

What task remains is to show the existence k∗  satisfies ( )1 1k u pρ− ∗ + < −  for every 

row index u∈ , which implies the existence of identical columns in D  and completes 

the proof. To this end, we find a set of ( )modk p  such that ( )1 1k u pρ− + = − . From the 

definition, we have 

 

( ) ( )

( )( ) ( )
( ) ( )
( ) ( )

1

1
1

1

1

1 mod

1 mod

1  mod

1  mod .

k u p p

k u q R p p

k p R q u p

k R q u p

ρ−

−

+ ≡ −

′+ − ≡ −

′≡ − + −

′≡ − −

 (2.69) 
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Note that ( )1 1R q′−  is a constant. Since the right-hand side of (2.69) varies by u∈ , 

the cardinality of set of ( )modk p  such that ( )1 1k u pρ− + = −  is q′= . Since 

p q′> , this implies there exists ( ) { }mod 0,1, , 1k p p∗ ∈ −  such that 

( )1 1k u pρ− ∗ + < − , and k∗ ∈  such that ( )1 1k u pρ− ∗ + < −  exists as well. 

Consequently, if coprime p q′> , there must exist at least one pair of identical columns in 

D . The existence of identical columns in D  implies ( )spark 2=D . Theorem 2 in [10] 

states that there exist the unique solution of a linear equation Z = DX  for every K -

sparse solution X  only if  

 
( ) ( )spark 1 rank

,
2

K
− +

<
D X

 (2.70) 

where spark is the minimum number of linearly dependent columns in D . If 

( )spark 2=D , for signals X  with ( )rank 2 1K≤ −X , the condition p q′>  violates 

(2.70).   ■ 
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 Chapter 3  

Profitable Double-Spending Attacks 

 Introduction 3.1.

A blockchain is a distributed ledger which has originated from the desire to find a novel 

alternative to centralized ledgers such as transactions through third parties [20]. Besides 

the role as a ledger, blockchains have been applied to many areas, e.g., managing the 

access authority to shared data in the cloud network [58] and averting collusion in e-

Auction [59]. In a blockchain network based on the proof-of-work (PoW) mechanism, each 

miner verifies transactions and tries to put them into a block and mold the block to an 

existing chain by solving a cryptographic puzzle. This series of processes is called mining. 

But the success of mining a block is given to only a single miner who solves the 

cryptographic puzzle for the first time. The reward of minting a certain amount of coins to 

the winner motivates more miners to join and remain in the network. As a result, 

blockchains have been designed so that the validity of transactions is confirmed by a lot of 

decentralized miners in the network. 

A consensus mechanism is programmed for decentralized peers in a network to share a 

common chain. If a full-node succeeds in generating a new block, it has the latest version 

of the chain. All of the nodes in the network continuously communicate with each other to 

share the latest chain. A node may run into a situation in which it encounters mutually 

different chains more than one. In such a case, it utilizes a consensus rule with which it 

selects a single chain. Satoshi Nakamoto suggested the longest chain consensus for Bitcoin 

protocol in which the node selects the longest chain among all competing chains [20]. 

There are also other consensus rules [23],[60], but a common goal of consensus rules is to 

select the single chain by which the most computation resources have been consumed 

based on the belief that it may have been verified by the largest number of miners. 
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A double-spending (DS) attack aims to double-spend a cryptocurrency for the worth of 

which a corresponding delivery of goods or services has already been completed. The 

records of payment are written in transactions and shared in a network via the status-quo 

chain. Thus, to double spend, attackers need to replace the status-quo chain in the network 

with their new one, after taking the goods or services. For example, under the longest chain 

consensus, this attack will be possible if an attacker builds a longer chain than the status-

quo. Nakamoto [20] and Rosenfeld [27] have shown that the higher computing power is 

employed, the higher probability to make a DS attack successful is. In addition, if an 

attacker invests more computing power than that invested by a network, a success of DS 

attack is guaranteed. Such attacks are called the 51% attack. 

In the last few years, unfortunately, blockchain networks have been recentralized [61],[62], 

which make them vulnerable to DS attacks. To increase the chance of mining blocks, some 

nodes may form a pool of computing chips. The problem arises when a limited number of 

pools occupy a major proportion of the computing power in the network. For example, the 

pie chart shown in Figure 3.1 illustrates the proportion of computing power in the Bitcoin 

network as of January 2020. In the chart, five pools such as F2Pool, BTC.com, Poolin, and 

Huobi.pool, occupy more than 50% of the total computing power of Bitcoin. In a 

recentralized network, since most computing resources are concentrated on a small number 

of pools, it could be not difficult for them to conspire to alter the block content for their 

own benefits, if not aiming to double spend, more probable. Indeed, there have been a 

number of reports in 2018 and 2019 in which cryptocurrencies such as Verge, BitcoinGold, 

Ethereum Classic, Feathercoin, and Vertcoin suffered from DS attacks and millions of US 

dollars have been lost [28]. 
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Figure 3.1. Computation power distribution among the largest mining pools provided by 

BTC.com (date accessed: Nov. 24, 2020). 

In addition to the recentralization, the advent of rental services which lend the computing 

resources can be a concern as well [63]. Rental services such as nicehash.com which 

provide a brokerage service between the suppliers and the consumers have indeed become 

available. The rental service can be misused for making DS attacks easier. The presence of 

such computing resource rental services make the cost, to make a profit from double 

spending, significantly reduced. It is because renting a required computing power for a few 

hours is much cheaper than building such a computing network. Indeed, nicehash.com 

attracts DS attackers to use their service by posting one-hour fees for renting 51% of the 

total computing power against dozens of blockchain networks on their website 

crypto51.app. 

Success by making DS attacks is possible but is believed to be difficult for a public 

blockchain with a large pool of mining network support. By the results in [20] and [27], 51% 

attack has been considered as the requirement for a successful DS attack [64]. This 
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conclusion however shall be reconsidered given our result in the sequel that there are 

significant chances of making a good profit from DS attacks regardless of the proportion of 

computing power. The problem to consider, therefore, is to analyze the profitability of such 

attacks. 

The analysis of attack profitability requires the ability to predict the time an attack will 

consume for a success, since the profit would be a function of time. Studies in [65]–[73] 

provided DS attack profitability analyses, but their time predictions were not accurate. 

Specifically, to make the time prediction easier, they either added impractical assumptions 

to the DS attack model defined by Nakamoto [20] and Rosenfeld [27] or oversimplified the 

time prediction formula (see Section 3.6 for details). Whereas, we follow the definition of 

DS attack in [20],[27], and therefore we need to develop a new set of mathematical tools 

for precise analysis of attack profitability that we aim to report in this chapter. 

3.1.1. Contributions 

We study the profitability of DS attacks. The concept of cut-time is introduced. Cut-time is 

defined to be the duration of an attack attempt, from the start time to the end time of an 

attack. For each DS attempt, the attacker needs to pay for the cost to run his mining rig. A 

rational attacker would not, therefore, continue an attack indefinitely especially when 

operating within the regime of less than 50% computing power. To reduce the cost, the 

attacker needs to figure out how his attack success probability rolls out to be as the time 

progresses. We define that a DS attack is profitable if and only if the expected profit, the 

difference between revenue and cost (see equation (3.29)), is positive. Our contributions 

are summarized into two-folds: 

First, we theoretically show that DS attacks can be profitable not only in the regime of 51% 

attack but also in the sub-50% regime where the computing power invested by the attacker 

is smaller than that invested by the target network. Specifically, a sufficient and necessary 

condition is derived for profitable DS attacks on the minimum value of target transaction. 

In the sub-50% regime, we also show that profitable DS attacks necessitate setting a finite 

cut-time. 
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Second, we derive novel mathematical results that are useful for an analysis of the attack 

success time. Specifically, the probability distribution function and the first moment 

expectation of the attack success time have been derived. They enable us to estimate the 

expected profit of a DS attack for a given cut-time. All mathematical results are 

numerically-calculable. All the examples to find the theoretical results in this chapter are 

provided in our web-site1. 

3.1.2. Contents of Chapter 

The remainder of this chapter is organized as follows. In Section 3.2, we define DS attack 

scenario and sufficient and necessary conditions required for successful DS attacks. Also, 

we define random variables that are useful in analyzing the attack profits. Section 3.3 

comprises the analytic results of stochastics of the time-finite attack success. In Section 3.4, 

we define the profit function of DS attacks, followed by new theoretical results about the 

conditions for making them profitable. In Section 3.5, an example analysis of DS attack 

profitability in sub-50% regime against BitcoinCash network is given. Section 3.6 

compares our results with related works. In Section 3.7, by using Monte Carlo experiments, 

we check the correctness of our mathematical results given in 3.3. Finally, Section 3.8 

concludes the paper with a summary. 

 The Attack Model 3.2.

We define DS attack that we consider throughout this chapter. We also define DS attack 

achieving (DSA) time, which is the least time spent for an occurrence of double-spending. 

The DSA time is a random variable derived from a random walk of Poisson counting 

processes (PCP). 

                                                           
 

1 https://codeocean.com/capsule/2308305/tree 
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3.2.1. Attack Scenario 

We extend a DS attack scenario which has been considered by Nakamoto [20] and 

Rosenfeld [27]. Specifically, we additionaly investigate a time-finite attack scenario: an 

ongoing attack can be stopped at a predetermined time for some profit. There are two 

groups of miners, the normal group of honest miners and a single attacker. The normal 

group works for the honest chain. 

When the attacker decides to launch a DS attack, he/she makes a target transaction for the 

payment of goods or services. In the target transaction, the transfer of cryptocurrency 

ownership from the attacker to a victim is written. We denote 0t =  as the time at which 

the last block of the honest chain has been generated. At time 0t = , the attacker 

announces the target transaction to normal group so that normal group starts to put it into 

the honest chain. At the same time 0t = , the attacker makes a fork of the honest chain 

which stems from the last block and builds it in secret. We refer to this secret fork as 

fraudulent chain. In the fraudulent chain, a fraudulent transaction is contained which alters 

the target transaction in a way that deceives the victim and benefits the attacker. 

Before shipping goods or providing services to the attacker, the victim will obviously 

choose to wait for a few more blocks on the honest chain in addition to the block on which 

the his/her transaction has been entered, i.e., so-called block confirmation. Karame et al. in 

[74] showed the importance of block confirmation: attackers are able to double-spend 

against zero block-confirmation even without mining a single block on the fraudulent chain 

at all. The number of blocks the victim chooses to wait for is referred to as the block 

confirmation number BCN ∈ , which includes the block on which the target transaction is 

entered. 

The attacker chooses to make the fraudulent chain public if his/her attack was successful. 

An attack is successful if the fraudulent chain is longer than the honest chain after the 

moment the block confirmation is satisfied. We define two necessary conditions ( )1 , ( )2  

for a success of DS attack: 
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Definition 3.1. A DS attack succeeds only if there exists a DS attack achieving (DSA) time 

( )0,DSAT ∈ ∞  such that 

1. ( )1 : (block confirmation) the length of the honest chain for the duration of time DSAT  

has grown greater than or equal to BCN , and 

2. ( )2 : (success in PoW competition) the length of the fraudulent chain for the duration 

of time DSAT  has grown longer than that of the honest chain. 

Rational attackers will not wait for his success indefinitely since growing the attacker’s 

chain incurs the expense per time spent for operating the computing power. The attack thus 

shall put a limit to the end time to cut the increase of loss. We refer to this end time as the 

cut-time cutt +∈ . A sufficient condition for the success of DS attack can be defined with 

applying the cut-time cutt : 

Definition 3.2. For a given cut-time cutt +∈ , the success of DS attack is declared if and 

only if there exists a DSA time ( )0,DSA cutT t∈  at which ( )1  and ( )2  in Definition 3.1 

has been achieved. 

3.2.2. Stochastic Model 

We model the conditions in Definition 3.2 with a stochastic model. We fit the block 

generation process using the PCP [75] with a given block generation rate λ  (blocks per 

second). Including Nakamoto [20] and Rosenfeld [27], it has been most conventional to 

analyze the block generation process of a blockchain using PCP. A rationale why the block 

generation process is modeled as PCP is given in Bowden et al. [76], where experiments 

show the fitness of PCP model to real data samples from a live network.  

We denote the lengths of the honest chain and the fraudulent chain over time ( ]0,t∈ ∞  by 

two independent PCPs, ( ) 0H t ∈  with the block generation rate Hλ  (blocks per 

second) and ( ) 0A t ∈  with the block generation rate Aλ , respectively. Both processes 
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start at the time origin 0t = (at which the DS attack is launched) at which the both chains 

are at the zero states, i.e., ( ) ( )0 0 0H A= = .  Each chain independently increases at most 

by 1 at a time point. An increment of 1 in the counting process occurs when the pertinent 

network adds a new block to its chain. 

We represent the difference between ( )A t  and ( )H t in a discrete-time domain as a 

random walk iS ∈  for i∈ . For this purpose, we first define two continuous 

stochastic processes ( )M t  and ( )S t , which are respectively defined as 

 ( ) ( ) ( ): ,M t H t A t= +  (3.1) 

and 

 ( ) ( ) ( ): .S t H t A t= −  (3.2) 

The first process ( )M t  is also a PCP [75] with the rate 

 : .T A Hλ λ λ= +  (3.3) 

The second process ( )S t  is the continuous-time analog of the random walk iS ∈  for 

i∈  such that  

 ( ): ,i iS S T=  (3.4) 

where iT  is the state progression time defined by 

 ( ){ }:= inf  :  ,iT t M t i+∈ =
 (3.5) 

which increases as i  increases. Random walk iS  is a stationary Markov chain starting 

from 0 0S = . The state transition probabilities [75] are given by 
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 ( )1: Pr 1| ,A
A i i

T

p S n S n λ
λ−= = − = =  (3.6) 

and 

 ( )1: Pr 1| ,H
H i i

T

p S n S n λ
λ−= = + = =  (3.7) 

for all i∈  and n∈ . The state transition probabilities Hp  and Ap  are the 

proportions of computing power occupied by the normal miners and that by the attacker, 

respectively. 

We define independent and identically distributed (i.i.d.) state transition random variables 

{ } ( )1 ~ Bernoullii Hp∆ ∈ ±  as 

 1: ,i i iS S −∆ = −  (3.8) 

for i∈ . Note that 
0

i
i kk

S
=

= ∆∑ . 

The stochastic process iS  is measurable with respect to a filtration ( )1 2, , ,i iσ= ∆ ∆ ∆  , 

i.e., the σ -algebra generated by k∆  for all 1 k i≤ ≤ . Also, Given events ( ){ }M t i=  for 

i∈ , we define a sequence of probability space ( ), ,i i iΩ  , where { }1 i
iΩ = ±  and i  

is the probability measuer. 

Definition 3.3. A DS attack ( )DS , ;A cut BCp t N  is a random experiment that picks a sample 

ω ∞∈Ω . 

3.2.3. DS Attack Achieving Time 

Definition 3.4. For a given DS sample ω  of ( )DS , ;A cut BCp t N  which achieves the 

necessary conditions ( )1 and ( )2  in Definition 3.1 at a state index i , we define the DSA 

time DSAT  by the state progression time iT  defined in (3.5). 
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To express DSAT  as a random variable, we construct two events ( )1
j ∞⊂ Ω  and 

( )2
,i j ∞⊂ Ω . One event set ( )1

j  for { }, 1, ,BC BCj N N∈ + ∞  consist of DS samples ω  

which achieves the block confirmation ( )1  at state j  for the first time. The other event 

set ( )2
,i j  for { }, 1, ,i j j∈ + ∞  and { }, 1, ,BC BCj N N∈ + ∞ consists of ω  which 

achieves the success in the PoW competition ( )2  at state i  for the first time with 

assuming that ( )1  has been already achieved at state j . Subsequently, we aim for the 

samples ( ) ( )1 2
,j i jω∈   to achieve the two conditions in Definition 3.1 at a state pair 

( ),i j  for the first time. 

Formally, we first construct the set ( )1
j  focusing only on the first j  transitions k∆  for 

1, ,k j=   of DS samples ω  with two requirements; one is that they must have BCN  

number of 1+ ’s  and BCj N−  number of 1− ’s; and the other is that the j -th transition 

j∆  must be 1+  to guarantee that they have never been achieved in any states prior to the 

state j . The former requirement implies that all ( )1
jω∈  hold 

( )1
2

i

j
j BCk

S N jπ ω∆=
= = −∑ . For example, when 2BCN =  and 5,j =  a sequence 

( )1, 1, 1, 1, 1,+ − − − +   of state transitions satisfies the first requirement, and also satisfies 

2j BCS N j= − . 

We next construct the set ( )2
,i j  which does not care about the first j  transitions k∆  for 

1, ,k j=  , but only focuses on the interim transitions m∆  for 1, ,m j i= +  . By the 

definition, all sequences ( )2
,i jω∈  must achieve ( )1  before the j -th state, which 

implies that they must hold 2j BCS N j= − . The rest requirement for each ( )2
,i jω∈  is that 

the state changes from the starting state 2j BCS N j= −  to the goal state 1iS = − , while 

any interim states kS  remain non-negative; i.e., 0kS ≥  for each 1, , 1k j i= + − . 
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The sets ( )1
j  for each j  are mutually exclusive as each of which represents the first 

satisfaction of the block confirmation condition exactly at the j -th state. For example, if 

( )1
5ω∈  then ( )1

6ω∉  since ω  already has achieved the block confirmation at the 5-th 

state for the first time before reaching the 6-th state. The sets ( )2
,i j  for all ( ),i j  are also 

mutually exclusive for the same reason. Thus, their intersections ( ) ( )1 2
,j i j   for all ( ),i j  

are also mutually exclusive. 

By Definition 3.4, the attack achieving time DSAT  can be measured if there exist index 

pairs ( ),i j  such that ( ) ( )1 2
,j i jω∈  . By the mutual exclusivity of ( ) ( )1 2

,j i j   for 

indices i  and j , if there exists such a pair ( ),i j , it must be unique. That is, if 

( ) ( )1 2
,j i jω∈  , DSAT  equals iT . As the result, DSAT  can be rewritten as follow, 

 ( ) ( ) ( )1 22
,,  , : ,

, .
i j i j

DSA
T if i jT

otherwise
w ∃ ∈ ∈= 

∞

     (3.9) 

 The Attack Probabilities 3.3.

We aim to calculate the probability distribution function (PDF) of the DSA time DSAT . 

Using this, the success probability of DS attack with a given cut-time cutt  can be figured 

out as the probability that DSA cutT t< . Also, the expectation of attack success time can be 

calculated. The expected attack success time will be used in Section 3.4 to estimate the 

attack profits. 

From (3.9), the PDF of DSAT  requires the probabilities of two random events; one is the 

state progression time iT  in (3.5); and the other is the event that a given state index i  

satisfies ( ) ( )1 2
,j i jω∈   . It has been well known that iT  follows Erlang distribution [75] 

given as  



 - 77 -  

 ( ) ( )
( )

1

1 !

T

i

i t
T T

T

t e
f t

i

λλ λ − −

=
−

 (3.10) 

for 0t > . We provide the probability for the latter event, i.e., ,DSA ip = ( ) ( )( )1 2
,Pr j i jω∈   

in the following Lemma 3.5: 

Lemma 3.5. For a sample ω  of random experiment ( )DS , ; ,A cut BCp t N  the probability

,DSA ip = ( ) ( )( )1 2
,Pr j i jω∈   can be computed as 

 
1 12

2 2
, 1 ,2

2

1 1
+

1 1

BC
BC BC

BC BC
BC

i ij N
N i N

DSA i i A H H AN N jj N BC BC

j i
p C p p p p

N N

+ −=
−

−
− −=

− −   
=    − −   
∑  (3.11) 

for odd 2 BCi N> , where ,n mC  is the ballot number [77] given by 

 { }
,

21 , , 0 ,
: 1

0, ,
n m

n mm n m
C nn m

otherwise

+ + +
∈  = + +  




 

 (3.12) 

and for 2 BCi N≤  and for all even-numbered i , , 0DSA ip = . 

Proof: See Appendix 3.A. 

By taking infinite summations of ,DSA ip  in Lemma 3.5 for all indices i∈ , we can 

compute the probability DSA  that a DS attack will ever achieve the necessary conditions 

in Definition 3.1. 

Corollary 3.6. For a sample ω  of random experiment ( )DS , ;A cut BCp t N  with cutt = ∞ , 

the probability DSA  has an algebraic expression 

 2
1

1, ,
1

1 , ,
1

BC
BC BC

BC

H A

N
DSA N N

A H j H A
j N BC

p p
j

p p A p p
N

+

=

≤
 −=   − >  − 

∑
  (3.13) 
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where 

 2 1 2 1: .BC BCj N j N
j A HA p p− − − −= −  (3.14) 

Proof: See Appendix 3.B. 

From (3.9), the PDF of DSAT  follows the PDF of iT  at a given state index i , if at which 

it holds that ( ) ( )1 2
,j i jω∈  , with the probability of ,DSA ip . If there does not exist such an 

index i , with the probability of 1 DSA− , then DSAT = ∞ . Thus, we can write a 

(generalized) PDF 
DSATf  of DSAT  as follow, 

 
( ) ( )

( ) ( )

,
2 1

              1 ,

DSA i
BC

T DSA i T
i N

DSA

f t p f t

tδ

∞

= +

=

+ − −∞

∑


 (3.15) 

where ( )tδ  is the Dirac delta function. 

Proposition 3.7. The PDF 
DSATf  has an analytic expression: 

 
( )

( )( )
( ) ( )( )

( )
( )

( ) ( ) ( )

2
2

2
2 3

0

1
 ; ;

12 !

              + 1 ,
1 ! !

BC
T

BC

DSA
BC

BC BCT
A T

N
t j NA T A H T

T A H T
j N BCBC

N iNt
H T A Tp t

DSA
iBC

p e p p t j
f t F p p t

NN

p t p te e t
t N i

λ

λ
λ

λ λ
λ

λ λ
δ

−
=

=

−

=

− 
= ⋅  − 

 
+ − − −∞ 

 −  

∑

∑

a b



(3.16) 

where ( ); ;p qF xa b  is the generalized hypergeometric function (See Appendix 3.E for 

definition) with the parameter vectors 

 
1 2

1 2 2
BC

BC

N j
N j

+ − 
=  + − 

a  (3.17) 

and 
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2 2

1 .
1 2

BC

BC

BC

N j
N

N

+ − 
 = + 
 + 

b  (3.18) 

Proof: See Appendix 3.C. 

By Definition 3.2, the probability AS  that a DS attack ( )DS , ;A cut BCp t N  succeeds 

equals  

 ( ) ( )PrAS cut DSA cutt T t= < . (3.19) 

Note that for a special case of cutt = ∞ , ( )AS cut DSAt =  , which coincides with the result 

in Rosenfeld [27]. 

It will be shown to be convenient to define the attack success time AST  of a DS attack as 

 
,  ,

:
not defined, .

DSA DSA cut
AS

T if T t
T

otherwise
<

= 


 (3.20) 

A random variable for DSA cutT t>  does not need to be defined since it is not useful. The 

PDF 
ASTf  of AST  is just a truncated version of ( )

DSATf t  in (3.16) for 0 cutt t< <  with a 

scaling factor of 1
AS

−  . Formally, the PDF ( )
ASTf t  equals 

 ( )
( )

,  0 ,

0,  .

DSA

AS

T
cut

T AS

cut

f t
for t t

f t
for t t


≤ <= 

 ≥

  (3.21) 

The expectation of attack success time is computed as 

 ( )
( )

( )
0 .

cut

DSA

AS

t

T
T cut

AS cut

tf t dt
t

t
= ∫


 (3.22) 
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The following Proposition 3.8 gives an explicit formula of 
AST  for the special case when 

cutt = ∞ . 

Proposition 3.8. Let ( ): max , ,M A Hp p p= ( ): min , .m A Hp p p=  If cutt = ∞ , the 

expectation ( )
AST cutt  has a closed-form expression: 

 ( )

2
1 1

1
lim ,

BC

BC

AS
cut

N
BC

T j
j N BC H

T cutt
DSA

j NZ
N p

t
l −

=

→∞

 − 
+  −  =

∑



 (3.23) 

where 

 ( ) ( )1 2 2 1: .BC BCBC BCN j N jN NBC m
j A m M A H

M m

N jpZ p p p jp p
p p

− − + − − − +
= − − 

 (3.24) 

Proof: See Appendix 3.B. 

 Profitable DS Attacks 3.4.

The previous probabilistic analyses in [20] and [27] show that the success of DS attacks is 

not guaranteed when 0.5Ap < . However, DS attacks with 0.5Ap <  can be vigorously 

pursued as long as they bring profit. 

We analyze the profitability of DS attacks and to this end, we define a profit function P  

of a DS attack ( )DS , , ;A cut BCC p t N , where C  is the value of a fraudulent transaction, in 

terms of revenue and operating expense (OPEX) of the computing power.  

The OPEX X (e.g. the rental fee for the computing power) and the block mining reward 

R  tend to increase with respect to Aλ  and the time t  consumed during the attack. Thus, 

X  and R  are expressed as functions of Aλ  and t , and they can be any increasing 
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function; e.g., linear, exponential, or logarithm. We define X  and R , respectively, as 

follows: 

 ( ) ( ) ( )1 32 4, : log logA t

A A x xX t t x x
l

lgl =  (3.25) 

for real constants 0γ > , 1 2, 1x x > , and 3 4, 1x x > , and 

 ( ) ( ) ( )1 32 4, : log logA t

A A r rR t t r r
l

l βl=  (3.26) 

for real constants 0β > , 1 2, 1r r > , and 3 4, 1r r > . By setting the constants, one can 

transform the the cost and reward functions in (3.25) and (3.26) into a form of linear, 

exponential, or logarithm function depending on the real-world environment. We denote 

the ratio of γ  and β  by 

 1: .µ βγ −=  (3.27) 

With regards to P , if an attack succeeds, the revenue comes from C , as it is double-spent, 

and R for the number of blocks minded during the time duration AST , i.e., ( ),A ASR Tλ . In 

this case, the cost is the OPEX for the time duration AST , i.e., ( ),A ASX Tλ . If the attack 

fails, the cost is the OPEX ( ),A cutX tλ  for the time duration cutt , and there is no revenue. 

Hence, for a DS attack ( )DS , , ;A cut BCC p t N , we define P as follow, 

 ( ) ( )
( )

, , ,  ,
:

, , .
A AS A AS DSA cut

A cut

C R T X T if T t
P

X t otherwise
λ λ

λ
+ − <=  −

 (3.28) 

Subsequently, the expected profit function is 

 
( ) ( ) ( )( ) ( )( ) ( )

( ) ( )( )
, , 1 ,

, ,

P AS cut A AS A AS AS cut A cut

AS cut A AS X

t C R T X T t X t

t C R T

λ λ λ

λ

= ⋅ + − − −      

= ⋅ + −  

    

  
(3.29) 

where X  is the expected OPEX defined as 
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 ( ) ( ) ( )( ) ( ): , 1 , .X AS cut A AS AS cut A cutt X T t X tλ λ= + −   :  :  (3.30) 

Definition 3.9. A DS attack ( )DS , , ;A cut BCC p t N  is said to be profitable if and only if the 

expected profit 0P > , where P  is defined in (3.29). 

The key factor in determining the profitability of DS attacks is the value C of the 

fraudulent transaction. Thus, attackers would be interested in the minimum value required 

for profitable DS attacks [78]. Definition 3.9 implies that a DS attack ( )DS , , ;A cut BCC p t N  

is profitable if and only if Req.C C> , where the required value of target transaction Req.C  

is 

 ( )Req. , .X
A AS

AS

C R Tλ−   
 


=  (3.31) 

The following results in Theorem 3.10 and Theorem 3.11 focus on the case where both 

( ),AX tλ  and ( ),AR tλ  are linearly increasing functions of Aλ  and t . 

Theorem 3.10. Suppose 1 2x x=  and 3 4x x=  in (3.25), and 1 2r r=  and 3 4r r=  in 

(3.26). Then, a DS attack ( )DS , , ;A cut BCC p t N  for any ( )0,1Ap ∈  and for any 

( ]0,cutt ∈ ∞  is profitable if and only if Req.C C> , where 

 ( )( )
( ) ( ) ( )Req.

1
1 .

AS

AS cut
A cut A T cut

AS cut

t
C t t

t
γλ µ γλ

−
= − −





 (3.32) 

Proof: Substituting 1 2x x= , 3 4x x= , 1 2r r= , and 3 4r r=  into (3.31) results in (3.32). ■ 

Theorem 3.10 shows that not only superior attackers with ( )0.5,1Ap ∈  but also inferior 

attackers with ( )0,0.5Ap ∈  are able to expect profitable DS attacks once a high enough 

value C  greater than Req.C  of the target transaction is designed. The condition Req.C  in 

(3.32) can be pre-computed before carrying out an attack, as it stochastically estimates the 
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future expected cost, for a given position ( )0,1Ap ∈  and a cut-time cutt of an attacker, 

and a given set of network environment parameters γ  and β . 

Table 3.1 and Table 3.2 list the resources including Req.C , X , and 
AST  required for 

profitable DS attacks respectively using 0.35Ap =  and 0.4,Ap = when 1
cut BC Ht cN λ−=  

with 4c = . Note that the expectation of the time spent for the block confirmation equals 
1

BC HN λ− , and we let cutt  linear to it. In other words, as normal traders wait for 1
BC HN λ−  

seconds on the average, attackers shall be tolerable as well and wait for the same scale of 

time duration. Note that the AS  for 1BCN =  is smaller than that for 3BCN =  due to not 

long enough cutt . We scaled the results by parameters Hλ  and γ , which we will explain 

how to obtain from internet in the next subsection. 

The following Theorem 3.11 is for the inferior attackers with ( )0,0.5Ap ∈  and shows the 

importance of setting a finite cutt .  

Theorem 3.11. Suppose 1 2x x=  and 3 4x x=  in (3.25), and 1 2r r=  and 3 4r r=  in 

(3.26). Then, a DS attack ( )DS , , ;A cut BCC p t N  with ( )0,0.5Ap ∈  is profitable only if 

cutt < ∞ . 

Proof: For any ( )0,0.5Ap ∈ , it always holds that 1AS < . In this case, if cutt →∞  then 

Req.C →∞  from (3.32); i.e., infinite value C  of fraudulent transaction is required for a 

DS attack ( )DS , , ;A cut BCC p t N  to be profitable. Thus, for a DS attack with ( )0,0.5Ap ∈  

to be profitable, a finite cut-time cutt < ∞  must be set. ■ 

Theorem 3.11 shows that for ( )0,0.5Ap ∈ , setting cutt = ∞  is expected to incur infinite 

deficit. On the contrary, for ( )0.5,1Ap ∈ , what we have numerically checked out but 

omitted due to space limitation is the result that P  is an increasing function of cutt ; i.e., 
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setting cutt = ∞  is the optimal choice in the superior attack regime. Applying ( )0.5,1Ap ∈  

and cutt = ∞  into (3.32) leads to 1AS = , and thus Req.C  turns into 

 ( )Req. 1 ,
ASA TC µ γλ= − −   (3.33) 

where a closed-form expression of 
AST  is given in Proposition 3.8. In this case, if β γ> ; 

i.e., 1µ > , DS attacks are always profitable regardless of C . According to nicehash.com, 

most networks maintain β γ>  by the economic equilibrium. As the result, in addition to 

the results in [20] and [27] that DS attacks with ( )0.5,1Ap ∈ guarantee probabilistic 

success, we show that such attacks guarantee economic gain as well.  



 - 85 -  

Block confirmation number ( BCN ) 1 3 5 7 9 

Attack success probability ( AS  ) 0.315 0.279 0.218 0.170 0.132 

Expected attack success 
time (

AST  ) Scaled by 1
Hλ
−  2.004 5.518 8.681 11.694 14.607 

Expected OPEX ( X  ) 

Scaled by γ  

1.815 5.487 9.440 13.588 17.859 

Required value of target 
transaction ( Suf.C  ) 

1.079 ( )1 µ⋅ −
+4.680 

2.971 ( )1 µ⋅ −
+16.68 

4.675 ( )1 µ⋅ −
+38.62 

6.297 ( )1 µ⋅ −
+73.84 

7.866 ( )1 µ⋅ −
+127.00 

Table 3.1. Numerical computations of required resources for profitable DS attacks with 0.35Ap =  when 1
cut BC Ht cN λ−=  with 4c = .  
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Block confirmation number ( BCN  ) 1 3 5 7 9 

Attack success probability ( AS  ) 0.411 0.419 0.376 0.334 0.297 

Expected attack success 
time (

AST  ) Scaled by 1
Hλ
−  1.953 5.338 8.434 11.418 14.325 

Expected OPEX ( X  ) 

Scaled by γ  

2.106 6.139 10.436 14.977 19.716 

Required value of target 
transaction ( Suf.C  ) 

1.302 ( )1 µ⋅ −  
+3.819 

3.559 ( )1 µ⋅ −  
+11.10 

5.622 ( )1 µ⋅ −  
+22.15 

7.612 ( )1 µ⋅ −  
+37.25 

9.550 ( )1 µ⋅ −  
+56.96 

Table 3.2. Numerical computations of required resources for profitable DS attacks with 0.4Ap =  when 1
cut BC Ht cN λ−=  with 4c = . 
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 Practical Example of Profitable DS Attacks against BitcoinCash 3.5.

We analyze resources required for profitable DS attacks against BitcoinCash network. The 

resources include the computing power proportion Ap , expected OPEX X , expected 

attack success time 
AST , and the required value of fraudulent transaction Req.C . 

To this end, we first recall the parameters involved in block mining reward R  and the 

OPEX X . The parameters used in (3.25) and (3.26) are assumed to 1 2x x= , 3 4x x= ,  

1 2r r= , and 3 4r r= which lead to linear functions ( ),AX tλ  and ( ),AR tλ  with respect to 

Aλ  and t . There are three more parameters: γ , β , and 1
Hλ
− . From (3.25) and (3.26), 

the parameter γ  is the expected cost for generating one block; and the parameter β  is 

the reward per generating a block. Parameter 1
Hλ
−  is the average block generation time of 

the honest chain. All the parameters are different for each blockchain network.  

In BitcoinCash, the reward β  per block mining was 12.5 BCH (without transaction fees), 

which is around 0.44β = BTC per block mining (as of 26th Feb. 2020). The average 

block generation time was fixed at 1 600Hλ
− =  seconds. 

The parameter γ  is obtainable from nicehash.com. BitcoinCash uses the SHA-256 

cryptographic puzzle for which the unit of computation is hash. As of 26th Feb. 2020, the 

rental fee for 1-peta (P) hashes per second for a day was around 0.017 BTC, which was 

around 71.97 10−⋅  BTC per second. In other words, the rental fee was approximately 
221.97 10−⋅  BTC per the computing of a hash. Referring to BTC.com, the network’s 

computing speed is 3.57-exa (E) hashes per second; i.e., 3.57E 600=2142E⋅ hashes are 

needed to generate one block on the average. As the result, the parameter γ  is obtained as 

 
[ ] [ ]

[ ]

221.97 10  BTC hash 2142E hashes block  mining

0.422 BTC block mining .

g −= ⋅ ×

≈
 (3.34) 
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Note that it holds β γ> . From (3.33), this relationship makes DS attack 

( )DS , , ;A cut BCC p t N  with 0.5Ap >  and cutt = ∞  always profitable regardless of the 

value C  of target transaction. 

In case of DS attacks with 0.5Ap < , the cut-time cutt  must be determined as a finite 

value for profitable DS attacks by Theorem 3.11. We set 1 12000cut BC Ht cN λ−= =  seconds 

with 4c =  and 0.35Ap = . We compute the resources required for profitable DS attacks 

against BitcoinCash when 5BCN = . Results are obtainable from the values in Table 3.1 

and Table 3.2 by multiplying the scaling parameters 0.422γ =  and 1 600Hλ
− =  and by 

substituting 1 1.04µ βγ −= =  and 4c = . 

As the results, we obtain 0.218AS ≈ , 5200
AST ≈  seconds, 3.98X ≈ BTC, and 

Req. 16.22C ≈ BTC. One can compute expected running time; i.e., the expected time spent 

for a single DS attack attempt as ( )1
ASAS T AS cutt+ −   , which is around 2 hours and 55 

minutes. That is to say, attackers can repeatedly perform n  number of attacks every 2 

hours and 55 minutes on the average. With the value C  of target transaction, by the 

strong law of large numbers, the multiple attack attempts will return net profit 

( ) ( )Re .AS cut qn t C C⋅ −  as n →∞  with probability 1. 

 Related Works 3.6.

By Nakamoto [20] and Rosenfeld [27], the probabilities have been studied that a DS attack 

will ever succeed when there is no time limit, i.e., the cut-time is set to cutt = ∞ . Both of 

them applied PCPs to model the growth of chains ( )H t  and ( )A t . On one hand, the 

main difference between them was in probability calculations of the block confirmation 

process ( )1  in Definition 3.1. Rosenfeld applied the PCPs to both ( )H t  and ( )A t , 

whereas Nakamoto assumed the time spent for ( ) BCH t N≥  deterministic to simplify the 

calculation. On the other hand, they both used the gambler’s ruin approach to obtain the 
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asymptotical behavior of iS  as i →∞  by manipulating the recurrence relationship 

between two adjacent states. Namely, their results are based on an assumption that an 

indefinite number of attack chances are given [65]. 

On the contrary, we introduce the cut-time cutt  which generalizes analytical framework to 

the more interesting finite attack time and inferior attacker regime. By setting cutt  infinite, 

the same result DSA  was obtained in [27] as well. By setting a finite cutt , our results shall 

be useful when attack chances are limited due to limited amount of resources such as time 

and cost. In addition, we show in Theorem 3.11 that DS attacks with 0.5Ap <  must set a 

finite cutt  in order to expect a non-negative profit. It shall be noted that there has been no 

intermediate result like ,DSA ip  in Lemma 3.5. We use Lemma 3.5 to derive the novel 

results. 

Rosenfeld [27] and Bissias et al. [66] have analyzed the profitability of DS attacks. But 

they put additional assumptions on the attack scenario to simplify the calculation of the 

attack time. Specifically, Rosenfeld assumed the attack time to be a constant. Bissias et al. 

assumed that the attack stops if either the normal peers or the attacker achieves the block 

confirmation first. On the contrary, in our model, an attack can be continued for a random 

attack time as long as it brings profit, even if the normal peers achieve the block 

confirmation before the attacker does. 

In Zaghloul et al. [67], the profit of DS attack has been analyzed. Interestingly, they have 

discussed the need of cut-time for DS attacks with 0.5Ap < , which is theoretically proven 

in this chapter in Theorem 3.11. They also calculated the profit of DS attacks with a finite 

time-limit (see Section IV-C in [67]), but their calculation was not as precise as ours in 

three points: 

First, the probability of attack success within a finite time-limit, i.e., ( )AS cutt  in (3.19) 

was never considered, which requires the distribution of the DS achieving time, i.e., DSAT  

given in Proposition 3.7. Instead, their calculation used DSA  referring to the result in 
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Rosenfiled [66]. This contradicts their time-limited attack scenario, since DSA  was 

resulted from the assumption of infinite time-limit. 

Second, they approximated costs and revenues of DS attack spent within a time-limit. 

Estimation of the costs and revenues requires estimations of the numbers of blocks 

respectively mined by honest nodes and attackers within a time-limit, but those were 

assumed to be constant. This was due to the absence of the time analysis we provide in 

Proposition 3.7. 

Third, they assumed the average block generation rates Hλ , Aλ  respectively by honest 

miners and by attackers are always the same. Since, the proportions Hp , Ap  of 

computing power occupied by the two groups can be quite different in general, such a 

result is not very useful. We agree to their assumption that most blockchains control the 

difficulty of block mining puzzle to keep the average speed of block generation constant, 

and thus Hλ  can be considered as a constant. But Aλ  should be left as a varying quantity 

by Ap . The fact is that the computing power invested by attacker cannot be monitored by 

the honest network and thus it cannot be reflected in the difficulty control routine. 

Budish [68] conducted simulations on the profitability of DS attacks only in the cases of 

0.5Ap > . Under the cases, a condition on the value of the target transaction that makes DS 

attacks not profitable has been given based on the simulations. We give theoretical and 

numerically-calculable results for any ( )0,1Ap ∈ , which do not require massive 

simulations. 

Gervais et al. [69] and Sompolinsky et al. [65] have used a Markov decision process (MDP) 

to analyze profits from DS attacks. These works differ from our contributions in the 

following regards: 

First, they did not follow the DS attacks scenario considered by Nakamoto [20] and 

Rosenfeld [27]. Instead, the scenario in [65] was a special case of the pre-mining strategy 

which was introduced in [70] and [71]. We show that the success of DS attack under this 

scenario is even more difficult to occur than the success of the DS attack under the 
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scenario of Nakamoto and Rosenfeld (see Appendix 3.D for details). Also, the attack 

scenario in [69] went even further by modifying the condition ( )1  for block confirmation 

in Definition 3.1. Specifically, under ( )1 , it is required for the honest chain to have added 

BCN  blocks, while under their condition, it was the fraudulent chain to do so (see Section 

3 of [69]). Thus, it was not ensured that the potential victim has shipped the goods or 

service, and an attack success did not guarantee for the attacker to obtain the benefit of 

attacking. 

Second, one important new advance in this chapter is the derivation of the time analysis 

ASTf  given in Proposition 3.7. When one uses the MDP framework, one can obtain similar 

information such as the estimations for the attack success time 
AST , the future profit P  

that an attacker will earn in the end, and the minimum value of target transaction Req.C . 

But using MDP, to make such estimations, would have required extensive Monte Carlo 

simulations. Using our mathematical results, such estimations can be obtained without 

Monte Carlo simulations. 

In addition, we believe that our mathematical results can be utilized in the MDP 

frameworks to improve the reliability of analyses. Conventionally, a rational user of an 

MDP will make a decision at every state whether to stop or to continue the process by 

comparing the rewards that will be incurred in the future by his/her decision. The rewards 

for stop actions are clear because such actions are either an attack success or a give-up. The 

reward for the continue action is complex because it needs to consider all the actions in all 

future possible states as well. In [65] and [69], the rewards for the continue action were 

over-simplified as they were evaluated only for the very next state and did not include the 

estimation of the profits in further future actions. To improve the reliability, the PDF 
ASTf  

in Proposition 3.7 can be used at any intermediate Markov state to estimate the future 

profits. Specifically, the conditional expectation of the time left for an attack success AST  

given AST τ>  can be calculated using 
ASTf , where τ  is the observable time elapsed for 

reaching the current state. Once the time left is estimated, the estimation of future profits 

can be updated by substituting it into (3.29). That is to say, at each state, the estimation of 

profits can be updated and used as the rewards resulting from the continue action. 
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Goffard [72] and Karame et al. [73] have derived the PDFs of attack success time, but none 

of their DS attack scenarios matched with ours in Definition 3.1. In [72], Goffard derived 

the PDF of catch-up time spent for the fraudulent chain to catch up with the honest chain 

given that the length of honest chain is initially ahead by several blocks. The author used 

counting processes such as order statistic point process and renewal process which are 

more general than PCP, but there was no analytic result similar to what is given in 

Proposition 3.7. In [73], Karame et al. derived the PDF of the first attack success time 

under a fast-payment model which fixed 0BCN = . To sum up, the attack success time in 

neither analysis included the time spent for achieving the first condition ( )1 : the block 

confirmation should be realized. 

 Checking Formulas by Monte Carlo Experiments 3.7.

To check the correctness of our mathematical result in Proposition 3.7, we conduct Monte 

Carlo experiments with a simulation of DS attack. Proposition 3.7 gives a probability 

distribution of the time spent for a success of DS attack. We compare the experimental 

results with two formulas (3.19) and (3.21). Formula (3.19) gives the probability that a 

DS attack succeeds within a cut-time. Formula (3.21) is a truncated version of Proposition 

3.7, where the time domain is truncated by a cut-time. 

A pseudo code of simulation is summarized in Table 3.3. This code aims to simulate the 

stochastic behavior of DS attacks modeled in sub-section 3.2.2. We uploaded a MATLAB 

implementation of this simulation on web-site2. The simulation takes inputs such as block 

generation rates Aλ  and Hλ  of a fraudulent chain and a honest chain respectively, a 

block confirmation number BCN , and a cut-time cutt . The input Aλ  can be replaced by 

the computational proportion Ap  of attacker. The simulation results in two outputs: One 

is an estimation  AS  of the DS attack success probability within cutt , and the other is a 

                                                           
 

2 https://codeocean.com/capsule/2308305/tree 
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sample vector ASTf  of the time spent for a DS attack success within cutt . For each 

combination of input parameters, we conducted the experiments for 100000N =  times. 

We fixed 1 600Hλ =  blocks per second. For given BCN , we set 14cut BC Ht N λ−= , which is 

a multiple of the expected time spent for the completion of a block confirmation, i.e., 
1

BC HN λ− . 

Table 3.4 compares the probabilities of successful DS attacks. We varied block 

confirmation number { }3,5,7BCN ∈  and attacker’s computational proportion 

{ }0.25,0.3,0.35,0.4,0.45Ap ∈ . The values on the columns labeled “Calculation” were 

obtained from calculations of AS  in (3.19). The values on the columns labeled 

“Experiment” were the estimations  AS  obtained from Monte Carlo tests using Table 3.3. 

The results show  AS  well estimate AS  with negligible errors. That is, the probability 

calculation in (3.19) has been verified by the Monte Carlo experiments. 

Figure 3.2 compares of the probability distributions of the time spent for a success of DS 

attack. In subplot (a), we set attacker’s computational proportion 0.25Ap = , and in 

subplot (b), we set 0.45Ap = . The bars on both subplots are the histograms of ASTf  

obtained from the Monte Carlo experements in Table 3.3. Out of 100000N =  trials, we 

obtained 4584 samples for subplot (a) and 56951 samples for subplot (b). The differences 

in the numbers of samples came from the differences of Ap  and the differences of the 

success probability of DS attacks. We can obtain a sample of time spent for an attack 

success only if an attack succeeds. The histograms were compared with the red curves on 

both subplots, which are scaled versions of the calculation of equation (3.21). The results 

show the red curves from the calculations well fit to the shapes of histograms. As the 

results, the probability distribution in (3.21) has been verified by the Monte Carlo 

experiments.  
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Algorithm: Pseudocode of Monte Carlo experiments for double-spending attacks 

Input: Double-spending attack parameters Aλ , Hλ , BCN , and cutt  and the number of 
experiments N . 

Output: An estimation  AS  of (3.19) and a histogram ASTf  for ( )
ASTf t  in (3.21). 

1:     Define a function ( )exp λ  that returns a sample in +
  from an exponentional distri-

bution with the rate parameter λ +∈  
2: Define a function ( ),last nt  for an array t  of entries in +

  that returns the n -th 
entry from the last of t  (if t  is empty, it returns 0, and if n  is omitted, 1n = ) 

3: Define a function ( )hist t  for an an array t  of entries in +
  that returns a histo-

gram of t  

4: Allocate an empty array DSt  of entries in +
  

5: for 1n ←  to N  

6:  Allocate empty arrays At  and Ht  of entries in +
  

7:  while 1 

8:   Concatenate ( ) ( )expA A A Alast l← +  t t t  

9:   Concatenate ( ) ( )expH H H Hlast l← +  t t t  

10:   if ( )A cutlast t≥t  then 

11:    break 
12:   end if 

13:   if H BCN>t  and ( ) ( )H Alast last>t t  then 

14:    if 1H BCN= +t  then 

15:     ( ), 2DS Ht last← t  

16:    else 

17:     ( )DS At last← t  

18:    end if 

19:    if DS cutt t<  then 

20:     Concatenate [ ]DS DS DSt←t t  

21:     break 
22:    end if 
23:   end if 
24:  end while 
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25: end for 

26:  DS
AS

N
←

t
  

27: ( )AST DShist←f t  

28: return  AS  and ASTf  

Table 3.3  A pseudo-code to simulate the stochastic behavior of double-spending attacks 

modeled in sub-section 3.2.2.  

 

Probabilities 

3BCN =  5BCN =  7BCN =  

Calcula-
tion 

Experi-
ment 

Calcula-
tion 

Experi-
ment 

Calcula-
tion 

Experi-
ment 

0.25Ap =  0.0896 0.0895 0.0451 0.0458 0.0230 0.0230 

0.3Ap =  0.1684 0.1681 0.1089 0.1107 0.0706 0.0713 

0.35Ap =  0.2793 0.2788 0.2180 0.2189 0.1696 0.1690 

0.4Ap =  0.4189 0.4208 0.3758 0.3775 0.3338 0.3313 

0.45Ap =  0.5765 0.5768 0.5679 0.5695 0.5516 0.5513 

Table 3.4  Comparisons of the probabilities of successful double-spending attacks for 

given block confirmation number BCN  and attacker’s computational proportion Ap  

when cut-time is set to 14 BC HN λ−  for 1 600Hλ
− =  seconds. The values on the columns 

labeled “Calculation” are obtained from the calculation of equation (3.19). The values on 

the columns labeled “Experiment” are obtained from Monte Carlo tests using Table 3.3. 
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(a) 0.25Ap =  (b) 0.45Ap =  

Figure 3.2.  Comparisons of the probability distributions of the time spent for a success of double-spending attack when attacker’s computational proportion 

is (a) 0.25Ap =  and (b) 0.45Ap = . Block confirmation number and cut-time are set to 5BCN =  and 14cut BC Ht N λ−=  for 1 600Hλ
− =  seconds, respectively. 

The bars on both subplots are histograms of ASTf  obtained from Monte Carlo tests in Table 3.3. The red curves on both subplots are the calculation of 

equation (3.21).
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 Conclusions 3.8.

We showed that DS attacks using 50% or a less proportion of computing power can be 

profitable and thus quite threatening. We provided how much quantitative resources are 

required to make a profitable DS attack. We derive the PDF of attack success time which 

enables us to figure out the operating time and the expense of mining rigs. We verified our 

mathematical results using Monte Carlo experiments. We provided MATLAB codes on the 

website3 for the numerical evaluation of expected profit function in (3.29) and for the 

Monte Carlo experiments. We also listed an example of the minimum resources required 

for a profitable DS attack, which is applicable to any blockchain networks by substituting 

the network parameters γ , β , and Hλ . We also showed a more specific example of the 

required resources against BitcoinCash network. 

Our results quantitatively guide how to set a block confirmation number for a safe 

transaction. The less the block confirmation number is, the less the minimum resource is 

required for a profitable attack. A solution can be utilized by the network developers to 

discourage such an attack. On the one hand, given a block confirmation number, we can 

have the value of any transaction to be set below the required value of making a profitable 

attack in a given network. On the other hand, given the value of transaction, the network 

can provide a service to inform the payee with the least block confirmation number that 

leads to negative DS attack profit. 

                                                           
 

3 https://codeocean.com/capsule/2308305/tree 



 - 98 -  

Appendices 

Appendix 3.A  Proof of Lemma 3.5 

For a given sample ω  and a given index i , we seek an intermediate index j  and the 

corresponding set ( ) ( )1 2
,j i j   to which ω belongs, i.e., ( ) ( )1 2

,j i jω∈  . If such a set 

exists, by the mutual exclusiveness of ( ) ( )1 2
,j i j   for integers j , it is unique. Thus, we 

can write the probability ,DSA ip  as follow, 

 

( ) ( )( )
( ) ( )( )

1 2
, ,

1 2
,

Pr : 

Pr .
BC

DSA i j i j

j i j
j N

p j ω

ω
∞

=

= ∃ ∈ ∈

= ∈∑

 

 

 



 (3.35) 

Note that ( ) ( )( )1 2
,j i j φ=   for 2 BCi N≤ , since the minimum number of states for an 

successful attack is 2 1BCN + ; BCN  number of 1+ ’s state transitions for the block 

confirmation; and 1BCN +  number of 1− ’s state transitions for the success of PoW 

competition. Thus, , 0DSA ip =  for 2 BCi N≤ . 

We further explore ( )1
j  and ( )2

,i j . We divide the domain of state index j  in (3.35) 

into two exclusive domains; one is 2 BCj N≤ ; and the other is 2 BCj N> . First, for 

2 BCj N≤ , two sets ( )1
j and ( )2

,i j  are independent, since their requirements on the state 

transitions are focusing on disjoint indices of state by their definitions. Formally, 
( ) ( )( )1 2

,Pr j i jω∈ =  ( )( ) ( )( )1 2
,Pr Prj i jω ω∈ ∈  . Second, we explore the domain 

2 BCj N> . By the definition of ( )1
j , all ( )1

jω∈  satisfy jS =
1

j
kk=

∆ =∑ 2 BCN j− . Thus, 

for every 2 BCj N> , jS  is already negative, which implies all ( )1
jω∈  satisfy both ( )1  

and ( )2  at state j . The set ( )2
,i j φ=  for 2 BCj N>  and j i< , since the state 

2j BCS N j= −  contradicts one requirement of ( )2
,i j : the interim transitions between the 
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states j  and i  should be non-negative. For 2 BCj N>  and j i= , let us set ( )2
, ,i j ∞= Ω

since there is no interim state to apply the requirement to. To sum up, ( ) ( ) ( )1 2 1
,j i j i=    

for 2 BCj N>  and i j= , and ( ) ( )( )1 2
,j i j φ=   for 2 BCj N>  and i j> . Subsequently, 

(3.35) is computed as  

 ( )( ) ( )( ) ( )( )
2

1 2 1
, ,Pr Pr + Pr .

BC

BC

N

DSA i j i j i
j N

p ω ω ω
=

= ∈ ∈ ∈∑     (3.36) 

We now compute the ingredient probabilities ( )( )1Pr jω∈  and ( )( )2
,Pr i jω∈  in (3.36). 

First, by the definition, all samples in ( )1
j  must have 1BCN −  number of 1+ ’s state 

transitions among the first 1j −  transitions. And the rest of the 1j −  transitions must be 

valued by 1− . In addition, the j -th transition must be valued by 1+  so that the block 

confirmation is achieved exactly at the j -th state index. As the result, the probability 

( )( )1Pr jω∈  equals the point mass function of a negative binomial distribution: 

 ( )( )1 1
Pr .

1
BC BCN j N

j H A
BC

j
p p

N
ω −− 
∈ =  − 
  (3.37) 

Second, computing the probability ( )( )2
,Pr i jω∈  starts from counting the number of 

combinations of state transitions satisfying the requirements of set ( )2
,i j  . Recall the 

requirements on every element of ( )2
,i j , for , , 2BC BCj N N=  , are that the state starts 

from the state 2j BCS N j= −  and ends at the state 1iS = −  while all the 1i j− −  interim 

states remain nonnegative. The i -th transition should be 1i∆ = −  so that the success of 

PoW competition is achieved exactly at the state index i . The number of combinations of 

such state transitions can be counted using the ballot number ,n mC  [77], which is the 

number of random walks that consist of 2n m+  steps and never become negative, starting 

from the origin and ending at the point m . In our problem, the number of random walk 
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steps is 2 1n m i j+ = − −  with 2 BCm N j= − . As a result, by multiplying the probabilities 

Ap  and Hp  for state transitions, the probability ( )( )2
,Pr i jω∈  is computed as 

 ( )( ) ( )2 1
, ,Pr ,n m n

i j n m A HC p pω + +∈ =  (3.38) 

where 2 1n m i j+ = − −  and 2 BCm N j= − . 

Finally, substituting (3.37) and (3.38) into (3.36) results in (3.11). ■ 

Appendix 3.B  Proofs of Corollary 3.6 and Proposition 3.8  

Proofs of Corollary 3.6 

Taking infinite summations of ,DSA ip  for all indices i  results in DSA : 

 ,
2 1BC

DSA DSA i
i N

p
∞

= +

= ∑  (3.39) 

By substituting ,DSA ip in Lemma 3.5 into (3.39), the probability DSA  becomes 

 ( )
2 1

2
1 ,22 1 2 12

1 1
.

1 1

BC
BC

BC BC
BC BC BC

NN i
iH

DSA A i A H AN N jj N i N i NBC BCA

j ipp C p p p
N Np

∞ ∞−

−
− −= = + = +

− −    
= +     − −    
∑ ∑ ∑

 (3.40) 

By rearranging the indices i  in the summations, we can obtain 

 

( )
2

,2
0

2

1
1

1 1
.

1 1

BC
BC

BC
BC

BC
BC

BC BC

N
i N

DSA A i N j A H
j N iBC

N N
i iH

A A
i N i NBC BCA

j
p C p p

N

i ip p p
N Np

∞
+

−
= =

∞

= =

− 
=  − 

 − −     
+ −      − −      

∑ ∑

∑ ∑



 (3.41) 

We define two generating functions as 
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 ( ) ,
0

: ,i
k i k

i
M x C x

∞

=

=∑  (3.42) 

and 

 ( ) : .i
k

i k

i
G x x

k

∞

=

 
=  

 
∑  (3.43) 

By substituting kM  and kG  into (3.41), we can write 

 

( ) ( )

( )

2

2

2

1

1
1

1
 

1

BC
BC

BC
BC

BC
BC

BC
BC

N
N

DSA A A H N j A H
j N BC

N N
iH

A N A A
i N BCA

j
p p p M p p

N

ip p G p p
Np

−
=

−
=

− 
=  − 

 −   
+ −    −    

∑

∑



. (3.44) 

The function ( )kM x  is a generating function of the ballot numbers ,i kC , for which the 

algebraic expression given in [79] is 

 ( )
12 .

1 1 4

k

kM x
x

+
 =  + − 

 (3.45) 

Putting A Hx p p=  into ( )kM x  results in 

 

( )

( )

( )

1

1

1

1

2
1 1 4

2 ,  ,
1 1 4 1

2 ,  
1 1 4 1

1 ,

k

k A H
A H

k

A H
A A

k

A H
H H

k

M

M p p
p p

if p p
p p

if p p
p p

p

+

+

+

+

 
=   + − 
  
   <
  + − −  = 
 
  ≥
  + − − 

 
=  
 

 (3.46) 
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where ( ): max ,M H Ap p p= . The function ( )kG x  is a generating function of binomial 

coefficients, and the algebraic expression for it is given in [80]: 

 ( )
( ) 1 .
1

k

k k
xG x
x +=

−
 (3.47) 

Putting Ax p=  into ( )kG x  results in 

 ( ) 1 .
k

A
k A H

H

pG p p
p

−  
=  

 
 (3.48) 

Substituting (3.46) and (3.48) into (3.44) provides 

 ( ) ( )
2 2

2 11 1
1 .

1 1

BC
BC BC

BC BC

BC BC

NN N
N N j iH

DSA A A H M A
j N i NBC BCA

j ipp p p p p
N Np

− − +

= =

− −    
= + −     − −    
∑ ∑ (3.49) 

We define ( ): min , ,m A Hp p p= then the relationship A H m Mp p p p=  holds. By rearranging 

the order of operands, we can obtain 

 
2 1

1 ,
1

BC BC
BC

BC

N NN
j jmH A

DSA A M
j N BC A M M

j pp pp p
N p p p=

 −     
 = − −     −      

∑  (3.50) 

which is equal to (3.13).  ■ 

Proof of Proposition 3.8 

From (3.15) and (3.22), when cutt = ∞ , we obtain  
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( )
( )

[ ] ,
0 2 1

,
2 1

lim

,

cut

DSA
cut BC

AS

BC

t
i DSA iTt i N

T
AS cut DSA

DSA i
i N T

DSA

T ptf t dt

t

i p
l

−

∞

→∞ = +

∞

= +

= =

=

∑∫

∑




 

  (3.51)   

where [ ] 1
i TE T iλ −=  [75]. By substituting ,DSA ip  in (3.11) into (3.51) and rearranging 

the order of operands, we obtain 

( )

( ) ( )

22
2 2

,22 2

2 1
1 1

1 1

1
1

1

              1 1 .
1 1

BC

AS
BC BC

BC BC

BC
BC BC BC BC

BC BC

i iN

T DSA T i A HN N jj N i NBC

N
i N N i N N

A H A H
i N i NBC BC

j
i C p p

N

i i
i p p i p p

N N

λ
+∞

− −= =

−∞
+ − + −

= − = −

− 
= + − 

   
+ + − +   − −   

∑ ∑

∑ ∑

 
(3.52) 

By rearranging the indices of summations, we arrive at 

 

( ) ( )

( )

2
1

,2
0

2

1

1
2 2 1

1

1
               1 .

1 1

BC
BC BC

AS BC
BC

BC
BC

BC BC

BC BC

N
iN N

T DSA T A H BC i N j A H
j N iBC

N N
i N NiH

A A A H
i N i NBC BCA

j
p p i N C p p

N

i ipp i p i p p
N Np

λ
∞

+
−

= =

∞
−

= − =

− 
= ⋅ + + − 

−     
+ + −     − −    

∑ ∑

∑ ∑

 

(3.53) 

By substituting the generating functions ( )kM x  and ( )kG x  defined respectively in 

(3.42) and (3.43), (3.53) becomes 

 
( ) ( ) ( ))

( )

2
1

,2 2
0

1
1

2

1
1

2 2 1

1

1
.

1

BC
BC BC

AS
BC

BC BC

BC

BC
BC

BC
BC BC

BC

N
N N

T DSA T A H
j N BC

i
i N j A H BC N j A H

i

N
iH

A A N A
i N BCA

N
i N N

A H
i N BC

j
p p

N

iC p p N M p p

ipp i p G p
Np

i
i p p

N

λ +

=

∞

− −
=

∞

−
= −

−

=

− 
=  − 
⋅ + +


    
+ +    −    

− 
−  − 

∑

∑

∑

∑

 

 (3.54) 
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We use the following relationships, 

 ( ),
0

i
i k k

i
iC x xM x

∞

=

′=∑  (3.55) 

and 

 ( ) ,i
k

i k

i
i x xG x

k

∞

=

  ′= 
 

∑  (3.56) 

and their derivatives are given by 

 
( ) ( )

( )

1
,

0
2

:

1 2
1 4 1 1 4

i
k k i k

i
k

dM x M x iC x
dx

k
x x

∞
−

=

+

′ = =

+  =  − + − 

∑
 (3.57) 

and 

 

( ) ( )

( )
( )

1

1

2

:

.
1

k k

i

i k

k k

k

dG x G x
dx

i
i x

k

kx x

x

∞
−

=

−

+

′ =

 
=  

 

+
=

−

∑  (3.58) 

By substituting (3.55) and (3.56) into (3.54), we obtain 

 
( ) ( ) ( )( )

( ) ( )( )

2
1

2 2

1 1

2

1
1

2 2 1

1
1

BC
BC BC

AS
BC

BC BC

BC

BC BC

BC
BC BC

BC

N
N N

T DSA T A H
j N BC

A H N j A H BC N j A H

N

H
A A N A N A

A

N
i N N

A H
i N BC

j
p p

N

p p M p p N M p p

pp p G p G p
p

i
i p p

N

λ +

=

− −

− −

−

=

− 
=  − 

′⋅ + +

 
′+ + 

 
− 

−  − 

∑

∑

 

 (3.59) 
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Putting A Hx p p=  into ( )kM x′  in (3.57) results in 

 ( ) ( ) ( ) 21 1 .
1 2

k

k A H k m M
m M

k
M p p M p p

p p

+
+  

′ ′= =  −  
 (3.60) 

Putting Ax p=  into ( )kG x′  in (3.58) gives 

 ( ) ( )1

2 .
k k

A A
k A k

H

kp p
G p

p

−

+

+
′ =  (3.61) 

By substituting (3.46), (3.48), (3.60), and (3.61) into (3.59), we finally obtain (3.23).■ 

Appendix 3.C  Proof of Proposition 3.7 

We use a generating function and generalized hypergeometric functions to compute the 

infinite summations in (3.15). 

By substituting ,DSA ip  in (3.11) and ( )
iTf t  in (3.10) into (3.15), we arrive at 

 

( ) ( ) ( )

( )

( )

2

1 1 1
2 2

1 ,22 1 2

1

2 1

1
1

1

1 !

1
                                             .

1 1 !

BC

DSA
BC

T

BC BC
BC

T
BC BC

BC

j N

T DSA
j N BC

i i ti i
T

i A HN N ji N

ti i
N i N T

H A
i N BC

j
f t t

N

t e
C p p

i

i t e
p p

N i

λ

λ

δ

λ

λ

=

=

+ − −−∞

−
− −= +

−−∞
−

= +

− 
− − −∞ =  − 

⋅
−

− 
+  − − 

∑

∑

∑

P

 (3.62) 

By rearranging the indices of summations and the order of operands, we obtain 

 

( ) ( ) ( )

( ( )

( ) ( )

2

2 2 1 2 2
1

,2
0

1 1

1
1

1

2 2 !

1 1
1 11 ! 1 !

BC

DSA
BC

BC BC T
BC BC

BC

BC

T

BC

j N

T DSA
j N BC

N i N i t
N i N i T

i N j A H
i BC

N i i i i
t i iH T T

A A
i N iBC BCA

j
f t t

N

t e
C p p

N i

i ip t t
e p p

N Np i i

λ

λ

δ

λ

λ λ

=

=

+ + + −∞
+ + +

−
=

− −∞
−

= =

− 
− − −∞ =  − 


⋅ + 

 − −     
+ −      − −− −     

∑

∑

∑



2

.
BC

BC

N

N





∑

 (3.63) 
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We can define two generating functions as  

 
( ) ( )

( ) ( )
( ) ( )

,2
0

0

:
2 2 !

2 2 !
2 1 ,

! 2 1 ! 2 2 !

BC

i

i N j
i BC

i
BC

BC
i BC BC

xB x C
N i

i N j xN j
i i N j N i

∞

−
=

∞

=

=
+

+ −
= − +

+ − + +

∑

∑
 (3.64) 

and 

 ( ) ( )
1

1

1
: .

1 11 ! !
BC BC

i i

i N i NBC BC

i ix xH x
N Ni i

−∞ ∞

= = −

−   
= =   − −−   
∑ ∑  (3.65) 

By substituting ( )B x  and ( )H x  into (3.63), we obtain 

 

( ) ( ) ( )

( )( ) ( )( )
( ) ( )

2

2 2

12

1
1

1

1
.

1 1 !

BC

DSA
BC

BC
T

BC
BC

T

BC

j N

T DSA A T
j N BC

N
t

A H T A H T

N i iN
t iH T

A T A T A
i N BCA

j
f t t p

N

e p p t B p p t

ip t
e p H p t p

Np i

λ

λ

δ λ

λ λ

λ
λ λ

=

=

−

−
−

=

− 
− − −∞ =  − 

⋅

 −   
+ −     − −    

∑

∑



(3.66) 

We replace function ( )B x  in (3.64) with the generalized hypergeometric functions (See 

Appendix 3.E for definition). For this purpose, we first denote the sequences in ( )B x  by 

 ( )
( ) ( )
2 2 ! 1: ,

! 2 1 ! 2 2 !
BC

i
BC BC

i N j
i i N j N i

β
+ −

=
+ − + +

 (3.67) 

and 

 
( )( )0

1: .
2 1 2 !BC BCN j N

β =
− +

 (3.68) 

Next, the function ( )B x  can be rewritten as  
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 ( ) ( ) ( ) 0 1 21 2 1
0

0 0 1 0

2 1 2 1 .i
BC i BC

i
B x N j x N j x x xβ β ββ β

β β β

∞

=

 
= − + = − + + + + 

 
∑  (3.69) 

The reformulated sequence in (3.69) is computed by 

 ( )( )
( )( )( )( )

1 1 2 1 2 2
,

2 2 1 1 2 1
BC BCi

i BC BC BC

i N j i N j
i N j i N i N i

β
β
+ + + − + + −
=

+ + − + + + + +
 (3.70) 

which has 2 polynomials in i  on the numerator and 3 polynomials in i  except for ( )1i +  

on the denominator. ( )B x  can be expressed in terms of a generalized hypergeometric 

function 2 3F  [81] as follow, 

 
( ) ( ) ( )

( ) ( )
0 2 3

2 3

2 1  ; ;

1  ; ; ,
2 !

BC j j

j j
BC

B x N j F x

F x
N

β= − +

=

a β

a β
 (3.71) 

where vectors ja  and jb  respectively defined in (3.17) and (3.18) are the constants in 

the polynomials in i  of the numerator and denominator in (3.70), respectively. 

We use a closed-form expression of generating function ( )H x  in (3.65) given by 

 
( ) ( ) ( )

( )

1 1

1

1
1 ! 1 ! 1 !

,
1 !

BC BC

BC

i i

i N i NBC BC BC

N
x

BC

i x xH x
N i N i N

x e
N

∞ ∞

= − = −

−

 
= = − − − + 

=
−

∑ ∑
 (3.72) 

where the following relationship is used [82]: 

 
0

.
!

i
x

i

x e
i

∞

=

=∑  (3.73) 

By substituting (3.71) and (3.72)  into (3.66), we arrive at 
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( ) ( ) ( )

( )( )
( ) ( )( )

( )
( ) ( )

( )( )

2
2

2
2 3

1 2 1

2

1

1
 ; ;

12 !

1
11 ! 1 !

DSA

BC
T

BC

BC

BC BC BC
T A T

BC

B
T

T DSA

N
t j NA T A H T

j j A H T
j N BCBC

N N N i i
A Tt p t iH T

A T A
i N BCA BC

N
t

A T A H T

f t t

p e p p t j
F p p t

NN

ip tp te p e p
Np N i

p e p p t

λ

λ λ

λ

δ

λ λ
λ

λ λλ

λ λ

−
=

=

− −
−

=

−

− − −∞

− 
= ⋅  − 

 −   
+ −      −− −   

=

∑

∑

a b



( ) ( )( )
( )
( ) ( ) ( )

2
2

2 3

1 2 1

1
 ; ;

12 !

1 .
1 ! 1 ! !

C

BC

BC

BC BC BC
T A T

BC

j N

j j A H T
j N BCBC

N N N i i
A Tt p t iH T

A T A
i NA BC BC BC

j
F p p t

NN

p tp te p e p
p N N i N

λ λ

λ

λ λλ

=

=

− −
−

=

− 
⋅  − 

  
+ −    − − −  

∑

∑

a b

 (3.74) 

We obtain (3.16) by rearranging the indices of the summations and the order of operands.■ 

Appendix 3.D  Comparison of Attack Success Probability with [65] 

In [65], a different DS success condition other than the conditions in Definition 3.1 has 

been used. Specifically, the only condition was to have the fraudulent chain to grow longer 

than the honest chain by BCN , i.e., ( ) ( ) BCA t H t N> +  (see Section 7 of [65]). We refer 

to pre-mine  as the probability of satisfying this condition. The literature has shown that 

satisfying this condition suffices a success of DS attack [65]. What they have not shown, 

however, is that this condition is not a necessary one. Thus, we here aim to show that their 

condition is indeed not a necessary condition, by showing that pre-mineDSA >   for all 

( )0,0.5Ap ∈ . First, it has been given that ( ) 1
pre-mine

BCN
A Hp p += . Under the condition of 

[65], it is required that the fraudulent chain catches up with the honest chain with 

additional BCN  blocks. The catch-up probability has been derived by Nakamoto in [20] 

using the gambler’s ruin approach as ( )k
A Hp p , where k  is the number of blocks that 

the honest chain leads by at the initial status. Next, we refer to an intermediate step in the 

derivation of DSA  by Rosenfeld [27]: 

 
11

0 2

1 1
.

BC
BC

BC BC

BC

N kN
BC BCN Nk kA

DSA H A H A
k k NH

N k N kpp p p p
k kp

− ++ ∞

= = +

+ − + −    
= +    

    
∑ ∑ (3.75) 
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Finally, clear inequalities can be used to show pre-mineDSA >  : 

 

11

0

1

2

1

0

1

pre-mine

1

1

1

.

BC
BC

BC

BC

BC

BC

BC

BC

BC

N kN
BC N k A

DSA H A
k H

N
BC N k A

H A
k N H

N
BC N kA

H A
kH

N

A

H

N k p
p p

k p

N k p
p p

k p

N kp
p p

kp

p
p

- ++

=

+
∞

= +

+
∞

=

+

+ -   
>   

   

+ -   
+   

   

+ -   
>    

  

 
= = 
 

∑

∑

∑





 (3.76) 

For numerical example, when 0.35Ap =  and 5BCN =  the probabilities can be computed 

as 0.2287DSA =  and pre-mine 0.0244= . As the gap is significant, it is shown that the DS 

attack success condition defined in [65] was indeed only a sufficient condition, set to be 

too strict. 

Appendix 3.E  Generalized Hypergeometric Function [81] 

For a variable z  and a given set of coefficients 0 , ,β β∞ , if the ratio of coefficients nb  

can be expressed in terms of two polynomials ( )A n  and ( )B n  in n  as follow, 

 ( )
( )( )

1

1
n

n

A n
B n n

β
β

+ =
+

 (3.77) 

for all integer 0n ≥ , a power series 
0

n
nn
zβ

≥∑  is a generalized hypergeometric series, 

where the polynomials are in the forms of 

 ( ) ( ) ( )1 pA n c a n a n= + +
 (3.78) 

and 

 ( ) ( ) ( )1 ,qB n d b n b n= + +
 (3.79) 
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for real numbers c  and d  and complex numbers 1, , pa a  and 1, , qb b . The 

generalized hypergeometric series is denoted by 

 ( ) 0
; ; : ,n

p q nn
F z zβ

≥
=∑a β  (3.80) 

where a  and b  are the vectors of 1, , pa a
 and 1, , qb b

, respectively. 

A generalized hypergeomteric series can be a generalized hypergeometric function, if it 

converges. If 1p q< + , the ratio (3.77) goes to zero as n →∞ . This implies the series 

(3.80) converges for any finite value z  and thus can be defined as a function.  
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 Chapter 4  

Summary of Contributions and Future Research 

Direction 

 Summary of Contributions 4.1.

4.1.1. Contributions to Ultra-Wideband Sub-Nyquist Sampling of Multiband Signals 

MWC has been a practical system of sub-Nyquist sampling of multiband signals spread over 

a wideband up to one gigahertz. The sampling efficiency of conventional MWC is limited by 

the speed and period of PR signals. Up to date, there has been no practical implementation 

of a PR signal generator running at scores of gigahertz with a sufficiently long period of 

chips. This impracticality hinders the input bandwidth of MWC. 

We propose AMWC equipped with a new idea, intentional aliasing method. This idea 

improves the sampling efficiency while using PR signals with a short period. AMWC allows 

aliasing at ADC of MWC controlled by a parameter p . As the result, for a given 

specification of PR signals, at the cost of increased computational complexity of OMP by 
2p -times, AMWC improves the sampling efficiency by p -times. This also enables to 

widen the input bandwidth of MWC for given practical hardware of PR signal generators.  

Our new idea contributes to improve the efficiency of sensors (ADC). By simulations, we 

showed that the improvement of sampling efficiency indeed leads to reduction on the 

sampling rate and number of channels required for obtaining a certain number of equations 

for signal reconstruction. We provided a condition on the control parameter p  such that 

the sensing matrix of the equations obtained by AMWC achieves the Singleton bound, and 

thus no loss from sampling is guaranteed. In summary, the improved sampling efficiency 
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of AMWC reduces the total sampling rate required for lossless sampling: with fewer 

channels and less sampling rate of each channel than those of the conventional MWCs, a 

multiband signal of the wider bandwidth can be captured without information loss by 

AMWC. In other words, for given hardware resources, the input reconstruction with AMWC 

outperforms the conventional MWCs. Also, it was demonstrated that the benefits of AMWC 

are maintained in various SNRs. Moreover, use of LPF with random passband response, it 

was shown, further improves the sampling efficiency. 

4.1.2. Contributions to Profitability Analysis of Double-Spending Attacks on Block-

chains 

Against blockchins based on PoW and the longest chain consensus, the success of a DS 

attack depends on the amount of computing resources run by an attacker. It has been well 

known that sub-50% DS attacks which use less computing resources than those used by 

honest miners do not guarantee the success. Nevertheless, if a success of sub-50% DS 

attack returns a high income compared to an expected cost, the attacker would repeat the 

attack until an attack succeeds. Previous works have tried to calculate the expectation of 

profit from sub-50% DS attacks based on stochastic models, but none of the works gave a 

precisely calculable tool; all of them added some assumptions to the original DS attack 

defined by Satoshi Nakamoto. To figure out how sub-50% DS attacks are threatening, we 

studied mathematical tools for symbolic computation of the profitability of DS attacks.  

As the results, first, we theoretically showed that DS attacks can be profitable if and only if 

the value of transactions targeted by attacks are greater than the expected cost given in the 

right-hand side of equation (3.32). For given amount of computing resources run by 

attacker, this condition depends on the status of a blockchain network such as the block 

rewards, the amount of computing resources run by honest miners, the cost-per-time of 

mining rigs. In the sub-50% regime, we also showed that profitable DS attacks necessitate 

setting a finite cut-time. Without stopping a sub-50% DS attack at an appropriate time, it is 

never expected to return a profit. Second, we derived novel mathematical results that are 

useful for an analysis of the attack success time. They enabled us to estimate the expected 

profit of a DS attack for a given cut-time. All mathematical results are numerically-

calculable. We provided a software for the symbolic computation of (3.32). 
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Our results contribute to improve the security of blockchains equipped with PoW. Our 

results quantitatively guide how to set a block confirmation number for transaction to be 

safe from a minority DS attack. The less the block confirmation number is, the less the 

computing resources are required for a profitable DS attack. A solution can be utilized by 

the network developers to discourage such an attack. On the one hand, given a block 

confirmation number, we can have the value of any transaction to be set below the required 

value of making a profitable attack in a given network. On the other hand, given the value 

of transaction, a network can provide a service to inform the user of the least block 

confirmation number that leads to make a DS attack return a negative profit.  

 Future Research Direction 4.2.

In blockchain, a recent issue which hinders real-world applications from being practically 

used is scalability problem. Scalability problem is a limitation in increasing the population 

of users of a blockchain. There are many reasons for the problem, and one we aim to 

discuss is the huge memory size of blockchain. As the more transactions are recorded in a 

blockchain, the size accumulates. As of Apr. 2021, the size of Bitcoin blockchain exceeds 

300G Bytes. Every full-node of Bitcoin needs to download the entire blockchain and store 

it in local storage. This requires to newly joining full-nodes to have a large storage capacity 

and thus demotivates them. In the perspective of the cloud of storages of all full-nodes, it is 

not efficient to download the same data repeatedly. 

In [83], Zhou et al. have summarized the problem of huge scales of blockchains. They 

categorized solutions for this problem as storage scheme optimization. This category 

includes inter-node cooperative schemes such as CUB [84] and Jidar [85]. Their main idea 

is to separate the parts of blocks in a chain and to assign them to different groups of full-

nodes. When each of the full-nodes is needed to check the validity of a chain, one node 

asks to the other node to check the validity of missing data (blocks or transactions). That is, 

they cooperate with each other. As the result, the CUB and Jidar release the burden of 

storage capacity to a full-node and improve the efficiency of the storage cloud.  
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When it comes to the compression of the whole chain, zero-knowledge proof also has been 

used as a solution. In zero-knowledge proving protocols, to a verifier, a prover aims to 

prove an NP statement composed of secret and open information without delivering the 

secrets. Recent advances in zero-knowledge proofs have provided succinct protocols [86], 

which have short length of proofs and low computational complexities for verification. As 

the result, the length of proofs is far shorter than original NP statements, and the 

verifications of proofs are done faster than verifying the NP statements themselves [87]. In 

addition, recursive proof verification techniques enable [88], [89] to verify a collection of 

many proofs at a single verification, which further reduce the net computational 

complexity for the verifications of multiple proofs. 

Mina protocol [5] is one of the blockchains exploiting the benefits of zero-knowledge 

proof with the recursive proof verification proposed in [88]. They have claimed that the 

size of the entire chain of Mina protocol is 22k Bytes, which is about ten millionths of the 

size of Bitcoin. Mina protocol replaces all original data in a chain with proofs. This may 

work well if all of data are just records of the ownership transfers of cryptocurrency. This 

is because if the proof for the previous transfer is verifiable, it is not necessary to refer to 

the original record of the previous transfer at the time of the next transfer. However, recent 

and future blockchains are called for playing a role of distributed database for general data. 

Therefore, in addition to zero-knowledge proof, compressed sensing combined with CUB 

or Jida is still needed to improve the scalability of blockchains. 

In this dissertation, we have discussed compressed sensing and blockchain. The goal of 

compressed sensing has been to remove redundancies in original data and to compress the 

length of it. When a blockchain is used as data storage, storing the same chain to respective 

storages of all full-nodes is redundant. To resolve this redundancy, we may be able to use 

compressed sensing in CUB or Jidar to improve the assignment cooperative querying 

schedules. In addition, compressed sensing may be applied to zero-knowledge proof, since 

the two technologies has the similar goal of compressing data. The next research direction 

can be to find the connection among the compressed sensing and the storage scheme 

optimizations, and the zero-knowledge proof for efficient and secure data storage. 
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