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Preview - RF Fingerprinting

= RF Feature 7|t Physical Layer Authentication A 2]
* ‘Intrinsic imperfection’ 2 £ 213t RF domain 0| A Q| 42 E4
* Transient, Preamble, I/Q imbalance, etc.
* Real domain, R, OfA] &Z/5}= RF Fingerprinting.
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Preview - RF based Cryptographic Sequence Generator

= RF Feature 7|8t Cryptographic Sequence 473 A Al

e Cryptographic sequence (w. GF(2)) £2/ mapping mechamsm /W of
* Cryptographic application: Public Key Authentication.
* Finite Field domain, N, GF (q), /A7 &Z/5}=RF based Public Key Sequences.
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Preview — What's for next?

* RF Fingerprinting application in Digital Signal Processing domain.

« Of&/ Ll Digital domain, N, OfA{ processing 7}& 97 &/ RF Intrinsic Features

» Digitized Feature Key 7|8t Application research

e Out of Distribution, Zero Knowledge Proof, Distributed Al, e.t.c....
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RF-ZKP system
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Preview — [Distributed Al] Distributed RF Fingerprinting system
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Titles

=  Dean, Jeffrey, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao, Marc’ Aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Andrew Y. Ng, "Large scale distributed deep networks." in Proc.
Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 25, 2012, pp. 1223—-1231.

=  Search Keyword
=  Distributed Al
=  Federated Al

=  The aim of this research
= The problem of training a deep network with billions of parameters using tens of thousands of CPU cores.

=  Warning!!!
=  Paper at the 2012
=  Before the AlexNet, It consider the CPU cores,
=  We aim to consider how the distributed Al networks are considered at the time of beginning.
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Before starting the presentation...

m Aim of search

=  Understanding the Origin of the Distributed Al research field
=  Concepts, Core ideas, Approach intuitions, etc....

= Q) How many peoples are read this paper?

=  Most research paper ideas originate from the Origin paper in that field.
= [t’s importance of the origin paper
= Has anyone read today’s presentation paper?
=  One way to understand new research field efficiently => Find the origin paper.
= [t can represent the CORE IDEA in paper writing efficiently without referencing others.
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Introduction - contributions

= Inrescent days, the use of GPUs has shown a significant advance in the training of deep networks
= It works well in a condition of non-bottleneck within the cpu-to-gpu process
= Less attractive for the problem of large-sized networks

Contributions: Proposal of optimization algorithms for large-scale clusters of machnes (distributed learning systems).
=  The DistBelief — Software framework

=  Model parallelism
=  Within a machine (via multithreading)
=  Across machine (via message passing)

=  Data parallelism
=  Downpour SGD:

=  Anasynchronous SGD method supporting replica learning.
=  Sandblaster L-BFGS:

=  An implementation method of Sandblaster optimization-based L-BFGS (Limited memory
Broyden-Fletcher-Goldfarb-Shanno) supporting batch optimization for model parallelism.
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Introduction - contributions

In rescent days, the use of GPUs has shown a significant advance in the training of deep networks
= It works well in a condition of non-bottleneck within the cpu-to-gpu process
= Less attractive for the problem of large-sized networks

*  Findings — for solving the large-scale nonconvex optimization;

=  Asynchronous SGD works ‘very‘ well for large scale nonconvex optimization with Adagrad.
= L-BFGS is competitive with the SGD approaches
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Model parallelism

= How we can partition the model into multiple machines? - Model parallelism

=  Users can (may) define the partitions of the model within the framework.
=  Performance depends on the connectivity structure and computation cost

= 144 partitions for a large model
= 8 or 16 partitions for a modestly size model
= [t depends on the user....??
= [ssue) Waiting for the single slowest machine
=  Optimization process applied
(Data parallelism)

3 Model parallelism

To facilitate the training of very large deep networks, we have developed a software framework.‘
DistBelief, that supports distributed computation in neural networks and layered graphical models.
The user defines the computation that takes place at each node in each layer of the model, and the
messages that should be passed during the upward and downward phases of computation.® For
large models, the user may partition the model across several machines (Figure 1), so that respon-
sibility for the computation for different nodes is assigned to different machines. The framework
automatically parallelizes computation in each machine using all available cores, and manages com-
munication, synchronization and data transfer between machines during both training and inference.
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Figure 1: An example of model parallelism in DistBelief. A five layer deep neural network with
local connectivity is shown here, partitioned across four machines (blue rectangles). Only those
nodes with edges that cross partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges crossing a partition boundary,
its state is only sent to the machine on the other side of that boundary once. Within each partition,
computation for individual nodes will the parallelized across all available CPU cores.
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Data parallelism — Distributed Optimization algorithms

=  How should the data be considered to solve the slowest machine 1ssues?

— Data parallelism

=  Distribution problem of the training procedure across multiple model instances
= A centralized sharded parameter server
= [Goal] To tolerate variance in the processing speed and the wholesale failure of the model.
= 1) Simultaneously process the distinct training examples
=  2)combine their results to optimize the object function
=  Two large-scale distributed optimization procedure
=  Downpour SGD: Online method e W= AW N
=  Sandblaster L-BFGS: Batch method —

OOOoCog |-~ 0000000
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Figure 2: Left: Downpour SGD. Model replicas asynchronously fetch parameters w and push gra-
dients Aw to the parameter server. Right: Sandblaster L-BFGS. A single ‘coordinator’ sends small
messages to replicas and the parameter server to orchestrate batch optimization.




Data parallelism — Downpour SGD 0000

* Downpour SGD

=  [Concepts] Divide the data (or mini-batch) to the multiple machines Replicas DD

=  Fetches and Pushes are equal (vs SGD)
. Nfetch = Npush = 1

4.1 Downpour SGD

Stochastic gradient descent (SGD) is perhaps the most commonly used optimization procedure for

Parameter Server W = W - ”ﬁ“”
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Algorithm 7.1: DOWNPOURSGDCLIENT(cv, 7 fetch, Npush)

= Mo =1
training deep neural networks [26, 27, 3]. Unfortunately, the traditional formulation of SGIY is”"~ procedure STARTASYNCHRONOUSLY FETCHINGPARAMETERS (parameters)

inherenr]y sequential, making it impractical to apply to very large data sets where the time required
to move through the data in an entirely serial fashion is prohibitive.

To apply SGD to large data sets, we introduce Downpour SGD, a variant of asynchronous stochas-
tic gradient descent that uses multiple replicas of a single DistBelief model. The basic approach is
as follows: We divide the training data into a number of subsets and run a copy of the model on
each of these subsets. The models communicate updates through a centralized parameter server,
which keeps the current state of all parameters for the model, sharded across many machines (e.g.,
if we have 10 parameter server shards, each shard is responsible for storing and applying updates
to 1/10th of the model parameters) (Figure 2). This approach is asynchronous in two distinct as-
pects: the model replicas run independently of each other, and the parameter server shards also run
independently of one another.

In the simplest implementation, before processing each mini-batch, a model replica asks the pa-
rameter server service for an updated copy of its model parameters. Because DistBelief models
are themselves partitioned across multiple machines, each machine needs to communicate with just
the subset of parameter server shards that hold the model parameters relevant to its partition. After
receiving an updated copy of its parameters, the DistBelief model replica processes a mini-batch of
data to compute a parameter gradient, and sends the gradient to the parameter server, which then
applies the gradient to the current value of the model parameters.

parameters <— GETPARAMETERSFROMPARAMSERVER()

procedure STARTASYNCHRONOUSLY PUSHINGGRADIENTS (accruedgradients)
SENDGRADIENTSTOPARAMSERVER (accruedgradients)
aceruedgradients < 0

main
global parameters, accruedgrivdiéntts =
step < 0
accruedgradients <+ 0
while true
(if (step mod nyeien) == 0
then STARTASYNCHRONOUSLYFETCHINGPARAMETERS(parameters)
data <+ GETNEXTMINIBATCH()
gradient < COMPUTEGRADIENT (parameters, data)
do { accruedgradients < accruedgradients + gradient
parameters +— parameters — a * gradient
if (step mod npusn) == 0
- then STARTASYNCHRONOUSLYPUSHINGGRADIENTS(accruedgradients)
| step < step + 1




Data parallelism — Downpour SGD

* Downpour SGD — w. Adagrad

=  With Adagrad adaptive learning rate
* Increasing Robustness

m Increase the maximum number of machines
=  Eliminates stability concerns

One technique that we have found to greatly increase the robustness of Downpour SGD is the use
of the Adagrad [10] adaptive learning rate procedure. Rather than using a single fixed learning
rate on the parameter sever (1 in Figure 2), Adagrad uses a separate adaptive learning rate for each
parameter. Let 7; x be the learning rate of the i-th parameter at iteration K and Aw; g its gradient,

then we set: ni.x = 7/ E?:] Aw; ;2. Because these learning rates are computed only from the
summed squared gradients of each parameter, Adagrad 1s easily implemented locally within each
parameter server shard. The value of ~, the constant scaling factor for all learning rates, is generally
larger (perhaps by an order of magnitude) than the best fixed learning rate used without Adagrad.
The use of Adagrad extends the maximum number of model replicas that can productively work
simultaneously, and combined with a practice of “warmstarting”™ model training with only a single
model replica before unleashing the other replicas, it has virtually eliminated stability concerns in
training deep networks using Downpour SGD (see results in Section 3).
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Adaptive learning rate for each separate parameter can increase the stability of the model training.
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Data parallelism — Sandblaster L-BGFS

Sandblaster optimization based on L-BGFS

A key idea in Sandblaster is distributed parameter storage and manipulation. The core of the opti-
mization algorithm (e.g L-BFGS) resides in a coordinator process (Figure 2), which does not have
direct access to the model parameters. Instead. the coordinator issues commands drawn from a
small set of operations (e.g.. dot product. scaling, coefficient-wise addition, multiplication) that can
be performed by each parameter server shard independently, with the results being stored locally
on the same shard. Additional information, e.g the history cache for L-BFGS, 1s also stored on the
parameter server shard on which it was computed. This allows running large models (billions of
parameters) without incurring the overhead of sending all the parameters and gradients to a single
central server. (See the Appendix for pseudocode.)

In typical parallelized implementations of L-BFGS, data is distributed to many machines and each
machine is responsible for computing the gradient on a specific subset of data examples. The gra-
dients are sent back to a central server (or aggregated via a tree [16]). Many such methods wait for
the slowest machine, and therefore do not scale well to large shared clusters. To account for this
problem, we employ the following load balancing scheme: The coordinator assigns each of the N
model replicas a small portion of work, much smaller than 1/Nth of the total size of a batch, and
assigns replicas new portions whenever they are free. With this approach, faster model replicas do
more work than slower replicas. To further manage slow model replicas at the end of a batch, the
coordinator schedules multiple copies of the outstanding portions and uses the result from whichever
model replica finishes first. This scheme is similar to the use of “backup tasks™ in the MapReduce
framework [24]. Prefetching of data, along with supporting data affinity by assigning sequential

portions of data to the same worker makes data access a non-issue. In contrast with Downpour
SGD. which requires relatively high frequency, high bandwidth parameter synchronization with the
parameter server, Sandblaster workers only fetch parameters at the beginning of each batch (when
they have been updated by the coordinator), and only send the gradients every few completed por-
tions (to protect against replica failures and restarts).

Parameter Server

Coordinator
(small messages)

D%éf\\u\,\\

Model DD
eallasfiss

Data

Algorithm 7.2: SANDBLASTERLBFGS()

procedure REPLICA.PROCESSPORTION (portion)
if (\hasParametersForStep)
then parameters +— GETPARAMETERSFROMPARAMSERVER()
data < GETDATAPORTION (portion)
gradient < COMPUTEGRADIENT(parameters, data)
local AccruedGradients + local AceruedGradients + gradient

procedure PARAMETERSERVER.PERFORMOPERATION (operation)
Per formQOperation

main
step + 0
while true
( comment: PS: ParameterServer

PS.aceruedgradients «+ 0
while (batchProcessed < batchSize)
for all (model Replicas)comment: Loop is parallel and asynchronous

if (model Replica Available)
then REPLICA.PROCESSPORTION(model Replica)
do batch Processed < batchProcessed + portion
if (model ReplicaW orkDone and timeT oSendGradients)

SENDGRADIENTS(model Replica)

PS.accruedGradients «— PS.accruedGradients + gradient
CoMPUTELBFGSDIRECTION(PS.Gradients, PS.History, PS.Direction)
LINESEARCH(PS. Parameters, PS.Direction)
PS.UPDATEPARAMETERS(PS.parameters, PS.accruedGradients)

| step + step + 1

do

then




Experiments — Models

= Experimental models — Speech Recognition
=  Speech Recognition Task
=  Time series audio signals
=  Central region: Find a region where meaningful audio exist
=  What kind of region contains the meaning? S i RN T I Y

containing the surrogate

bl 4L ud

hello John how are you good bye Mike
(surrogate)

The speech recognition task was to classify the central region (or frame) in a short snippet of audio as
one of several thousand acoustic states. We used a deep network with five layers: four hidden layer
with sigmoidal activations and 2560 nodes each, and a softmax output layer with 8192 nodes. The
input representation was 11 consecutive overlapping 25 ms frames of speech, each represented by
40 log-energy values. The network was fully-connected layer-to-layer, for a total of approximately
42 million model parameters. We trained on a data set of 1.1 billion weakly labeled examples,
and evaluated on a hold out test set. See [28] for similar deep network configurations and training Figure 3: Audio generation by splicing original speech and
procedures. snippets from the corpus.

hello Mike how are you
spliced audio
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Results — Model Parallelism

* Model parallelism benchmarks
=  Metric: Tr. time for single machine / Tr. Time for Multiple machines.

=  Moderately sized model (speech)
=  2.2x faster @ 8 machines
=  Network overhead, less work per machine issues

=  Larger model (speech)
= 12x faster @ 81 machines
=  Continues increasing as more model implemented

15
== Speech: 42M parameters
= & =Images: 80M parameters
Images: 330M parameters
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Figure 3: Training speed-up for four different deep networks as a function of machines allocated
to a single DistBelief model instance. Models with more parameters benefit more from the use of
additional machines than do models with fewer parameters.



Results — Data Parallelism (1/2)

= Optimization method comparison (Speech model)
=  [Goal] Obtain the maximum test set acc. In the minimum tr. Time, regardless of resource req.
=  Sandblaster L-BFGS, Downpour SGD w. Adagrad can faster than GPU based processing.

Accuracy on Training Set Accuracy on Test Set

25 25
& = %
— 20} L —
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o st —£—SGD [1] Q st/ —6—DownpourSGD [20] H
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—&— Sandblaster L-BFGS [2000] —o—Sandblaster L-BFGS [2000]
% 20 0 &0 80 100 120 0 20 0 60 80 100 120
Time (hours) Time (hours)

Figure 4: Left: Training accuracy (on a portion of the training set) for different optimization meth-
ods. Right: Classification accuracy on the hold out test set as a function of training time. Downpour
and Sandblaster experiments initialized using the same ~ 10 hour warmstart of simple SGD.




Results — Data Parallelism (2/2)

Optimization method comparison (Speech model)

=  For comparison to a fixed resource budget. (Trade-off : Resource vs Performance) @ 16% test acc.
=  Downpour SGD w. Adagrad

= Takes less time and Fewer resources
= Sandblaster L-BFGS

Promising the fastest training time if the computing resources are enough.

Time to 16% accuracy

Time to 16% accuracy
80 T T T T T 80 I T T
: -8-Downpour SGD I I =8=Downpour SGD
Glf‘ : -B- Downpour SGD w/Adagrad @l' : - B- Downpour SGD w/Adagrad
O Sandblaster L-BFGS I FL PR : Sandblaster L-BFGS
: ; v GPU ' ; v GPU (CUDA cores)
oy |V
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\ v 5
B-p O
10 ; ; ; ; ; 10 ; ; ; i ;
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Figure 5: Time to reach a fixed accuracy (16%) for different optimization strategies as a function of
number of the machines (left) and cores (right).



Conclusion

6 Conclusions

In this paper we introduced DistBelief, a framework for parallel distributed training of deep net-
works. Within this framework, we discovered several effective distributed optimization strategies.
We found that Downpour SGD, a highly asynchronous variant of SGD works surprisingly well for
training nonconvex deep learning models. Sandblaster L-BFGS, a distributed implementation of
L-BEGS, can be competitive with SGD, and its more efficient use of network bandwidth enables it
to scale to a larger number of concurrent cores for training a single model. That said, the combi-
nation of Downpour SGD with the Adagrad adaptive learning rate procedure emerges as the clearly
dominant method when working with a computational budget of 2000 CPU cores or less.

Adagrad was not originally designed to be used with asynchronous SGD, and neither method is
typically applied to nonconvex problems. It is surprising, therefore, that they work so well together,
and on highly nonlinear deep networks. We conjecture that Adagrad automatically stabilizes volatile
parameters in the face of the flurry of asynchronous updates, and naturally adjusts learning rates to
the demands of different layers in the deep network.

Our experiments show that our new large-scale training methods can use a cluster of machines to
train even modestly sized deep networks significantly faster than a GPU, and without the GPU’s
limitation on the maximum size of the model. To demonsirate the value of being able to train larger
models, we have trained a model with over 1 billion parameters to achieve better than state-of-the-art
performance on the ImageNet object recognition challenge.
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We consider the oration paper for starting
the research of decentralized Al

= Data/ Model parallelism
*  The most important thing 1s
= How efficiently construct the
parallelized model architecture?
= [fpossible, then it can override the
performance of single shallow
networks.

Q) (In Decentralized RFF) Distributed
models are different. — Multi-agent cases?

=  Future works — Try to implement the
model parallelism for a decentralized
RFF system.
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