
Thesis for Master’s Degree

Research and application for digital signature

algorithms in blockchain with quantum resistance

Hyeong-Ju Kim

School of Electrical Engineering and Computer Science

Gwangju Institute of Science and Technology

2024

석사학위논문

양자내성을 지닌 블록체인 전자서명 알고리즘

연구와 응용

김형주

전 기 전 자 컴 퓨 터 공 학 부

광 주 과 학 기 술 원

2024

Research and application for digital signature
algorithms in blockchain with quantum resistance

Advisor: Heung-No Lee

by

Hyeong-Ju Kim

School of Electrical Engineering and Computer Science

Gwangju Institute of Science and Technology

A thesis submitted to the faculty of the Gwangju Institute of Science

and Technology in partial fulfillment of the requirements for the degree of

Master of Science in the School of Electrical Engineering and Computer

Science

Gwangju, Republic of Korea

Dec 11, 2023

Approved by

Professor Heung-No Lee

Committee Chair

Research and application for digital signature

algorithms in blockchain with quantum resistance

Hyeong-Ju Kim

Accepted in partial fulfillment of the requirements for

the degree of Master of Science

Dec 11, 2023

Committee Chair

Prof. Heung-No Lee

Committee Member

Prof. Eui-Seok Hwang

Committee Member

Prof. Sun-beom So

MS/EC
20211186

Hyeong-Ju Kim. Research and application for digital signature algorithms
in blockchain with quantum resistance. School of Electrical Engineering
and Computer Science. 2024. 33p. Advisor: Prof. Heung-No Lee.

Abstract

In recent times, blockchain has garnered attention from various entities such as

businesses, institutions, and organizations, all of which emphasize decentralization.

Blockchain is a distributed computing technology heavily reliant on cryptography, en-

abling users to generate and validate blocks on an equal footing without the intervention

of a central server. Each user utilizes their cryptographic key as an ID for this pur-

pose. Due to these characteristics, cryptographic security holds significant importance

in blockchain. Unfortunately, the electronic signature technology currently employed

for transaction generation in blockchain is susceptible to the easy compromise of pri-

vate keys through quantum computing algorithms. Consequently, there is a need for

research on cryptographic systems secure against quantum computers. This paper in-

troduces the application of post-quantum electronic signature algorithms in blockchain

consensus protocols to address this issue.

©2024

Hyeong-Ju Kim

ALL RIGHTS RESERVED

– i –

MS/EC
20211186

김형주.양자내성을지닌블록체인전자서명알고리즘연구와응용.전기전
자컴퓨터공학부. 2024. 33p. 지도교수: 이 흥 노.

국 문 요 약

블록체인은 탈중앙성을 지향하는 여러 기업, 기관, 단체, 등의 주목을 받고 있다.

블록체인은 암호학에 크게 의존하는 분산 컴퓨팅 기술로, 중앙 서버의 개입 없이 모

든 사용자는 각자의 암호키를 ID로 하여 동등한 자격으로 블록을 생성하고 검증할 수

있게 한다. 이러한 이유로 블록체인에서 암호 안전성은 상당히 중요하게 여겨진다. 하

지만 현재 블록체인에서 트랜잭션을 발생할 때 사용되는 전자서명 기술은 양자컴퓨팅

알고리즘으로 비밀키를 쉽게 탈취하는 것이 가능하다. 따라서 양자컴퓨터에도 안전한

암호시스템에 대한 연구가 필요하며, 이 논문에서는 양자 후 전자서명 알고리즘과 함께

이를 블록체인 합의 프로토콜에서의 응용한 내용을 소개할 것이다.

©2024

김 형 주

ALL RIGHTS RESERVED

– ii –

Contents

Abstract (English) i

Abstract (Korean) ii

List of Contents iii

List of Figures iv

List of Algorithms v

1 Introduction 1

1.1 Blockchain and consensus algorithms 1

1.2 Error Correction Code Proof-of-Work 2

1.3 Verifiable Random Functions . 3

2 Background 5

2.1 Digital Signature algorithms . 5

2.2 Quantum computer and Shor’s algorithm 6

2.3 Lattice-based Cryptography . 8

2.3.1 Definition of lattice . 8

2.3.2 Hard lattice problems . 10

2.3.3 NTRU lattice . 11

3 Post-Quantum Digital signatures 13

3.1 DURANDAL . 13

3.2 DILITHIUM . 16

3.3 FALCON . 19

4 Application to Blockchain 22

4.1 Proposed method . 22

4.2 Experiment and Result . 27

4.3 Conclusion . 28

References 31

Acknowledgements 34

– iii –

List of Figures

1.1 VRF-based sortition mechanism. 4

2.1 Shor’s algorithm . 7

2.2 Period of function f(x) = 5x mod 77. 8

4.1 Green consensus process. 23

4.2 Threshold that selects 10% on average. 27

4.3 Defining probabilities of ECCPoW(left) and VCT(right). 28

4.4 Measure the amount of elctricity used when generating block. 28

4.5 Test code for experiment. 29

4.6 Cumulative electricity consumption. 29

– iv –

List of Algorithms

1 ECCPoW . 3

2 DURANDAL Initialization . 14

3 DURANDAL Key generation . 14

4 DURANDAL Sign . 15

5 DURANDAL Verification . 16

6 Dilithium Key Generation . 17

7 Dilithium Sign . 18

8 UseHint . 19

9 Dilithium Verification . 19

10 FALCON Key Generation . 20

11 FALCON Sign . 21

12 FALCON Verification . 21

13 Verifiable Coin Toss . 23

14 VCT verification . 24

– v –

Chapter 1

Introduction

1.1 Blockchain and consensus algorithms

Blockchain is a distributed ledger technology that stores and publicly shares data

in blocks. Each block forms an immutable, tamper-proof chain structure by including

information about the hash value of the previous block. Blockchains utilize predeter-

mined consensus algorithms for block generation, ensuring an unforgeable connected

structure. The most well-known consensus algorithm, introduced in the 2008 Satoshi

Nakamoto paper[1], is Proof-of-Work (PoW). Also known as mining, this algorithm

employs hash functions like SHA-256 and involves continuously changing the nonce

until a hash value meeting specific conditions is found. PoW has several issues, and

this paper will primarily address the following two:

• Energy consumption. Nodes that generate blocks using PoW receive agreed-

upon tokens. Consequently, users worldwide compete using computing resources,

resulting in a significant amount of energy being consumed for blockchain min-

ing. According to CBECI statistics, the energy consumption for Bitcoin mining

in 2022 was approximately 107TWh[2], comparable to the annual electricity con-

sumption of New York City.

• Centralization due to specialized equipment. The computational structure

– 1 –

of changing the nonce while performing the hash algorithm can be specialized

through Application-Specific Integrated Circuits (ASICs). Nodes equipped with

ASICs can find answers much faster than GPUs used by regular nodes. Conse-

quently, block generation opportunities become concentrated around nodes that

own large quantities of ASICs, undermining the decentralization, a crucial char-

acteristic of blockchain.

The subsequent sections of this chapter will discuss technologies related to resolving

these two issues.

1.2 Error Correction Code Proof-of-Work

In the year 2020, HN Lee et al. introduced the Error Correction Code Proof-of-Work

(ECCPoW) consensus algorithm in their paper[3] to address the issue of blockchain cen-

tralization caused by ASIC devices. Unlike traditional Proof-of-Work (PoW) puzzles

that involve simple hash calculations, ECCPoW is an algorithm that solves puzzles

based on coding theory, making it challenging to design ASICs for. In each block gen-

eration step, a new Low-Density Parity Check (LDPC) matrix is randomly generated,

and mining nodes perform the task of finding a hash vector decodable against the same

LDPC matrix. As a result, they output a codeword corresponding to the nonce of PoW

as proof of work.

– 2 –

Algorithm 1: ECCPoW

Data: a previous block header pbh
Result: (success, codeword)

1 h← Hash(pbh);
2 Construct a parity check matrix using h;
3 while True do
4 Generate a random nonce;
5 Create a hash vector using the nonce;
6 Check if the hash vector can be decoded using the parity check matrix;
7 if Decoding is successful then
8 return (success, codeword);
9 break;

1.3 Verifiable Random Functions

Verifiable Random Functions (VRFs) are cryptographic concepts that generate ran-

dom numbers while simultaneously providing verifiable evidence of the correct genera-

tion. This technology has been researched in the field of cryptography for a long time.

Silvio Micali has made significant contributions to the advancement of VRFs and ap-

plied the cryptographic primitive of VRF to blockchain, developing a consensus node

selection algorithm through a lottery[4]. The mechanism applied to the blockchain con-

sensus lottery system is illustrated in Figure 1.1. The proof generation and verification

of VRF involve the concept of digital signatures and can be summarized very simply

as follows:

1. Key Generation: Generate a secret key and a public key, typically using el-

liptic curve-based cryptographic techniques like Elliptic Curve Digital Signature

Algorithm (ECDSA).

2. Proof Generation: Use the secret key to encrypt a randomly chosen digest to

– 3 –

create the proof.

3. Random Number Generation: Input the proof into a hash function to gen-

erate a random number.

4. Verification: Decrypt the proof with the public key and compare the hashed

value with the generated random number.

Figure 1.1: VRF-based sortition mechanism.

– 4 –

Chapter 2

Background

2.1 Digital Signature algorithms

Digital signatures involve signing a message using a private key and verifying it with

a public key. This concept evolved from the public-key distribution scheme introduced

in the 1976 paper by Diffie and Hellman[5]. At that time, the Diffie-Hellman proto-

col was based on the Discrete Logarithm Problem (DLP). In 1977, Rivest, Shamir,

and Adleman (RSA) introduced digital signature technology based on the difficulty

of factoring large integers[6]. This protocol is still widely used on the internet today.

Summarizing the process of signing with RSA, note that the practical RSA is much

more complex for security reasons:

Key Generation:

1. Choose two large random primes p and q to create public and private keys, set

N = pq, and ϕ = (p− 1)(q − 1).

2. Choose an arbitrary e that is smaller than ϕ and coprime to ϕ.

3. Calculate the value of d such that (e · d) mod ϕ = 1.

4. Return public key = (N, e) and secret key = (N, d).

Signing (a message M , secret key):

– 5 –

1. Hash the message using an algorithm like SHA-256: M ← Hash(M).

2. Encrypt the hashed message using the secret key to create the signature: sig = Md

mod N .

Verification (a message M , a signature sig, public key):

1. Hash the message using an algorithm like SHA-256: M ← Hash(M).

2. Decrypt the signature using the public key to calculate M ′: M ′ = sige mod N .

3. Compare M and M ′, return True if they are equal, and False otherwise.

In 1985, Neal Koblitz and Victor S. Miller introduced Elliptic Curve Cryptography

(ECC) in their paper[7]. ECC provides better efficiency and security than RSA and is

widely used in modern security protocols such as blockchain. Security in ECC is based

on the difficulty of the DLP when given two points P and Q on an elliptic curve over

a finite field, where Q = nP . Generally, for a publicly known Generator point G, the

private key is an arbitrary integer n, and the public key is nG. Signatures are derived

from coordinates associated with a randomly generated point from G.

2.2 Quantum computer and Shor’s algorithm

Classical computers represent information using bits, which are states with voltage

and ground representing 0 and 1. However, quantum computers, which are gaining

attention as the next generation of computers, utilize quantum mechanical proper-

ties such as superposition and entanglement to have multiple states known as Qubits.

– 6 –

Quantum computers can perform parallel processing of operations using the superpo-

sition of input values. According to the algorithm proposed by Peter Shor in 1994[8],

cryptographic algorithms based on the current Diffie-Hellman problem (DLP) and the

difficulty of integer factorization become vulnerable.

Figure 2.1: Shor’s algorithm

For example, Let’s consider the factorization of 77 composed of two prime numbers,

7 and 11, using Shor’s algorithm. First, choose an arbitrary number, let’s say 5, smaller

than 77. If, by good fortune, the greatest common divisor with 77 is not 1, we have

immediately found a prime factor. Next step is to find the period of the function

f(x) = 5x mod 77 (See figure 2.2).

The essence of Shor’s algorithm lies in finding the period of the function, which can

be efficiently achieved using the Quantum Fourier Transform(QFT). Other calculations,

such as finding greatest common divisors, can be efficiently performed by classical

– 7 –

Figure 2.2: Period of function f(x) = 5x mod 77.

computers. In the example, the period is 30, and by calculating the greatest common

divisor of 77 and 515+1, we can confirm the desired prime factor 7.In this way, current

cryptographic systems with periodicity can have their secret keys efficiently discovered

within polynomial time by quantum computer algorithms.

The subsequent content will introduce Post-Quantum Cryptography, which is re-

silient to quantum computers.

2.3 Lattice-based Cryptography

2.3.1 Definition of lattice

A lattice is a set of points defined in an n-dimensional Euclidean space, forming

a periodic structure. Since problems defined using lattices cannot be efficiently solved

in polynomial time by quantum computers as well as classical computers, they are

considered a promising scheme for next-generation cryptography. Mathematically, it is

– 8 –

defined as follows.

Lattice. Let b = b1, · · · ,bn ∈ Rn be a n linearly independent basis vectors, then the

set of all integer combination of b is called lattice in n-dimensional Euclidean space.[9]

L(b1, · · · ,bn) =

{
m∑
i=1

xibi : xi ∈ Z

}

Alternatively, if we represent the basis in matrix B = [b1, · · · ,bn] ∈ Rn×n then the

lattice can be defined as,

L(B) = {Bx : x ∈ Zn}

Most lattice-based cryptography has a structure using a q-ary lattice.

q-ary lattice. Given integers q,m, n, let a matrix A ∈ Zn×m
q . Λq(A) denotes q-ary

lattice if lattice L satisfying qZn ⊆ L ⊆ Zn for some integer q. There exist two definition

of m-dimensional q-ary lattices,

Λq(A) =
{
y ∈ Zm : y = AT s mod q for some s ∈ Zn

}
Λ⊥

q (A) = {y ∈ Zm : Ay = 0 mod q} .

The first lattice Λq(A) corresponds to the linear code generated by the rows of A, the

second lattice Λ⊥
q (A) corresponds to the linear code whose parity check matrix is A.

Taking a step further, when defining the dual lattice as follows,

– 9 –

Dual lattice. Given an arbitrary lattice L, the dual lattice, denoted L∗ is defined as,

L∗ = {x ∈ Rn : ∀v ∈ L, ⟨x ,v ⟩ ∈ Z}

It is easy to see that the above two q-ary lattices are dual to each other, namely

Λq(A) = q · Λ⊥
q (A)∗ and Λ⊥

q (A) = q · Λq(A)∗. Now Let’s see hardness problems based

on lattice.

2.3.2 Hard lattice problems

The beginning of lattice-based cryptography can be traced to the seminal work of

Ajtai in 1996[10]. Ajtai demonstrated that the Shortest Vector Problem problem was

NP-hard and he introduced a one-way hash function based on Short Integer Solutions

problem. Subsequently, in 2005, Oded Regev introduced a new cryptographic system

by presenting the lattice-based Learning With Errors(LWE) problem in his paper[11].

The LWE problem has been shown to be as hard as the worst-case lattice problem.

Shortest Vector Problem(SVP). Let λ1(L) be a minimum distance of a lattice L

i.e., λ1(L) := minv∈L ∥v∥. Then the SVP is to find a nonzero lattice vector v ∈ L such

that ∥v∥ = λ1(L)

Closest Vector Problem(CVP). Given a lattice L generated by basis B and given

a target vector t ∈ span(B), t is not necessarily in L. Then the CVP is to find the

vector v ∈ L closest to t, minimizing the ∥v − t∥.

Short Integer Solution(SIS). Given n-dimensional vectors A = a1, a2, · · · , am ∈

– 10 –

Zn
q in modulo q. SIS problem is to find nontrivial small vectors z = z1, z2, · · · , zm ∈ Z

such that Az = 0 mod q. i.e.,

z1a1 + z2a2 + · · ·+ zmam = 0

This can be represented in lattice context as follows,

L⊥(A) = {z ∈ Zm : Az = 0 mod q}

Learning With Errors(LWE). Given a (secret) fixed vector s ∈ Zn
q and randomly

chosen vectors a in Zn
q . Let e ∈ Zq be a random error vectors selected from distribution

χ, then we set b = ⟨s, a⟩+ e. There are two versions of LWE problems.

Search LWE : For m independent LWE samples (a1, bi), (a2, b2), · · · , (am, bm), the

problem is to find s with given LWE samples.

Decision LWE : Let As,χ denote the LWE distribution over Zn
q ×Zq. The problem is

to distinguish LWE distribution As,χ from uniform distribution.

2.3.3 NTRU lattice

NTRU was first studied as a public key cryptosystem by Jeffrey Hoffstein et al., in

1996[12]. Later, a digital signature algorithm using NTRU, was studied in 2003[13].

Let the polynomial ring R = Z[x]/(XN − 1) of degree less than N . Define R-

module set such that Mh,q = {(u, v) ∈ R2|v ≡ u ∗ h mod q} for q ∈ Z, h ∈ R. The set

of R-module Mh,q becomes a full-rank NTRU lattice of Z2N .

– 11 –

For f, g ∈ R, if we set h = g ∗ f−1 mod q so that (f, g) ∈ Mh,q, then one of the

R-basis for generating this NTRU lattice is the bad basis Ah,q =

 −h In

qIn On

, which
typically have large coefficients. It will be used as the public key.

And if we find F and G that satisfy the NTRU equation f ∗G− g ∗F = q, then the

other R-basis become good basis(short basis) Bf,g =

 g −f

G −F

, and it will be used

as a secret key. These two R-basis Ah,q and Bf,g generate the same NTRU lattice Mh,q.

Notice that, each polynomial can be defined in anticirculant matrix form as follows.

Mf =

f0 f1 f2 . . . fN−1

−fN−1 f0 f1 . . . fN−2

...
...

...
. . .

...

−f1 −f2 −f3 . . . f0

Therefore, each NTRU basis becomes a 2N by 2N matrix, and the matrix for the

multiplication of two polynomials(i.e., M(f∗g mod q)) is given by MfMg.

R-module. Let R be a ring and M be an abelian group under addition. R-module

is a set equipped with two operations: addition and scalar multiplication operation

associates each element of the R with an operation on the elements of the M.

R×M 7→M

– 12 –

Chapter 3

Post-Quantum Digital signatures

3.1 DURANDAL

In 2009, V. Lyubashevsky introduced a scheme that combines Schnorr’s signature[14]

with lattice context in his paper [15]. This concept is based on the Proof of Knowledge

cryptography, prooving the knowledge of a vector with small weight associated to a

given syndrome. It involves using a random public matrix H and the secret matrix S of

small weight vectors. The signature is a proof of knowledge of the small weight matrix

S based on a sparse challenge c. The signature itself takes the form of z = y+cS, where

y is a random vector with a moderate weight, typically much higher than the weights

of cS. The proof of knowledge relies on the fact that the verifier can be convinced of

the prover’s knowledge of the secret matrix S through the use of cS in the signature.

Nicolas Aragon et al. presented a variation of V. Lyubashevsky’s approach, intro-

ducing an digital signature scheme based on rank metric in their paper Durandal[16].

In DURANDAL, they proposed an efficient way to randomize a signature in a rank

metric context by extending the number of small weight secret vectors and adding

another secret matrix S ′. The signature is represented as z = y + cS + pS ′, where p

contributes to the extra randomization. This approach relaxes the conditions for the

prover and enables the derivation of a randomized signature. DURANDAL is proofed

– 13 –

in the EUF-CMA security model, reducing security to Rank Support Learning(RSL)

problem. The following are definition of RSL problem and an algorithm that summa-

rizes DURANDAL’s signature scheme.

Rank Syndrome Decoding(RSD) problem. Given a full-rank parity-check ma-

trix H ∈ F(n−k)×n
qm of [n, k] linear code, vector s ∈ F(n−k)

qm and integer r. It is hard to

find a syndrome vector e ∈ Fn
qm such that ∥e∥ = r and HeT = sT .

Rank Support Learning (RSL) problem.[17] Let H be an (n − k) × n random

full-rank matrix over Fqm . Let O be an oracle which gives exactly N samples

(HsT1 , HsT2 , . . . , HsTN) where vector si is randomly chosen from random subspace E of

Fqm . The RSL problem is to recover E given only access to the oracle. The correspond-

ing decisional problem is to distinguish the pair (H,Hsi) from the pair (H,Y) where

Y is randomly chosen from F(n−k)×N
qm .

Algorithm 2: DURANDAL Initialization

1 choose a random subspace E of dimension r of Fm
q ;

2 choose a random subspace W of dimension w of Fm
q ;

3 choose a random subspace F of dimension d of Fm
q ;

4 choose a filtered subspace U of dimension rd− λ of EF ;

For filtered subspace U , it is to prevent recovering the E space through LDPC

decoding[18], and it is recommended to see [16] for more details.

Algorithm 3: DURANDAL Key generation

Data: -
Result: a public key pk, a secret key sk

1 choose an (n− k)× n ideal double circulant matrix H;
2 sample l, l′ vectors si, s

′
i respectively from the same support E;

3 ti ← Hsi
T and t′i ← Hs′i

T ;
4 pk ← (H,T = {t1, t2, · · · , tl}, T ′ = {t′1, t′2, · · · , t′l′})

sk ← (S = {s1, s2, · · · , sl}, S ′ = {s′1, s′2, · · · , s′l′});
5 return (pk, sk)

– 14 –

The definition of ideal double circulant codes that appears in the key generation

step is as follows.

Ideal double circulant codes. Let P (X) ∈ Fq[X] be a irreducible polynomial of

degree n and the vector g1, g2 ∈ Fn
qm . In the generator matrix G = [A|B], we define

[2n, n]qm linear code C as ideal double circulant codes, If circulant matrices A and B

are,

A =

g10 +Xg11 + · · ·+Xn−1g1(n−1) mod P

Xg10 +X2g11 + · · ·+Xng1(n−1) mod P

...

Xn−1g10 +Xng11 + · · ·+X2n−2g1(n−1) mod P

B =

g20 +Xg21 + · · ·+Xn−1g2(n−1) mod P

Xg20 +X2g21 + · · ·+Xng2(n−1) mod P

...

Xn−1g20 +Xng21 + · · ·+X2n−2g2(n−1) mod P

and we have C =

{
(xg1, xg2 mod P), x ∈ Fn

qm

}
. If g1 is invertible so that g = g−1

1 g2 mod

P , it can be expressed as C =
{
(x, xg), x ∈ Fn

qm

}
.

Algorithm 4: DURANDAL Sign

Data: a message m, a secret key sk
Result: a signature σ = (z, F, c, p)

1 set x = HyT where y ∈ (W + EF)n;

2 set c = H(x, F,m) ∈ F l′k;
3 through linear algebra, compute p ∈ F ensuring the rank of sum y + cS ′ + pS

is at most w + rd− λ;
4 z ← y + cS ′ + pS;
5 return σ = (z, F, c, p)

– 15 –

Algorithm 5: DURANDAL Verification

Data: a signature (z, F, c, p), a message m, a public key pk
Result: True or False

1 if ∥zv∥ > rd+ w − λ then
2 return False;
3 else
4 if H(HzT − T ′cT + TpT , F,m) ̸= c then
5 return False;

6 return True;

3.2 DILITHIUM

Dilithium[19] is currently the most promising candidate among NIST post-quantum

secure digital signature algorithms. Dilithium is based on the problem of finding short

vectors in lattices and employs the Fiat-Shamir with Aborts Framework[15].

In the key generation phase, start by generating 256-bit random seeds ρ and ρ′.

Then, use ρ to create matrix A with the ExpandA expansion function, and use ρ′ to

generate the secret key s1, s2 with coefficients uniformly distributed between −η and η

using the ExpandA function. The ExpandA function is a bit-string function that can

extend the output to the desired length. For instance, y ∈ R := ExpandA(x) represent

a value with a uniform distribution in the set R for input x.

ExpandA : seed ρ 7→ matrix A

Next, calculate t = As1 + s2 and use it to compute t1 with the Power2Round function.

Power2Round is a function that partitions elements of the set.

(r mod +q)− (r mod ±2d)← Power2Roundq(r, d)

– 16 –

Finally, the public key is pk = (ρ, t1), and the secret key is sk = (ρ, s1, s2, t).

Algorithm 6: Dilithium Key Generation

Data: -
Result: a public key pk, a secret key sk

1 ρ, ρ′ ← 0, 1256;
2 A ∈ Rk×l

q := ExpandA(ρ);

3 (s1, s2) ∈ Sl
η × Sk

η := ExpandA(ρ′);

4 t := As1 + s2;
5 t1 := Power2Roundq(t, d);
6 pk ← (ρ, t1);
7 sk ← (ρ, s1, s2, t);
8 return (pk, sk)

In the signing phase, the secret key t is split into t1 and t0 using the Power2Round

function. Then, a 256-bit random seed r is generated to sample y, a set of coefficients

with set Sγ1−1, using the ExpandA function. Subsequently, calculate w = Ay and com-

pute w1 using the HighBits function.

The HighBits(w, α) function, for w := w mod +q and w0 := w mod ±α, returns

0 if w − w0 = q − 1 otherwise, it returns (w − w0)/α. In a similar context, the

Decompose(w, α) function returns (0, w0 − 1) if w − w0 = q − 1 and (w − w0/α,w0)

otherwise.

HighBits(w, α) =

0, if w − w0 = q − 1

(w − w0)/α, otherwise

Decompose(w, α) =

(0, w0 − 1), if w − w0 = q − 1

(w − w0/α,w0), otherwise

Next, use a hash function to compute c = H(ρ, t1, w1, µ) and then use it to calculate

z := y + cs1. Compute (r1, r0) using the Decompose function. Repeat this process by

changing the seed r until r0, r1 and z satisfy specific conditions.

– 17 –

Finally, compute h using the MakeHint function, and if ct0 and h satisfy certain

conditions, return the signature σ := (z, h, c). The MakeHint(z, r, α) function gener-

ates a 1-bit hint to derive HighBits(r + z, α) from given parameters. It returns 0 if

HighBits(r, α) equals HighBits(r + z, α) and 1 otherwise.

MakeHint(z, r, α) =

0, if HighBits(r, α) == HighBits(r + z, α)

1, otherwise

Algorithm 7: Dilithium Sign

Data: a message m, a secret key sk
Result: a signature sig

1 A ∈ Rk×l
q := ExpandA(ρ);

2 t1 := Power2Roundq(t, d);
3 t0 := t− t1 · 2d;
4 while ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β or r1 ̸= w1 do
5 r ← 0, 1256;
6 y ∈ Sl

γ1−1 := ExpandA(r);

7 w := Ay;
8 w1 := HighBitsq(w, 2γ2);

9 c := H(ρ, t1, w1,m);
10 z := y + cs1;
11 (r1, r0) := Decomposeq(w − cs2, 2γ2);

12 h := MakeHintq(−ct0, w − cs2 + ct0, 2γ2);
13 if ∥ct0∥∞ ≥ γ2 or the number of 1’s in h is greater than ω then
14 go to 4

15 σ ← (z, h, c);
16 return σ

In the verification phase, use the UseHint function, which restores HighBits(r+z, α)
from the h, to verify whether the specific conditions from the signing phase are satisfied.

– 18 –

Algorithm 8: UseHint

Data: y, r, α
Result: (r1 + 1) mod +m or (r1 − 1) mod +m or r1

1 m← (q − 1)/α;
2 (r1, r0)← Decompose(r, α);
3 if y = 1 and r0 > 0 then
4 return (r1 + 1) mod +m
5 else
6 if y = 1 and r0 ≤ 0 then
7 return (r1 − 1) mod +m

8 return r1

Algorithm 9: Dilithium Verification

Data: a message m, a signature σ, a public key pk
Result: True or False

1 A := ExpandA(ρ);
2 w1 := UseHint(h,Az − ct1 · 2d, 2γ2);
3 t0 := t− t1 · 2d;
4 if c = H(ρ, t1, w1,m) and ∥z∥∞ < γ1 − β and the number of 1’s in h is ≤ ω

then
5 return True
6 else
7 return False

Recommended parameters :

q = 8380417, d = 14, γ1 = 523776, γ2 = 261888, k = 5, l = 4, η = 5, β = 235, w = 96.

3.3 FALCON

FALCON(FAst Fourier Lattice-based COmpact signatures over NTRU) is a post-

quantum scheme designed to provide secure digital signatures for which there is cur-

rently no algorithm that can be efficiently attacked by quantum computers. FAL-

CON is based on lattice-based cryptography. For compactness, it relies on the NTRU

lattices[12] which involves finding a short vector in a certain lattice defined over poly-

nomial rings, reducing the key size to O(n) and speeding up computations. Moreover,

– 19 –

FFT is used for efficient polynomial multiplication. FALCON is known for its compet-

itive performance in terms of speed and signature size, making it suitable for use in

blockchains.

In the key generation phase, two crucial calculations are performed. The first entails

solving the NTRU equations, resulting in the creation of the public key pk and private

key sk used for verification and signing. The second calculation involves generating

a tree structure from the derived private key information. This tree is a fundamental

element for the randomness of signature values, ensuring the security of the FALCON

algorithm.

Algorithm 10: FALCON Key Generation

Data: -
Result: a public key pk, a secret key sk

1 compute polynomial f, g, F,G ∈ Z[x]/(ϕ) that satisfies the NTRU equation
fG− gF = q mod ϕ;

2 h← gf−1 mod q;

3 pk ←
[
−h In
qIn On

]
;

4 B ←
[

g −f
G −F

]
;

5 B̂ ← FFT(B);

6 compute the FALCON Tree T from B̂;

7 sk ← (B̂, T);
8 return (pk, sk)

In the signing phase, a hash-and-sign signature scheme based on the GPV frame-

work is utilized. It computes the point c ∈ Zq[x]/ϕ corresponding to the hashed value

of the message with a random 320-bit salt. Subsequently, a preimage t = (t1, t2) satis-

fying t1 + t2h = c mod q is calculated, where t is not necessarily short. Next, a short

signature vector s = (s1, s2) is computed through a sampling process from the obtained

t. To ensure the secrecy of the private key during sampling, the tree generated in the

– 20 –

key generation phase is used. Finally, since s1 can be easily calculated from s2 and

public information, salt and s2 become the signature values.

Algorithm 11: FALCON Sign

Data: a message m, a secret key sk, a bound β
Result: a signature sig

1 Generate a 320bit random salt r ∈ {0, 1}320;
2 compute hash point c corresponding to concatenated string (r||m).

c = H(r||m, q, n);

3 t←
(
−1

q
FFT(c) · FFT(F), 1

q
FFT(c) · FFT(f)

)
;

4 while ∥s∥2 > β do
5 sample lattice point z around t using FALCON Tree;

6 s = (t− z)B̂;

7 compress s2 to a bitstring;
8 sig ← (r, encoded s2);
9 return sig

The process of compressing s2 and more detailed information about the FALCON

Tree can be found in the official FALCON documentation [20]. Verification involves

calculating s1 from the signature, message, and public key, and then checking whether

the norm of s = (s1, s2) is below a specific bound.

Algorithm 12: FALCON Verification

Data: a signature sig, a message m, a public key pk, a bound β
Result: True or False

1 (r, encoded s2)← sig;
2 compute hash point c corresponding to concatenated string (r||m);
3 s1 ← c− s2h mod q;
4 if ∥(s1, s2)∥2 ≤ β then
5 return True
6 else
7 return False

– 21 –

Chapter 4

Application to Blockchain

4.1 Proposed method

We explored VRF and several quantum-resistant digital signature technologies. The

VRF currently employed in blockchains such as Algorand utilizes elliptic curve cryp-

tography for digital signatures. This reliance on elliptic curve cryptography becomes a

security concern with the advancement of quantum computing, potentially leading to

serious incidents of compromise of private keys. Therefore, we intend to utilize FAL-

CON, a quantum-resistant digital signature technology validated by National Institute

of Standards and Technology(NIST), to create a Verifiable Coin Toss(VCT) function

akin to VRF. We will integrate this function with the ASIC-resistant consensus algo-

rithm ECCPoW to introduce an energy-efficient and fair consensus selection algorithm.

The reason for choosing FALCON is the necessity for an algorithm with a small signa-

ture size to compact the block size. The summary of our Green algorithm is depicted

in Figure 4.1.

PUBLIC KEY SIZE SIGNATURE SIZE
DILITHIUM5 2,592 bytes 4,595 bytes
FALCON-1024 1,793 bytes 1,280 bytes
SPHINCS+ 48 bytes 30,696 bytes

Table 4.1: Digital signature passed through NIST round 3

The output of FALCON is a vector with a small norm value. Leveraging the features

– 22 –

Figure 4.1: Green consensus process.

of FALCON, we can determine the Head and Tail of a coin toss function as follows.

Algorithm 13: Verifiable Coin Toss

Data: a previous block header pbh, a secret key sk, a bound β, a threshold τ
Result: a proof π, a Head or Tail

1 sig ← FALCON Sign(m, sk, β);
2 π ← sig;
3 s1 ← c− s2h mod q;
4 rn← ∥(s1, s2)∥2;
5 if val ≤ τ then
6 return (Head, π)
7 else
8 return (Tail, π)

This function is designed to randomly select a subset of nodes from the entire set of

nodes in the consensus algorithm, accompanied by outputting proof π to demonstrate

fairness. All nodes can use the proof and the verification algorithm below to verify the

– 23 –

correctness of the result of the VCT function.

Algorithm 14: VCT verification

Data: a previous block header pbh, a proof π, a public key pk, a bound β
Result: True or False

1 if FALCON Verification(π, pbh, pk, β) == True then
2 return True
3 else
4 return False

Additionally, the proportion of nodes selected by VCT among all nodes can be

adjusted as desired using the parameter τ .

Let’s calculate the parameter τ that adjusts the size of the consensus set. First

we need to calculate mean and variance of norm of signature∥(s1, s2)∥2. s1 and s2 are

n-degree polynomials, and ai and bi are independent and identically distributed(i.i.d.)

random variables.

s1 = a0 + a1X + · · ·+ a1023X
1023

s2 = b0 + b1X + · · ·+ b1023X
1023

Let’s denote the variance of each ai(and bi) as σ2, and let Y = (a20 + a21 + · · · +

a21023)+ (b20+ b21+ · · ·+ b21023). Then expected value and variance of Y can be calculated

as follows:

– 24 –

E[Y] = E[a20 + a21 + · · ·+ a21023 + b20 + b21 + · · ·+ b21023]

= E[a20] + E[a21] + · · ·+ E[a21023] + E[b20] + E[b21] + · · ·+ E[b21023]

= V ar[a0] + V ar[a1] + · · ·+ V ar[a1023] + V ar[b0] + V ar[b1] + · · ·+ V ar[b1023]

= 2 · 1024 · σ2

V ar[Y] = V ar[a20 + a21 + · · ·+ a21023 + b20 + b21 + · · ·+ b21023]

= V ar[a20] + V ar[a21] + · · ·+ V ar[a21023] + V ar[b20] + V ar[b21] + · · ·+ V ar[b21023]

= 2 · 1024 · V ar[a20]

= 2 · 1024 · (E[a40]− E[a20]
2)

∵ E[X4] =

∫ ∞

−∞
x4f(x)dx

=

∫ ∞

−∞

(
x4 · 1√

2πσ2
e−

(x−µ)2

2σ2

)
dx

= 3σ2

∫ ∞

−∞

(
x2 · 1√

2πσ2
e−

(x−µ)2

2σ2

)
dx

= 3σ2 · σ2 = 3σ4

= 2 · 1024 · (3σ4 − σ4)

= 4096 · σ4

By substituting 168.3886, which is specified in the FALCON document, as the

– 25 –

standard deviation σ for each coefficient, the mean and standard deviation for Y are,

E[Y] ≈ 58, 070, 468

std[Y] ≈ 1, 814, 702

Now the threshold τ can be calculated by the Inverse Cumulative Distribution

Function(Inverse CDF).

x = Q(p)

x is the value of the random variable, Q(p) is the Inverse CDF(or Quantile function)

for the probability value p. The Inverse CDF for a specific probability value p is calcu-

lated using the mean µ and standard deviation σ as follows,(erf−1 means Inverse Error

Function)

Q(p) = µ+ σ · erf−1(2p− 1)

We can compute the value of x = Q(p) by using mathematical tool(such as SciPy

library in Python).

p threshold
0.05 55,085,531
0.10 55,745,222
0.15 56,189,632
0.20 56,543,158
0.25 56,846,452
0.30 57,118,819

Table 4.2: Threshold that P(X ≤ threshold) = p

The following section is about the experiment, we will set the VCT parameter τ to

55,745,222. In other words, only 10% of the total nodes will execute ECCPoW.

– 26 –

Figure 4.2: Threshold that selects 10% on average.

4.2 Experiment and Result

We conducted experiments measuring the electricity consumption for generating

100 blocks using only the ECCPoW consensus algorithm and a combination of VCT

and ECCPoW. The parameters required for VCT, such as n, q, β, etc., were set to the

recommended values for FALCON-1024 in the official documentation[20], and the prob-

ability of finding the correct answer in ECCPoW was set to 4.830240e-6. In practice,

the probability of finding the correct answer in a blockchain is inversely proportional

to the number of participating nodes to maintain a consistent block generation period.

Assuming 100 nodes, if the number of participating nodes increases tenfold, the speed

of finding the correct answer also increases in a similar proportion, resulting in faster

block generation times. Conversely, a decrease in the number of nodes leads to slower

block generation times. Therefore, we assumed 100 nodes and set the probability of

getting heads in VCT to 10%, adjusting the probability of finding the correct answer

in VCT+ECCPoW to 3.07797e-5 (Figure 4.3).

– 27 –

Figure 4.3: Defining probabilities of ECCPoW(left) and VCT(right).

We utilized an electricity consumption meter(Figure 4.4), capturing snapshots us-

ing a camera at each block’s generation to measure the electricity usage during the

generation of 100 blocks.

Figure 4.4: Measure the amount of elctricity used when generating block.

As a result, it was confirmed that when 100 blocks were generated with ECCPoW

consensus, the total amount of electricity consumed was 5466kwh, and when Green

consensus combining ECCPoW and VCT was used, a total of 687kwh of electricity

was used(It has decreased by approximately 87.43%.).

4.3 Conclusion

In summary, this paper begins by exploring VRF and the associated technology of

digital signatures. Additionally, the paper discusses the risk of private key exposure

– 28 –

Figure 4.5: Test code for experiment.

Figure 4.6: Cumulative electricity consumption.

in current digital signature algorithms due to quantum computers. Consequently, the

paper examines post-quantum digital signature algorithms currently under consider-

ation by NIST, specifically designing the VCT function using FALCON, one of the

candidates. Our contribution is demonstrated through experiments, where we designed

a quantum-resistant coin tossing protocol using the FALCON and observed a signifi-

– 29 –

cant reduction in electricity consumption when combined with ECCPoW. Therefore,

utilizing the VCT algorithm has the potential to save significant amounts of electricity

globally, currently wasted in blockchain mining.

– 30 –

References

1. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized busi-

ness review, p. 21260, 2008.

2. C. D. A. P. Team, “Cambridge bitcoin electricity consumption index,” 2021.

November 10, 2023.

3. H. Jung and H.-N. Lee, “Eccpow: Error-correction code based proof-of-work for

asic resistance,” Symmetry, vol. 12, no. 6, p. 988, 2020.

4. Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling

byzantine agreements for cryptocurrencies,” in Proceedings of the 26th symposium

on operating systems principles, pp. 51–68, 2017.

5. W. Diffie, “New direction in cryptography,” IEEE Trans. Inform. Theory, vol. 22,

pp. 644–654, 1976.

6. R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-

tures and public-key cryptosystems,” Communications of the ACM, vol. 21, no. 2,

pp. 120–126, 1978.

7. V. S. Miller, “Use of elliptic curves in cryptography,” in Conference on the theory

and application of cryptographic techniques, pp. 417–426, Springer, 1985.

8. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete log-

arithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.

– 31 –

9. D. Micciancio and O. Regev, “Lattice-based cryptography,” Post-quantum cryp-

tography, pp. 147–191, 2009.

10. M. Ajtai, “Generating hard instances of lattice problems,” in Proceedings of the

twenty-eighth annual ACM symposium on Theory of computing, pp. 99–108, 1996.

11. O. Regev, “On lattices, learning with errors, random linear codes, and cryptogra-

phy,” Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40, 2009.

12. J. Hoffstein, J. Pipher, and J. H. Silverman, “Ntru: A ring-based public key cryp-

tosystem,” in International algorithmic number theory symposium, pp. 267–288,

Springer, 1998.

13. J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte,

“Ntrusign: Digital signatures using the ntru lattice,” in Topics in Cryptology—CT-

RSA 2003: The Cryptographers’ Track at the RSA Conference 2003 San Francisco,

CA, USA, April 13–17, 2003 Proceedings, pp. 122–140, Springer, 2003.

14. C.-P. Schnorr, “Efficient signature generation by smart cards,” Journal of cryp-

tology, vol. 4, pp. 161–174, 1991.

15. V. Lyubashevsky, “Fiat-shamir with aborts: Applications to lattice and factoring-

based signatures,” in International Conference on the Theory and Application of

Cryptology and Information Security, pp. 598–616, Springer, 2009.

16. N. Aragon, O. Blazy, P. Gaborit, A. Hauteville, and G. Zémor, “Durandal: a

rank metric based signature scheme,” in Advances in Cryptology–EUROCRYPT

– 32 –

2019: 38th Annual International Conference on the Theory and Applications of

Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings,

Part III 38, pp. 728–758, Springer, 2019.

17. P. Gaborit, A. Hauteville, D. H. Phan, and J.-P. Tillich, “Identity-based encryp-

tion from codes with rank metric,” in Annual International Cryptology Conference,

pp. 194–224, Springer, 2017.

18. P. Gaborit, G. Murat, O. Ruatta, and G. Zémor, “Low rank parity check codes

and their application to cryptography,” in Proceedings of the Workshop on Coding

and Cryptography WCC, vol. 2013, 2013.

19. L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and

D. Stehlé, “Crystals-dilithium: A lattice-based digital signature scheme,” IACR

Transactions on Cryptographic Hardware and Embedded Systems, pp. 238–268,

2018.

20. T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,

T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon,” Post-Quantum Cryp-

tography Project of NIST, 2020.

– 33 –

Acknowledgements

special thanks to...

모두들 감사합니다.

– 34 –

