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ABSTRACT

The visual system of arthropods, called the compound eye, has distinctive features such as a wide field of
view, high-speed motion detection, and infinite depth of field. These features have attracted researchers to
build artificial compound eyes. However, the compound eye is limited in spatial resolution by its structural
constraints such as the number and size of ommatidia that compose the compound eye. These constraints
also can be found in the existing artificial compound eye. In previous work, a design method overcame these
limitations and achieved resolution improvements by increasing the acceptance angle of ommatidia and using
numerical optimization based on compressive sensing (CS). However, the limitation is that prior information
such as a sparsifying basis is needed to solve the numerical optimization problem, and obtaining the solution
to this problem is computationally time-consuming. In this paper, we propose a deep learning-based artificial
compound eye. The deep learning architecture takes a measurement from the compound eye as input and learns
how to reconstruct the original image. The experimental result demonstrates that the proposed deep learning
approach provides improved performance in image reconstruction for the artificial compound eye.
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1. INTRODUCTION

The apposition compound eye is the type of eye that can be found in arthropods that exhibits several distinctive
features, including a wide field of view, high speed of motion detection, and infinite depth of field.1–3 It is
composed of optical units called ommatidia.4–6 Many researchers have attempted to replicate this structure in
various ways, including simulating compound eyes with computers7 and implementing real optical devices.8–10

These artificial compound eyes have a range of potential, including use as digital cameras on microrobots, motion
detection, endoscopy, and image-guided surgery.8–10 However, the apposition compound eye has a lower spatial
resolution compared to vertebrate eyes due to its optical structure,11–13 and achieving a comparable level of
resolution would require an impractical design.12 Despite the development of artificial compound eyes that
exploit the structural benefits of the compound eye, the limitation of the low spatial resolution remains.

In previous work, a design method7 for improving the spatial resolution of artificial compound eyes has
been proposed, including increasing the acceptance angle of ommatidia and adopting reconstruction techniques
based on compressive sensing (CS). CS is a method of reconstructing the original signal from measurements by
solving a convex optimization problem or linear inverse problem.14 There are manifold algorithms that solve
these problems by exploiting sparsity constraints to obtain a unique solution.15–17 However, these algorithms
are limited by the fact that the sparsity of the input signal affects the performance of reconstruction. While any
images in nature can be represented as a sparse linear combination of basis such as discrete Fourier transform,
wavelet transform, and discrete cosine transform,18,19 we are not able to represent all images as a spare signal
with a fixed sparsifying basis. As a result, the performance of image reconstruction algorithms based on CS
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can vary depending on the choice of sparsifying basis. In addition, solving these problems is computationally
time-consuming.

Recently, several researchers have employed deep learning frameworks to solve the linear inverse problem.20–24

In this study, we propose a method for reconstructing images from measurements taken by an artificial compound
eye using a deep learning approach. The proposed deep learning architecture takes measurements from the
artificial compound eye as inputs and learns to map these measurements to the original image. We compare
the quality of the reconstructed images and the computation time of the proposed deep learning method to the
reconstruction algorithm based on CS17 in a noisy environment. The results of our experiments show that the
deep learning-based reconstruction method for the artificial compound eye outperforms the CS-based method in
terms of the quality of the reconstructed image and computation time.

2. ARTIFICIAL COMPOUND EYE

2.1 System description

An ommatidium of the apposition type of compound eye consists of the cornea, crystalline cone, rhabdom, and
photoreceptor cell.4–6 In biologically inspired artificial compound eyes, each ommatidium can be modeled as a
set of microlenses and photodetector placed on a flattened,25 curved,26 spherical,10 hemispherical8,9 surface. In
this study, we consider that each ommatidium is placed on a hemispherical surface. Our artificial compound eye
has ommatidia that collect light intensities within their receptive field, defined by acceptance angle ∆ϕ, and are
located on the spherical coordinate (r, ϕ, θ). We note that the acceptance angle of ommatidium in an artificial
compound eye can be set by adjusting the microlens diameter D, photodetector diameter d, light wavelength λ,
focal length f of ommatidial optics, and the material of the microlens.12 Figure 1(a) shows an illustration of the
parameters of the ommatidia.

(a) (b)

Figure 1. Illustrations of parameters. (a) parameters of the ommatidia. ∆ϕ: acceptance angle, ∆φ: angle between
ommatidia in spherical coordinate, d: diameter of photodetector, f : focal length of microlens, r: radius of compound eye.
(b) The imaging system of the artificial compound eye.

Figure 1(b) shows the schematic of the imaging system of the artificial compound eye. The object image
plane is a size of U × Vmm and the compound eye observes the object image plane from a distance of L mm.
We assume that each pixel is a size of 1 × 1mm. In this paper, the optical transfer function of the ommatidia
is simply designed to sum up the intensities of all light within their receptive field, defined by the acceptance
angle, while ignoring light intensities outside of this field. Each measurement of an ommatidium corresponds
to a single pixel in the image captured by the compound eye. Figure 2 shows the receptive field of ommatidia
located at a set of specific coordinates.

The linear system of equations for the artificial compound eye is described in the following details, as refer-
enced in.7 Let N denote the number of pixels of an image that we aim to reconstruct and consider the artificial
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(a) (b) (c) (d)

Figure 2. the receptive field of the parameter set. Each ommatidium is placed on spherical coordinates. 80 × 80mm of
the object image plane and 1 pixel corresponds to 1 × 1mm. r = 5mm,∆φ = 10◦, L = 50mm (a) ϕ = 0◦, θ = 0◦. (b)
ϕ = 10◦. (c) ϕ = 10◦. (d) ϕ = 30◦. θ = 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦ for (b), (c), (d) in a counterclockwise
direction.

(a) (b) (c) (d)
Figure 3. Measurements of the artificial compound eye according to acceptance angle. N = 80 × 80,M = 3601,∆ϕ =
1◦,∆θ = 4◦, r = 5mm, L = 50mm. (a) input images (b) ∆φ = 5◦. (c) ∆φ = 10◦. (d) ∆φ = 20◦

compound eye with M ommatidia. Let yi denote the measurement of ith ommatidium and xj denotes value of
jth pixel. The object image can be represented as a vector x = [x1, x2, . . . , xN ]T ∈ RN×1. It is important to note
that the optical transfer function of ommatidia is designed to sum up the intensities of all light within a corre-
sponding receptive field, which is determined by the acceptance angle while ignoring light intensities outside of
this field. Thus, transfer function of ith ommatidium can be expressed as a vector ai = [ai1, ai2, . . . , aiN ] ∈ R1×N

and aij = 1 means that the jth pixel is within the receptive field of ith ommatidium and aij = 0 otherwise. As
a result, measurement of ith ommatidium yi can be calculated as follows:

yi = ai · x (1)

Thus, the linear system of equation with M ommatidia can be represented as follows:

y = A · x+ n (2)

where y ∈ RM×1 is the measurement vector and n is a measurement noise vector modeled as white Gaussian
noise. A = [a1

T ,a2
T , . . . ,aM

T ]T ∈ RM×N denotes sensing matrix of the artificial compound eye, where each
row of A represents the transfer function of the corresponding ommatidium. Figure 3 shows the measurements
of an input image captured by the artificial compound eye.

In prior research, numerous algorithms15–17 for solving the linear inverse problem have been proposed to
reconstruct the original input image x. In this paper, we propose the reconstruction framework based on deep
learning for the artificial compound eye, as an alternative to CS-based reconstruction algorithms.
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Figure 4. The network architecture of the proposed framework.

Figure 5. The details of operations in the network architecture of the proposed framework.

2.2 Deep learning approach

Many researchers have applied deep learning approaches to solving inverse problems.20–24 Convolutional neural
network (CNN) can learn a mapping from input to output through training on structured datasets and efficiently
produce output results based on inputs at a lower cost than CS recovery algorithms.20,21,23 In spectroscopy, it
has been demonstrated that a CNN architecture with residual connections is more effective at solving the inverse
problem and recovering the original spectra than a conventional CNN architecture under noisy environments.24

Also, U-Net-based CNN architecture is suitable for image reconstruction.22,27 In this paper, we propose U-
Net-based deep learning architecture with residual convolution block to reconstruct the original image from
measurements of the artificial compound eye.

Figure 4 shows the overall network architecture of the proposed framework. As an input to our network, we
compute measurement vector y by multiplying the input vector x and sensing matrix A and feed this forward to
the network. In an input layer of the network, we apply a linear layer and initialize its parameters by the pseudo
inverse of sensing matrix A+ ∈ RN×M in order to increase the dimension of the input vector from M to N . We
note that we use 1-D convolution operation throughout the network due to the 1-D input vector. The remainder
of the network consists of two parts: a contracting path on the left side of the network and an expansive path
on the right side of the network. The contracting path is composed of repeated blocks of 1-D convolution with a
kernel size of 3, followed by batch normalization (BN) and a rectified linear unit (ReLU), a residual convolution
(as shown in Figure 5), and a 1-D convolution with a kernel size of 4 and a stride of 2, followed by a ReLU. In
place of using a pooling operation for downsampling at the end of each block, we utilize a convolution with a
kernel size of 4 and a stride of 2. The expansive path also consists of repeated blocks but utilizes a transposed
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convolution with kernel size 4 and stride of 2, followed by ReLU at the end of each block for upsampling. Each
block of the expansive path takes the concatenation of the output features of the previous block and output
features from the corresponding block of the contracting path, which pass a single 1-D convolution layer. In
the output layer, we concatenate the output from the input layer with the output from the final block of the
expansive path, apply 1-D convolution, and obtain reconstructed image x̂. The specific number of features of
convolution operations is shown in Figure 4.

3. EXPERIMENT AND RESULTS

In this paper, the artificial compound eye that has 3601 ommatidia is considered. We note that each ommatidium
is located on spherical coordinates (r, ϕ, θ). We set r to 5mm, ϕ to the range of [0, 40], ∆φ to 1◦, θ to the range
of [0, 360), ∆θ to 4°, L to 50mm, U to 80mm, and V to 80mm. We also consider that each pixel is the size of
1× 1mm. To simulate noisy environments, we add white Gaussian noise of 40 decibels (dB) of Signal-to-Noise-
Ratio (SNR), which is defined as follows:

SNRdB = 10× log10

(
Psignal

Pnoise

)
(3)

where P denotes the power of the signal. In this paper, we use the alternating direction method17 to compare
the performance of the CS-based reconstruction algorithm with our proposed framework, and we consider the
discrete cosine transform (DCT) as the sparsifying basis. The CS-based reconstruction simulation is conducted
using MATLAB on a CPU.

MNIST is a dataset containing 60,000 training images and 10,000 test images of handwritten digits with a
size of 24× 24 pixels. We consider the image to be placed at the center of the object image plane and captured
by the artificial compound eye. Using the training dataset, we trained our network to minimize the following
loss function:

MSE =
1

K

K∑
k=1

∥x− x̂∥22 (4)

where x denotes the training image, x̂ denotes the reconstructed image, and K denotes the total number of
images. By the backpropagation, the network is trained to reduce the mean squared error (MSE) over the
training images. we trained our network with 200 epochs and a batch size of 128 and evaluated it via test images.
We used Adam28 as an optimizer for updating our network parameters, with parameters β1 = 0.5, β2 = 0.9, and
a learning rate of 0.00005. The training process is conducted in a distributed environment using PyTorch on two
NVIDIA TITAN RTX GPUs.

Figure 6. The training loss and test loss evaluated on every epoch.
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Figure 6 shows the training loss and test loss evaluated at each epoch. The training loss and test loss converge
to an MSE of 0.00033 and 0.00094, respectively. We calculate the MSE of the CS-based reconstruction method
on the test images. The MSE of the CS-based reconstruction method using a DCT sparsifying basis is 0.0361.
We also measure the average time duration of single image reconstruction. For CS-based reconstruction, we
evaluate the average time using MATLAB. The average time duration is 62.8613 seconds. For the proposed
deep learning-based method, we use a profiler that is implemented in PyTorch to measure the average time of
forwarding of a single measurement on CPU. According to the PyTorch profiler, the single forward duration
time is 436.368ms. The training, test loss, and profiling result shows that the proposed deep learning-based
reconstruction method outperforms in terms of MSE and speed.

Figure 7. Results of each reconstruction method on the first 5 images of the test dataset in a noisy environment. The
first row displays the original input images. The second row illustrates the reconstruction results of the CS-based method.
The third row shows the results of the proposed method. The number below each image indicates MSE/PSNR.

Figure 7 shows the first five images of the test dataset and reconstruction results of the CS-based method and
proposed method. As previously stated, the MSE of the CS-based reconstruction method is higher than the deep
learning-based method. Peek-Signal-to-Noise-Ratio (PSNR) of the CS-based reconstruction result on the first 5
test images is 15.3760 dB, 11.4267 dB, 21.5490 dB, 8.7290 dB, 14.6852 dB, respectively. On the other hand, the
Peek-Signal-to-Noise-Ratio (PSNR) of the deep learning-based reconstruction result is 34.5593 dB, 32.2185 dB,
34.6852 dB, 30.1173 dB, 28.7290 dB, respectively. The proposed method shows far superior performance of the
quality of the reconstructed image.

4. CONCLUSION

This paper presents the deep learning-based framework for image reconstruction from measurements captured
by an artificial compound eye. We formulated a mathematical model of the compound eye and ommatidia
and trained our network on specific datasets. In addition, we compared the reconstruction performance of our
proposed method to that of a CS-based reconstruction method. The MSE of our proposed method on test images
was 0.00094, while the MSE of the CS-based reconstruction method was 0.0361. The average time duration
for reconstruction with the proposed method was 436.368ms, while the average time duration for the CS-based
reconstruction method was 62.8613s. The experimental results demonstrate that our network successfully learned
a structured representation from the dataset and a mapping from measurement to the original image, leading
to superior performance in terms of MSE and speed when compared to the CS-based reconstruction method.
These techniques can be used in small, high-resolution computational endoscopic cameras.
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