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A B S T R A C T   

Vision Transformer (ViT) is widely used in the field of computer vision, in ViT, there are four main steps, which 
are “four secrets”, such as patch division, token selection, position encoding addition, attention calculation, the 
existing research on transformer in computer vision mainly focuses on the above four steps. Therefore, “how to 
divide patch?”, “how to select token?”, “how to add position encoding?”, and “how to calculate attention?” are 
crucial to improve ViT performance. But so far, most of the review literatures are summarized from the 
perspective of application, and there is no corresponding literature to comprehensively summarize these four 
steps from the technology perspective, which restricts the further development of ViT in some degree. To address 
the above questions, the 4 major mechanisms and 5 applications of ViT are summarized in this paper, the main 
innovative works are as follows: Firstly, the basic principle and model structure of ViT are elaborated; Secondly, 
aiming to “how to divide patch?”, the 5 key techniques of patch division mechanism are summarized: from 
single-size division to multi-size division, from fixed number division to adaptive number division, from non- 
overlapping division to overlapping division, from semantic segmentation division to semantic aggregation di
vision, and from original image division to feature map division; Thirdly, aiming to “how to select token?”, the 3 
key techniques of token selection mechanism are summarized: token selection based on score, token selection 
based on merge, token selection based on convolution and pooling; Fourthly, aiming to “how to add position 
encoding?”, the 5 key techniques of position encoding mechanism are summarized: absolute position encoding, 
relative position encoding, conditional position encoding, locally-enhanced position encoding, and zero-padding 
position encoding; Fifthly, aiming to “how to calculate attention?”, 18 attention mechanisms are summarized 
based on the timeline; Sixthly, these models that Transformer is combined with U-Net, GAN, YOLO, ResNet, and 
DenseNet are discussed in the medical image processing field; Finally, around these four questions proposed in 
this paper, we look forward to the future development direction of frontier technologies such as patch division 
mechanism, token selection mechanism, position encoding mechanism, and attention mechanism et al, which 
play an important role in the further development of ViT.   

1. Introduction 

Transformer [1] is an encoder-decoder architecture model based on 
self-attention mechanism, which is first applied in the field of Natural 
Language Processing(NLP). It not only can model long dependency 
among input sequence elements, but also supports parallel computation 
during training and inference, and has excellent performance in lan
guage modeling and machine translation tasks. Devlin et al. [2] pro
posed a masked bidirectional encoding structure Bert model based on 
Transformer, the model learns rich language representations through 

large-scale unsupervised training. In addition, many language models 
based on Transformer, Such as GPTv1 [3], GPTv2 [4], GPTv3 [5], 
Ro-BERTa [6], T5 [7] et al. are widely used in multiple language tasks. 

With the rapid development of Transformer in the field of NLP, more 
and more researchers are attracted to the field of Computer Vision (CV). 
CV tasks usually deal with image or video data. There are inductive 
biases [8] in Convolutional Neural Networks (CNN), such as translation 
invariance and local sensitivity, which can capture image fine-grained 
features and image local features. However, the CNN-based method 
has the problem of limited receptive field, which makes it difficult to 
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model the long dependency. Transformer obtains global representation 
through attention mechanism, which can model global features and 
long-distance correlation of input information. Therefore, Transformer 
are gradually applied in the CV fields. ViT [9] relies on its modeling 
capabilities to achieve excellent performance on some benchmark 
datasets, such as ImageNet [10], COCO [11], and ADE20k [12]. Over the 
past few years, hundreds of Transformer-based models are proposed for 
various tasks in the CV fields, such as classification [13], detection [14], 
segmentation [15], tracking [16], generation [17], and enhancement 
[18]. 

ViT makes breakthrough progress in the field of deep learning. At 
present, there are many literatures to review the application progress of 
ViT technology, Han et al. [19] reviewed vision transformer models 
according to different tasks (i.e., backbone network, high-level vision, 
mid-level vision, low-level vision, and video processing); Liu et al. [20] 
reviewed vision transformer models according to three fundamental CV 
tasks (i.e., classification, detection, and segmentation) and data stream 
types (i.e., image, point clouds, multi-stream data); Khan et al. [21] 
reviewed vision transformer models according to popular recognition 
tasks (e.g., image classification, object detection, action recognition, and 
segmentation), generative modeling, multi-modal tasks (e.g., 
visual-question answering, visual reasoning, and visual grounding), 
video processing (e.g., activity recognition, video forecasting), low-level 
vision (e.g., image super-resolution, image enhancement, and coloriza
tion), and 3D analysis (e.g., point cloud classification and 
segmentation). 

In ViT, there are four main steps, which are “four secrets”, such as 
patch division, token selection, position encoding addition, attention 
calculation, the existing research on transformer in computer vision 
mainly focuses on the above four steps. Therefore, “how to divide 
patch?”, “how to select token?”, “how to add position encoding?”, and 
“how to calculate attention?” are crucial to improve ViT performance. 
But so far, most of the review literatures are summarized from the 
perspective of application, and there is no corresponding literature to 
comprehensively summarize these four steps from the technology 
perspective, which restricts the further development of ViT in some 
degree. 

Therefore, aiming at the above problems, this paper makes a 
comprehensive summary of the 4 mechanisms and 5 applications of ViT. 
Firstly, the basic principle and model structure of ViT are summarized; 
Secondly, aiming to “how to divide patch?”, 5 key technologies of patch 
division mechanism are summarized: (1) from single-size division to 
multi-size division, (2) from fixed number division to adaptive number 
division, (3) from non-overlapping division to overlapping division, (4) 
from semantic segmentation division to semantic aggregation division, 
(5) from original image division to feature map division; Thirdly, aiming 
to “how to select token?”, 3 key technologies of token selection mech
anism are summarized: (1) token selection based on score, (2) token 
selection based on merge, (3) token selection based on convolution and 
pooling; Fourthly, aiming to “how to add position encoding?”, 5 key 
technologies of position encoding mechanism are summarized: (1) ab
solute position encoding, (2) relative position encoding, (3) conditional 
position encoding, (4) locally-enhanced position encoding, (5) zero- 
padding position encoding; Fifthly, aiming to “how to calculate atten
tion?”, 18 attention mechanisms are summarized based on the timeline; 
Sixthly, the extensive applications of ViT in medical image processing 
are discussed by combining with U-Net, GAN, YOLO, ResNet, and 
DenseNet; Finally, around these four questions proposed in this paper, 
we look forward to the future development direction of frontier tech
nologies such as patch division mechanism, token selection mechanism, 
position encoding mechanism, attention mechanism, building a unified 
framework of multi-tasking, reducing high-dimensional data calcula
tion, realizing small sample learning, ViT interpretability et al, which 
play an important role in the further development of ViT. 

2. Basic principle of ViT 

The ViT model uses the classic Transformer encoder structure to 
realize the image classification task, it is the beginning of the visual 
Transformer model. The model structure is shown in Fig. 1(left). Firstly, 
the input image is divided into non-overlapping patches in fixed size; 
Secondly, the patch is flattened into a one-dimensional vector in the 
channel dimension, and its corresponding token is obtained by linear 
mapping; Thirdly, an extra class token is added to the image token set, 
the class token is responsible for aggregating global image features and 
final classification; Fourthly, position embeddings are added to the to
kens to retain position information; Finally, the vector sequences are fed 
into multiple serial Transformer encoders to calculate attention and 
extract feature. 

2.1. Patch embedding 

To convert the image into the input sequence of Transformer 
encoder: 

Step 1: The 2D image X ∈ RH×W×C is divided into a series of patches 
Xp ∈ RN×(P2⋅C), where (H, W) is the size of the original image, C is the 
number of channels, (P, P) is the size of each patch, and N = H⋅W

P2 is the 
number of patches; 

Step 2: These patches are flattened in the channel dimension to 
obtain one-dimensional vectors xi

p, where xi
p ∈ RN×(P2 ⋅C), i∈(1,... N), and 

then its corresponding token is obtained by linear mapping through the 
full connect network E. The process is shown in Fig. 2, which can be 
expressed as z=[x1

pE, x2
pE,.., xN

p E], where E∈R(P2 ⋅C)×D; 
Step 3: For the classification task, an additional learnable embedding 

is inserted into the 0th position of the input sequence, corresponding to 
the output token for subsequent classification tasks, by this operation, 
the sequence length increases from N to N+1: z=[xclass,x1

pE,x2
pE,..,xN

p E]; 
Step 4: Position embeddings are added to the tokens to retain posi

tional information, z=[xclass,x1
p E,x2

pE,..,xN
p E]+Epos, where Epos∈R(N+1)×D, 

z is used as the input sequence of the Transformer encoder. 

2.2. Transformer encoder 

The Transformer encoder is composed of L standard Transformer 
modules, each module is composed of Layer Norm (LN), Multi-Head 
Self-Attention (MHSA), Multi-Layer Perceptron (MLP), and residual 
connection. The feature calculation process is as follows: 

Z′
i = MHSA(LN(Zi− 1)) + Zi− 1 (1)  

Zi = MLP
(
LN
(
Z′

i

))
+ Z′

i (2) 

Where, Formula (1) is that the input vector is processed by LN, 
MHSA, and residual connection; Formula (2) is that the previous step 
output is processed by LN, MLP, and residual connection. 

2.3. Mutil-head self-attention 

Multi-Head Self-Attention is the core part of Transformer encoder, 
and its main operation is the Self-Attention mechanism. As shown in 
Fig. 3. The Self-Attention mechanism reduces the dependence on 
external information and can better capture internal data correlation. 
First, three linear transformation matrices Wq,Wk,Wv are used to convert 
input vector X into three different matrices: Query matrix Q, key matrix 
K, and value matrix V, as shown in Formula (3), then the calculation 
process of Self-Attention is shown in Formula (4), where dk is the 
dimension of the key vector k. 

Q = X⋅Wq, K = X⋅Wk, V = X⋅Wv (3) 
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Attention(Q,K,V) = softmax
(

Q⋅KT
̅̅̅̅̅
dk

√

)

⋅V (4) 

Multi-Head Self-Attention can be seen as an extended form of Self- 
Attention. By introducing multiple independent attention heads, it can 
better capture the associated information in the input sequence and 
provide a richer context representation. First, the input vectors are 
multiplied with multiple sets of parameter matricesWQ

i ,W
K
i ,W

V
i to get 

multiple independent attention heads, the calculation process is shown 

in Formula (5), where h is the number of heads, then the outputs of 
multiple attention heads are concated and multiply with the trainable 
parameter matrix Wo, as shown in Formula (6). 

headi = Attention
(
Q⋅WQ

i ,K⋅WK
i ,V⋅WV

i

)
, i = 1, ..., h (5)  

MultiHead(Q,K,V) = Concat(head1, ..., headh)⋅Wo (6)  

3. Vision transfortmr improvement mechanism 

The ViT model is a deep neural network that divides the input image 
into a series of non-overlapping patches in fixed size, where each patch 
is regarded as an independent feature vector, and then the context re
lationships are modeled between different patches by Multi-Head Self- 
Attention. 5 key technologies of patch division mechanism are sum
marized as following: from single-size division to multi-size division, 
from fixed number division to adaptive number division, from non- 
overlapping division to overlapping division, from semantic segmenta
tion division to semantic aggregation division, and from original image 
division to feature map division; 3 key technologies of token selection 
mechanism are summarized as following: token selection based on 
score, token selection based on merge, token selection based on 
convolution and pooling; 5 key technologies of position encoding 
mechanism are summarized as following: absolute position encoding, 
relative position encoding, conditional position encoding, locally- 
enhanced position encoding, and zero-padding position encoding; 18 
attention mechanisms are summarized based on the timeline; the 
extensive applications of ViT in medical image processing are discussed 
by combining with U-Net, GAN, YOLO, ResNet, and DenseNet. 

3.1. Patch division mechanism 

The patch division mechanism is that the image is divided into 
multiple patches for processing. By dividing the image into multiple 
patches, local features in the image can be better extracted, thus the 
efficiency and accuracy of image processing are improved. The tradi
tional division method is that the original input images are divided into 
a series of non-overlapping patches in fixed size, as shown in Fig. 4(A). 

This method is simple and direct, but it destructs the image local- 
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Fig. 1. The overall framework of ViT.  

Fig. 2. Linear Projection of Flattened Patches.  

Fig. 3. Self-Attention and Multi-Head Self-Attention.  
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continuity in some degree, and also limits the ViT performance in visual 
tasks. In order to resolve the problem, there are many researches on the 
patch division mechanism, which include 5 aspects: from single-size 
division to multi-size division, from fixed number division to adaptive 
number division, from non-overlapping division to overlapping division, 
from semantic segmentation division to semantic aggregation division, 
and from original image division to feature map division. 

3.1.1. From single-size division to multi-size division 
From single-size division to multi-size division is that the images are 

divided according to multiple sizes rather than a single size. Computer 
Vision tasks, such as detecting and classifying, require that effective 
multi-size feature representation. Therefore, the multi-size feature rep
resentation is obtained by dividing the image into multiple sizes. In the 
case of non-overlapping equal division, there are non-overlapping equal 
divisions with dual-size and non-overlapping equal divisions with multi- 
size in patch division. The non-overlapping equal divisions with dual- 
size is that coarse-grained large-size patches and fine-grained small- 
size patches are extracted by two independent branches. This idea is 
proposed by Chen et al. [22], in the idea, stronger image features are 
produced by combining patches of different sizes, as shown in Fig. 4 
(B)-1. The non-overlapping equal divisions with multi-size is that 
patches of different sizes are obtained by multiple independent 
branches. This idea is proposed by Lee et al. [23], in the idea, obtained 
features are aggregated by independently inputting patches of different 
sizes into Transformer encoder, and multi-size feature representation is 
realized at the same feature level, as shown in Fig. 4(B)-2. 

3.1.2. From fixed number division to adaptive number division 
From fixed number division to adaptive number division is that the 

images are divided into patches in a self-adaptive number rather than a 
fixed number. In general, these problems are generated by more patches, 
such as higher prediction accuracy and more computational complexity. 
Therefore, in order to realize a trade-off between prediction accuracy 
and computational complexity, self-adaptive number patches are very 
important for patch division mechanism. This idea is proposed by Wang 
et al. [24], in the idea, multiple Transformers with increasing numbers 
of patches are cascaded, during the test, the model is activated 
sequentially starting from fewer patches, once a sufficiently confident 

prediction is produced, the inference is terminated immediately. as 
shown in Fig. 4(C). For "easy" images, only 2 × 2 patches are satisfied for 
accurate prediction, while for "hard" images, fine-grained representa
tions are required to reduce information loss and improve computa
tional efficiency. 

3.1.3. From non-overlapping division to overlapping division 
From non-overlapping division to overlapping division is that patch 

division mechanism is changed from non-overlapping division to over
lapping division. Non-overlapping division destructs the image local- 
continuity in some degree. Therefore, overlapping division of images 
can enhance the semantic correlation between neighboring patches and 
effectively solve the problem of non-overlapping division destructs the 
feature local-continuity. This idea is proposed by Wang et al. [25], in the 
idea, the image is serialized by overlapping and equal division, so that 
the neighboring patch overlaps half of the area. In this way, more local 
continuity of image features is contained. As shown in Fig. 4(D). 

3.1.4. From semantic segmentation division to semantic aggregation 
division 

From semantic segmentation division to semantic aggregation divi
sion is that the semantically related target local structures are aggre
gated in a patch. Since the complete local structure of the target object is 
captured by regular patch is always difficult, so the images are adap
tively divided into patches of different positions and sizes can effectively 
capture the complete local structure of the target object. This idea is 
proposed by Chen et al. [26], in the idea, the offset and size of each patch 
are learned according to the input visual features, and the images are 
divided into patches with different positions and sizes in a deformable 
way, which preserves the semantic information in each patch well and 
reduces the semantic destruction caused by image segmentation, as 
shown in Fig. 4(E). 

3.1.5. From original image division to feature map division 
From original image division to feature map division is that the 

generated feature maps are divided into patches instead of the original 
image, so that more semantic information is contained in each obtained 
patch. The division of feature maps includes the non-overlapping equal 
division of feature maps and the overlapping equal division of feature 

Fig. 4. Patch division mechanism.  
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maps. The non-overlapping equal division of feature maps is that the 
convolution layer and the max pooling layer are adopted to obtain the 
feature maps of original image, and then the feature maps are divided 
into non-overlapping patches. This idea is proposed by Yuan et al. [27], 
in the idea, the advantage of CNN in extracting low-level features is 
utilized, and the training difficulty of embedding is decreased by 
reducing the patch size, as shown in Fig. 4(F)-1. The overlapping equal 
division of feature maps is that pre-trained CNN is adopted to extract the 
intermediate convolutional feature map from the original image, and 
then the intermediate feature maps are divided into overlapping patches 
by sliding window. This idea is proposed by Liu et al. [28], in the idea, a 
p×p window slides at stride s, where 0<s≤p, which helps to retain more 
edge information, as shown in Fig. 4(F)-2. 

3.2. Token selection mechanism 

The one-dimensional vector obtained by linear mapping after the 

patch flattening operation in the channel dimension is called the token. 
The token selection mechanism is that redundant tokens are dynami
cally identified and tokens of higher importance are selected in the 
forward propagation process of the model. Considering that when using 
Transformer to solve visual tasks, the calculated amount of ViT increases 
exponentially as the number of tokens increases, and the final prediction 
result of ViT is often determined by some tokens with large amounts of 
information, most of tokens are redundant. Therefore, if the redundant 
tokens can be dynamically identified according to the input image and 
tokens containing important information are selected in the process of 
forward propagation, the reasoning speed of the ViT model can be 
greatly accelerated. There are many researches on token selection 
mechanism, which include 3 aspects: The first type is the token selection 
mechanism based on score, as shown in Fig. 5(A), with typical models 
DynamicViT, EViT, Evo-ViT, A-VIT, and LTP; The second type is the 
token selection mechanism based on merge, as shown in Fig. 5(B), with 
typical models T2T-ViT, ToMe, and TCFormer; The third type is the 

Fig. 5. Token selection mechanism.  
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token selection based on convolution and pooling, as shown in Fig. 5(C), 
with typical models HVT and PSViT. Meanwhile, the performances of 
different token selection mechanisms are compared from 5 aspects: 
Params, FLOPs, Throughput, Dataset, and Top-1 acc, as listed in Table 1. 

3.2.1. Token selection based on score 
The token selection mechanism based on score is that the importance 

of tokens is scored by the scoring function, high-score tokens are 
retained through pruning operation, and low-score tokens are deleted, 
so as to reduce the calculation amount and improve the calculation ef
ficiency of the model. The key operations in this method are scoring 
strategy and selection strategy. At present, there are 5 major scoring 
strategies and selection strategies: DynamicViT strategy, EViT strategy, 
Evo-ViT strategy, A-ViT strategy, and LTP strategy.  

(1) DynamicViT strategy. This strategy is proposed by Rao et al. [29], 
as shown in Fig. 5(A)-1, the performance is improved by layer 
pruning on 66% of the input tokens, such as the flops is reduced 
by 31–37%, and running speed is increased by more than 40% in 
the model. In the scoring strategy section: Firstly, a binary deci
sion mask D is initialized, and all its element values are set to 1; 
Secondly, the local feature is obtained by using an MLP to project 
the tokens, as shown in Formula (7); Thirdly, the global feature is 
computed by using an Agg function to aggregate the information 
of all the existing tokens, as shown in Formula (8); Finally, the 
local features and global features are concated in the channel 
dimension and fed into another MLP to predict the probabilities 
of drop/keep the tokens, as shown in Formula (9), the result P is 
the importance score for each token; In the selection strategy 
section: according to the importance score of each token, the 
binary mask D is updated to select tokens, In mask D, if the value 
of the element in D is 0, its corresponding token is deleted, if the 
value of the element in D is 1, its corresponding token is retained. 

Zlocal = MLP(x) (7)  

Zglobal = Agg(MLP(x),D),

where Agg(u,D) =

∑N
i=1Diui
∑N

i=1Di
(8)  

P = softmax
(
MLP

( [
Zlocal

i ,Zglobal
i

]))
(9)    

(2) EViT strategy. This strategy is proposed by Liang et al. [30], as 
shown in Fig. 5(A)-2, this strategy is applied to DeiT-S, and the 
reasoning speed of DeiT-S is improved by 50% in ImageNet, while 
the recognition accuracy is decreased by only 0.3%. In the scoring 
strategy section: the attention value ai between the class token 
and other tokens is obtained by performing the attention 

mechanism, and the attention value represents the importance 
score for each token, as shown in Formula (10), where qclass, K 
and d represent the query vector of the class token, the key ma
trix, and the dimension of k vector respectively, N is the number 
of image tokens; In the selection strategy section: top-k high-score 
tokens are selected, other tokens are merged into a new token 
through weighted average operation, and the new token is 
appended to the top-k tokens and sent to the subsequent layer. 

ai = softmax
(

qclass⋅KT
̅̅̅
d

√

)

, where i ∈ (1, 2, ...,N) (10)    

(3) Evo-ViT strategy. This strategy is proposed by Xu et al. [31], as 
shown in Fig. 5(A)-3, this strategy is applied to DeiT-S, and the 
throughput of DeiT-S is improved by 60% in ImageNet, while the 
recognition accuracy is decreased by only 0.4%. In the scoring 
strategy section: the similarity between the class token and image 
tokens is represented as class attention Acls, as shown in Formula 
(11), where qcls, K and d represent the query vector of the class 
token, the key matrix, and the dimension of k vector respectively, 
and Acls is the importance score for each token; In the selection 
strategy section: low-score tokens are aggregated into a repre
sentative token, top-k high-score tokens and the representative 
token are updated through Transformer block, meanwhile, 
low-score tokens are weighted separately with updated repre
sentative tokens, the weighted low-score tokens are appended to 
the top-k tokens and sent to the subsequent layer. 

Acls = softmax
(

qcls⋅KT
̅̅̅
d

√

)

(11)    

(4) A-ViT strategy. This strategy is proposed by Yin et al. [32], as 
shown in Fig. 5(A)-4, this strategy is applied to Deit-Tiny and 
Deit-Small, the speed of Deit-Tiny and Deit-Small are improved 
by 62% and 38% respectively, while the accuracy is decreased by 
only 0.3%. In the scoring strategy section: the hl

k is introduced for 
each token as the halting probability of token k at layer l, as 
shown in Formula (12), where H(.) is a halting module, hl

k range 
is [0,1]; In the selection strategy section: as enter deeper layers, 
the cumulative halting probability is used according to the output 
of the halting module, and when the cumulative halting score 
exceeds 1, the calculation of tokens is halted. 

hl
k = H

(
tl
k

)
(12)    

(5) LTP strategy. This strategy is proposed by Kim et al. [33], as 
shown in Fig. 5(A)-5. In the scoring strategy section: firstly, the 
attention probability of head h between token xi and token xj is 

Table 1 
Performance comparison of different token selection mechanisms.  

No. Strategy Model Params(M) FLOPs(G) Throughput (images/s) Dataset Top-1 acc 

1 DynamicViT[29] DynamicViT-LV-S/0.5 26.9 3.7 - ImageNet-1K 82.0 
2 EViT[30] EViT-LV-S/0.5 - 3.9 3603 ImageNet-1K 82.5 
3 Evo-ViT[31] Evo-LeViT-256/0.5 19.0 - 4277 ImageNet-1K 78.8 
4 A-ViT[32] A-ViT-S 22 3.6 1.1k ImageNet-1K 78.6 
5 LTP[33] LTP * 
6 T2T-ViT[34] T2T-ViT-14 21.5 4.8 - ImageNet-1K 81.5 
7 ToMe[35] ToMe-DeiT/r13 - 2.7 1552 ImageNet-1K 79.4 
8 TCFormer[36] TCFormer 25.6 5.9 - ImageNet-1K 82.4 
9 HVT[37] HVT-S 22.09 2.4 - ImageNet-1K 78.0 
10 PSViT[38] PSViT-1D-Base - 18.9 - ImageNet-1K 82.6 

PSViT-2D-Base - 15.5 - ImageNet-1K 82.9 

Notes: “*” indicates that the model was not experimented on ImageNet-1K, so it is not given here, 
“-” Indicates that the data is not given in the original paper. 
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obtained, as shown in Formula (13), then the importance score of 
token xi in layer l is computed, as shown in Formula (14), where 
Nh is the number of heads, n is the number of tokens; In the se
lection strategy section: tokens with scores are lower than the 
learnable threshold are pruned at each layer. 

A(h,l)( xi, xj
)
= softmax

(
xTWT

q Wkx
̅̅̅
d

√

)

(i,j)

(13)  

S(l)(xi) =
1

Nh

1
n
∑Nh

h=1

∑n

j=1
A(h,l)( xi, xj

)
(14)   

3.2.2. Token selection based on merge 
The token selection mechanism based on merge is that similar tokens 

are selected and combined by matching algorithm, so as to reduce the 
information loss and improve the training speed. The key operations in 
this method are selection strategy and merge strategy. At present, there 
are 3 major selection strategies and merge strategies: T2T-ViT strategy, 
ToMe strategy, and TCFormer strategy.  

(1) T2T-ViT strategy. This strategy is proposed by Yuan et al. [34], as 
shown in Fig. 5(B)-1. In this strategy, the neighboring tokens are 
recursively aggregated into one token, such that local structure 
can be modeled of neighboring tokens and token length can be 
reduced. In the selection strategy section: all tokens are reshaped 
as an image in the spatial dimension, and then split into patches 
with overlapping; In the merge strategy section: the tokens in 
each split patch are concatenated as one new token.  

(2) ToMe strategy. This strategy is proposed by Bolya et al. [35], as 
shown in Fig. 5(B)-2. In this strategy, a large number of redun
dant tokens are merged, and the model training and reasoning 
speed are greatly improved. In the selection strategy section: to
kens are divided into two sets A and B, which these two sets are 
roughly equal in size, and then the dot product similarity is used 
to select the r tokens from the B set that are most similar to the A 
set; In the merge strategy section: the binary soft matching al
gorithm is used to merge the most similar r tokens.  

(3) TCFormer strategy. This strategy is proposed by Zeng et al. [36], 
as shown in Fig. 5(B)-3. In this strategy, the important areas are 
focused on to capture details. In the select strategy section: the 
K-nearest-neighbor based density peaks clustering algorithm is 
used to group tokens into a certain number of clusters; In the 
merge strategy section: tokens in the same cluster are merged by 
weighted average. 

3.2.3. Token selection based on convolution and pooling 
The token selection mechanism based on convolution and pooling is 

that the tokens’ sequence length is shrunk by convolution and pooling 
operations, similar to feature maps downsampling in CNN, so as to 
reduce the redundant information and computing costs. The key oper
ations in this method are convolution strategy and pooling strategy. At 
present, there are 2 major convolution strategies and pooling strategies: 
HVT strategy, and PSViT strategy.  

(1) HVT strategy. This strategy is proposed by Pan et al. [37], as 
shown in Fig. 5(C)-1. In this strategy, the tokens are hierarchical 
pooling to shorten sequence length. In the pooling strategy sec
tion: Firstly, the ViT blocks are divided into several stages; sec
ondly, At each stage, a max pooling layer is inserted after the 
Transformer block to perform down-sampling; finally, the 
average pooling is performed on tokens in the last stage for the 
final result prediction.  

(2) PSViT strategy. This strategy is proposed by Chen et al. [38], as 
shown in Fig. 5(C)-2. In this strategy, there are 2 methods to 
reduce the number of tokens to eliminate spatial redundancy. In 
the first method, a 1D convolution with a small kernel size is used 
to change the dimension of each token and then a 1D maxpooling 
is used to decrease the number of tokens; In the second method, a 
2D convolutional layer with stride 2 is adopted for token 
down-sampling, which is widely applied in many convolutional 
networks. 

3.3. Position encoding mechanism 

Since position information is not taken into account in the process of 
self-attention calculation, and the relationship among data is affected by 
position information, in order to enable the model to accept the position 
information of the input image, the position encoding mechanism is 
introduced. The position encoding mechanism is that the position in
formation is integrated into the input sequence. By capturing the posi
tion information of the input sequence and maintaining the spatial 
position relationship among these sequences, the position information in 
the image can be effectively expressed, thus the performance of the 
model is improved. The sequence encoded by the position information 
can be input in parallel, and the computational efficiency is greatly 
improved. There are 5 typical Position Encoding mechanisms: Absolute 
Position Encoding, Relative Position Encoding, Conditional Position 
Encoding, Locally-enhanced Position Encoding, and Zero-Padding Po
sition Encoding. Meanwhile, different position encoding mechanisms 
are compared, as listed in Table 2. 

Firstly, Absolute Position Encoding, Absolute Position Encoding is 
generated by predefined functions or learned by training. Its dimension 
is the same as the input sequence, and the position information is added 
to the input sequence by an add operation. In ViT, the encoding method 
is generated by sine and cosine functions of different frequencies, as 
shown in Formulas (15) and (16), where pos represents the position of 
each element in the sequence, and d represents the dimension of the 
position encoding, which is consistent with the input dimension. 2i 
represents the even dimension of the position encoding, 2i+1 represents 
the odd dimension of the position encoding, and the value range of i is 
[0,1,...,d/2). The disadvantage of this method is that the serialization 
length is fixed, which cannot be handled when facing high-resolution 

Table 2 
Comparison among different positional encoding mechanisms.  

Position 
Encoding 

Model Position Diagram 

Absolute 
Position 
Encoding 
(APE) 

ViT[9] Introducing the 
positional 
information before 
feeding into the 
Transformer blocks 

Relative 
Position 
Encoding 
(RPE) 

Swin 
[39] 

Introducing the 
positional 
information in each 
Transformer block 

Conditional 
Position 
Encoding 
(CPE) 

CPVT 
[40] 

Introducing the 
positional 
information before 
feeding into the 
Transformer blocks 

Locally- 
enhanced 
Position 
Encoding 
(LePE) 

CSWin 
[41] 

Introducing the 
positional 
information in each 
Transformer block 

Zero-padding 
Position 
Encoding 
(ZpPE) 

PVT v2 
[25] 

Introducing the 
positional 
information in feed- 
forward networks 
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images during testing. 

PE(pos,2i) = sin
(
pos
/

100002i/d) (15)  

PE(pos,2i+1) = cos
(
pos
/

100002i/d) (16) 

Secondly, Relative Position Encoding, unlike absolute position 
encoding, which directly adds position information to the input tokens 
sequence, the relative distance between the current position and the 
attended position is taken into account by relative position encoding. 
The relative positions between element pairs are calculated and encoded 
as part of the model input, and spatial relationships among different 
elements can be learned. In Swin [39], a relative position bias B∈RM2×M2 

is added to the attention calculation process, as shown in Formula (17), 
where Q, K, V∈RM2×d, d is the dimension of k, M2 is the number of 
patches in a window, since the relative positions along each axis are in 
the range [-M+1, M-1], parameterizing a bias matrix B∈R(2M− 1)×(2M− 1), 
where the values in B are taken from B. Relative position encoding is 
translation invariant and can naturally handle longer token sequences 
during training. 

Attention(Q,K,V) = softmax
(

Q⋅KT
̅̅̅
d

√ +B
)

⋅V (17) 

Thirdly, Conditional Position Encoding [40], unlike fixed or learn
able position encodings, conditional position encoding is predefined and 
dynamically generated by a simple Positional Encoding Generator (PEG) 
based on the input’s local neighborhood. In order to take the local 
neighborhood as the condition, the flattened input token sequence 
X∈RN×C is reshaped into a three-dimensional image space X′∈RH×W×C, 
and then the function F is repeatedly applied in the local patch of X′, and 
then the conditional position encoding EB×H×W×C is generated. PEG can 
be effectively implemented by a 2D convolution operation with a kernel 
size of k(k≥3) and zero-padding of k− 1

2 , where F can be multiple forms, 
such as depth convolution, separable convolution, or others. Conditional 
position encoding not only is easily applied to a longer input token 
sequence than the model in the training process, but also maintains the 
translation invariance, and the classification accuracy is improved in 
image classification tasks. 

Fourthly, Locally-enhanced Position Encoding [41], 
Locally-enhanced Position Encoding proposed that the position encod
ing is added to self-attention operations as a parallel module. This design 
decouples positional encoding from the self-attention calculation pro
cess, and local inductive bias is enforced stronger. The value V of posi
tion information is learned directly through deep convolution operation 
and acts as a parallel module as shown in Formula (18). 
Locally-enhanced Position Encoding can better process local position 
information and support input images with arbitrary resolution, which 
can be effectively used in some application fields. 

Attention(Q,K,V) = softmax
(

Q⋅KT
̅̅̅
d

√

)

⋅V + DWConv(V) (18) 

Fifthly, Zero-padding Position Encoding, studies [42] have shown 
that position information can be learned implicitly from Zero-padding in 
CNN, Zero-padding position encoding is that a deep convolution with 
kernel size 3 × 3 is added to learn position information between the first 
fully connected layer in Feedforward Neural Network and the GELU 
activation function. Zero-padding position encoding is introduced to 
expand different-size images into uniform-size images, so that the model 
can flexibly deal with variable-resolution input images. 

3.4. Attention mechanism 

The idea of attention was first proposed in the field of image 
recognition by Mnih et al. [43] in 2014, which is a model to simulate the 
attention mechanism of the human brain. As the core component of ViT, 

self-attention is a powerful tool to capture long-distance dependency 
relationships. However, the global information interactions of all pairs 
of patches in the spatial position are calculated by the global attention in 
the original ViT model, as shown in Fig. 6-1, hence, high time 
complexity and space complexity are resulted, especially in 
high-resolution vision tasks. There are a series of works to improve 
attention performance and reduce computing and storage costs. Based 
on the timeline, 18 attention mechanisms are summarized in this paper, 
as shown in Fig. 6. The main attention mechanisms include: Focal 
Self-attention, W-MSA and SW-MSA, Cross-Attention, Spatially Sepa
rable Self-Attention, Long Short Distance Attention, Pale-Shaped Self-
attention, Cross-Shaped Window Self-Attention, Regional-to-Local 
Attention, Dual Attention, Depthwise Separable Self-attention, 
Deformable Attention, Multi-axis Attention, Bilateral Local Attention, 
Neighborhood Attention, HiLo Attention, Multi-Scale Dilated Attention, 
QuadTree Attention, and Bi-Level Routing. Meanwhile, the perfor
mances of 18 attention mechanisms are compared from 5 aspects: Par
ams, FLOPs, Throughput, Dataset, and Top-1 acc, as listed in Table 3. 

Firstly, Focal Self-attention(FSA), FSA is an attention mechanism 
that incorporates both fine-grained local features and coarse-grained 
global features, where each token focuses on the nearest tokens 
around it at fine granularity and focuses on the long-distance tokens at 
coarse granularity, as shown in Fig. 6-2. Yang et al. [44] considered that 
the visual dependence among neighbor regions is often stronger than 
that among non-neighbor regions, and proposed FSA to model local and 
global interaction for high-resolution prediction tasks, which can 
effectively capture the visual dependence between short and long 
distances. 

Secondly, W-MSA and SW-MSA, W-MSA represents Windows Multi- 
head Self-Attention, in layer l, the feature maps are divided into multiple 
non-overlapping windows, and self-attention is performed in each 
window, as shown in Fig. 6-3(left); SW-MSA represents Shifted Windows 
Multi-Head Self-Attention, in the next layer l + 1, the windows, that is 
divided in layer l, are offset by M2 pixels from the upper left corner to the 
right side and the lower side respectively, where M is the window size, so 
that information is transmitted in neighboring Windows. as shown in 
Fig. 6-3(right); Liu et al. [39] proposed W-MSA and SW-MSA, connec
tions among neighboring non-overlapping Windows in the previous 
layer are introduced, and modeling capabilities are significantly 
enhanced. 

Thirdly, Cross-Attention(CA), since the semantic information among 
all image tokens is already learned by the class token in its own branch, 
the interaction can fuse information in different scales between the class 
token at one branch and the image tokens at the other branch. as shown 
in Fig. 6-4. Chen et al. [22] proposed CA to realize the information ex
change between two branches, and fuse multi-scale features more 
effectively. 

Fourthly, Spatially Separable Self-Attention(SSSA), SSSA is 
composed of locally-grouped self-attention (LSA) and global sub- 
sampled attention (GSA). In LSA, the feature maps are equally divided 
into sub-windows, and self-attention calculations are performed within 
each sub-window; In GSA, a single representative is used to summarize 
the important information for each of m×n sub-windows, and the 
representative is used to communicate with other sub-windows, as 
shown in Fig. 6-5. Chu et al. [45] proposed SSSA to capture fine-grained 
short-range information and to process global information over long 
distances. 

Fifthly, Long Short Distance Attention(LSDA), LSDA is composed of 
Short Distance Attention(SDA) and Long Distance Attention(LDA). SDA 
groups neighboring embeddings to establish dependencies, while LDA 
groups remote embeddings to establish dependencies by interval sam
pling, as shown in Fig. 6-6. Wang et al. [46] proposed LSDA to establish 
cross-scale interaction ability on the basis of not undermining either 
small-scale or large-scale features. 

Sixthly, Pale-Shaped Self-attention(PSA), In PSA, the input feature 
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maps are split into multiple pale-shaped regions, and the attention cal
culations are performed within each region, where each region consists 
of the same number of interleaving rows and columns in the feature 
map, and the spacing between neighboring rows or columns is equal, as 
shown in Fig. 6-7. Wu et al. [47] proposed PSA to enable any token to 
interact directly with other tokens in the same pale, and richer contex
tual information is captured. 

Seventhly, Cross-Shaped Window Self-Attention(CSWin), In CSWin, 

the self-attention is performed in a cross-shaped window in parallel, 
where each window consists of horizontal and vertical stripes, and each 
stripe obtained by splitting the input feature into stripes of equal width, 
as shown in Fig. 6-8. Dong et al. [41] proposed CSWin, with the deep
ening of the network, the window width is increased to associate more 
areas, and global self-attention is achieved more effectively by 
expanding the attention area. 

Eighthly, Regional-to-Local Attention(R2L), In R2L, the regional 
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Fig. 6. Attention mechanism.  

Table 3 
Performance comparison of 18 attention mechanisms.  

No. Model Attention Params(M) FLOPs(G) Throughput (images/s) Dataset Top-1 acc 

1 ViT(Base)[9] Global Attention 86 55.4 85.9 ImageNet-1K 77.9 
2 Focal Transformer (Base)[44] Focal Self-attention 89.8 16.0 - ImageNet-1K 83.8 
3 Swin Transformer (Base)[39] W-MSA,SW-MSA 88 15.4 278.1 ImageNet-1K 83.5 
4 CrossViT (Base)[22] Cross-Attention 104.7 21.2 239 ImageNet-1K 82.2 
5 Twins (Base)[45] Spatially Separable Self-attention 56 8.6 469 ImageNet-1K 83.2 
6 CrossFormer (Base)[46] Long Short Distance Attention 52.0 9.2 - ImageNet-1K 83.4 
7 Pale Transformer (Base)[47] Pale-Shaped self-Attention 85 15.6 - ImageNet-1K 84.9 
8 CSWin Transformer (Base)[41] Cross-Shaped Window Self-attention 78 15.0 250 ImageNet-1K 84.2 
9 RegionVIT (Base)[48] Regional-to-Local Attention 72.7 13.0 - ImageNet-1K 83.2 
10 DaViT (Base)[49] Dual Attention 87.9 15.5 - ImageNet-1K 84.6 
11 SepViT (Base)[50] Depthwise Separable Self-attention 82.3 13.1 308 ImageNet-1K 84.0 
12 DAT (Base)[51] Deformable Attention 88 15.8 - ImageNet-1K 84.0 
13 MaxViT (Base)[52] Multi-axis Attention 120 23.4 133.6 ImageNet-1K 84.95 
14 BOAT (Base)[53] Bilateral Local Attention 90 17.5 - ImageNet-1K 84.7 
15 NAT (Base)[54] Neighborhood Attention 90 13.7 783 ImageNet-1K 84.3 
16 LITv2 (Base)[55] HiLo Attention 87 13.2 602 ImageNet-1K 83.6 
17 DilateFormer (Base)[56] Multi-Scale Dilated Attention 47 10.0 - ImageNet-1K 84.4 
18 QuadTree (Base)[57] QuadTree Attention 64.2 11.5 - ImageNet-1K 84.0 
19 BiFormer (Base)[58] Bi-Level Routing Attention 57 9.8 - ImageNet-1K 84.3 

*Notes: Except for ViT-Base, all other models are trained and evaluated on 224 × 224 resolution. 
“-” Indicates that the data is not given in the original paper. 

T. Zhou et al.                                                                                                                                                                                                                                    



Information Fusion 105 (2024) 102248

10

tokens and local tokens are generated by using different patch sizes from 
images, where each regional token is associated with a set of local tokens 
based on the spatial position. The global information is extracted by 
regional self-attention among all regional tokens, and then the infor
mation is exchanged by local self-attention among one regional token 
and the associated local tokens, as shown in Fig. 6-9. Chen et al. [48] 
proposed R2L, which can still receive global information although the 
scope is limited to a local region. 

Ninthly, Dual Attention(DA), DA is composed of spatial window 
attention and Channel group attention. In spatial window attention, the 
feature maps are divided into different Windows in the spatial dimen
sion, and self-attention calculation is performed in the spatial window; 
In Channel group attention, the tokens are grouped into multi-groups in 
the channel dimension, and self-attention calculation is performed in 
each channel group, as shown in Fig. 6-10. Ding et al. [49] proposed DA, 
the local features are extracted within the window by spatial window 
attention, and the global features are learned by channel group atten
tion, so as to efficient global modeling is realized through the alternate 
use of two kinds of attention. 

Tenthly, Depthwise Separable Self-attention, Depthwise Separable 
Self-attention is composed of Depthwise Self-Attention(DWA) and 
Pointwise Self-Attention(PWA). In DWA, the feature maps are divided 
into different Windows, and a window token is created to serve as a 
global representation for each window, attention is calculated for each 
window and its corresponding window token; In PWA, the feature maps 
and window tokens are extracted from the output of DWA, and the 
window token is used to model the attention relationship between 
Windows, as shown in Fig. 6-11. Li et al. [50] designed Depthwise 
Separable Self-attention inspired by depthwise separable convolution to 
capture long-distance visual dependencies of multiple windows by 
promoting information interaction within and between Windows. 

Eleventhly, Deformable Attention(DA), In DA, a set of reference 
points are uniformly generated on the feature map, and the corre
sponding offsets for all reference points are generated by the offset 
network, so that key-value pairs are moved to important areas, which 
enhances the flexibility and efficiency of the self-attention module, and 
thus more information features are captured. as shown in Fig. 6-12. Xia 
et al. [51] proposed DA to select the position of key-value pairs in a 
data-dependent manner, focus on relevant areas, and capture more 
information. 

Twelfthly, Multi-axis Attention(MaxA), MaxA is composed of Block 
Attention and Grid Attention. In Block Attention, the feature maps are 
divided into non-overlapping local Windows, and self-attention is per
formed within each window; In Grid Attention, the feature maps are 
divided into fixed grid blocks, and self-attention is performed at corre
sponding positions in each grid block, as shown in Fig. 6-13. Tu et al. 
[52] proposed MaxA to sequentially superimpose two types of attention, 
and allow global-local spatial interaction at any input resolution. 

Thirteenthly, Bilateral Local Attention(BOA), In BOA, a Balanced 
hierarchical clustering method is used to divide patches into multiple 
clusters of uniform size and self-attention is calculated within each 
cluster, as shown in Fig. 6-14. Yu et al. [53] proposed BOA, local 
attention in feature space and local attention in image space are com
bined, and it effectively captures the connection between the far apart 
but related patches in the image. 

Fourteenthly, Neighborhood Attention(NA), NA localizes attention 
to a neighborhood around each token, introducing local inductive bia
ses, maintaining translational equivariance, and allowing receptive field 
growth, as shown in Fig. 6-15. Hassani et al. [54] proposed NA in
troduces local inductive bias to maintain translation invariance. 

Fifteenthly, HiLo Attention, which consists of High-frequency 
Attention(Hi-Fi) and Low-frequency attention(Lo-Fi). In Hi-Fi, the 
input feature map is divided into non-overlapping Windows, and the 
high-frequency information is encoded by performing self-attention in 
the local window; In Lo-Fi, firstly, the average pooling is applied to each 
window to obtain the low-frequency signal in the input image, then the 

average pooling feature map is mapped to obtain the key K and value V, 
the query Q is still from the original feature map, finally, the standard 
attention is applied to capture the low-frequency information, as shown 
in Fig. 6-16. Pan et al. [55] proposed HiLo Attention, with high fre
quency capturing local details and low frequency focusing on global 
structure can help achieve higher efficiency on high-resolution images. 

Sixteenthly, Multi-Scale Dilated Attention(MSDA), In MSDA, the 
channels of the feature maps are split into different headers, and 
different dilation rates are used in different headers to perform self- 
attention for patches around the query patch, as shown in Fig. 6-17. 
Jiao et al. [56] proposed MSDA to capture contextual semantic de
pendencies of different scales at the same time, so as to realize the ability 
of multi-scale representation learning. 

Seventeenthly, QuadTree Attention, In QuadTree Attention, the 
feature maps are recursively subdivided into 4 regions, top-k regions 
with the highest attention scores are selected for each query, so that in 
the next level, the attention evaluation is only performed in the relevant 
sub-areas corresponding to these top-k regions, as shown in Fig. 6-18. 
Tang et al. [57] proposed Quadtree attention to compute attention in a 
coarse to fine manner, according to the results at the coarse level, 
irrelevant image regions are skipped quickly at the fine level, this design 
achieves less information loss while maintaining high efficiency. 

Eighteenthly, Bi-Level Routing Attention(BLRA), In BLRA, the input 
feature maps are divided into multiple non-overlapping regions, the 
degree of semantic correlation between each two regions is found by 
constructing a region-to-region adjacency matrix, and the fine-grained 
token-to-token attention is applied to only the top-k related areas for 
each region, as shown in Fig. 6-19. Zhu et al. [58] proposed BLRA to 
achieve efficient allocation of computation in a dynamic and 
query-aware manner by filtering out most of the irrelevant key-value 
pairs at the coarse region level 

3.5. Network structure 

Due to its excellent performance, Transformer is widely used in the 
field of medical imaging and achieves good results in the computer- 
aided diagnosis of lung cancer, breast cancer, skin diseases, cardiovas
cular and cerebrovascular diseases. since the limited performance of a 
single network, more and more studies find that the ensemble of 
Transformer with other network models is an important development 
direction. In the field of medical imaging, there are 5 application fields 
for Transformer, such as Transformer combined with U-Net is used for 
medical image segmentation, Transformer combined with GAN is used 
for fusion, Transformer combined with YOLO is used for detection, 
Transformer combined with ResNet and DenseNet is used for classifi
cation and recognition, the work can provide help for Transformer 
application. 

3.5.1. Transformer combined with U-Net 
Medical image segmentation is that the desired lesion regions are 

segmented from the medical image, such as organs and tissues, the 
segmented lesions are visualized by digital image processing technol
ogy, and the operation is guided by graphic processing technology [59]. 
Precision lesion segmentation plays a good guiding role in medical 
image classification. Before 2020, most of the mainstream medical 
image segmentation methods are improved based on the U-Net [60] 
model. Although realizing a good segmentation effect, U-Net lacks 
long-distance relationship modeling due to the locality of convolutional 
operations, and it is difficult to learn global semantic information. 
Transformer can capture global information through the attention 
mechanism to establish long-distance dependencies and extract more 
feature information. In recent years, many researchers combine Trans
former and U-Net for medical image segmentation, helping to improve 
segmentation precision. In the field of medical image segmentation, The 
combination of Transformer and U-Net mainly includes TransUNet, 
TransClaw U-Net, LeViT-UNet, Teeth U-Net, and UTNet. 
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Firstly, Chen et al. [61] proposed TransUNet. In this network, the 
hybrid structure of CNN and Transformer is used as an encoder, the 
feature maps in encoder are upsampled by decoder, and high-resolution 
CNN feature maps are combined to realize precision localization. 

Secondly, Chang et al. [62] proposed TransClaw U-Net. In this 
network, the encoder adopts a hybrid structure that feature maps are 
extracted by convolution operation and enhanced by Transformer later, 
and the decoder part is a two-way design: one way is directly upsampled, 
and the other way is skipping connections at the same time of upsam
pling, which effectively realizes the segmentation of medical images. 

Thirdly, Xu et al. [63] proposed LeViT-UNet. In this network, LeViT 
[64] is used as an encoder, Transformer blocks in LeViT and multi-scale 
feature maps of convolutional blocks are transmitted to the decoder 
through skip connections, and spatial feature is reused effectively. 

Fourthly, Due to blurred boundaries between teeth that make it 
difficult to segment teeth from panoramic dental X-ray images, Hou 
et al. [65] proposed Teeth U-Net, in this network, a dilated hybrid 
self-attentive block is designed for captured dental feature information 
in a larger field of perception. 

Fifthly, Gao et al. [66] propose UTNet, in which self-attention is 
integrated into CNN to enhance medical image segmentation, and 
self-attention modules are used in both encoders and decoders to cap
ture long-range dependencies. 

3.5.2. Transformer combined with GAN 
Due to the diversity and complexity of diseases, it is difficult to di

agnose disease types and locate lesions through a single modal medical 
image. There are richer features and more comprehensive information 
in the fusion image obtained through multi-modal medical image fusion, 
which can assist medical images to better serve clinical applications. 
GAN [67] is the most common deep learning technology in the 
cross-modal reconstruction of medical images, Through an adversarial 
learning mechanism, significant information in medical images can be 
modeled. Transformer not only can process long sequence information, 
but also can learn the relationship among different modes, and can 
effectively extract features in multi-model medical images. Therefore, 
Transformer and GAN are combined to improve the effectiveness and 
precision of medical image fusion. In the field of medical image syn
thesis, the combination of Transformer and GAN mainly includes 
RTCGAN, D-ESRGAN, MedViTGAN, CT-GAN, and TCGAN. 

Firstly, due to the local mismatch between MR and CT images in 
pelvic soft tissue, Zhao et al. [68] proposed a new GAN model, RTCGAN, 
which utilizes CNN and Transformer to extract multi-level features from 
MR and CT images, CNN can perceive local texture features and 
Transformer can perceive global relevance. 

Secondly, Wang et al. [69] proposed D-ESRGAN, a generative 
adversarial network of super-resolution dual encoders, in this network, 
the loss of texture information in iris images is compensated while the 
newly generated texture features are kept more natural. D-ESRGAN not 
only integrates a residual CNN encoder to extract local features, but also 
uses a ViT encoder to capture global association information. 

Thirdly, Li et al. [70] proposed MedViTGAN based on Transformer 
architecture, which synthetic histopathological images are generated for 
image enhancement in an end-to-end manner. 

Fourthly, Pan et al. [71] proposed CT-GAN, which can better predict 
Alzheimer’s disease by integrating functional information contained in 
resting-state functional Magnetic Resonance Imaging (rs-fMRI) and 
structural information contained in Diffusion Tensor Imaging (DTI). 

Fifthly, Li et al. [72] proposed TCGAN, which uses a dual generator 
architecture to fuse PET and CT, the dual generator is combined CNN 
generator and Transformer generator by series connect. 

3.5.3. Transformer combined with YOLO 
The computer is used to realize medical image detection, which can 

help experts to control the disease more accurately. Different from 
natural images, the edge of most lesion detection targets in medical 

detection images is often fuzzy and irregular, and the number of pixels is 
small. It is very difficult to accurately locate lesions by conventional 
methods, which often leads to problems of missing detection and mis
detection. In recent years, object detection methods based on deep 
neural networks are widely used in medical images. YOLO [73] is a 
single-stage deep learning detection method with characteristics of 
real-time and accuracy. Transformer can effectively extract lesion po
sition information by modeling global features in images. Therefore, the 
Transformer mechanism added to the YOLO backbone network can 
better extract complex features of lesions and improve detection accu
racy. In the field of medical image detection, the combination of 
Transformer and YOLO mainly includes: CL-YOLOv5, YOLO-LOGO, 
RDFNet, Improved YOLO, and CCGL-YOLOV5. 

Firstly, Zhou et al. [74] proposed CL-YOLOv5. In this network, a 
cosine reweighting computing Transformer is designed to efficiently 
learn global feature relations and interactively enhance the ability of the 
network to extract lesions. 

Secondly, Su et al. [75] Proposed YOLO-LOGO for the detection of 
breast tumors in digital mammograms. In this network, the target 
detection model YOLOV5L6 is used to locate and cut breast tumors, and 
the whole image and the cropped image are trained on the global and 
local Transformer branches respectively. 

Thirdly, because of the lack of current research on caries detection, 
Jiang et al. [76] proposed the RDFNet. In this network, an improved 
Transformer encoder module is added based on the original SPP struc
ture to improve the network’s ability to extract caries features and 
realize rapid caries detection. 

Fourthly, Qi et al. [77] proposed an improved YOLO network, in this 
network, CBAM (Convolutional Block attention Module) and 
Multi-Head Self-Attention mechanisms are combined with the yolov3 
network for the detection of pulmonary nodules in chest CT images. 

Fifthly, Zhou et al. [78] Proposed CCGL-YOLOV5, which is used for 
Lung Tumor Detection, in this network, a Cross-Modal Fusion Trans
former Module is designed for multi-modal feature fusion. 

3.5.4. Transformer combined with ResNet 
Deep learning-based medical image classification plays a key role in 

computer-aided diagnosis, such as speeding up film reading, shortening 
patient wait times, and reducing the burden on imaging physicians. 
Before the vision Transformer, CNN based on deep learning is used to 
classify medical images. The classic CNN models include ResNet and 
DenseNet. Among them, ResNet [79] can effectively alleviate the 
gradient disappearance and network degradation caused by the increase 
of network depth through skip connection. The introduction of 
self-attention mechanisms in Transformer into ResNet allows the model 
to better model long-distance dependencies, helping to capture global 
context information in images. In the field of medical image classifica
tion and recognition, the combination of Transformer and ResNet 
mainly includes: Trans-ResNet, ASI-DBNet, DCET-Net, RMT-Net, and 
REC-ResNet. 

Firstly, Li et al. [80] proposed Trans-ResNet network for Alzheimer’s 
disease classification. In this network, ResNet-18 is used to extract local 
semantic information from input images, then the generated feature 
maps are divided and fed into Transformer network for classification. 

Secondly, Zhou et al. [81] proposed ASI-DBNet for rapid and accu
rate classification of brain cancer. In this network, an adaptive sparse 
interaction block is designed to realize the interaction between ResNet 
branches and ViT branches, which makes the feature maps transmitted 
during the interaction more beneficial. 

Thirdly, Zou et al. [82] proposed DCET-Net, which is a dual-flow 
network based on two backbone networks of CNN and Transformer 
for breast cancer histopathological image classification. The network 
uses CNN to capture the local depth features of histopathological im
ages, and Transformer to enhance the global information of depth fea
tures, presents a more discriminating feature. 

Fourthly, Ren et al. [83] proposed a new deep learning network 
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RMT-Net based on the combination of ResNet-50 and Transformer. In 
this network, Transformer is used to capture long-distance feature in
formation, and local features are obtained by deep convolution. 

Fifthly, Zhou et al. [84] proposed a COVID-19 auxiliary diagnosis 
model REC-ResNet, which uses ResNet50 as the main trunk network, 
and three feature enhancement strategies are introduced to improve the 
feature extraction capability of the model. 

3.5.5. Transformer combined with DenseNet 
Compared with ResNet, DenseNet [85] proposed a dense connection 

mechanism: all layers are interconnected, and each layer is concate
nated with all previous layers in the channel dimension as the input of 
the next layer, which can not only achieve feature reuse, but also 
improve efficiency. Transformer uses self-attention mechanism to 
calculate all locations so that each location in the network can interact 
with each other to further improve feature reuse. The combination of 
DenseNet and Transformer can capture more global context information 
and improve feature reuse, thus, the performance of the model is 
improved. In the field of medical image classification and recognition, 
the combination of Transformer and DenseNet mainly includes: 
DRLTransformer, DDSF-Net, and DPE-BoTNet. 

Firstly, Zhou et al. [86] proposed DRLTransformer. In this network, 
heavy reference dense blocks and hierarchical Transformerfor are 
designed for COVID-19 recognition in CT images. 

Secondly, Zhou et al. [87] proposed DDSF-Net for pneumonia diag
nosis. In this network, Transformer is used to learn the global context 
semantic information, the convolutional layer is used to extract local 
features, and the dense connection method is used to realize the deep 
and shallow layer feature fusion of the two information flows. 

Thirdly, Nakai et al. [88] proposed DPE-BoTNet for skin disease 
classification based on DenseNet201. By combining Transformer and 
DenseNet, both local interaction and global dependence can be modeled 
to improve skin disease classification performance. 

4. Conclusion 

ViT makes breakthrough progress in the field of deep learning, in 
ViT, there are four main steps, which are “four secrets”, such as patch 
division, token selection, position encoding addition, attention calcu
lation, the existing research on transformer in computer vision mainly 
focuses on the above four steps. Therefore, “how to divide patch?”, “how 
to select token?”, “how to add position encoding?”, and “how to 
calculate attention?” are crucial to improve ViT performance. But so far, 
most of the review literatures are summarized from the perspective of 
application, and there is no corresponding literature to comprehensively 
summarize these four steps from the technology perspective, which re
stricts the further development of ViT in some degree. Therefore, aiming 
at the above problems, this paper makes a comprehensive summary of 
the 4 mechanisms and 5 applications of ViT, the main contributions are 
as follows: 

Firstly, aiming to “how to divide patch?”, 5 key technologies of patch 
division mechanism are summarized: (1) from single-size division to 
multi-size division; (2) from fixed number division to adaptive number 
division; (3) from non-overlapping division to overlapping division; (4) 
from semantic segmentation division to semantic aggregation division; 
(5) from original image division to feature map division. 

Secondly, aiming to “how to select token?”, 3 key technologies of 
token selection mechanism are summarized: (1) token selection based 
on score; (2) token selection based on merge; (3) token selection based 
on convolution and pooling. 

Thirdly, aiming to “how to add position encoding?”, 5 key technol
ogies of position encoding mechanism are summarized: (1) absolute 
position encoding; (2) relative position encoding; (3) conditional posi
tion encoding; (4) locally-enhanced position encoding; (5) zero-padding 
position encoding. 

Fourthly, aiming to “how to calculate attention?”, 18 attention 

mechanisms are summarized based on the time axis, such as Focal Self- 
attention, W-MSA and SW-MSA, Cross-Attention, Spatially Separable 
Self-Attention, Long Short Distance Attention, Pale-Shaped Self-atten
tion, Cross-Shaped Window Self-Attention, Regional-to-Local Attention, 
Dual Attention, Depthwise Separable Self-attention, Deformable Atten
tion, Multi-axis Attention, Bilateral Local Attention, Neighborhood 
Attention, HiLo Attention, Multi-Scale Dilated Attention, QuadTree 
Attention, Bi-Level Routing Attention. 

Fifthly, the extensive applications of ViT in medical image processing 
are discussed by combining with U-Net, GAN, YOLO, ResNet, and 
DenseNet. 

5. Future work 

Although ViT makes breakthrough progress in the field of computer 
vision and plays a substantial role, it is important to design a reasonable 
network model with a good generalization effect for the study of ViT, 
patch division mechanism, token selection mechanism, position 
encoding mechanism and attention mechanism are worth further dis
cussion and improvement, and building a unified framework for multi- 
tasks, reducing high-dimensional data computation, realizing small 
sample learning, and having good interpretability of model structure are 
all the future development directions of ViT. 

Firstly, the research of ViT patch division mechanism. The future 
directions of patch division mechanism are as follows: (1)non-square 
patch division, such as rectangle, circle, triangle et al, which is used to 
extract target features with complex shapes; (2)multiple patch division, 
which is used to process multi-scale features in parallel; (3)dynamical 
patch division, patch size is determined dynamically according to the 
size of targets in the image, which is used to better adapt to different 
targets in the image. 

Secondly, the research of ViT token selection mechanism. The future 
directions of token selection mechanism are as follows: (1) adaptive 
scoring strategy, the model adaptively scores for each token based on the 
characteristics of each token and the interrelationship among all tokens; 
(2) adaptive merge strategy, how to merge redundant tokens is very 
necessary to ViT token selection; (3) selection strategy combined with 
other evolutionary algorithms, such as genetic algorithm, ant colony 
algorithm, and other methods, to research the optimal token search 
strategy. 

Thirdly, the research of ViT position encoding mechanism. This is a 
mechanism that is based on position encoding generators, such as sine 
function, cosine function, Gaussian function, polynomial function, etc. 

Fourthly, the research of ViT attention mechanism. The future di
rections of attention mechanism are as follows: (1) the selection of 
attention mechanism, how to select appropriate attention mechanism 
and improve the model performance are important for ViT; (2) the 
problem of selecting the area for attention computation; (3) the multi
modal attention mechanism, focusing on visual, speech, text, and other 
modal information at the same time, and improving the generalization 
ability of the model. 

Fifthly, the research of building a unified framework for multi- 
tasking. Traditional multimodal models take different processing 
methods for different data types, so it is inevitable that patterns cannot 
be aligned when feature splicing. Not only the model structure is com
plex, but also the processing results of different data types are not good. 
At present, Transformer achieves great success in text, image, video, 
language, and other aspects. Transformer self-attention mechanism has 
strong feature extraction and mode alignment capabilities. Therefore, 
how to build a unified framework to capture the internal relationship 
between multi-modal data will be the future development trend. 

Sixthly, the research of reducing high-dimensional data calculation. 
Due to the large number of parameters and high computational 
complexity, the existing vision Transformer model takes a long time to 
train and reason, which requires a lot of computing resources and time 
as well as strong hardware support. Even though the performance of 
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hardware devices is constantly improving, Transformer still cannot meet 
the requirements of computing efficiency. Therefore, how to improve 
the computing efficiency of Transformer model is a hot and difficult 
problem in future work. 

Seventhly, the research of realizing small sample learning. Compared 
with CNN, Transformer model has more parameters, so its training 
usually relies on a larger number of training samples. The current 
training method is to pre-train the vision Transformer model on a large 
dataset, and then fine-tune the model with a small amount of data for the 
task type. However, for some visual tasks with sparse training samples, it 
is often difficult to obtain massive training data, and the quantity and 
quality of training data limit the training and performance improvement 
of the model. Therefore, how to realize small sample learning with prior 
knowledge is still a challenge. 

Eighthly, the research of ViT interpretability. Compared with CNN 
and RNN, Transformer has a larger capacity and its architecture can 
support large-scale data training. However, the theoretical reasons are 
not clear. The attention of each layer in Transformer is mixed in a 
complex way in subsequent layers, thus, it is difficult to visualize the 
relative weight of input tokens to the final prediction. In order to better 
design and improve the Transformer model structure, it is necessary to 
deeply study and understand its operation mechanism and internal in
formation interaction. Therefore, it is great of significance to study 
Transformer model interpretability. 
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