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Agenda 

 Course Schedule  

 Primers on Probability/Random Variable 
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E-mail 

 Please send me a short e-mail that you are in the class 

  heungno@gist.ac.kr  

 I will use e-mail for notes and special announcements. 
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Course Information 

 Class hours: 9:00-10:30 am Monday, Wednesday 

 Lecture room: B203 

 Office hours:  

– 10:30am ~ 12:00am Monday,  

– 10:00am ~ 11:00am Tuesday.   

– Or make an appointment via e-mail. 
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Grade Distribution 

Midterm 1 (20%) 

 Homework + Grading (20%) 

 Paper Reading + Presentation (30%)  

 Final exam (30%)  
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Tentative Schedule 

Weekly Course Schedule 

Calendar Description *Remarks 

1st week            Introduction to Information Theory, Entropy    

2nd week Entropy, Relative Entropy and Mutual Information   

3rd week Entropy, Relative Entropy and Mutual Information   

4th week Asymptotic Equipartition Property   

5th week 
Asymptotic Equipartition Property/Entropy Rates of a 
Stochastic Process 

  

6th week Entropy rates of Markove Chain 

7th week Data compression  Midterm 1 

8th week Channel capacity   

9th week Channel capacity theorems/forward/reverse   

10th week Differential entropy   

11th week Gaussian channel capacity    

12th week MIMO channel capacity theorem 

13th week Multiple access channel capacity theorem    

14th week Slepian Wolf    

15th week Student Presentation 

16th week Student Presentation   

Final Exam 
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Homework Policies 

 Discussion and exchange of ideas are strongly encouraged. 

Must submit your own independent report. 

 On each homework, a reviewer will be assigned (will take 

turns). 

 The job of each reviewer is to 

– grade homework/project sets,  

– type up the best homework solution,  

– get an approval of the solution manual from me, and  

– distribute the graded homework and solution to the students within 

a week. 

© 200x Heung-No Lee 



Selection of Journal for class presentation 

 Purpose:  See if you can apply the knowledge learned in class to 

expand the topics of your reading. 

– IEEE Information Theory, IEEE Trans. Comm., IEEE JSAC 

 Procedure 

– Find the area of your interests (you can discuss this with me) 

– IEEE Trans. Info. Theory (years 2006 and later) 

– Use search engines (e.g. IEEEexplore, INSPEC, SCI, …) to find a paper 

– Bring a print out of paper to me for an approval, by Wed. of 12th week. 

– Read the paper and its references 

– Summarize your understanding of the paper in PPT charts for 20 min. in 

class presentation 

– PPT charts should be written succinctly 

• Font size > 18 

• Number of pages < 20 
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Check the Following, at least 

What’s the main contribution of your paper? 

– The main problem considered in the paper? 

• Give a clear problem statement 

– Who else attempted to solve the problem? 

– What approaches are taken? 

– What are the major differences? 

 Discuss the technical details of the paper 

– What are the technical approaches for main results? 

–  Provide insights and examples 

 Discuss the results 

– Metrics for comparison? 

– What’s new? 

– What could we do with the new knowledge? 
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Scope of this course 

 Information Theory, as created by Shannon 1948 

 Plus 

 Modern information theory 
– MIMO channel capacity 

– Network information theory 

– Compressed Sensing 
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Claude E. Shannon (1916 -- 2001) 

 Math/EE Bachelor from UMich (1936) 

 MSEE and Math Ph.D. from MIT (1940) 

 A landmark paper ―Mathematical Theory 

of Communications‖ (1948) 

– Founder of Information Theory 

– Fundamental limits on communications 

– Information quantified as a logarithmic 

measure 

 For more info on him, make a visit to  

 http://www.bell-

labs.com/news/2001/february/26/1.html  
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Textbooks 

 Textbook: Thomas & Cover, Elements of Information Theory, 2nd Ed., 

Wiley, 2006 

  

 Reference-1: Robert Gallager, Information Theory and Reliable 

Communication, John Wiley & Sons, Inc.   New York, NY, USA, 

1968.   ISBN:0471290483  

 

 Reference-2: Raymond Yeung, A First Course in Information Theory, 

Kluwer Academic/Plenum Publishers, 2002  
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 Now, let’s begin by reviewing Probability/Random 

Variables 
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Primer on Probability/Random Variables  
 

The 0th Module 
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Real World Experiments and Mathematical Abstraction 

 Experiments 

– Measurement of voltage across a resistance  

– Roll a die 

 Three entities in the real world experiments 

– The set of all possible outcomes 

– Grouping of the outcomes into classes, called results 

– The relative frequencies of occurrences of the results  

 The corresponding mathematical abstractions  

– The sample space 

– The set of events 

– The probability measure assigned on each of these events 

 

© 200x Heung-No Lee 



16 

Fundamental Definitions in Set Theory 

 A set is a collection of objects (elements). 

– A = {v: 0 ·  v ·  5 volts} 

– B1 = {1, 2, 3, 4}, B2 = {head, tail} 

 A subset C of A is another set whose elements are also elements of A. 

– C = {1, 2} ½  B1 

– We say C belongs to B1 

 Set operations: Union and Intersection 

– B1  B2 = {1,2,3,4, head, tail} 

– B1  C = {1, 2} (Sometimes, a shorthand notation, B1C, is used) 

 The empty set or null set {?} (or simply ?) is the set having no 

elements. 
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Fundamental Definitions in Set Theory 

 Two sets A and B are mutually exclusive or disjoint if they have no 

common elements. 

– A  B = AB = ? 

 A partition U of a set S is a collection of mutually exclusive subsets Ai 

of S whose union equals S. 

– S = A1  A2  A3 and Ai Aj = ? for any i, j i 

 In the figure below, U=[A1, A2, A3], and the subset  

 B = (A1  B)  (A2  B)  (A3  B) 

B 

A1 A2 A3 

S 
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Sample Spaces and Events 

 A sample space , which is called the certain event of a 

particular experiment, is the collection of all experimental 

outcomes (objects). 

– An object in  is called a sample point; is usually denoted by . 

 Subsets of a sample space is called events. 

– Grouping of the outcomes into the subsets 

– A set of sample points 

– A = {: some condition(s) on  is provided here}, the event A is 

the set of all  satisfying the condition(s) on . 

– An event consisting of a single element is called an elementary 

event. 

 

© 200x Heung-No Lee 



Complement of an Event 

We define a complement of an event A as the set of all 

outcomes of S which are not included in A.  

We denote Ac = S\A.  

19 

A 

S 

Ac 
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Examples of Sample Spaces and Events (Results) 

 Die experiment:  = {1, 2, 3, 4, 5, 6} 

– A = {: odd} = {1, 3, 5} 

– B = {: even} = {2, 4, 6}  

 The closed interval of the real line:  

  = [0, 1] = {: 0·   ·  1} 

– A = {: 0.2 ·   ·  0.7} 

 All time functions f(t), -1 < t < 1 

– An event may be a set of all time functions whose energy is less 

than 1. 

 A finite sample space of N elements  There are 2N 

possible subsets. 

 
© 200x Heung-No Lee 



21 

Trial 

 A single performance of an experiment is called a trial. 

 In each trial we observe a single outcome ai 2 S . 

We say an event A occurs during this trial when A 

contains ai . 

 From a single trial, multiple events can occur. 

 Roll a die:  = {1, 2, 3, 4, 5, 6} . 

– Now, suppose after a trial, an outcome ―1‖ is observed. 

– Then, the events {1}, {1, 3, 5}, {1, 3}, and all the rest 25 - 3 events 

that contain ―1‖ as an element, it can be said, have occurred. 
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On the Occurrence of Events In a Trial 

We say an event A={a1, a2, a3} has occurred in a trial, if 

any one element of the set, namely, a1, a2, or a3, was the 

outcome of the trial. 

 

 The event  occurs in every trial. 
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Probability Measure 

 An assignment of a real number from the interval [0, 1] to the events 
defined on . 

 

– Ex) Fair die: All faces occur equally likely with probability 1/6. 

 

– Ex-2) Unfair die: face-1 event occurs with probability 1/3, the rest 5 faces 
with 2/15. 

 

– Ex-3)You can create and use your own rule which suits your needs the 
most (your betting rule in Gambling for example). 

 

 Probability measure P(A) is assigned to a field E of subsets (events) of 
the sample space . 

 P: E ! [0, 1] 
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Relative Frequency vs. Probability Measure 

 The assignment of probability measure to an event A, P(A), 
may be done in terms of relative frequency of occurrences 
in N independent trials 

  P(A) = limn! 1 nA/N 

 where nA is the number of occurrence of event A in N trials 

 

 Ex-1) a coin is tossed 100 times.  

– The event of head occurred 51 times.  

– Then, P(A) = 51/100 

 Ex-2) An experienced gambler watches the cards played, 
and updates his table of probability measures assigned only 
on the events of his interests and makes bets accordingly 

© 200x Heung-No Lee 
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Axiomatic Definition of Probability 

 The assignment of probability to events should follow the three 

fundamental rules (Kolmogoroff’s axioms) 

 1. 0 ·  P(A) ·  1  (The frequency of an event) 

 2. P() = 1  (In every trial there is an outcome) 

 3. If A  B = ?, then P(A  B) = P(A) + P(B) 

– Die: frequency(1 or 2) = frequency(1) + frequency(2),  

      {1}{2} =  ? 

 In the theory of probability, all conclusions are direct or indirect 

consequences of these three axioms. 

 These conclusions allow us to predict -- by calculation – the 

probability of occurrence of observable(or wanting-to-observe) events 

in real world experiments. 

 
 Reference: Web-site: http://www.kolmogorov.com/Kolmogorov.html 
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Examples 

 A coin toss experiment: S = {h, t} 

 Events are the four subsets of S, {?}, {t}, {h}, {h, t}. 

 It forms a sigma field.   

 A sigma field is a collection of sets which is closed under 

the union and the complement operations.  

 A complement of {t} is {h} in this example.   

We will use superscript c to denote complement, i.e., {t}c 
= {h} and Sc = {?}. 

We may assign P{t} = p and P{h} = q, i.e., p + q=1. 

© 200x Heung-No Lee 



Coin Toss Three Times Experiment (1) 

27 

 S ={hhh, hht, hth, htt, ttt, tth, tht, thh}. 

 Assume a fair coin; then head/tail occurs with equal prob. 

 First, consider the naive case such that all 28 possible 

events are of interest, and then the probability assignment 

is trivial. 

 Ex) The probability of an event {hht, hhh} is   

– P{hht, hhh} = P{hht} + P{hhh} = 2/8 . 

© 200x Heung-No Lee 



Coin Toss Three Times Experiment (2) 

 Now, consider a non trivial case: 

 Suppose we are interested in the occurrence of an event A 

= {hth, tht} only. 

 Then, we assign probability to only those events in the 
sigma field formed by A, i.e., {A, Ac, {?}, S}. 

 Thus, assign P(A) = 1/4  (The coin is a fair coin).  

We note that the probability measure satisfies all the 

conditions of the Kolmogoroff’s axioms.  
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Conditional Probability 

 Given any two events A and B, the conditional probability 

P(A|B) of an event A is defined as 

  P(A | B) := P(AB)/P(B) 

 whenever P(B)  0. 

 

 P(A | A) = 1 

 

 In the Coin-Toss Three Times experiment, let A={hhh} 

and B = {a head in the first toss} = {hhh, hht, hth, htt} 

 P(A | B) = (1/8)/(1/2) = ¼ .  
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Probability of Joint Event  

 Notation: P(A, B) = P(AB) =  P(A  B) 

We refer P(A, B) as the probability of a ―joint event A and 

B.‖ 

 
 

A B 
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Probability of Joint Event 

 P(A, B) = P(A | B) P(B)  

        = P(B | A) P(A) 

 

 A box contains three white balls, w1, w2, and w3 and two 

red balls r1 and r2. We remove two balls in succession. 

What is the probability that the first removed is white and 

the second is red? 
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Independence 

 If P(A|B) = P(A) or P(B|A) = P(B), the two events A and B 
are, said to be, (statistically) independent with each other. 

 Coin Toss Twice:  

–   = {hh, ht, th, tt} 

– Suppose we use numbers a and b in [0, 1] with a + b =1 in the 
following manner: 

– P{hh}=a2, P{ht}=P{th}=ab, P{tt}=b2 

– Note that the assignment satisfies the axioms: a2+2ab+b2 = (a+b)2 
= 1 

– Now, define two events A={head at the first toss} and B={head at 
the second toss} 

– Note P(A)=aa + ab = a and P(B)= ba + aa = a 

– P(A, B) = P{hh} = a2 = P(A) P(B)  
– Then, we note A and B are mutually independent.  
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Theorem of Total Probability (Very Important) 

 If U=[A1, A2, …, An] is a partition of  and B is an arbitrary event, 

then 

 P(B) = P(B, A1) + P(B, A2) + P(B, A3) + P(B, A4) 

   = P(B|A1)P(A1) + P(B|A2)P(A2) +P(B|A3)P(A3) + P(B|A4)P(A4)  

A1 
A2 … 

An B 
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Bayes’ Theorem [Very Important] 

 From the results of the conditional probability and the total 

probability theorem, we could easily get the following, 
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35 

Examples of Bayes’ Theorem 

 Box-1 contains a white balls and b black balls. Box-2 contains c white 

balls and d black balls. One ball is drawn from Box-1 and inserted into 

Box-2. Then, a ball is drawn from Box-2.  

 What is the probability that a ball drawn from Box-2 is white? 

 

 

 

 What is the probability that the first draw from Box-1 was black, given 

that a white ball was obtained at the second draw from Box-2 
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Permutation/Combination 

 Consider a set of N distinct objects 

 Permutation: The total number of distinctive arrangements 

(each in an ordered sequence) of N distinct objects is  

  N!  

 The total number of distinctive arrangements when taking 

K objects out of N distinct objects is  

  N(N-1)(N-2) … (N-K+1) = N!/(N-K)! 

 Combination: The total number of ways to select K objects 

out of N distinct objects is 
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Bernoulli Trials 

 Observe the occurrence of an event A in each trial 

 The event A occurs with P(A) = p and P(Ac) = 1- p = q 

 Find the probability of a compound event that there are k occurrences 

of event A in N trials 

 None in N … (1-p)N 

 One in N … N p(1-p)N-1 

 Two in N … 

… 

 In general,    
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Random Variable and Processes 

 A signal is a function of time 

 ex)  y(t) = sin (2fct), this is a deterministic signal 

 A random signal: the value of the signal at a fixed time t is 

a random variable 

 ex)  y(t) = sin (2fct + ), 0 ·  t ·  T  

  where  is +180 degree with probability 1/2 or -180 

 degree with prob. 1/2 

 A random process y(t) is a collection of different random 

variables at each time t  

– Stochastic processes 
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Random Variable 

 A function X:  ! R  (Domain is , range is R) 

– Given any , the function specifies a finite real number X() 

1 

2 
3 

4 

5 

6 

 

X(1) X(2) X(6) X(3) 

A random variable is a 

function whose domain is , 

the range of this function is 

usually a real line (Real-valued 

random variable).  Also, it has 

a probability distribution Pr{X 

<= x} associated with it. 
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Motivation for RV 

 It may be easier to deal with numbers, instead of abstract 

objects. 
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Events Described by Random Variables 

We know now that we assign probability to the field of 

subsets of  . 

 Note that with the use of a random variable, the subsets of 

range space are associated with the subsets of . 

 Thus, events defined on the outcomes of experiments can 

be described by the subsets of the range space of the 

function. 
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Examples of Random Variables 

 Roll a die experiment 

– 6 outcomes,  = {f1, f2, f3, …, f6} 

– We may define a random variable X1 which has the following rule 

  X1(f1) = 10, X1(f2) = 20, X1(f3)=30, X1(f4)=40, X1(f5)=50, and

 X1(f6)=60 

– We may also define a random variable X2 which uses the 

following rule 

  X2(f1) = -1, X2(f2) = -2, X2(f3) = -3, X2(f4)=+3, X2(f5)=+2,…, and 

X2(f6) = +1 

– It’s up to the designer to choose a map for convenience 
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Examples of Random Variables (2) 

 According to the r.v.s X1 and X2, we can say the following: 

 A subset {: X1() = 10, 30, 50} is equivalent to the event 

{f1, f3, f5} = {: odd}. 

 Similarly, a subset {: X2() = -1, -2} is equivalent to the 

event {f1, f2}. 

 Thus, we can talk about assigning a probability measure on 

the events described by random variables, in exactly the 

same way we do with the events of .  
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Distribution Function 

 Suppose the probability measure defined on the die 

experiment was 

  P(fk) = 1/6 for all k=1, 2, .., 6 

 Then, correspondingly we could have the probability 

measure defined on the random variables X1 and X2 

 For X1, we have 

  P(X1 = 10) = 1/6, P(X1=20) = 1/6, … 

 For X2, we have 

  P(X1 = -1) = 1/6, P(X2=-2) = 1/6, P(X2=-3) = 1/6… 

 Probability assignment is easy with finite and countable 

sample space.  
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Distribution Function (2) 

We use a cumulative distribution function to deal with an 

infinite uncountable sample space.   

– For example, S = [0, 1].   

 The probability is assigned on the intervals of interest.   

– A collection of intervals, say events, is of interest. 

– A sigma field can be formed for the collection of intervals. 

– Distribution function FX(x) of a random variable X is defined as 

  FX(x) := P(: X()  ·  x) 

– It is called the cumulative distribution function (CDF) of X. 

 Examples) Find the distribution functions for random 

variable X1 and X2 that were defined in the roll-a-die 

experiment. 

 © 200x Heung-No Lee 
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Distribution Function (3) 

 FX1(x) = P(X1 ·  x) 

 Note that the function is 

right continuous 

 

 

 FX2(x) = P(X2·  x)  
10 20 30 40 50 60 

x 

-3 -2 -1 1 2 3 x 0 

f3 f2 f1 f6 

f5 
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Properties of Distribution Function F(x) 

 Non-decreasing function of x: For x2 > x1, F(x2) ¸  F(x1)  

 Continuous from the right.  

  lim + 0 F(x+) = F(x),  

 F(-1) = P(X ·  -1) = 0 

 F(+1) = P(X ·  1) = 1 

 0 ·  F(x) ·  1 
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Probability Density Function f(x)  

 f(a) := dF(x)/dx |x=a  

 P{x < X ·  X+dx} = P{X ·  x+dx} – P{X ·  x} = f(x) dx 

 

 

 

 

 Example of pdf of X1:  

  f1(x) = (1/6) k = 1
6 (x – 10 k)  

10 20 30 40 50 60 

1/6 

x x+dx 

1 
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Ensemble Averages (Expected Value) 

 Ensemble Average E(X) 

 1st moment: m1=E{X} := s=1
1 x f(x) dx 

 Note that this operator is a linear operator 

 

 2nd moment: m2 = E{X2} = s=1
1 x2 f(x) dx 

 Var(X) = E{(X-E{X})2} = E{(X – m1)
2}  

  = E(X2) – E{X}m1 – m1 E{X} + E(m1
2) = m2 – m1

2 
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Ensemble Average of Product XY 

 X and Y are two random variables with PDF fx(x) and fy(y) 

 Then, fXY(x, y) is the joint density function 

 E{XY} = s s x y fxy(x, y) dx dy 

– This is called the Correlation of the two random variables X and 

Y 

– Note, what happens when X and Y are independent 

– When E{XY} = E{X}E{Y}, X and Y are said to be mutually 

uncorrelated 

– Note, if you have two indep. r.v.s, then they are uncorrelated, but 

not vice versa 

 E{(X-E(X))(Y-E(Y))} is called the Covariance  

– Note what happens when two are uncorrelated  
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Binomial Distribution 

 Binomial PDF: prob. of obtaining k ―1‖s in N Bernoulli 

trials  

 P(k) =  

 By letting x = k, where k = 0, 1, 2, …, N 

 f(x) = k=0
N P(k) (x – k) 

– Binomial expansion: (p + q)N = k=0
N P(k)  

     = k=0
N 

© 200x Heung-No Lee 



52 

Random Processes (Stochastic Processes) 

 A random process can be described as a collection of 

random variables parameterized by time index t. 

 Continuous random process {xt, t 2 [0, 1]} 

– For a fixed t, xt is a random variable. 

 Discrete-time random process {xk}, such that x1, x2, …, xk, 

… 

– Again, each xk is a random variable. 

 Ex) Flipping a coin repeatedly xk = 1 with prob. p  

                or -1 with prob. 1-p 

 Ex2) Zn := k=1
n Xk 

© 200x Heung-No Lee 



53 

Random Processes (Stochastic Processes) 

 Suppose we observe a path being taken by the random process Zn in 8 steps. 

 There are 28 possible paths. This collection is called ensemble. 

 In an observation, Zn takes a particular path. It is called a sample path taken by 
the random process in an experiment. 

 We may interpret it as an outcome of a random experiment: choosing one 
object out of 28 objects. 

 We use Zn() to denote a particular sample path. 

Each is called 

a sample path. 

 

Ensemble: 

Collection of 

every possible 

sample paths 

Zn(1) 

Zn(2) 

Zn(3) 
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Stationary Processes (Strict Sense) 

 A random process x(t) is said to be stationary to the order 

N, if for any t1, t2, …, tN, 

 fx(x(t1), x(t2), …, x(tN)) = fx(x(t1+t0), x(t2+t0), …, x(tN+t0))  

  where t0 is any arbitrary real constant. 

 That is, the joint distribution function is shift-invariant in 

time. 

 If this holds for any N, then we say the process is strictly 

stationary. 

© 200x Heung-No Lee 



55 

Ergodic Random Process (Important) 

 If time average ´ ensemble average, then ergodic. 

 A random process is said to be ergodic if the time average 
of any sample path is equal to the ensemble average 
(expectation). 
– E(x(t)) = limT! 1 (1/T) sT x(t) dt (ergodic in mean) 

– E(x2(t)) = limT! 1 (1/T) sT x2(t) dt (ergodic in 2nd moment) 

 An ergodic process must be a stationary process (but not 
vice versa). 

– If a process is non-stationary, then the ensemble average of the 
process changes over time. 

– Not all stationary processes are ergodic.  

• Select a coin from a box containing two coins with different weight in 
a box and throw them repeatedly. 
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Example of Ergodic Processes 

 Show that x(t) = cos(2 f0 t + ) is ergodic in mean and 2nd moment, 

where  is uniformly distributed over [0, 2]. 

 E(x(t)) = (1/2) s0
2 cos(2  f0 t + ) d  

      = (1/2) sin(2  f0 t + ) |0
2  

      = 0 

 E(x2(t)) = (1/2) s0
2 cos2(2  f0 t + ) d  

        = (1/2) (1/2) s0
2 1 + cos(2  2f0 t + 2) d         

       = 1/2 

 T0 = 1/f0 

 <x(t)> = (1/T0) s0
T0 cos(2 f0 t + ) dt = 0 

 <x2(t)> = (1/T0) s0
T0 cos2(2 f0 t + ) dt  

      = (1/2T0) s0
T0 1+cos(2 2f0 t + 2) dt = 1/2  
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HW#0 

 Complete the following problems and submit by the next 

lecture. 

Will be checked, but not graded. 
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Mutually Exclusive vs. Independence 

 The events A and B are mutually exclusive.  Can they be 

independent? 
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Probability/Random Variable/Distribution 

 A coin with Pr{tail} = p is tossed n times.  

– (a). Find the probability of the event that shows k heads in n trials. 

– (b). What is the conditional probability that the first toss is head 

given that there are 2 heads in n tosses? 

– (c). Let X be the random variable denoting the number of heads. 

Specify the domain and the range of this random variable. 

– (d). Sketch the cumulative distribution function of X for n = 6. 

Assume p = 0.1. 

 

 

© 200x Heung-No Lee 



60 

Probability 

 Consider a box shown above. It has 10 pockets. Two balls are thrown 

into the box in sequence. A ball can be placed in any pocket with equal 

probability. No pocket can hold two balls. No balls can be placed 

outside the box. 

– (a) What is the probability that both balls are placed into the same column? 

– (b) What is the probability that both balls are placed into the same row? 

– (c) What is the probability that the two balls are separated into both 

different row and different column?  

– (d) Is there any other case? Justify your answer.   
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Joint distribution/conditional probability 

 Two i.i.d. (indep. identically distr.) binary random 

variables, X1 and X2 2 {1,-1} with p and (1-p). What’s the 

conditional probability Pr(X1=1|X2=1)? 

 Now consider a series of binary random variables, X1, X2, 

X3, …..     X1 produces equally likely outcomes, the second 

and the rest are i.i.d. random variables producing the 

outcome 1 with probability p and outcome -1 with 

probability (1-p) where p is a number between zero and 1. 

The number p is determined at the first experiment. p is 1/2 

if X1= 1 or 1/4 if X1=-1.  

– What is Pr{X4 = 1}?  

– What about Pr{X1 + X2 = 2}? 
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Joint distribution/conditional probability 

 In this problem, , U, V, e1 and e2 are all binary {0, 1} random 

variables. Let’s use notation P = Pr(=1),  and thus Pr( = 0) = 1 – P. 

The same goes for the other random variables. For example, Pe1 = Pr(e1 

= 1), and Pe2 = Pr(e1 = 1).  

 Suppose U and V are binary random variable, i.e. 

  U =  + e1 modulo 2 

  V =  + e2 modulo 2 

 where P = p, Pe1 = p1 and Pe2 = p2, and , e1 and e2 are mutually 

independent. 

1. For P =0.6, Pe1 = 0.1 and Pe2 = 0.2, find the joint distribution Pr(U = 

x,V=y).   

2. Repeat 1 with P =0.9, Pe1 = 0.01 and Pe2 = 0.02.  
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Urn Problem 

 A box contains m white balls and n black balls.  Balls are 

drawn at random one at a time without replacement.  Find 

the probability of encountering a white ball by the k-th 

draw.  

© 200x Heung-No Lee 



64 

Total Probability/Bayes’ Theorem 

 Suppose there is a test for a prostate cancer which is 

known to be 95% accurate. A person took the test and the 

result came out positive.  Suppose that the person comes 

from a population of a million, where 20,000 people suffer 

from that disease.  What can we conclude about the 

probability that the person under test has that particular 

cancer.  
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Information Theory  
 

The 1st Module 
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Claude E. Shannon (1916-2001) 

Math/EE Bachelor from UMich (1936) 

MSEE and Math Ph.D. from MIT (1940) 

 A landmark paper ―Mathematical Theory of 

Communications‖ (1948) 

– Founder of Information Theory 

– Fundamental limits on communications 

– Information quantified as a logarithmic measure 

 For more info on him, make a visit to  

 http://www.bell-labs.com/news/2001/february/26/1.html  
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Novel Perspective on Communications  

 Communications: Transfer of information from a source to a receiver  

 Messages (information) can have semantic meaning; but they are 
irrelevant for the design of a comm. system. 

 What’s important then? 
– A message is selected from a set of all possible messages and transmitted, 

and regenerated at the receiver. 

– The size of the message set has something to do with the amount of 
information. 

 The capacity of the channel is the maximum size of message set that 
can be transferred over the channel and can be regenerated almost 
error-free at the receiver 

Messages 

Channel 

Regenerate 
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The Size M of Message Set 

 Is the Amount of information 

 M or any monotonic function of M can be used as a measure of 

information. 

 His choice was the logarithmic function.  Why? 

– If M1 > M2  , log(M1) > log(M2) 

– When base 2, log2(M) is the number of memory cells.   

– We call the resulting unit ―bits.‖   

– A four-bit register can represent a message set of size 24, and a three-bit 

register 23.  

– The amount of information is log2(2
4) = 4 bits (and 3 bits).  

– This choice was made out of convenience; but considered appropriate (See 

the axiomatic definition of entropy in Cover & Thomas 1st Ed., Prob2.4)  
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Fundamental Limits on Communications Systems 

 The Sampling and Modulation Theorem (Nyquist and Hartley 1928)  

 Source and Channel Coding Theorem (Shannon) 

 

 Can we define a quantity which measures the amount of information produced 
by a digital or an analog source?  

  Rate Distortion and Source Coding Theorem:  
– ―n-bit quantization‖: Distortion will increase if we reduce n. 

– Source code takes away redundancy in the source and reduces the number of bits 
required. 

 

 How about the size of message set that can be transferred over a noisy channel 
almost error-free? 

  Channel Capacity and Channel Coding Theorem:  
– Channel code adds redundancy in order to gain protection against random error 

occurring in the channel 

Channel 
Analog 

Source 

Sampling 

& 

Quant. 

Source 

Coding 

Channel 

Coding 

Channel 

Decoding 

Source 

Decoding 
Regeneration 
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Uncertainty and Entropy 

  Suppose a set of n possible outcomes, each having the 
probability of occurrence as p1, p2, …, pn. 

 After a random experiment, we have an outcome.   

 Then, we can say about the occurrence of an event. 

  Entropy is a measure of uncertainty (randomness) on 
the occurrence of an event. 

  We use logarithmic measures (non-negative)  
– log(1/pi) ¸  0,  

  If pi < pj, then log(1/pi) > log(1/pj). 

– Less probable event means larger uncertainty. 

– More probable event means smaller uncertainty. 

– The sure event has zero uncertainty. 
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Definition of Entropy 

 Entropy is the average measure of uncertainty of a 

distribution, p1, p2, …, pn . 

  H(p1, p2, …, pn) := j=1
n pj log(1/pj) 
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Some Properties of Entropy 

 Uncertainty = Amount of Information = The number of 

bits needed in representation 

More uncertain event carries more information. 

 The sure event carries zero amount of information 

– A binary source generates ―1‖ with probability 1. Then, the source 

produces zero amount of information, i.e., log(1/1) = 0.  

– A binary source generates ―1‖ and ―0‖ with equal probability. Each 

event carries the same amount of information. Then, this source 

generates 1 bit of information.  
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Entropy of a RV 

 Let X be a random variable with alphabet A = {x1, x2, …,
xn} and its probability mass function p(x) = Pr{X=xi 2 A}

We define entropy for r.v. X

H(X) := x2X p(x) log(1/p(x)) 

– Note that in fact this measure has nothing to do with the random
variable X, but has everything to do with the distribution.

– The range of X does not play any role in the calculation of H(X).

 When the base of the logarithm is 2, the unit is ―bits.‖

 When the base is e, the unit is ―nats.‖
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H(X) is the Average Uncertainty (Information) of X 

 Let’s take some examples

 Ex1) When X is binary

 Ex2) When X is quaternary
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Entropy gives the largest lower bound on the number 

of bits required to represent the set of events  

 Ex3) Average Information Content in English

 Assume all 26 letters occur equally likely from a source

– H = log2(26) = 4.7 bits/character
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Entropy gives the largest lower bound on the number of bits 

required to represent the set of events 

 Assume some distribution other than uniform

– a, e, o, t with prob = 0.1 

– h, i, n, r, s with prob= 0.07 

– c, d, f, l, m, p, u, y with prob. = 0.02 

– b, g, j, k, q, v, w, x, z with prob. = 0.01 

– H = 4.17 bits/character

 Thus, if there was a source generating letters according to

this distribution (ignoring spaces, commas, etc), then the

source’s information rate is 4.17 bits per character.
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Entropy and Information 

 Entropy is the minimum attainable average length of any binary description

system.

– I’ll explain this with the next example.

 Ex4) Suppose a race of 8 horses. The race was held in LA yesterday.  We are

here in Gwangju. There is a reporter in LA. The reporter can only make an

binary answer—Yes or No—to our question.  Now, knowing that the winning

prob. of each horse is (1/2, 1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64) respectively;

which horse would you ask first to be the winning horse?  The objective is to

determine the winning horse as quickly as possible.

– Note that the entropy is  H = 2 bits.
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Entropy and Information 

 The map from the horse index to the binary sequence is a code.

 This coding strategy achieves the entropy bound.

 The average length = 1(1/2) + 2(1/4) + 3(1/8) + 4(1/16) + 6(1/64)*4 = 2
(which is the same as H = 2)

 What happens if the horse index, 0, 1, …,7, was used for the coding? How
many bits would be needed then?

0 

1 

2 

3 

4 

5 

6 

7 

0 

10 

110 

1110 

111100 

111101 

111110 

111111 

Length 

1 

2 

3 

4 

6 

6 

6 

6 

pi 

1/2 

1/4 

1/8 

1/16 

1/64 

1/64 

1/64 

1/64 
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Joint Entropy and Conditional Entropy 

 Joint Entropy: The joint entropy H(X, Y) of a pair of
discrete random variable (X, Y) with a joint distribution
p(x, y) is defined as

H(X, Y) := - x y p(x, y) log p(x, y) 

       = - E{log p(X, Y)} 

 Conditional Entropy:

H(Y | X) := - x y p(x, y) log p(y | x) 

        = - E{log p(Y|X)} 

        = - x p(x) H(Y | X = x) 

        = - x p(x) y p(y|x) log p(y|x) 
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Chain Rule: H(X, Y) = H(X) + H(Y|X) 

 H(X, Y) := - x y p(x, y) log p(x, y)

= - x y p(x, y) log[p(x) p(y|x)] 

= - x y p(x, y) [log p(x) + log p(y|x)] 

= - x p(x) log p(x) - x y p(x, y) log p(y|x) 

= H(X) + H(Y|X) 

or similarly 

= H(Y) + H(X|Y) 
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Example 

 H(X) = 3/8 * log2(8/3) + 5/8*
log2(8/5) = 0.9544 

 H(Y) = 6/8 * log2(8/6) +
2/8*log2(8/2) = 0.8113 

 H(Y|X) = x p(x) H(Y|X=x)

= 3/8*H(Y|X=0)+5/8*H(Y|X=1) 

= 3/8*H(2/3, 1/3)+5/8*H(4/5, 1/5) 

= 3/8*0.9183+5/8*0.7219 

= 0.7955 

 H(X, Y) = H(X) + H(Y|X) = 1.75

 H(X, Y) = - E{log p(X, Y)}

= 2/8*log2(4) + (4/8)*log2(2) +  
2*1/8*log2(8)  

= 1/4*2 + 1/2 + 2*3/8 = 1 + 3/4 = 1.75 

Y 

X 

0   1 

0 

1 

2/8    4/8 

1/8    1/8 

The units are [bit]. 
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Max. entropy when uniform 

 H(X) ·  log|X|, where |X| is the size of alphabet, with

equality iff X is uniform over X.

– Non-uniform gives maximum entropy under a certain input criteria

– cf) Gaussian distribution gives max. entropy under average energy

constraint.

– I owe you the proof of this statement, especially the only if part.
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Jensen’s Inequality 

 For any f(x) convex U, it is easy to see

1/2 f(x1) + 1/2 f(x2) ¸  f[(x1+x2)/2] 

 This holds true for any distribution p1+ p2=1 such that

p1 f(x1) + p2 f(x2) ¸  f(p1 x1 + p2 x2) 

 For r.v. X and function f convex U,

E{f(X)} ¸  f(E{X}) 

– For strictly convex U f(x), equality iff X is a constant

 What if a function is concave Å ?

f(x) 

x1 x2(x1+x2)/2 

1/2 f(x1) + 1/2 f(x2) 

f[(x1+x2)/2] 
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Relative Entropy is Non-Negative! 

 D(p  || q) = Kullback Leibler Distance between two distributions p(z)
and q(z)) or Relative Entropy

 := z p(z) log(p(z)/q(z) 

 Suppose p(z) and q(z) are strict positive distributions (no zero
probability masses).  Let Sp and Sq denote their alphabets respectively.

 - D(p  || q) = z 2 Sp
 p(z) log[q(z)/p(z)] 

· log{z 2 Sp
 p(z) [q(z)/p(z)]} 

(log is strict concave  ;thus equality only if p(z)/q(z) constant) 

 = log{z2Sp
 q(z)} 

· log{z2Sq
 q(z)} = log(1) = 0 

 Thus, D(p || q) ¸  0 with equality iff p(z) = q(z).

– Is the equality iff part easy to prove?

          © 200x Heung-No Lee 
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Example on Relative Entropy 

 Let X = {0, 1} and two distr.’s p(x) and q(x)

 p(x=0) = 1- r, p(x=1) = r

 q(x=0) = 1- s, q(x=1) = s

 D(p || q) = (1-r) log[(1-r)/(1-s)] + r log[r/s]

 D(q || p) = (1-s) log[(1-s)/(1-r)] + s log[s/r]

 Thus, D(p || q)  D(q || p) in general

– Relative Entropy is not symmetric in general

 Ex) when r = s, then D(p||q)=D(q||p) = 0

 Ex) when r = 1/2, s = 1/4, D(p||q) = 0.2075, D(q||p) =

0.1887 
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Relative Entropy is Non-Negative! 

(Other Approach) 

 Suppose p(z) and q(z) are strict positive distributions (no

zero probability masses).  Let Sp and Sq denote their 

alphabets respectively. 

 If the sum z2Sp
 p(z) log(p(z)/q(z))  = 0, then p(z) = q(z) 

for all z2Sp. 

 Proof:

z p(z) log(p(z)/q(z)) ¸  z p(z) (1 - q(z)/p(z)))    (Why?) 

   = z2Sp
 p(z) – z2Sp

 q(z) 

   ¸  (1 – 1) = 0 (Why?) 

87 © 200x Heung-No Lee 
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Entropy is maximum, when uniform distributed 

 Proof: Let u(x) be uniform on X

H(p) = x p(x) log(1/p(x)) 

 = x p(x) {log(1/p(x)) + log(u(x)) – log(u(x))} 

 = – x p(x) log(u(x)) + x p(x) {log[u(x)/p(x)] 

 = log|X| - D(p || u) 
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Mutual Information is Non-Negative! 

 I(X; Y) := x y p(x, y) log[p(x, y)/p(x)p(y)]

= D( p(x, y) || p(x)p(y) ) 

----- Distance between the joint and the 

product distribution. 

----- Thus, Mutual Information is non- 

   negative. 

= E(x,y){log[p(X, Y)/p(X)p(Y)]} ¸  0 
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I(X, Y) = H(X) – H(X | Y) 

 I(X; Y) = x2 X y 2 Y p(x, y) log[p(x, y)/p(x)p(y)] 

  = x2 X y 2 Y p(x, y) log[ p(y) p(x |y)/p(x) p(y) ] 

  = x2 X y 2 Y p(x, y) {log[p(x |y)] – log[p(x)]} 

  = H(X) – H(X|Y) 

 Reduction in uncertainty of X due to the knowledge of Y 

 Also, I(X; Y) = H(Y) – H(Y|X) 

 How much can I tell about X knowing Y? 

 How much can I tell about Y knowing X? 

 I(X; Y) = I(Y; X) 
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Mutual Information? 

 The measure of amount of information about X we can 

have knowing Y (vise versa). 

– Cf) Measure of correlation between X and Y, see P2.11. 

 Ex) Suppose Y = X, then H(X|Y) = 0 (no uncertainty).  

Self-mutual information is entropy.  

– Thus, knowing Y means knowing X exactly (the full information 

H(X) = H(Y) is obtained) 

 Ex) Suppose Y and X independent, then H(X|Y) = H(X), 

then I(X;Y) = H(X) – H(X) = 0.  

– Knowing Y cannot tell anything about X. 

– Can you show that if I(X; Y) = 0, then X and Y independent? 
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Relationships 

 I(X; Y)  = H(X) – H(X|Y) = H(Y) – H(Y|X) 

 Thus, I(X; Y) = H(X) + H(Y) – H(X, Y) 

    --- use  H(X, Y) = H(X) + H(Y|X) 

I(X,Y) 

H(X) H(Y) 

H(X, Y) 

H(X|Y) H(Y|X) 
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Conditioning reduces entropy 

 H(X|Y) ·  H(X), with equality iff X and Y independent 

–  I(X; Y) = H(X) – H(X|Y) ¸  0 

 cf) I(X; Y) = 0 iff X and Y independent.   
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Chain Rules 

 Let X1, X2, …, Xn drawn from p(x1, x2, …, xn). Then, 

 H(X1, X2) = H(X1) + H(X2|X1) 

 H(X1, X2, X3) = H(X1) + H(X2, X3|X1) 

    = H(X1) + H(X2|X1) + H(X3 |X1,X2) 

 … 

 H(X1, X2, …, Xn) = i=1
n H(Xi |Xi-1, …, X1} 

 

 

 

 

Watch out for the notation 
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Results in previous page lead to 

 H(X1, X2, …, Xn)  ·   i=1
n H(Xi)  

   with equality iff Xi are independent 
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Conditional Mutual Information 

 I(X; Y | Z) = H(X | Z) – H(X | Y, Z)

= E{log[p(X, Y | Z)/p(X | Z)p(Y | Z)]} 

 Can we say this?

– I(X; Y| Z) = 0 IFF X and Y indep. given Z.
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Chain Rule for Information 

 I(X1, X2, X3; Y)

= E{log[p(X1, X2, X3, Y)/p(X1, X2, X3)p(Y)]} 

= H(X1, X2, X3) – H(X1, X2, X3|Y) 

= H(X1)+H(X2|X1) + H(X3|X1, X2)  

– H(X1|Y) – H(X2|X1, Y) – H(X3|X1,X2,Y) 
= I(X1; Y) + I(X2; Y|X1) + I(X3;Y| X1, X2) 

In general, we have 

I(X1, …, Xn; Y) = i=1
n I(Xi ;Y |X1, …, Xi-1)
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Concavity of log: Log Sum Inequality 

 For non-negative a1, a2, …, an and b1, b2, …, bn

i=1
n ai log(ai/bi) ¸  (i=1

n ai) log[ ai/ bi]

with equality iff ai/bi constant. 

Note, sum of numbers ¸  a single number. 

 Proof:

– f(t) = t log t, t > 0, is strictly convex (f’’(t) = 1/t > 0 for t > 0)

– Use the Jensen’s Inequality: avg. of maps ¸  map of avg.

– i=1
n i f(ti) ¸  f( i ti) for i ¸  0 and i i = 1, ti > 0

– Substitute i = bi/i bi, and ti = ai/bi

– Equality iff ai/bi constant

0 

t log(t) 

t 
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Use the Log Sum Inequality to show D(p || q) ¸  0 

 D(p || q) =  p(x) log[p(x)/q(x)]

       ¸   p(x) log[ p(x)/ q(x)] 

= 1 log(1/1) = 0 
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D(p || q) is convex in the pair (p, q) 

Mixing distributions decreases the relative entropy

 Consider two pairs (p1, q1) and (p2, q2) of distributions

Which one is bigger?

– Avg. of relative entropies, 0.5(D(p1||q1) + D(p2||q2)) – (1)

– Relative entropy of avg. distribution: D(0.5(p1 + p2) || 0.5(q1+q2)) –

(2)

 (1)’: p1(x)log(p1(x)/q1(x)) + p2(x) log[p2(x)/q2(x)]

 (2)’: (p1(x) + p2(x)) log[(p1(x)+p2(x))/(q1(x)+q2(x))]

 (1)’  ̧  (2)’ – the Log Sum Inequality

 Summing over all x, we have (1) ¸  (2)
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Concavity of Entropy 

 Recall the proof that entropy is maximum when the

distribution is uniform.

 Let u(x) be uniform on X

H(p) = x p(x) log(1/p(x)) 

 = x p(x) {log(1/p(x)) + log(u(x)) – log(u(x))} 

 = – log(u(x)) + x p(x) {log[u(x)/p(x)]}
 = log|X| - D(p || u) 

 Not only is entropy maximum for uniform distribution but

also a concave function of p(x).
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Concavity of Entropy 

(other approach) 

 H(p) is a concave function of a distribution p(x)

 This means if you mix distributions, the entropy increases.

 Let X1 ~ p1(x) and X2 ~ p2(x)

 Let Z = X where  = 1 with prob.  and 2 with 1-

 Thus, the distr. of Z is  p1(x) + (1 - ) p2(x)

We know H(Z) ¸  H(Z | )

--- conditioning reduces entropy 

 Thus, we have

H[ p1(x) + (1 - ) p2(x)] ¸   H[p1(x)] + (1-) H[p2(x)]. 

– This shows f(E) ¸  E(f).  Thus, entropy is a concave function of

distribution.

  © 200x Heung-No Lee 



Concavity of I(X; Y) over p(x) given p(y|x) 

 I(X; Y) = H(Y) – H(Y|X)

 H(Y) is a concave function of p(y).

– Note p(y) =  p(x) p(y|x) is a linear function of p(x).

– Thus, H(Y) is a concave function of p(x).

 H(Y|X) =  p(x) H(Y|X = x), is a linear function of p(x).

 Thus, I(X; Y) is a concave function of p(x) given p(y|x).
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Sequence of results so far 

 Relative entropy is non negative.  Proved!

 Relative entropy is zero IFF the two distributions are

identical.  Proved!

 Entropy H(X) is maximum with X ~ uniform distribution.

Mutual information is a relative entropy.

Mutual information is thus non negative.

MI I(X; Y) = 0 IFF X and Y independent.

 Conditioning reduces entropy.

 Entropy is a concave function of distribution.

MI I(X; Y) is a concave function of p(x) given p(y|x).
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HW#1 

 Cover & Thomas: Ch2: 1, 2, 5, 8, 12, 14, 18,

 Showing the convexity of f(x) = ex is easy.  Use the Calculus:  Take the

derivatives twice and show that it’s positive everywhere.  Now, prove

the convexity of f(x) using the general convexity proving technique

learned in this lecture.

 (Challenge; Optional) Consider arbitrary random variables X1, X2, and

where the matrix elements [aij] are arbitrary non zero constants and N1 

and N2 are independent random variables.  Let’s denote             .

Prove or disprove I(X; Y1, Y2) ·  I(X; Y1) + I(X; Y2). 

      1 11 12 1 1

2 21 22 2 2

Y a a X N

Y a a X N 

 1

2
:

X

XX
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HW#1 

 I(X1, X2; Y) and I(X; Y).  Are they different?

 Recall the HW#0 problem on the joint distribution of U and V.

(a) For the first case where p1 = 0.1 and p2 = 0.2, find the following measures: H(U), H(V),

H(U|e1), H(V|e2),  H(U|V), H(V|U), H(U, V), I(U; V), I(U; µ), I(V; µ).

(b) Repeat for p1=0.01 and p2 = 0.02.

(c) Note there is a notable change in I(U; V) between (a) and (b).  Describe this change and make 
qualitative statements explaining the change.  What would happen to I(U; V) when p1 and p2 
approach zero?  What would happen if they both approach 1/2.
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Information Theory 

2nd Module 
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Agenda 

Markov Chain and Entropy

 Sufficient Statistics

 Fano’s Inequality

 Different Types of Convergences

 Asymptotic Equipartition Property

 High Probable Set vs. Typical Set

 Homeworks
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Markov Chain 

 Consider random variables X, Y, and Z.

 A chain of random variables X  Y  Z is called Markov

chain if

p(z |x, y) = p(z |y) . 

 Note it implies p(x, z|y) = p(x|y) p(z|x, y) = p(x|y) p(z|y).
– The first equality is due to conditional probability.

– The second is due to Markov chain.

– Thus, a MC XY Z implies, conditional independence between 
X and Z knowing Y.

 Conditioning on current, future and past are independent.
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Data Processing Inequality 

 If X  Y  Z, then I(X; Y) ¸  I(X; Z).
 Proof:

I(X; Y, Z) = I(X ; Y) + I(X; Z| Y) 

or = I(X; Z) + I(X; Y| Z) 

– We know I(X; Z| Y) = 0 and I(X; Y | Z) ¸  0.  (why?)

– Thus, I(X; Y) ¸  I(X; Z)

– Equality iff I(X; Y|Z) = 0, i.e., X  Z  Y is a Markov chain.

 Let’s use Z:=g(Y), a function of Y.

 The function implies an arbitrary data processing on Y.

 The inequality implies then any data processing will not

help us understand X any better.
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Markov Chain 

 Consider a Markov chain, X0, X1, …, Xn

– Transition matrix P = [1-p q ; p 1-q].
– Initial distr. π = [α ; 1 − α].

– Stationary distr. s0 = q/(p+q), s1 = p/(p+q), s = [s0; s1].
– [Pr{X1=0}; Pr{X1=1}] = P 

– Pr{X1=0} = Pr{X1=0|X0=0}Pr{X0=0}+Pr{X1=0|X0=1}Pr{X0=1}

– Pr{X1=1} = Pr{X1=1|X0=0}Pr{X0=0}+Pr{X1=1|X0=1}Pr{X0=1}

0 1 

p 

q 

1-q1- p
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Markov Chain and Entropy 

 Distr. at any n is tn := [Pr{Xn=0}; Pr{Xn=1}] = Pn

 The stationary distr. is s = limn ! 1 tn

– Or, simply solve s = Ps.

 Ex) p = 0.1, q=0.3, 

       P = [0.9 0.3;0.1 0.7], 

       P1 = [0.75 0.75;0.25 0.25], 

       s = [0.75; 0.25]

 Consider the following cases

–  ~ uniform, s ~ non-uniform: H(tn) is decreasing toward H(s)

–  ~ non-uniform, s ~ uniform: H(tn) is increasing toward H(s)
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The Second Law of Thermodynamics 

 Entropy of an isolated system is non-decreasing.

 This comes from the notion that the micro states in a

thermodynamic system reach equally likely states in

equilibrium (uniform stationary distr.)

– If started off with non-uniform initial distr., then, entropy increases.

– If started off with uniform initial distr., then, entropy stays the same.
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Sufficient Statistics 

 Suppose an index set {: 1, 2, …, n} and a family of pmf’s

parameterized by , {f1(x), f2(x), …, fn(x)}. 

 Let

– X be a sample from a distribution in this family and

– T(X) be a function of the sample (a statistic) for inference of .

MC:   X  T(X)

 Thus, in general I(; X) ¸  I(; T(X)).

When the equality is achieved, we call T(X)

a sufficient statistic for inference on .

– Basically, it implies that T(X) contains all the information for .

– No loss of information for .
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Example on Sufficient Statistics 

 Consider a sequence of coin tosses, X1, X2, …, Xn, iid with Xi 2{0,1},
with an unknown parameter  = Pr{Xi = 1}.

 Given n, the number of 1’s in n-trials is a sufficient statistic for .

– T(X1, …, Xn) = i=1
n Xi

– Pr{X1=1, X2=1, …, Xn=0, i.e. k 1’s} = k (1- )n-k , for any k 2 {0, 1, …, n}.
 Also            is the sufficient statistic for . 

 Thus, we note that Pr{X1=x1, X2=x2, …, Xn=xn | T = k}

= 1/(n choose k)  if i=1
n xi = k

  0  o.w. 

  is independent of  the sequence {Xi} given T.  Thus, θ {Xi, i=1,
…,n}  T  forms a MC.  Thus, T is a sufficient statistic for .

ˆ T

n
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Sufficient Statistics (2nd Ex) 

 Other examples of sufficient statistics...
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Fano’s Inequality 

 Consider the problem of ―send X, observe Y, and make a 
guess g(Y) on X.‖

 Note that X  Y  X’=g(Y) forms a MC.

 FI relates the Pe := Pr{X’:=g(Y)  X} with H(X|Y).

We know H(X|Y) ¸  0 with "=" iff X is func. of Y:

    
   Pr{X’(Y)  X} = 0 iff H(X|Y) = 0

 Thus, we expect ―small Pe  for small H(X|Y).‖
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Fano’s Inequality 

 A thought experiment

 y1 observed: two
possibilities on X 

– Pe is 1/2

 y2 observed: 4
possibilities on X 

– Pe is ¾

We can divide the set 
{X = x} into two 
disjoint sets

– {X’ = X} = {1, 3, 7, 8}

– {X’  X} = {2, 4, 5, 6}

X  Y 

y1

y2

X’=g(Y) 

Two sets: 

errors and 

corrects 

1 2 

3 4 

5 6 

7 

8 
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Fano’s Inequality (2) 

 H(Pe) + Pe log(|X| - 1) ¸  H(X|Y)

 Or a weaker version is

1 + Pe log|X| ¸  H(X|Y) or 

Pe ¸  (H(X|Y) – 1)/log|X| 

 Proof:

Consider E :=    1  if X’  X

0   o.w.

Chain rule gives H(E, X| Y) = H(X | Y) + H(E |X, Y)

= H(E | Y) + H(X |Y, E)
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Fano’s Inequality (3) 

H(X | Y) + H(E |X, Y) = H(E| Y) + H(X|Y, E) 

The last term can be bounded as 

 H(X|Y, E) = Pr{E=1} H(X|Y, E=1}+Pr{E=0} H(X|Y, E=0} 

= Pe y p(y) H(X|Y=y, E=1) 

---- But, we know H(X|Y=y, E=1) ·  log(|X| - 1) 

 for any y (There is at least one  X’() =X() ) 

· Pe log(|X| - 1)

Therefore, 

H(X|Y) ·  H(Pe) + Pe log(|X| - 1) ·  1 + Pe log(|X| - 1) Q.E.D. 

0 

· H(E) = H(Pe) ·  1.0

0 
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Types of Convergences 

 In distribution: Xn ) X in distribution if

Fn(x) = Pr{Xn ·  x} ! F(x) = Pr{X ·  x} as n ! 1 

– Ex) Let X1, X2, … iid fair binary {-1,+1} rvs. Let Sn = (1/sqrt(n)) i=1
n

Xi. Then, Fn(y): = Pr(Sn ·  y) ! N(0, 1) (C.L.T.).
 In probability: Xn ) X in probability as n ! 1 if 8  > 0

Pr{: |Xn() – X()| > } ! 0 as n ! 1 

 In almost sure, almost everywhere sense, or with prob. 1:

Xn ) X a.s. as n ! 1, if

-- Pr{: lim Xn() = X()} = 1, or

-- For 8 , Pr{: |Xn() – X()| > , i.o.} = 0,  as n ! 1

 In L2 : Xn ) X in L2, if E{|Xn – X|2} ! 0, as n ! 1
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Relationship Between Different Types 

Xn ) X a.s. Xn ) X in Lp, p>0 

Xn ) X in prob. 

Richard Durrett, Probability: Theory and Examples, 1991, Wadsworth 
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―Xn ) X a.s.‖ V ―Xn ) X in prob.‖

 Xn ) X a.s. implies that for 8  > 0

limk ! 1 P{n¸  k [|Xn – X| > ]} = 0

 Since {|Xk – X| > } µ  n ¸  k {|Xn – X| > },

Pr{|Xk – X| > } ·  Pr(n ¸  k {|Xn – X| > })

 Taking the limit on both sides,

limk! 1 Pr{|Xk – X| > } ·  limk ! 1 Pr(n ¸  k {|Xn – X| > }) = 0

Q.E.D. 
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Xn ) X in prob. V Xn ) X a.s.

(Converse is not true) 

 Consider a series of r.v.’s Xn := 1An where
An are defined as

A1 = [0, 1];

A2 = [0, 1/2), A3=[1/2, 1];

A4 = [0, 1/4), A5 = [1/4, 1/2), A6 = [1/2,
3/4), A7 = [3/4, 1];

…

 Let Pr{Xn = 1} = length(An) (Lebesque)

 Now, let X = 0. Then,

 For 8  >0, Pr(|Xn – X| > ) ! 0 as n ! 1

 But, {: lim Xn() = X()} = ;

Thus, Pr{: lim Xn() = X()} = 0.

Q.E.D.

X1

X2
X3

X4

0 1 

X7
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Example for both ―in prob.‖ and ―a.s.‖ 

 Consider a series of r.v. Xn = 1An where A1 = [0 1]; An = [0,

1/n],  with the Lebesque measure as the prob. 

 Let X = 0.

With this example, we note that Xn ) X in both ―in prob‖

and ―a.s.‖ senses 
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Laws of Large Numbers 

Weak Law of Large Numbers: Let X1, X2, … be i.i.d. with

E|X1| < 1 and E{X1} = , and as n ! 1,

Sn/n )  in probability 

where Sn = X1 + X2 + …+ Xn .

 Strong Law of Large Numbers: Sn/n )  a.s. as n ! 1.

– That is, it is in fact a.s.

 L2 Weak Law: Let X1, X2, …, Xn be uncorrelated r.v.’s

with E{Xi} =  and var(Xi) ·  C < 1.  Then, as n ! 1

Sn/n )  in L2
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Surface Hardening 

 A high-dimensional cube [-1, 1]n is almost the

boundary of a ball.

 Let X1, X2, … be independent uniformly

distributed on [-1, 1].

– Then, EXi
2 = 1/3.

 Then, the WLLN implies

(X1
2 + … + Xn

2)/n ! 1/3 in probability as n ! 1

 Consider an n-dimensional random vector X:=(X1,

…, Xn), and its length ||X|| = sqrt(X1
2+…+Xn

2)

 Thus, for 8  > 0, you can always find a large

enough n, such that Pr{| ||X||2/n– 1/3 | > } ¼  0

 Pr{X2 Rn: 1/3- < ||X||2/n < 1/3+} ¼  1

Length2 = norm2 

=  xi
2

x 

y 

z radius 

sqrt(n/3) 

¼  1 
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Asymptotic Equi-partition Property 

 Let X1, X2, …, i.i.d. with p(x).

 The sample entropy

– Hn’ = - (1/n) log p(X1=x1, …, Xn=x1) = - (1/n) i log p(Xi=xi)

Converges in prob. to 

the true entropy H(X) = - i p(xi) log p(X1=xi). 

 As n ! 1,  can be divided into two mutually exclusive

sets: The typical set and the non-typical set.

– The sequences in the typical set have the sample entropy ¼  H(X)

– Those in the non-typical set have the sample entropy  H(X)

 From WLLN, Pr{Typical set} ¼  1.0 as n ! 1
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Asymptotic Equi-partition Property (2) 

 AEP: If X1, X2, … iid with p(x), then

Hn’:= - (1/n) log p(X1, X2, …, Xn) = - (1/n) i log p(Xi)

) - E(log p(X1)) = H(X) in prob. 

(due to WLLN) 

 This means, for 8  > 0

Pr{(x1, …, xn): | Hn’ –H(X) | >  }! 0 as n ! 0

– Prob. of the atypical set goes to zero

– Prob. of the typcial set goes to 1

 We can divide the entire set , the set of all possible
sequences of length n, into two mutually exclusive sets
– Typical set A

(n) :={(x1, …, xn): | Hn’ - H(X1) | ·   }

– Atypical set  – A
(n)
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A sequence in the Typical Set A
(n)

 For any sequence (x1, …, xn) 2 A
(n) :={(x1, …, xn):

| –(1/n) log p(x1, …, xn) – H(X) | ·   }, the prob. of 
the sequence must have the following property 

| –(1/n) log p(x1, …, xn) – H(X) | ·    

H(X) -  ·  – (1/n) log p(x1, …, xn) ·  H(X) +  

2-n(H(X)+) ·  p(x1, …,xn) ·  2-n(H(X) - )

 Since we can choose a very small , the prob. of a
sequence can be made very close to 2-nH(X), as n ! 1.

H(X) -(1/n) log(x1, …,xn) H(X) -  H(X) + 

© 200x Heung-No Lee 



131 

Pr{A
(n)} > 1 - ,  for n sufficiently large

 For any  >0 and  > 0, there exists an no such that n > no,

Pr{ | –(1/n) log[p(x1, …, xn)] - H(X) | ·   } > 1 - . 

 Choose  = .
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The Size of the Typical Set A
(n)

 The size of the typical set satisfies

1. |A
(n)| ·  2n(H(X) + )

2. (1-) 2n(H(X) - ) ·  |A
(n)|

 Proof of 1:   1 = x 2 X
n

 p(x)

     ¸  x 2 A p(x)  

¸  x 2 A 2
-n(H(X)+)

= |A
(n)|  2

-n(H(X)+) Q.E.D.

 Proof of 2: 1 -  ·  Pr{A
(n)} ·  |A

(n)| 2-n(H(X)-)
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Example 

 X1 ~ binary r.v. taking 1 or 0, with prob. p and (1-p)

 Let X1, X2, …, Xn i.i.d.

 Ex. with n=6, p=2/3

– The most typical sequences have 4 ones (np = 6*2/3 = 4).

– The prob. of any sequence with 4 ones is p4 (1-p)2. There are (6

choose 4) number of such sequences.

– There are total of 26 possible sequences.

We can divide the complete set into the typical and the

non-typical sets.

 In a trial, the sequences in the non-typical set occur rarely

while those in the typical set occur very often.
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H(p) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p 

H(p) 
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Example (2) 

 Consider p = 0.5

– Then, we note H(X) = 1; the size of typical set is 26; each and

every sequences happens equally likely with prob. 1/26
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Example (3) at n=6 

 Consider p = 0.061, H(0.061) = 0.33; the size of typical set

is 26*(0.33+1/6) = 7.88; compared to 26 = 64

 A sequence in the typical set is expected to have np =

0.061*6 =0.37  number of 1’s

 Exact calculation:

- a seq. with no 1: (1-p)6 = 0.6855 

(The most probable sequence and also most typical) 

- seq.’s with a single 1: C6
1(1-p)5 p = (6) 0.0445 =

0.2672

- These two kinds of sequences (7 seq’s) account for 95%

occurrences.
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Example (4): n=10 

 Consider n = 10 with p = 0.14. Then, H(0.14) = 0.58; nH =

5.8; the size of typical set is 210*(0.58+1/10) ¼  111;

prob.=(1/111) = 0.009; 210 = 1024

 Exact calculation:

- a seq. with no 1: (1-p)10 = 0.22 

- seq.’s with a single 1: C10
1 (1-p)9 p = 0.036 (x 10) = 0.36

- seq’s with two 1’s:  C10
2 (1-p)8 p2 = (45) 0.0059 = 0.27

- seq’s with three 1’s:  C10
3 (1-p)7 p3 = (120) 9.5e-4 (120) = 0.11

- size of the 96% occurrence set is 1 + 10 + 45 + 120 = 176

96% 

85% 

Most probable 

Most typical set 

© 200x Heung-No Lee 



138 

Example (5): n = 100 

 Consider n = 100 with p = 0.02. Then, H(0.02) = 0.1414;

nH ¼  14; the size of typical set is 214 ¼  18054;

prob.=1/(18K) = 5.538e-5; 2100 =(1024) 10

 Exact calculation:

- a seq. with no 1:      (1-p)100 = 0.1326 

- seq.’s with a single 1:      (1-p)99 p = 0.0027, (x 100) = 0.27 

- seq’s with two 1’s:      (1-p)98 p2 = 5.25e-5, (x 4950) = 0.2734 

- seq’s with three 1’s:      (1-p)97 p3 = 1.12e-6, (x 161700) = 0.1823 

- seq’s with four 1’s:      (1-p)96 p4 = 2.3e-8, (x 3.9M) = 0.09 

- size of the 95% occurrence set is about 4 Million

95% 

Most probable 

Most typical set 
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Consequences of AEP: Data Compression 

 The size of the typical set is

2n(H(X) + )

 Data Compression Scheme:

 Seq.’s in typical set: In

general, we need (nH(X)+)

+ 1 bits to represent them

– Let’s use 0 as prefix to denote

membership to the typical set

– n(H(X) + ) + 2 bits in total

 Seq.’s in atypical set:

– n log2 |X| + 1 bits (Use prefix 1)

|X|n elements 

Typical 

Non-typical set 

Happens most of 

the time; smaller 
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High Probability Sets and the Typical Sets 

 Typical set is a small set that accounts for the most of

the probability.

 But, is there a set smaller than the typical set, that

accounts for the most of the probability?

 Theorem 3.3.1 states that the size of the typical set is

the same as the size of the high probability set, to the

first order in the exponent

– The proof is easy, and outlined in prob. 3.11
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High Probability Sets and the Typical Sets 

 High Probability Set B
(n) ½  Xn is defined as a set

Pr{B
(n) } ¸  1 - , for 1/2 >  > 0. 

 The theorem indicates that the size of this set is

limn ! 1 (1/n) log (| B
(n) |/|A

(n)|) = 0

 At a finite n, (1/n) log (| B
(n) |/|A

(n)|) =  > 0

| B
(n) | = |A

(n)| 2n

– Both sizes grow exponentially fast

– But the exponent of the growth is linear, nH

 Using Example (5), we note that the most probable set
must include the all 0 sequence by definition; but the
typical set may not include it (the most typical set include
all the sequences with two ones).

© 200x Heung-No Lee 



142 

Homework #2, #3 

 HW#2

– P2.6 (Conditional vs. unconditional mutual information)

– P2.23 (Conditional MI)

– P2.26 (Relative entropy is non negative)

– P2.29 (Inequalities)

– P2.34 (Entropy of initial condition)

– P2.40 (Discrete Entropies)

– P2.43 (MI of heads and tails)

– P2.48 (Sequence length)

 HW#3

– P2.21 (Markov inequality)

– P2.30 (Maximum entropy)

– P2.32, P2.33 (Fano’s inequality)

– P3.1 (Markov and Chebyshev inequalities)

– P3.2 (AEP and MI)

– P3.4 (AEP)

– P3.10 (Random box size)

– P3.13 (Calculation of typical set)  Note the table on pg. 69 might have some errors.  Generate
your own and do the problem.
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 Challenge Problems, not required:

1. Let X1, X2, …, Xn be uncorrelated r.v.’s with E{Xi} =  and var(Xi)
· C < 1. Prove (X1+…+Xn)/n )  in L2 as well as in probability.
(Hint: prove L2 first and use Chebyshev’s inequality)

2. Find a tight lower bound on the probability of making errors for
BPSK signaling over the AWGN channel. (Hint: Fano’s inequality)

1. Obtain the bound expression

2. Numerically evaluate your expression

3. Draw the bound on Pe as the function of Eb/No. (Draw only from -1 to 5
dB SNR in the interval of 0.5 dB)
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Information Theory 
3rd Module 
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Agenda 

 Entropy Rates of a Stochastic Process (Chapter 4)

 Compression (Chapter 5)
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Tentative Schedule 

Weekly Course Schedule 

Calendar Description *Remarks 

1st week,  9/2  Introduction to Information Theory, Entropy  

2nd week,  9/7, 9 Entropy, Relative Entropy and Mutual Information 

3rd week, 9/14, 16 Entropy, Relative Entropy and Mutual Information 

4th week, 9/2,23 Asymptotic Equipartition Property 

5th week, 9/28, 30 
Asymptotic Equipartition Property/Entropy Rates of a 
Stochastic Process 

6th week, 10/5, 7 Entropy rates of Markov Chain 

7th week , 10/12, 14 Data compression 

8th week, 10/19, 21 Data compression/Channel capacity   Midterm 10/21 

9th week, 10/26, 28 Channel capacity theorems/forward/reverse 

10th week, 11/2, 4 Differential entropy 

11th week, 11/9, 11 Gaussian channel capacity Selection of papers due 

12th week, 11/16, 18 MIMO channel capacity theorem 보충? 

13th week, 11/23, 25 Multiple access channel capacity theorem 

14th week, 11/30, 12/2 Slepian Wolf 

15th week, 12/6, 9  Student Presentation 

16th week,  12/16 Final Exam (12/16 일) 
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A sequence in the Typical Set A
(n)

 For any sequence (x1, …, xn) 2 A
(n) :={(x1, …, xn):

| –(1/n) log2[p(x1, …, xn)] – H(X) | ·   }, the prob. of 
the sequence must have the following property 

 | –(1/n) log2[p(x1, …, xn)] – H(X) | ·  

 H(X) -  ·  – (1/n) log2[p(x1, …, xn)]| ·  H(X) + 

 2-n(H(X)+) ·  p(x1, …,xn) ·  2-n(H(X) - )

 Since we can choose a very small , the prob. of a
sequence can be made very close to 2-nH(X), as n ! 1.

H(X) -(1/n) log(x1, …,xn) H(X) -  H(X) + 
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Basically, AEP tells us that 

 For length n i.i.d. sequence of r.v.’s

 nH bits are good enough for describing the typical

sequence.

– Size of the typical message set is 2nH(X) .

– Each sequence in the message set occurs with 2-nH(X) .

 In an experiment, usually a sequence in the typical set

happens.

 Shannon’s Theorem 3 is AEP (see page 13).

 But what happens if the r.v.’s are dependent?

– Motivation to consider the entropy rate

© 200x Heung-No Lee 

shannon1948.pdf


Shannon’s Paper 

 Shannon uses Markov chain to describe English.

– Shannon’s 1948 paper

– Zero-order, first-order, second-order letters

– First-order word, second-order word

– Let’s take a look at his paper.

 ―Can we define a quantity which will measure, in some

sense, how much information is ―produced‖ by such a

process, or better, at what rate information is produced?‖
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Some Definitions for MC 

 Stationary stochastic process:

Pr(X1=x1, …, Xn= xn)=Pr(Xt+1=x1, …, Xt+n = xn) for all t. 

 MC

– Pr(Xn+1 = a | Xn = b, …, X1=x1) = Pr(Xn+1 = a|Xn = b)

 MC is time-invariant (almost always we assume this) if

P(Xn+1+t = a|Xn+t = b)=P(Xn+1 = a | Xn = b) 

– Transition matrix P stays the same.

– Stationary distribution: s = Ps

 If the initial distribution is s, then the MC is stationary.
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Per-Symbol Entropy (Entropy Rate) 

 Consider a sequence of r.v.s X1, X2, …, Xn

 How does the entropy of a sequence of n r.v.’s grow with n?

 Let’s define the per symbol entropy

H(X) : = limn ! 1 (1/n) H(X1, …, Xn) when it exists 

 Examples:

When X1, X2, … are iid, the rate attains the maximum H(X1).

H(X) = limn ! 1 (1/n) H(X1, …, Xn) = nH(X1)/n = H(X1).

When X1, X2, … are indep. but different distr.

Then, H(X1, …, Xn) = i H(Xi).
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Conditional Entropy Rate 

 H’(X) := limn ! 1 H(Xn|Xn-1, …, X1)

 For a stationary process, H’(X) = H(X), both limits exist

and equal.

 H(Xn+1|Xn, …, X1) ·  H(Xn+1|Xn, …, X2}

--- why? 

= H(Xn|Xn-1, …, X1) 

--- why? 

We know that

– It is a non increasing series of non-negative numbers.

– It is bounded from below.

 Then, the limit exists. (convergence from above)
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Cesaro Mean (from Analysis): 

 Cesaro Mean (from Analysis):

If an ! a and bn = (1/n) i=1
n ai, then bn ! a

|bn – a| ·  (1/n) i=1
n |an – a| ·  (1/n) i=1

N() |an – a| + 

a 

an

n 

n=N() < 1 n=1 

0 as n ! 1 

since N() < 0 

+ 

- 
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H(X) = H’(X) for stationary process 

 From the chain rule:

(1/n) H(X1, …, Xn) = (1/n) i=1
N H(Xi|Xi-1, …, X1)

 By applying the Cesaro Mean, we know

H(X) = lim (1/n) H(X1, …, Xn) = lim H(Xn|Xn-1, …, X1) = H’(X)

 Implications: For a stationary process,

– There are about 2nH(X) typical sequences of length n.

– The prob. of typical set is close to 1.

– nH(X) bits are usually needed to represent the length n typical

sequences.
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Entropy Rate of a stationary MC 

 H(X) = H’(X) = limn! 1 H(Xn|Xn-1, …, X1)  

       = limn! 1 H(Xn|Xn-1)  

       = H(X2|X1) 

 Let vector s denote the stationary distribution and P the 

transition matrix of a stationary MC. 

  s = Ps 

H(X) = H(X2|X1) = i si (- j Pij log Pij)  
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Entropy rate of two state MC 

 s = [s0 s1]’; P = [1-p p; 1-q q];

 H(X) = H(X2|X1) = i si (- j Pij log Pij)

 Then, the entropy rate H(X) = (q*H(p) + p*H(q))/(p+q)

0 1 

p 

q 

1-q1- p
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Shannon’s Examples 

 See section 7 of his paper.

 He was interested in finding the entropy rate of an

information source (English).

– How much redundancy is there in the source?

– Redundancy in English ¼  0.5 .

– This is my example.

– I _a_t _o _o h_m_ _nd p_ly _it_ m_ k_d_.

– is it possible to make out the meaning?

– Deleted about 13 characters (13/40 = 33%)
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Answer to my example 

– I want to go home and play with my kids. (40 char’s and spaces)
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 Chapter 5: Data Compression 

 

 

Information generated from a source can be compressed 

without distortion. 

 

In this chapter, we are interested in distortion-less Source 

Compression. 
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Data Compression (Distortionless) 

 Intuition tells us that we would want to use 

– Short description for frequent outcomes 

– Long description for less frequent outcomes 

 A code constructed this way will have a small minimum 

description length. 

 A source code does this efficiently.  

 Information sources include data sources such as type 

writer, signals and telegraph. 

 Shortest description length of a random source  

– A variable/a process ~ Entropy/Entropy rate 

 Expected description length ¸  Entropy 
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A code is a map 

 A source code C for a random variable X is a mapping

from X = {X(): x1, x2, …} to D*, the set of codewords

– A codeword C(x) is a finite length string of D-ary digits assigned

to x.

 Let l(x) be the length of C(x).

 The expected length L(C) = E{l(X)} = xi l(xi) p(xi).

 X D* X 
C strings of 

D-ary

digits
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A string of a D-ary digit 

 D-ary alphabet is D = {0, 1, 2, …, D-1}.

 Ex) 012201 is a ternary alphabet string.
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Non-singular code 

 A code is said to be non-singular if every element of X 

maps into a different string in D*, i.e., 

   xi  xj  )  C(xi)  C(xj) 

– This statement does not allow many-to-one mapping. 

– Mapping—by the definition—is either only one-to-one or many-

to-one (no one-to-many).  

– Thus, a map (a code) can include either one-to-one or many-to-one 

assignments.  

– Hence, a non-singular code is a code that does not allow any 

many-to-one assignment in a map.  

– Non-singularity thus implies the one-to-one mapping which is 

sufficient for unambiguous decoding. 

© 200x Heung-No Lee 



164 

Some Definitions on Functions 

 A function f:  A  |!  B is a relation between A and B

satisfying the following conditions:

– For each a 2 A, there exists b 2 B such that (a, b) 2 f, AND

– If (a, b) and (a, c) are in f, then b = c.

 A function f: A |! B is said to be

– One-to-one if given b 2 B, there is at most one a 2 A.

– Onto if for each b 2 B, there is at least one a 2 A, i.e. b=f(a)

– One-to-one correspondence if a function is both one-to-one and

onto. 
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Extension C* of C is a map 

 An extension C* of a code C is a mapping from finite

length springs of X to finite length strings of D, defined by

C(x1x2…xn) = C(x1)C(x2) … C(xn) 

– It is concatenation of codewords.

– Ex) If C(x1) = 00 and C(x2) = 11, then C(x1x2) = 0011

– Why? Efficiency! It can get rid of a space symbol which would

have been needed for separating any pair of different length

codewords.

– Ex) C(x1)=11,  C(x2)=10,  C(x3) = 110, C(x4) = 01

• 110110 ~ 110, 110 or 11,01,10 (not decodable)

• Space symbols useful but wasteful!

• Not efficient!
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Uniquely Decodable Code 

 A code C is called uniquely decodable if its k-th extension 

is one-to-one mapping from Xk to D* for all k ¸  0.  

 

– (see P5.21, not P5.18) 

– Uniquely decodable = non singular when extended 
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Prefix Code 

 A code C is called a prefix(-free) code or an instantaneous 

code if no codeword is a prefix of any other codeword. 

 Ex)  C = {0, 10, 110, 1110} 

– 0101100110  0, 10, 110, 0, 110 uniquely decodable  

– Instantaneous, since the end of a codeword is immediately 

recognizable 

– Self-punctuating 

All codes 

Non-singular 

Prefix Uniquely 

decodable 
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Examples 

 X = {1, 2, 3, 4}

 Consider the following codes (the elements are ordered)

– Non-singular, uniquely decodable, instantaneous?

Map#1: {0, 0, 1, 1}

Map#2: {0, 010, 01, 10}

Map#3: {10, 00, 11, 110}

Map#4: {0, 10, 110, 111}
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Kraft Inequality 

 For any instantaneous code over D-ary alphabet, the

collection of codeword lengths, l1, l2, …, lm, must satisfy 

the inequality 

i=1
m D-li ·  1

where m is the number of codewords. 

 (Converse) Given a col. of codeword lengths that satisfy

this inequality, there exists an instantaneous code with

these word lengths.

– Sufficiency test for existence of a prefix code.

 Fundamental constraints on the lengths of a prefix code.
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If A is a prefix code, then the lengths of A's codeword satisfies Kraft inequality.  

If the lengths of a code A satsifies Kraft inequality, A is a prefix code.  True?

If the lengths satsifies Kraft inequality, there exists a prefix code with these word lengths.  
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Kraft Inequality (Proof) 

 Prefix code ~ each
codeword has no child.

 l1, …, lm

 lmax = max{l1, …, lm}

 Dlmax ¸  i D
lmax – li

) 1 ¸  i D
– li . (QED)

When do you have
equality?

 Ex) 23 ¸  4 + 2 + 1 or
4+2+1+1

3

0 

1 

1

2
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The previous proof is not rigorous! 

 The proof was based on induction (D=2, 3, …).

– Consider the leaves at the maximum depth of the tree.

– The total number of leaves is greater than or equal to the sum of

the leaves displaced by codewords.

• All descents of a codeword are displaced

• Any leave occupied by a codeword is displaced as well.

– Sum of codewords + descendents of codewords cannot be greater

than the total number of leaves at the maximum depth.

 Any way to improve the proof?
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Kraft Inequality for UD code 

 For any uniquely decodable code over D-ary alphabet, the 

collection of codeword lengths, l1, l2, …, lm, must satisfy 

the inequality 

     i=1
m D-li ·  1 

 where m is the number of codewords. 

 

 (Converse) Given a col. of codeword lengths that satisfy 

this inequality, there exists a uniquely decodable code with 

these word lengths. 

– Sufficiency test for existence of a uniquely decodable code. 

 

 Fundamental constraints on the lengths of a UD code. 
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Examples 

 Is there an instantaneous prefix code with a col. of lengths

{1, 2, 2, 3}?

– NO, since 2-1+2-2 + 2-2 + 2-3 > 1

 How about {1, 2, 3, 3}?
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Example 

 {1, 2, 4, 4, 4, 4}

2-1+2-2+4*2-4 = 1/2 +

1/4 + 4*1/16 = 1

0 

1 

0 

10 

1100 

1101 

1110 

1111 
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Optimal Codes 

 Find a prefix code that has the minimum L=E(l).

 First, find the lengths {l1, …, lm} which satisfy the Kraft

inequality and have the minimum L. 

 Second, construct the prefix code using the tree.

© 200x Heung-No Lee 

There are many prefix codes satisfying the Kraft inequality.

E(l) means there is a distribution. 

Given the distribution, p_i's, map them to lengths l_i's. 
Find the lengths l_i's satisfying KI, map them to p_i's.

Looks like we are
doing the first.
Given pi's find 
li's.



176 

Let’s use the Calculus, just to have an idea 

 Use the Lagrange multiplier method to solve

– Minimize L =  pi li

– Subject to  D-li ·  1

– Let’s relax the condition and let li be any positive

number. 

– Let li = l(C(xi)), i=1, …, |X| and pi = Pr{X = xi}.

– Note that |X| = m
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Lagrange multiplier minimization 

 Let J =  pi li +  ( D-li)

 Differentiate wrt each li and obtain

 J/ li = pi -  D-li log D,

 Setting it equal to 0, we have

D-li = pi/( log D)

 Substitute this in the constraint  D-li =1 and obtain  =

1/logD

 Thus, pi = D-li  or l*
i = - logD pi

 Then, L = E{l(X)} =  pi l
*

i = -  pi logD pi = HD(X)
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L ¸  HD(X) 

 Since codeword length  must be integer, we must do the

ceiling operation , i.e.

li = d l*
i e 

 Thus, L ¸  HD(X), equality iff  l*
i integers or pi = D-li

 Ex) {pi} = {1/2, 1/4, 1/16, 1/16, 1/16, 1/16}

– {C(xi)} = {0, 10, 1100, 1101,1110, 1111}

– Lengths 1, 2, 4, 4, 4, 4

– E(L) = (1/2) * 1 + (1/4) * 2 + (1/4) * 4 = 2

– H = (1/2) *log2(2) + (1/4) * log2(4) + 4 * (1/16) * log2(16) = 2

– E(L) = H since pi = 2-li , li = 1, 2, 4, 4, 4, 4
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D-adic distribution 

 A distribution where each of the probabilities is equal to D-n.

 The lower bound on expected length, L ¸  HD(X) is achieved

iff the distribution is D-adic (i.e. pi = D-li).
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Information Theoretic Proof: L ¸  HD(X) 

 L – HD(X) = x p(x) l(x) - x p(x) logD(1/p(x))

= x p(x) {logD[p(x)] - logD[D-l(x)]}

--- let r(x) = D-l(x)/ro

--- with ro =  D-l(x) ·  1 (Kraft Inequality)

= x p(x) {logD[p(x)] – logD[r(x)ro]} 

= x p(x) {logD[p(x)] – logD[r(x)] – logD[ro]}

= x p(x) logD[p(x)/r(x)] + logD[1/ro]

¸  0 (why?) 
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A possible procedure to find an optimal code 

 Find the D-adic distribution that is closest (in the relative

entropy sense) to the distribution of X

– pi = D-li, i = 1, …, |X|

– So now you have {li}, the col. of codeword lengths.

 Construct a D-adic tree according to the col.

 Assign codewords on the leaves of the tree.

 The first step of searching for the closest D-adic

distribution is not trivial.

We may use a sub-optimal procedure.
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HD(X)+1/n > Ln ¸  HD(X) 

 Previous pages say we have an overhead of maximum one
bit per symbol.

 Now, consider a series of r.v.s, X1, X2, …,

We want to get rid of the one overhead bit per symbol by
spreading out over many symbols.

 For a simple example, consider a group of iid X1, …, Xn ~
p(x). Then, the distribution is Pn(x) = i=1

n p(x).

 Then, we have

HD(X1, …, Xn) ·  E{l(X1, …, Xn)} < HD(X1, …, Xn) + 1 

 Dividing by n, we have the expected length per symbol Ln

HD(X) ·  Ln < HD(X) + 1/n 
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X1, X2, …, Xn is a stationary stochastic process 

We know H(X1, …, Xn)/n ! H(X) (Cesaro Mean)

– nH(X) bits ~ sufficient for description of typical seq. of length n

 Then, the minimum expected codeword length per symbol

converges to the entropy rate of the process

L*
n ! H(X) as n ! 1 
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Messages learned 

 Thus, one can always construct a near optimal prefix code.

– Use the Shannon code,  li = dlogD(1/pi)e

– Use a sequence, rather than a symbol (vector processing, rather

than a symbol processing)
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Two Important Coding Methods 

 Huffman code

 Lempel-Ziv code
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Huffman Code (Huffman Tree) 

 Huffman code is an optimal prefix code, with the shortest

expected length for a given distribution, which can be

constructed by the Huffman algorithm.

 It minimizes L = i p(xi) li .

 Compare it with H = i p(xi) log(1/p(xi)) .

pi 

0.4 

0.2 

0.1 

0.1 

0.1 

0.1 

i 

1 

2 

3 

4 

5 

6 
0.2 

0.2 

0.4 

0.6 

1.0 

1 

0 

li

1 

2 

3 

4 

5 

6 

Prefix 

code 

11 

10 

011 

010 

001 

000 
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Huffman Code 

 L = 0.4*2 + 0.2*2 + 4*0.1*3 = 2.4

 H = 2.319 (Lower bound)

• It should be noted here that the expected length turned out quite close

to the lower bound. 
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Recall the 8-Horse Race Problem 

The code we constructed is a Huffman code.

The distribution is 2-adic.

L = 2 = H

0 

1 

2 

3 

4 

5 

6 

7 

0 

10 

110 

1110 

111100 

111101 

111110 

111111 

Length 
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2 

3 

4 

6 

6 

6 

6 

pi 

1/2 

1/4 

1/8 

1/16 

1/64 

1/64 

1/64 

1/64 

© 200x Heung-No Lee 



190 

Huffman Encoding Algorithm 

 Construct a tree in the following routine:

– First, have the probabilities (and the index) listed in the decreasing

order. 

– Second, go over the list and locate two indices with lowest

probabilities. Group these low probable items, and add the 

probabilities and label it for the group. Now note that the size of 

the list is reduced by one. 

– Repeat the second step exhaustively.

 Once a tree is completed, we can assign ―1‖ for up and ―0‖

for down from the top of the tree.
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Optimality of Huffman Codes 

 Given a distribution, there could be many Huffman codes

which all lead to the same expected length.

 Let’s call the Huffman tree procedure Huffman coding.

 Huffman coding is optimal in the sense that if C* is a

Huffman code, and C’ is a code from other coding

procedure, then L(C*) ·  L(C’)

– See Ch5.8 for proof by induction
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Lempel-Ziv Coding (Ch13) 

 Construction of Huffman code requires knowledge of priors.

 Huffman code does not make use of correlation between words and

phrases (based on the assumption that  text is generated from a random

variable, rather than a random process)

 Lempel-Ziv code figures out the correlation structure of the source in

a sequence, and further compress

– LZ code is a universal code (does not need to know the distribution or

correlation of the source).

– LZ code is dictionary based.

 It’s adaptive and simple.

 Operation: parse the data stream into segments that are the shortest

subsequences not appeared previously.
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Lempel-Ziv Encoding 

 Let’s take a simple example for illustration of the algorithm

 Consider a data stream

aaababbbaaabaaaaabbababb 

 Starting from the left of the stream, parse the data stream into
segments not appeared previously

a, aa, b, ab, bb, aaa, ba, aaaa, bba, bab, b 

Index– 1, 2,   3, 4,   5,   6,    7,    8,      9,    10,  11 

Encoding-- a, 1a, b, 1b, 3b, 2a,  3a,  6a,    5a,   7b,  3 

 (Appeared, new) = (Index, new) = (4 bits, 7 bits)

 The total number of bits per segment needed in this example is 4 bits
for the index and 7 bit ascii code for the new part.

– 11 segments £  (4 + 7) bits = 121 bits

– 24 characters £  7 bits = 168 bits

– (168-121)/168 is the compression ratio in this example
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Lempel-Ziv Coding (MATLAB) 

We will compress the following text with an LZ algorithm

that I programmed in MATLAB, Lempel_ziv.m

 Jordan_text.txt

 H1N1_virus.txt

194 © 200x Heung-No Lee 

../Mfiles/Jordan_text.txt
../Mfiles/H1N1_virus.txt


195 

Huffman Codes vs. Shannon Codes 

 X is binary, X=1 with prob. 2-10, X=0 with prob. 1 - 2-20

 Shannon Code: l(x=1) = dlog2(2
10)e = 10, l(x=0) = 1

 Huffman Code: l(x=1) = 1 and l(x=0) =1

 A codeword for infrequent symbol in Shannon Code is

much longer than in an optimal code.

 But, this does not mean that a codeword in an optimal code

is always shorter than those in the Shannon code.

 Ex) X ~ (1/3, 1/3, 1/4, 1/12)

– two kinds of Huffman trees with lengths (2, 2, 2, 2) or (1, 2, 3, 3)

– Shannon lengths (2, 2, 2, 4)
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HW 

 P4.4, 4.7, 4.11, 4.24

 P5.3, 5.6, 5.7, 5.16, 5.18
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Kraft Inequality for Uniquely Decodable Codes 

 Recall that the uniquely decodable codes is a super-set of

the prefix code

– Prefix code is uniquely decodable

– A uniquely decodable code may not be a prefix code

– Let A be the set of codeword lengths for uniquely decodable code

– Let B be the set of those for prefix code

– |A|

 (McMillan): {l1, …, lm} with  D-li ·  1

, 

Uniquely decodable code with lengths {l1, …, lm} 
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McMillan Inequality:  D-li ·  1 

 ―)‖ part is easy since prefix code is a uniquely decodable

code

 Let’s prove ―(‖ part: set of codeword-lengths of a

uniquely decodable code must satisfy the Kraft inequality.

 Let l(x) be the codeword length of the symbol x 2 X .

 Let l(x1, …, xk) be the codeword lengths of the k-th

extension code 

l(x) := l(x1, …, xk) = i=1
k l(xi) . ---(1) 

 We need to show that x 2 X D-l(x) ·  1 .
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Back to Proof of McMillan 

(x 2 X D-l(x))k = x12X … xk2X D-l(x
1
) … D-l(x

k
) 

   = x2X
k D-l(x)  --- (1)   

    By gathering terms wrt wordlengths 

     = m’=1
k lmax a(m’) D-m’ 

     ·   Dm’ D-m’  

     = k lmax 

x2X
k D-l(x) ·  (k lmax)

1/k ! 1 as k ! 1  
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Optimality of Huffman Codes (Off) 

 Definition of Optimality here:  pi li is minimum

 Huffman algorithm gives an optimal code

 Lemma 5.8.1: An optimal instantaneous code satisfies the

following properties:

– Let p1 ¸  p2 ¸  … ¸  pm

– pi > pj ) li ·  lj

– The two longest codewords have the same length.

– The two longest codewords differ only in the last bit and

correspond to the two least likely symbols.
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Proof (1) (Off) 

 If pj > pk, then lj ·  lk 

 Consider an optimal code Cm 

 Consider C’m, with the codewords j and k of Cm swapped 

 L(C’m) – L(Cm) =  pi l’i -  pi li 

    = pj lk – pj lj + pk lj – pklk 

    = pj (lk – lj) + pk (lj – lk) 

    = (pj – pk) (lk – lj) 

    ¸  0   (Since Cm is optimal) 

 Thus, if (pj – pk) > 0, lk – lj ¸  0 
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Proof (2) (Off) 

 The two longest codewords are of the same length 

– If two longest codewords are not of the same length, we can trim 

the longer one (thus get rid of 1 additional bit) and obtain a lower 

expected length 

 
3 

0 

1 

1 

2 
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Proof (3) (Off) 

 The two longest codewords differ only in the last bit and

correspond to the two least likely symbols
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Summary of Lemma (Off) 

 If p1 ¸  p2 ¸  … ¸  pm, then there exists an optimal code

with l1 ·  l2 ·  … ·  lm-1 = lm, and the codewords C(xm-1) =

C(xm) differ only in the last bit.
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We now want to prove that a code satisfying the lemma is

optimal

 Use the idea of ―merging‖– just as in Huffman algorithm.

© 200x Heung-No Lee 



214 

―Merged‖ code Cm-1 (Off)  

 Take the common prefix of the 

longest words and assign prob.  

 pm-1+pm 

  L(Cm) = i=1
m pi li  

 = i=1
m-2 pi li + pm-1lm-1 + pm lm 

 = i=1
m-2 pi li + (pm-1 + pm)(lm – 1)  

 + pm-1 + pm 

  = L(Cm-1) + pm-1 + pm 

 Thus, minimization of L(Cm) is 

equivalent to minimization of 

L(Cm-1), and so on 

p1 p2 

p3 

p5 

p4 

p1 p2 

p3 

p4 + p5 

p1 

1-p1 
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―Merged‖ code Cm-1 (Off) 

When we have only two symbols left, the solution is 

simple, assign 0 for one and 1 for the other. 

 L(C2) is minimized. 

 Then, L(C3) is minimized, … and so on. 

 Thus, L(Cm) satisfying the lemma is minimum. 

 Thus, Cm which satisfies the lemma is an optimal code. 
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Huffman Coding is Optimal (Off) 

 If C* is Huffman and C is any other code,  

 then L(C*) ·  L(C) 
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Information Theory 

4th Module 
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Agenda 

 L = E(L) in this lecture note

 Entropy bound on data compression

L :=  pi li ¸  HD(X) 

 Shannon Code: li = d logD(1/pi) e

L < HD(X) + 1 

McMillan inequality:

Uniquely decodable code ,  D-li ·  1 

 Huffman code:

L* = min D
-li

 ·  1  pi li

 Chapter 8: Channel Capacity

© 200x Heung-No Lee 



219 

D-adic distribution

 A distribution where each of the probabilities is equal to D-n.

 Lower bound on expected length, L ¸  HD(X) is achieved iff

the distribution is D-adic (i.e. pi = D-li).
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Procedure of finding an optimal code 

 Find the D-adic distribution that is closest (in the relative

entropy sense) to the distribution of X

– pi = D-li, i = 1, …, |X|

– So now you have {li}, the set of codeword lengths.

 Construct a D-adic tree according to the set.

 Assign codewords on the leaves of the tree.

 The first step of searching for the closest D-adic

distribution is not trivial.

We may use a sub-optimal procedure.
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H(X) ·  L < H(X) + 1 (Off) 

 Let’s study a coding scheme. The expected length of the code is to be

within one additional bit of the lower bound.

 We showed L – HD(X) = D(p || r) – log( D-li) ¸  0.

 The choice of word length li = logD(1/pi) yields L = H, which is the

case for a D-adic distribution.

 But what if we do the ceiling operation (the Shannon code), i.e.?

 li = dlogD(1/pi)e ¸  logD(1/pi), 

 These lengths surely satisfy the Kraft inequality since

 D-li ·   D-logD{1/pi} =  pi = 1.

 By the definition of ceiling operation, we have

logD(1/pi) + 1 > li ¸  logD(1/pi) ) HD(X)+1 > L ¸  HD(X)
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HD(X)+1/n > Ln ¸  HD(X) (Off) 

 Previous page says we have an overhead of maximum one 
bit per symbol. 

 Now, consider a series of r.v.s, X1, X2, …,  

We want to get rid of the one overhead bit per symbol by 
spreading out over many symbols. 

 For a simple example, consider a group of iid X1, …, Xn ~ 
p(x). Then, the distribution is Pn(x) = i=1

n p(x). 

 Then, we have  

 HD(X1, …, Xn) ·  E{l(X1, …, Xn)} < HD(X1, …, Xn) + 1 

 Dividing by n, we have the expected length per symbol Ln 

  HD(X) ·  Ln < HD(X) + 1/n 
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X1, X2, …, Xn is a stationary stochastic process 

We know H(X1, …, Xn)/n ! H(X) (Cesaro Mean)

– nH(X) bits ~ sufficient for description of typical seq. of length n

 Then, the minimum expected codeword length per symbol

converges to the entropy rate of the process

L*
n ! H(X) as n ! 1 
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Kraft Inequality for Uniquely Decodable Codes 

 Recall that the uniquely decodable codes is a super-set of 

the prefix code 

– Prefix code is uniquely decodable 

– A uniquely decodable code may not be a prefix code 

– Let A be the set of codeword lengths for uniquely decodable code  

– Let B be the set of those for prefix code 

– |A|  

 (McMillan): {l1, …, lm} with  D-li ·  1  

  ,  

 Uniquely decodable code with lengths {l1, …, lm} 
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Uniquely Decodable Code (Off) 

 Extension of a uniquely decodable code is non-singular.

 Consider Ck, the k-th extension of a uniquely decodable

code C.

– It’s a concatenation of k repetitions of the code C.
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McMillan Inequality:  D-li ·  1 

 ―)‖ part is easy since prefix code is a uniquely decodable

code

 Let’s prove ―(‖ part: set of codeword-lengths of a

uniquely decodable code must satisfy the Kraft inequality.

 Let l(x) be the codeword length of the symbol x 2 X .

 Let l(x1, …, xk) be the codeword lengths of the k-th

extension code 

l(x) := l(x1, …, xk) = i=1
k l(xi) . ---(1) 

 We need to show that x 2 X D-l(x) ·  1 .
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Some Pre-thoughts (Off) 

 Let lmax = max {l1, …, l|X|} 

 Can form a set of distinct lengths, i.e., m = 1, …, lmax . 

 Let a(m) = # of codewords of length m . 

 Ex) let X = {x1, x2, x3, x4} and the corresponding lengths 

are 1, 2, 3, and 3 respectively. 

– 1 word with length 1, a(1) = 1, m = 1 

– 1 word with length 2, a(2) = 1, m = 2 

– 2 words with length 3, a(3) = 2, m = 3 

– lmax=3 
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Some Pre-thoughts (2) (Off) 

 Concatenation of 2 codes:
– the maximum length of the code is 2 £  lmax = 6

– m’ = 1, 2, …, 6;

 find the number of codewords a(m’) with length m’

 

 a(1) = 0, a(2) = 1, a(3) = 2, a(4) =  4, a(5) = 4, a(6) = 4

 Note a(m’) ·  Dm’

– There are at most Dm’ distinct sequences of D-ary alphabet

 

1 

2 

3 

3 

1 2 3 3 

2 3 4 4 
3 4 5 5 

4 5 6 6 

4 5 6 6 
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Back to Proof of McMillan 

(x 2 X D-l(x))k = x12X … xk2X D-l(x
1
) … D-l(x

k
)

= x2X
k D-l(x) --- (1) 

By gathering terms wrt wordlengths 

= m’=1
k lmax a(m’) D-m’

·  Dm’ D-m’

  = k lmax

x2X
k D-l(x) ·  (k lmax)

1/k ! 1 as k ! 1
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McMillan (i=1
1 D-li ·  1 ?) (Off) 

What if lmax = 1 (?), i.e. |X| is infinite 

Property of uniquely decodable code 

– A subset is also uniquely decodable 
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Huffman Code (Huffman Tree) 

 Huffman code is an optimal prefix code, with the smallest

expected length for a given distribution, which can be

constructed by Huffman algorithm.

 It minimizes L = i p(xi) li .

 Compare it with H = i p(xi) log(1/p(xi)) .

pi 

0.4 

0.2 

0.1 

0.1 

0.1 

0.1 
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6 
0.2 
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0.4 

0.6 

1.0 

1 

0 

li

1 
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3 

4 

5 

6 

Prefix 

code 

11 

10 

011 
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001 

000 
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Huffman Code 

 L = 0.4*2 + 0.2*2 + 4*0.1*3 = 2.4

 H = 2.319 (Lower bound)

• It should be noted here that the expected length turned out quite close

to the lower bound.
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Huffman Encoding Algorithm 

 Construct a tree in the following routine

– First, have the probabilities (and the index) listed in the decreasing

order.

– Second, go over the list and locate two indices with lowest

probabilities. Group these low probable items, and add the

probabilities and label it for the group. Now note that the size of

the list is reduced by one.

– Repeat the second step exhaustively.

 Once a tree is completed, we can assign ―1‖ for up and ―0‖

for down from the top of the tree.
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Recall the 8-Horse Race Problem 

The code we constructed is a Huffman code.

The distribution is 2-adic.

L = 2 = H

0 
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4 
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6 

7 
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6 

6 

pi 

1/2 

1/4 
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1/16 

1/64 

1/64 

1/64 

1/64 
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Optimality of Huffman Codes 

 Given a distribution, there could be many Huffman codes

which all lead to the same expected length.

 Let’s call the Huffman tree procedure as Huffman coding.

 Huffman coding is optimal in the sense that if C* is a

Huffman code, and C’ is a code from other coding

procedure, then L(C*) ·  L(C)

– See Ch5.8 for proof by induction
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Lempel-Ziv Coding (Ch12.10) 

  Construction of Huffman code requires knowledge of priors. 

  Huffman code does not make use of correlation between words and 

phrases (based on the assumption that  text is generated from a random 

variable, rather than a random process) 

  Lempel-Ziv code figures out the correlation structure of the source in 

a sequence, and further compress 

– LZ code is a universal code (does not need to know the distribution or 

correlation of the source). 

– LZ code is dictionary based. 

  It’s adaptive and simple. 

  Operation: parse the data stream into segments that are the shortest 

subsequences not appeared previously. 
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Lempel-Ziv Encoding 

 Let’s take a simple example for illustration of the algorithm

 Consider a data stream

aaababbbaaabaaaaabbababb 

 Starting from the left of the stream, parse the data stream into
segments not appeared previously

a, aa, b, ab, bb, aaa, ba, aaaa, bba, bab, b 

Index–   1, 2,   3, 4,   5,   6,    7,    8,      9,    10,  11 

Encoding-- a, 1a, b, 1b, 3b, 2a,  3a,  6a,    5a,   7b,  3 

 (Appeared, new) = (Index, new) = (4 bits, 7 bits)

 The total number of bits per segment needed in this example is 4 bits
for the index and 7 bit ascii code for the new part.

– 11 segments £  (4 + 7) bits = 121 bits

– 24 characters £  7 bits = 168 bits

– (168-121)/168 is the compression ratio in this example
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Huffman Codes vs. Shannon Codes 

 X is binary, X=1 with prob. 2-10, X=0 with prob. 1 - 2-20

 Shannon Code: l(x=1) = dlog2(2
10)e = 10, l(x=0) = 1

 Huffman Code: l(x=1) = 1 and l(x=0) =1

 A codeword for infrequent symbol in Shannon Code is

much longer than in an optimal code.

 But, this does not mean that the codeword in an optimal

code is always shorter than in the Shannon code.

 Ex) X ~ (1/3, 1/3, 1/4, 1/12)

– two kinds of Huffman trees with lengths (2, 2, 2, 2) or (1, 2, 3, 3)

– Shannon lengths (2, 2, 2, 4)
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Optimality of Huffman Codes (Off) 

 Definition of Optimality here:  pi li is minimum

 Huffman algorithm gives an optimal code

 Lemma 5.8.1: An optimal instantaneous code satisfies the

following properties:

– Let p1 ¸  p2 ¸  … ¸  pm

– pi > pj ) li ·  lj

– The two longest codewords have the same length.

– The two longest codewords differ only in the last bit and

correspond to the two least likely symbols.
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Proof (1) (Off) 

 If pj > pk, then lj ·  lk 

 Consider an optimal code Cm 

 Consider C’m, with the codewords j and k of Cm swapped 

 L(C’m) – L(Cm) =  pi l’i -  pi li 

    = pj lk – pj lj + pk lj – pklk 

    = pj (lk – lj) + pk (lj – lk) 

    = (pj – pk) (lk – lj) 

    ¸  0   (Since Cm is optimal) 

 Thus, if (pj – pk) > 0, lk – lj ¸  0 
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Proof (2) (Off) 

 The two longest codewords are of the same length

– If two longest codewords are not of the same length, we can trim

the longer one (thus get rid of 1 additional bit) and obtain a lower

expected length

3

0 

1 

1
2
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Proof (3) (Off) 

 The two longest codewords differ only in the last bit and 

correspond to the two least likely symbols 

 

© 200x Heung-No Lee 



243 

Summary of Lemma (Off) 

 If p1 ¸  p2 ¸  … ¸  pm, then there exists an optimal code

with l1 ·  l2 ·  … ·  lm-1 = lm, and the codewords C(xm-1) =

C(xm) differ only in the last bit.
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We now want to prove that a code satisfying the lemma is

optimal

 Use the idea of ―merging‖– just as in Huffman algorithm.
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―Merged‖ code Cm-1 (Off)

 Take the common prefix of the

longest words and assign prob.

pm-1+pm

 L(Cm) = i=1
m pi li

= i=1
m-2 pi li + pm-1lm-1 + pm lm

= i=1
m-2 pi li + (pm-1 + pm)(lm – 1)

+ pm-1 + pm

= L(Cm-1) + pm-1 + pm

 Thus, minimization of L(Cm) is

equivalent to minimization of 

L(Cm-1), and so on 

p1 p2

p3

p5

p4

p1 p2

p3

p4 + p5

p1

1-p1
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―Merged‖ code Cm-1 (Off) 

When we have only two symbols left, the solution is

simple, assign 0 for one and 1 for the other.

 L(C2) is minimized.

 Then, L(C3) is minimized, … and so on.

 Thus, L(Cm) satisfying the lemma is minimum.

 Thus, Cm which satisfies the lemma is an optimal code.
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Huffman Coding is Optimal (Off) 

 If C* is Huffman and C is any other code,

then L(C*) ·  L(C)
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Skip Some Sideline Topics 

 Chapter 7: Gambling and Data Compression

 Chapter 8: Kolmogoroff Complexity
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Channel Capacity (Chapter 8) 

Most successful application of Shannon Theory

What’s Channel Capacity?

What’s the size of message set that can be transmitted over
the channel and be recovered almost error free?

 The size is small for channel with a lot of noise and
distortion.

 The size is large for clean channel with no distortion,

Physical 

Channel 
Message 

Set 

Message 

Detected 

Map 

To 

Physical 

Signal 

De-map 

To 

Messages 

X 
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Channel Capacity 

 Capacity1 = log(Size of the Message Set)

 T = Time required to transmit a message in the set.

 Capacity = Capacity1/T, bits/sec

 Capacity = Capacity in n-use of channel / n = bits/channel

use

 Capacity is the number of bits that can be transferred over

a given channel with almost no error.
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Discrete Channel 

 Input alphabet X, output alphabet Y, and the probability
transition matrix p(y|x) ~ prob. of observing y given x
transmitted .

 The channel is memoryless if P(yn|xn) =  p(y|x) .

We can transform the physical channel into the discrete
channel.

 Example) A cable with a certain bandwidth Fmax and noise
power spectral density  Sample at twice the bandwidth
and obtain the discrete channel (sample IN sample OUT) .

Encode 
Channel 

P(y|x) 
Decode 

W W’ Xn Yn
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―Information‖ Channel Capacity 

 C = maxp(x) I(X; Y) 

– The maximum is taken over all input distr. p(x). 

– Compared with the ―operational‖ channel capacity ~ the highest 

rate in bits/channel-use, at which information can be sent with an 

arbitrary small probability of error. 

– Shannon proved that the operational channel capacity is equal to 

the information channel capacity. 
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Noiseless Binary Channel 

 C = maxp(x) I(X; Y) = ?

0 0 

1 1 
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Noisy Channel with Non-Overlapping Output 

 C = ?

0 0 

1 1 

2 

3 

1/2 

1/2 

1/3 

2/3 
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Noisy Typewriter 

 The typewriter writes the
input letter with prob. 1/2 or
the next letter in the
alphabet with prob. 1/2

 C = ?

 C = maxp(x) I(X ; Y)

= maxp(x) [H(Y) – H(Y|X)]

= maxp(x) H(Y) – 1

= log2(26) – 1

= log2(26/2)

= log2(13)
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Binary Symmetric Channel (Off) 

 I(X; Y) = H(Y) – H(Y|X) 

  = H(Y) -  p(x) H(Y|X=x) 

  = H(Y) – H(p) 

  ·  1 – H(p) 

 The equality is when H(Y) = 1. 

 Y is uniform when X is uniform. 

 p(x) ~ uniform. 

 C = 1 – H(p) bits. 

0 

1 

0 

1 

1- p 

p 

1- p 

p 
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Binary Erasure Channel (Off) 

 Some bits are lost (no decision)

 C = maxp(x) I(X ; Y)

   = max H(Y) – H(Y|X) 

   = max H(Y) – H(p) 

   = max {H((1-p), p, (1-)(1-p)) 

– H(p)}

  = max (1-p)H() 

· 1 - p

 Let E = {Y = e}; P(E)=p; P(Ec)=1-p

 H(Y) = H(Y, E) = H(Y) + H(E|Y)

= H(E) + H(Y|E) = H(p)+(1-p)H()

0 

1 

0 

1 

1- p

p 

1- p

p 

e 

 

1-
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Binary Erasure Channel 

 C = 1 - p

With prob. p, the bit is lost.

 Thus, we could recover at most 1-p percentages of bits.
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HW#4 (Due ?) 

 Ch.5. 12, 16, 18, 20 

 Ch. 8. 1, 5 

Midterm ?. 
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Information Theory 
Channel Capacity Module 
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Tentative Schedule 

Weekly Course Schedule 

Calendar Description *Remarks 

1st week,  9/2  Introduction to Information Theory, Entropy  

2nd week,  9/7, 9 Entropy, Relative Entropy and Mutual Information 

3rd week, 9/14, 16 Entropy, Relative Entropy and Mutual Information 

4th week, 9/2,23 Asymptotic Equipartition Property 

5th week, 9/28, 30 
Asymptotic Equipartition Property/Entropy Rates of a 
Stochastic Process 

6th week, 10/5, 7 Entropy rates of Markov Chain 

7th week , 10/12, 14 Data compression 

8th week, 10/19, 21 Data compression/Channel capacity   Midterm 10/21 

9th week, 10/26, 28 Channel capacity theorems/forward/reverse 
10/28OFF, 보 충 
Friday(10:30am) 

10th week, 11/2, 4 Differential entropy 

11th week, 11/9, 11 Gaussian channel capacity 
Selection of papers due 
M,W OFF, 보 충  Friday 
9:00am  

12th week, 11/16, 18 MIMO channel capacity theorem 
보 충 , 
Friday(9:00am)? 

13th week, 11/23, 25 Multiple access channel capacity theorem 

14th week, 11/30, 12/2 Slepian Wolf 

15th week, 12/6, 9  Student Presentation 

16th week,  12/16 Final Exam (12/16 일) 
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Agenda 

 List of Papers

 Channel Coding Theorem (Chapter 7)
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Skip Some Sideline Topics 

 Chapter 6: Gambling and Data Compression
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Channel Capacity 

 Capacity1 = log(Size of the Message Set)

 T = Time required to transmit a message in the set.

 Capacity = Capacity1/T, bits/sec

 Capacity = Capacity in n-use of channel / n

= bits/channel use 

 Capacity is the number of bits that can be transferred over

a given channel with almost no error.

 The capacity is achieved in reality in n-channel uses.

– Operational capacity.

– Why?
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Discrete Channel 

 Input alphabet X, output alphabet Y, and the probability transition
matrix p(y|x) ~ prob. of observing y given x transmitted.

 The channel is memoryless if P(yn|xn) =  p(y|x) .

 We can transform the physical channel into the discrete channel.

 Example) A cable with a certain bandwidth Fmax and noise power
spectral density  Sample at twice the bandwidth and obtain the
discrete channel (sample IN sample OUT) .

Encode 
Channel 

P(y|x) 
Decode 

W W’ Xn Yn
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―Information‖ Channel Capacity 

 C = maxp(x) I(X; Y)

– The maximum is taken over all input distr. p(x)

– Compared with the ―operational‖ channel capacity ~ the highest

rate in bits/channel-use, at which information can be sent at

arbitrary small probability of error

– Shannon proved that the operational channel capacity is equal to

the information channel capacity
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Noiseless Binary Channel 

 C = maxp(x) I(X; Y) = ?

0 0 

1 1 
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Noisy Channel with Non-Overlapping Output 

 C = ? 

0 0 

1 1 

2 

3 

1/2 

1/2 

1/3 

2/3 
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Noisy Typewriter 

 The typewriter writes the 
input letter with prob. 1/2 or 
the next letter in the 
alphabet with prob. 1/2 

 C = ? 
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Binary Symmetric Channel 

 I(X; Y) = H(Y) – H(Y|X) 

 C = ? 
0 

1 

0 

1 

1- p 

p 

1- p 

p 
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Binary Erasure Channel 

 Some bits are lost (no decision)

 C = maxp(x) I(X ; Y)

   = max H(Y) – H(Y|X) 

   = ? 

 Let E = {Y = e}; P(E)=p; P(Ec)=1-p

 H(Y) = H(Y, E) = H(Y) + H(E|Y)

= H(E) + H(Y|E) = H(p)+(1-p)H()

0 

1 

0 

1 

1- p

p 

1- p

p 

e 

 

1-
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Binary Erasure Channel 

 C = 1 - p 

With prob. p, the bit is lost 

 Thus, we could recover at most 1-p percentages of bits 
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Symmetric Channels 

 p(y | x) = [0.5 0.1 0.4; 0.4 0.5 0.1; 0.1 0.4 0.5]

– x-th row, y-th column

– All the rows are permutations of each other and so are the columns

 I(X ; Y) = H(Y) – H(Y| X)

      = H(Y) – H(any row) 

· log|Y| – H(0.1, 0.4, 0.5)

 The equality, when?

 Thus, the answer is?
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Weakly Symmetric 

 p(y | x) = [1/6 1/2 1/3; 1/2 1/6 1/3] 

– Rows are permutation of each other 

– Column sums are equal 

 C = log|Y| - H(any row), which is 

achieved when? 

1/6 

1/2 

1/3 

1/3 

1/2 
1/6 
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Properties of Channel Capacity 

1. C ¸  0, since I(X; Y) ¸  0

2. C ·  log|X|, why?

3. C ·  log|Y|,

4. I(X; Y) is a continuous function of p(x).

5. I(X; Y) is a concave  function of p(x) for fixed p(y|x).

 Or I(X; Y) is a convex  function of p(y|x) for fixed p(x).
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I(X; Y), concave  on p(x) for fixed p(y|x) 

 I(X; Y) = H(Y) - x p(x) H(Y| X = x) 

– p(y) = x p(y|x) p(x) is a linear combination of p(x) 

– H(Y) is a concave func. of p(y) 

– Thus, H(Y) is a concave func. (of a linear combination) of p(x) 

– The second term is a linear function of p(x) 
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Channel Coding Theorem (Idea) 

 Recall the typical set argument

 Recall the noisy type writer problem

 Consider the set of n symbol sequences

 2n[H(Y) - H(Y|X)] = 2n I(X; Y) 

Xn
yn

2nH(Y|X)

2nH(Y)

, how many distinguishable seq.’es? 

Want them to 

be disjoint 

2nI(X;Y)  distinguishable 
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Channel Coding Theorem (Idea) (2) 

 The total number of disjoint sets ·  2nI(X; Y)  

 That’s the maximum number of distinguishable sequences 

you can send at the transmitter while satisfying the close-

to-zero decision error requirement. 

What’s the role of a large n? 
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Definitions 

 A message set W = {1, 2, …, M}

 A signal Xn(W)

 A received signal Yn

 The channel is p(yn|xn)

W’ = g(Yn), a decision made at the receiver

 E = {W’  W}, an error event

Encoder 
W Xn

Ch. 

p(y|x) 

Yn

Decoder 
W’ 
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A discrete channel 

 A discrete channel (X, p(y|x), Y) 

 The n-th extention of the discrete memoryless channel 

(DMC) is (Xn, p(yn|xn), Yn) 

– P(yn|xn) = i=1
N p(yi|xi) 
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An (M, n) code for (X, p(y|x), Y) 

 A message index set W = {1, 2, …, M}

 An encoder is a function, i.e., Xn: W ! Xn, yielding a

codeword for each message index from a code {Xn(1),

Xn(2), …, Xn(M)}.

 A decoder is a function which maps the received sequence

to the index:

g: Yn ! {1, 2, …, M} 
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Probability of Error 

 Probability of error, given ith message: 

 i = Pr(g(Yn)  i| Xn = Xn(i)) = y
n p(yn|xn(i)) I(g(yn)  i) 

 

 

 The maximal prob. of error (n)  

  (n) = maxi 2 {1,2,…, M} i 

 Probability of error is the average of i over all equally 

probable message index i: 

  Pe
(n) = Pr(a wrong decision) = (1/M) i=1

M i ·  (n)  

Indicator func. 
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The rate R of an (M, n) code 

 R = log2(M)/n   [bits/transmission] (bits/channel-use)

We say a rate R is achievable if there exists a sequence of

(d 2nR e, n) codes with the (maximal) prob. of error tends to

0 as n ! 1.

 The capacity is the supremum of all achievable rates.

 Thus, if R < C, then the prob. of error can be made

vanishing to zero.
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Jointly Typical Sequences 

 Consider a jointly typical set A
(n) 

 It is the set of all (xn, yn) 2 Xn£  Yn   such that 

1. Pr[(Xn, Yn) 2 A
(n)] ! 1 as n ! 1 

2. |A
(n)| ·  2n(H(X, Y) + )  

3.  Pr((X’n, Y’n) 2 A
(n) ) ·  2-n(I(X; Y) – 3) , where X’n and Y’n 

are two independently drawn random variables, one from 

p(xn) and the other from p(yn) . 
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Jointly AEP (Proof) 

WLLN 

 H’x := -(1/n) log(p(xn)) ! H(X) in probability 

– For 8  > 0, 9 n1, i.e., for n > n1, 

 Pr(|H’x – H(X)| > ) < /3   ----- (1) 

 Similarly for H’y 
– H’y:=-(1/n) log(p(yn)) ! H(Y) in probability 

– For 8  > 0, 9 n2, i.e., for n > n2, 

 Pr(|H’y – H(Y)| > ) < /3   ----- (2) 

 Similarly for H’x,y 

– H’x,y = -(1/n) log(p(xn, yn)) ! H(X, Y) in probability 

– For 8  > 0, 9 n3, i.e., for n > n3, 

 Pr(|H’x,y – H(X, Y)| > ) < /3  ----- (3) 
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Jointly AEP (Proof) (2) 

 Now, choose n > max{n1, n2, n3} 

 The prob. of the union of the three sets in previous page  is 

smaller than . 
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Jointly AEP (Proof) (3) 

 1 =  p(xn, yn)

¸  A
(n)  p(xn, yn)

¸  |A
(n)| 2-n(H(X, Y) + )

 Thus, |A
(n)| ·  2n(H(X, Y) + ) .
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X’n and Y’n independent 

 X’n and Y’n independent, but have the same marginals as 
Xn and Yn. 

 

 p(x, y) =  

 

 

 

 

 Pr((X’n, Y’n) 2 A
(n)) = A

(n) p(xn)p(yn) 

 ·  2n(H(X, Y) + ) 2-n(H(X)- ) 2-n(H(Y) - )  

 = 2-n(I(X;Y) – 3)  

0  1  

0 

1 

1/4 1/4 

1/8 3/8 

 

0  1  

0 

1 

3/16 5/16 

3/16 5/16 

 

x 

y 

x 

y p(x)p(y)= 
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Illustration of Jointly Typical Set 

2nH(Y) typical yn 

sequences 

2nH(X) 

typical xn 

sequences 

2nH(X, Y) jointly typical 

(xn, yn) pairs 

Now, consider independently drawn pair (x’n, y’n),  

Pr(this pair belongs to A
(n)) = 2-n(I(X;Y)-3) . 
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Achievability of Channel Capacity 

 Sketch of new ideas Shannon used 

– Allowing arbitrarily small but non-zero error probability 

– Successive use of channels (utilize the LLN) 

– Calculate the average performance of codebooks, rather than that 

of a single codebook. 

 Sketch of proof 

– Random code selection 

– Calculate the average prob. of error for a random choice of 

codewords 

– Decode by joint-typicality; look for a codeword that is jointly 

typical with the received word. 
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Shannon’s Channel Coding Theorem 

 All rates below capacity C are achievable. Specifically, for

rate R < C, there exists a sequence of (2nR, n) codes with

maximum probability of error (n) ! 0.

 Conversely, any sequence of (2nR, n) codes with (n) ! 0

must have R ·  C.
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R < C ) (2nR, n) codes arbitrary small error 

(Achievability) 

 p(x) fixed 

 Generate a (2nR, n) code at random ~ p(xn) = i=1
n p(xi) 

– Select M=2nR codewords randomly 

– Codewords are rows 

–  C =      x1(1) x2(1)   …   xn(1) 

   … 

                 x1(M) x2(M)   …   xn(M) 

 Pr(C) = m=1
M i=1

n p(xi(m)),  

– All the elements in the matrix are selected iid from p(x). 

 The use of this code C is known to both transmitter and the receiver. 

 The p(y|x) is known to both transmitter and receiver. 

 A message W=w is chosen uniformly among {1, 2, … ,M} and sent 

over the channel. 
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Block Diagram 

 The w-th codeword xn(w), the w-th row of C, is sent 

 The receiver receives a sequence yn, according to the 
distribution 

  P(yn|xn(w)) = Pr{Yn = yn|xn(w)} =  p(yi | xi(w)) 

W=w xn(w) 
p(y|x) 

DMC 

Encoder 

yn(w) 
1 2 

3 4 
Decoder 

W’ 
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Achievability (2) 

 The optimal receiver is the maximum likelihood decoder 

 But here, let’s use the typical set decoding, suboptimal but 

gives easier proof of achievability 

 Jointly typical decoding rule: 

– The receiver decide W’=q, if (xn(q), yn) is jointly typical and no 

other codeword is jointly typical with yn 

 E ={W’  W}, a decoding error event 
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Probability of Error 

 Probability of an error

i = Pr(g(Yn)  i| Xn = xn(i)) = y
n p(yn|xn(i)) I(g(yn)  i)

 The maximal prob. of error (n)

(n) = maxi 2 {1,2,…, M} i

 Arithmetic average:

Pe
(n) = Pr(a wrong deceision) = (1/M) i=1

M i ·  (n)

Indicator func. 
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Achievability (3) 

 Consider a prob. of error for a particular word w of a 
particular code C 
– It’s difficult to calculate w(C) because codewords in C are chosen 

random 

 But if averaged over all codebooks 

–  C P(C) i(C) = C P(C) j(C), for any i and j, by symmetry 

1 2 

3 4 
1 

2 

3 

4 
1 

2 

3 

4 

Code-1 Code-2 Code-3 
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Achievability (4) 

 Pr{E} = C P(C) Pe(C) 

     = C P(C) (1/M) w=1
M w(C) 

     = (1/M) w=1
M C P(C) w(C) 

     = (1/M) M C P(C) 1(C) 

      = C P(C) 1(C) 

            = Pr{E | W =1} 

 Now, the problem is reduced to  

 

 ―given the first message sent, find the error probability.‖ 
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Achievability (5) 

 Xn(1) is independent with Xn(i), i=2, 3, …, M.

 Yn(1) is also independent with Xn(i), i =2, 3, …, M.

W=1 Xn(1) 
p(y|x) 

DMC 

Yn(1) 
1 2 

3 4 
Decoder 

W’ 

sent 
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Achievability (6) 

 Let’s define the events  

  Ei = {(Xn(i), Yn) 2 A
(n)}, i = 1, 2, …, M, 

 where the i-th codeword is jointly typical with Yn . 

 Now, going back to Pr(E | W=1) 

 Pr(E | W= 1) = P(E1
c  E2  E3  …  EM) 

    --- by the union of events bound 

   ·  P(E1
c) + i=2

M P(Ei) 

    We note that as n ! 1 

     P(E1
c) ! 0  

     P(Ei) ! 2-nI(X; Y) 

   ·   + (M – 1) 2-n(I(X;Y) – 3 ) , for n suffi. large 
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Achievability (7) 

 Pr(E | W= 1) ·   + (M – 1) 2-n(I(X;Y) – 3 ) , for n suff. large 

    =  + (2nR – 1) 2-n(I(X;Y) – 3 )  

   ·   + 2-n(I(X;Y) – R – 3) 

      --- as long as R < I(X;Y) – 3 

   ·   

 Thus, for n sufficiently large, P(E) can be made very small. 
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Achievability (8) 

 Now choose p(x) to be the optimal p*(x) that maximizes 

the mutual information I(X; Y). Then, the condition R 

< I(X; Y) becomes R < C. 

 Since the prob. of error averaged over all possible 

codebooks is small (·  2), there exists at least one 

codebook C* with a small prob. of error Pe(C
*). Such a code 

can be found by an exhaustive search. 

 Throw away the worst half codewords  

– The rate becomes R ¼  R – 1/n 

– (2/M) best half i < 4 

–  worst < 4 
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Achievability (9) 

 Thus, we have constructed a code R’ = R – 1/n, with

maximal probability of error  < 4

Q.E.D. on Achievability

 People had believed this random coding method was only

for proof—no practical guidance as a coding method.

 In fact, it was found to be the most powerful coding

method which achieves the capacity very closely:

– Turbo code (1993), Low Density Parity Check code (1962)

– These codes are long block codes with built-in random component.

– Refer to Lecture nodes in Channel Coding Theory.
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Zero Error Codes 

 Precursor to the converse of the channel coding theorem

 Show if Pe
(n) = 0, then R ·  C

 nR = H(W) = H(W|Yn) + I(W; Yn)

 = 0  --- Zero error codes Yn fully determines the input W 

= I(W; Yn) 

· I(Xn; Yn) --- DPI  

· i=1
n I(Xi; Yi) --- DMC 

· nC

 Thus, for any zero error (2nR, n) code, for all n,

R ·  C 
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Fano’s Inequality for Converse to CCT 

 Recall the Fano’s inequality 

 Let E = 1 for W’=W, 0 for W’ W 

 P(E=1) = Pe
(n), P(E = 0) = 1 - Pe

(n),  

 Consider two expansions of H(E, W |Yn) 

 H(E, W|Yn) = H(E|Yn) + H(W| E, Yn) 

      = H(W|Yn) + H(E| W, Yn) 

  ) H(E|Yn) + H(W|E, Yn) = H(W|Yn) 
0 
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Fano’s Inequality for Converse to CCT 

 H(E|Yn) + H(W|E, Yn) = H(W|Yn) 

 

1. H(E|Yn) ·  H(E) = H(Pe
(n)) ·  1 

2. H(W|E, Yn) = P(E=0) H(W|E=0, Yn) + P(E=1)H(W|E=1, Yn) 

   = P(E=0) £  0 + Pe
(n) log2(M – 1) 

   ·  Pe
(n) log2(2

nR)    --- M = 2nR 

   = Pe
(n) nR 

3. H(W|Yn) ·  H(Xn|Yn) 

 Thus, we have  

  H(Xn|Yn) ·  1 + Pe
(n) nR  
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Converse to the Channel Coding Theorem 

 Show: Any sequence of (2nR, n) codes with (n) ! 0

) R ·  C

 nR = H(W) = H(W|Yn) + I(W; Yn)

--- DPI (equality if X^n(W) is one-to-one) 

· H(W|Yn) + I(Xn(W); Yn)
---Fano’s inequality 

· 1 + Pe
(n) nR + I(Xn(W); Yn)

--- DMC & Capacity 

· 1 + Pe
(n) nR + nC

 Thus, we have R ·  (1/n) + Pe
(n) R + C. And,

R ·  C as n ! 1 
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HW 5 

 Prob. 1 Read the channel capacity proof in Chap 7.

– What is the optimal decoding scheme for Hamming codes defined in 7.11 for BSC?  What is

the code turned out to be not useful?

– How many errors can the Hamming code in 7.11 correct? How many erasures can the code

correct?

– Give an example of two erasures that can be corrected.

 Prob. 2  Consider a channel defined as Y = (X + E) mod 2 where E is

Bernoulli(p = 0.1) with alphabet {0, 1}.  X is the input symbol {1, 0} and Y is

the output symbol. Consider a set of randomly generated codebooks of length

10.

– 1. Suppose we choose a rate R = .4.  Is this choice making sense? If no, choose your own.

Construct a single codebook of length n = 10.

– 2. Design a Maximum Likelihood decision receiver for your codebook.

– 3. Now consider we use Eq. (7.66) in the textbook.  How many different codebooks can we

obtain?

– 4. Calculate Pr(C) exactly in your case.

– 5. Show in your case how Pr(E) = Pr(E|W = 1).

– 6. Would your ML receiver produce Pr(E) smaller than p in average sense?  Prove.  Also show

that Pr(E) is getting smaller as n increases.
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HW5 

 Prob.3  Prove the capacity of BSC again with the lead I(X; Y) = H(X) 

– H(X|Y).   

 

 Problems from Cover & Thomas 

– P7.2, P7.3, P7.4, P7.8, P7.9, P7.13  
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HW 6 

 Prob. 1 (Read Chapter 7)  Answer the following questions

with plain English sentences, three maximum.

– Describe the source-channel separation theorem.

– Suppose the availability of a feedback channel where the received

sample is sent back to the transmitter immediately upon reception.

Describe why this feedback does not increase the capacity.
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 Prob. 2  (Typical set size) In class, we have discussed a little bit about the size 

of typical set 2nH(Y|X) for a BSC with parameter p.  

 (a)  The following inequality shall provide insight for that discussion.  Show that for 

any d in {0, 1, 2, …, n} 

 

 where H(*) is the binary entropy function.  (Hint: use the Binomial expansion with 

parameter p = d/n) 

 

 (b) Find the size of typical set for n = 100 and epsilon = 0.2 for BSC with p = 0.1 .  

Suppose the use of the typical set decoder.  Determine the set of number of channel 

errors that the decoder can correct. Determine the capacity and the probability error (a 

bound is good enough) at the given length.    

 

 (c)       Suppose the transmitted codeword is the all-zero sequence.  What’s obtained 

from the channel is a sequence of two ones and 98 1s.  Is the result jointly typical with 

the setting given in (b)?    

310 

  ( )
2

d
n

n Hn

d 
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 Cover & Thomas Problems

P7.13 (Cap for erasures+erros)

P7.16 (Encoder/Decoder as part of the channel)

P7.25 (Bottleneck channel)

P7.26 (Noisy typewriter)

P7.28 (Choice of channels)

P7.34 (Capacity of various channels)

P7.36 (Capacity with memory)
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Information Theory 

Gaussian Channel Capacity 
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Agenda 

 Differential Entropy for continuous random variables 

(Chapter 8) 

– Refer Maximum Entropy (Chapter 11) as well. 

 Fading Channels 

 Gaussian Channel Capacity (Chapter 9) 
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Differential Entropy h(X) 

 h(X) with a density f(x) is 

  h(X) = -sS f(x) log f(x) dx 

 where S is the support set of the random variable. 

 

 

 Ex1) X ~ uniform distribution on (0, a) 

  h(X) = - s0
a (1/a) log(1/a) dx = log(a). 

– when a<1, log(a) < 0 (Differential entropy can be negative!) 

– But 2h(X) = 2log(a) = a is the volume of the support set, which is 

always non-negative! 
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h(X) on Gaussian Distribution 

 X ~ N(0, 2): f(x) = (1/sqrt(2 2)) exp(-0.5x2/2)

 In ―nats‖,

h(X) = - s f(x) ln f(x) dx

 = - s f(x) [- 0.5 x2/2 + ln(sqrt(22))] dx 

 = 0.5/2 s f(x) x2 dx + ln(sqrt(22)) 

 =  0.5 + ln(sqrt(2 2)) 

= 0.5 loge e + 0.5 ln(2 2)

 = 0.5 ln(22e) [nats] 

– Use loge(A) = log2(A)/log2(e) for [bits]

– h(X) = ?  [bits]
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AEP for continuous r.v. 

 X1, X2, …, Xn, i.i.d. according to f(x) 

 - (1/n) log f(X1, X2, …, Xn) ) E{-log f(X)} = h(X) in 

probability 

 Let A be the typical set 

– p(A) ¼  1 

– P[(x1, x2, …, xn) in A] ¼  2-nh(X) 

– Size of the typical set = Vol(A) ¼  2nh(X) 
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Vol(A) 

 1 = s f(x1, x2, …, xn) dx1 dx2 … dxn 

    ¸  sA f(x1, x2, …, xn) dx1 dx2 … dxn 

     ¸  2-n(h(X) + ) sA  dx1 dx2 … dxn 

    = 2-n(h(X) + ) Vol(A) 

 Vol(A) ·  2n(h(X) + )
 

 



© 200x Heung-No Lee 318 

Entropy of Multivariate Normal Distribution 

 (X1, X2, …, Xn) ~ N(m, K)  where m is the mean vector 

and K is the covariance matrix 

 

 

 

  h(X1, X2, …, Xn) = 0.5 log(2 e)n |K|  [bits] 

 where |K| is the determinant of K. 
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Relative Entropy and Mutual Information 

 D(f || g) = s f log f/g ¸  0, equality when f = g). 

– Did we ever use entropy is non negative?  If we did, then we have 

to prove it again, with a different approach.  

– What was this proof?  

 

 I(X; Y) = s f(x, y) log [f(x, y)/f(x)f(y)] dx dy. 

 

Most things stay the same as those for the discrete r.v. case 

except a few. 
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Translation Invariant 

 h(X + c) = h(X) 
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h(aX) = h(X) + log|a| 

 cf) Discrete r.v. H(aX) = H(X) 

 Since this is continuous random variable, we need a 

compensation term log|a|, just as in the change of variables 

in integral. 

 Let Y = aX. Then, fY(y) = (1/|a|) fX(y/a), 

 h(aX) = - s fY(y) log fY(y) dy 

     = - s (1/|a|) fX(y/a) [log(1/|a|) + log fX(y/a)] dy 

     = log|a| - s (1/|a|) fX(y/a) log(fX(y/a)) dy 

     = log|a| - s fX(x) log(fX(x)) dx 

     = log|a| + h(X) 
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Gaussian has the maximum differential entropy 

(Under power constraint) 

 Let the random vector X 2 Rn have zero mean and 

covariance, K = E{XXt}, i.e., Kij = E{XiXj}, 1 ·  i, j ·  n. 

 Then,  

  h(X) ·  0.5 log(2 e)n |K|,  

 with equality iff X ~ N(0, K) 

 Proof:  

 Consider g(x) be any density with s xi xj g(x) dx = Kij 

 Show h(g) ·  h(f), where f(x) ~ N(0, K). 
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Show h(g) ·  h(f), where f(x) ~ N(0, K) 

 0 ·  D(g || f)   

     = s g log g/f 

     = s g log(g) - s g log f 

     = -h(g) - s g(x) log(f(x)) dx 

   ----- log(f(x)) = log(C1) – 0.5(xt K-1 x) 

   ----- s g(x) (xt K-1 x) dx = s f(x) (xt K-1 x) dx  

     = - h(g) - s f(x) log(f(x)) dx 

     = - h(g) + h(f) 

 ) h(g) ·  h(f), equality with g = f. 



Wireless Communications Channel 

 To enrich our discussion, I’ll briefly take a side step and 

talk about wireless communications channels a little bit. 

 

 Namely, wireless channels exhibit signal strength fading 

phenomenon.   

We will see why and how to describe it. 
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Fading Channels  

 (What is it?) One of the characteristics of terrestrial wireless channels 

is the signal-strength fading.  

 (How does it happen?) The culprit of fading is multi-path propagation 

of the radio-wave signals. 

 (When does it happen?) Thus, the fading phenomenon becomes 

significant in rich scattering environment where a large number of 

reflectors and scatters are around at the receiver. 

 

 Good transceiver design shall provide a solution that is not limited by 

the fading effect but the one that takes advantage of the phenomenon. 

 Recent results show that we can utilize the signal strength  fading to 

boost up the channel capacity. 
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Quick Review on Modulation and Detection Theory  

(From EE 1473) 

 BPSK system 

cos(2fct) 

1 0 1 1 

1 0 1 1 

T 

1/T 
f 0 

f fc 

Effective BW ~ 1/T by pulse shaping 

A 
B 

A B 

BSC 

ch 
xk yk = xk + nk 

T 

xk 

yk 
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Frequency-selective channel

Overall pulse
Transmitted pulse

Multipath Fading ISI Channels 

ISI occurs 
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What is happening at the receiver antenna? 

 The phase and strength of the electro-magnetic excitation 

at the receiver’s antenna is proportional to the summation 

of all the incidental waves arriving to the receiver antenna 

with different phases and magnitudes due to multipath 

propagation 

Most delayed signal 
T 
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Delay Spread vs. Fading Model 

 When arrival-time differences 
are relatively small (Tm << 
T), the signal perceived at the 
receiver is the addition of all 
arriving sinusoids 

 G = m Am exp(j2 m) 

 Add constructively or 
destructively, depending on 
the phase 

 The delay m is translated to 
the phase difference m 2 (0, 
2) 

 Invoking the Central Limit 
Theorem, G is modeled as a 
complex-valued Gaussian 

Sum  

Of all 

T 

Arrival times 

 

Am 

Tc = 1/fc is the period 

Tc << T 
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Fading Channel Statistics 

 Complex-valued Gaussian Process G(t) 

 For fixed t, G(t) is complex-valued Gaussian r.v. 

– The distribution of the power, |G(t)|2, is Chi-square 

– The distribution of the mag., |G(t)|, is Rayleigh 

 PDF of Chi-square r.v. with two deg. of freedom 

– Y := G(t)* G(t) = Gr
2 + Gi

2 where Gr and Gi are independent 

Gaussians with zero mean and variance 2 

– P(y) = (1/22) exp(-y/(22)) U(y) 

 PDF of Rayleigh r.v. 

– R := Y1/2  with P(r) = (r/2) exp(-r2/(22)) U(r) 

– The magnitude of the signal 
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Chi-Square Distributed R.V. 

 Let  

  Y := j=1
n Xj

2  

 where {Xj} are iid Gaussian rvs with zero mean and 

variance 2 

  It’s pdf is 

 

 

 where (p) is the gamma function 
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The Bottom Line is 

 rk = hk xk + nk, where hk is complex-valued Gaussian 

(Rayleigh amplitude distribution). 

 rk = hk xk + nk, where elements of hk are i.i.d. complex-

valued Gaussian (Rayleigh amplitude distribution) 

 hk is [Nr £  Nt] matrix. This is a MIMO system. 



© 200x Heung-No Lee 333 

Topics in MIMO 

MIMO can be used to increase 

– Diversity 

– Capacity 

MIMO Channel Estimation Errors vs. Capacity 

MIMO Broadcasting Capacities 

MIMO Multiple Access Channel Capacities 

MIMO Beamforming Capacities 

MIMO Capacities vs. Reduced Complexity Receivers 

 Capacities over Wireless Networks (Ad Hoc Networks) 
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Chapter 10 

 The Gaussian Channel 



© 200x Heung-No Lee 335 

The Additive White Gaussian Noise Channel 

 Yi = Xi + Zi,  Zi ~ N(0, N) 

 Xi and Zi are independent. 

 Constraint on the input Xi 

– E(Xi
2) ·  P 

 Use of channel 

– Send a codeword (x1, x2, …, xn): (1/n) i xi
2 = P 

– Successive use of the channel trying to exploit the LLN 

 

 
Yi Xi 

Zi 
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Binary Signaling over AWGN 

 P = E(X2); Let A = sqrt(P); 

 X = +A, prob. 1/2 

      = -A, prob. 1/2 

 Z ~ N(0, N) 

 Y = X + Z, 

 Assume Maximum Likelihood Detection 

 Pe = 0.5{Pr( Y<0 | X=+A) + Pr(Y ¸  0| X = -A)} 

  = Pr{Z > A} 

  = 1 – s-1
A  (1/sqrt(2N)) exp(-0.5z2/N) dz 

   = Q(sqrt(P/N))    

where Q is the Gaussian Q-function 
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Information Capacity of AWGN 

 C = maxp(x): E(X
2
) = P  I(X; Y) 

 I(X; Y) = h(Y) – h(Y|X) 

       = h(Y) – h(X+Z|X) 

       = h(Y) – h(Z) 

       = h(Y) – 0.5 log(2eN) 

    --- E(Y2) = E(X2) + E(Z2) – X, Z indep 

     = P + Z 

         ·  0.5 log(2e(P+N)) – 0.5 log(2eN) 

         = 0.5 log(1+P/N) 

  When do we have the equality? 
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Shannon Capacity over AWGN 

  The channel capacity theorem gives the following results 

 

       [bits/symbol] 

 

  This results tell you that at a given SNR how many bits 

can be carried by a single channel-symbol so that almost 

error-free recovery can be obtained at the receiver 

  Multiplying this number with the maximum symbol rate, 

[symbols/sec], then you have [bits/sec]. 
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Shannon’s Channel Coding Theorem 

 All rates below capacity C are achievable. Specifically, for 

rate R < C, there exists a sequence of (2nR, n) codes with 

maximum probability of error (n) ! 0.  

 Conversely, any sequence of (2nR, n) codes with (n) ! 0 

must have R ·  C. 
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Code 

  A code is a collection of n-tuples, (x1, x2, …, xn), where 
each xi is a sample of a real-valued Gaussian with zero 
mean and variance P.  

  The size of code is the number of codewords, 2nC where C 
is the rate of the code 

– Via each codeword, we send k = nC bits 

 Note that using n-tuples, using Eq. (1), we note that  

  y = xi + z,   i=1, 2, …, 2nC 

 where y, xi and z are n-tuples: 

– The avg. energy of the codeword xi is nP 

– The avg. energy of the noise z is nN 

– The avg. energy of the received signal y is n(P+N) 
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The Channel Coding Theorem 

 Encoding: Select a codeword in a code (There are 2nC codewords}, and 

send it over the AWGN channel,  

 Decision: decide the codeword whose E. distance with the received 

vector is the smallest. 

 Ex) Select a codeword (-1 -1) 2 {(-1 -1), (-1 1), (1 -1), (1 1)}, and send 

it over the channel. Suppose receiving y=(-.9, 0.1). Then, optimum 

decision is (-1 1). 

k = nC bits 
Channel 

Encoder: Select 

a codeword 2  

{2nC codewords} 

n-tuples 

Ch 

n-tuples 

Dec. 

k - bits 
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Code (2) 

  We are interested in showing that it’s possible to find a 

code with rate C with which the prob. of making decision 

errors at the receiver approaches zero as n grows to 1 

  ML decision rule: Find the i-th codeword whose 

Euclidean distance with the rec., || y – xi || is the minimum, 

and Decode for i.  
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Surface Hardening as n ! 1 

  Consider a received word y = xi + z. The mean of y is xi 
and variance is nN 

  With high probability, the noise is constrained in a sphere 
of radius sqrt(n(N + )) (Surface hardening) 

With a very small probability, the magnitude of the noise 
vector is larger than the ball of radius, sqrt(nN)  (or 
smaller).  

0 
xi 
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Two or More Noise Spheres 

  Think about a chance of making decision error--being 

confused between x1 with x2--when the two codewords x1 

and x2 are chosen as shown in the figure 

0 
x1 

x2 
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Capacity obtained from Sphere Packing 

 Note that as long as we have the right number of 

codewords in a code such that the noise-sphere does not 

overlap with each other, P(e) can be kept very small.  

 Then, the question is ―how many noise-spheres can be 

packed into the volume of the received signal r‖. 

 The volume of n-dimensional sphere of radius q is An q
n . 

 The radius of the received signal sphere is (n(P+N))1/2 . 

 The radius of the noise sphere is (nN)1/2 . 

 The capacity is the maximum number of noise spheres that 

can be packed into the sphere of the received signal. 
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Capacity from Sphere Packing Arguement 

  # of noise sphere in the rec-sphere 

  

 

 

  

 =  # of codewords 

 Thus, the capacity is the log2(# of codewords) which gives 
(n/2) log2(1+SNR). 

 This is the number of bits we can transmit almost error-
free using n-channel symbols. 

 Dividing it by n, we have the Shannon theoretic capacity 
per symbol use. 
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Capacity from Sphere Packing 

  n-dimensional sphere 
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Proof of Achievability 

 Sketch of the proof 

 Show that if there is a random code with rate R < C, then 
Pe must go to 0 as n ! 1 

 Construct the code randomly (Power constraint) 
– Select the n-tuple codewords randomly ~ N(0, P) 

– (1/n)  Xi
2 ) P (WLLN)   

 Send the first codeword and detect without loss of 
generality 

 Decode with joint typicality 

– Ep = {|1/n i=1
n Xi

2(1) – P| > }: Power constraint violation 

– Ei = {(Xn(i), Yn) is in A}, i=2, 3, …, M=2nR, some codeword other 
than the first one is typical with the received signal  
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Proof of Achievability (2) 

 Pr{E} = P{E|W=1} = P(Ep  E1
c  E2  …  EM) 

  ·  P(Ep) + P(E1
c) + i=2

M P(Ei) 

  ·   +  + i=2
M 2-n(I(X;Y) – 3) 

  ·  2  + 2nR 2-n(I(X;Y) – 3) 

  = 2  + 2-n(I(X;Y) – R - 3) 

  ·  3 

 for n sufficiently large and R < I(X; Y) – 3 

 

This proves the existence of a good (2nR, n) code 
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Converse to the Coding Theorem for AWGN 

 Show if Pe
(n)! 0 for a seq. of (2nR, n) codes for a Gaussian 

channel with power constraint P,  

 then R < C = 0.5 log(1+P/N) 

 

 Fano’s H(Xn|Yn) ·  H(W|Yn) ·  1 + n R Pe 
(n)

 = 1 + nn 

–  Pe = P(W  g(Yn))  

–  n ! 0 as n ! 1 

W ~ uniform on {1, 2, …, M} 

 Consider any (M = 2nR, n) code that satisfies the power 

constraint, i.e., 

  (1/n) i=1
n xi

2(w) ·  P,  w=1, 2, …, M 

 



© 200x Heung-No Lee 351 

Converse (2) 

 nR = H(W) = I(W; Yn) + H(W|Yn) 

  ·  I(W; Yn) + 1 + nn 

  ·  I(Xn; Yn) + 1 + nn 

        = h(Yn) – h(Yn|Xn) + nn + 1 

  = h(Yn) – h(Zn) + nn + 1 

  = h(Yn) – i h(Zi) + nn + 1 

  ·  i=1
n h(Yi) - i h(Zi) + nn + 1 
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Converse (3) 

     nR ·  i=1
n h(Yi) - i h(Zi) + nn + 1 

   --- Yi = Xi + Zi  

 R ·  (1/n) i (1/2) log(1+Pi/N) + n + 1/n 

   --- Let Pi = (1/M) w=1, …, M xi(w)2 ,  

    the avg. power of i-th symbol of length-n codeword 

   --- log(1+x) is concave; apply Jensen’s Ineq. 

  ·  (1/2) log(1+ (1/n)i Pi/N)    

   --- (1/n) i Pi ·  P 

  ·  (1/2) log(1+P/N)   Q.E.D. 
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HW #7 

 P8.1, 8.2, 8.9, 9.2, 9.3, 9.5, 9.12, 9.20 
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Appendix 

 The rest of the charts are taken from EE 1473 notes, an 

undergraduate communications course at U Pitt. 

 Take a look at it for the capacity of band-limited channel. 
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Channel Capacity of Bandlimited Channel 

 Nyquist’s Sampling Theorem and Shannon’s Capacity 
Theorem 

  Consider a channel whose bandwidth is limited by W Hz 

  

 

 

 Nyquist Sampling Theorem: Any function of time 
bandlimited by B Hz, can be represented with samples of 
the signal, if fs ¸  1/2B 

 Now, let’s take a look at how fast can we send our channel 
symbols over the channel, without noise 

W      f - W  
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The Maximum Baud = Nyquist Symbol Rate 

 The signal s(t) is modulation of channel-symbol sequence 

{an} by the shifted sinc’s f(t – nTp) 

When the Baud (reduce Tp) is increased, the maximum 

frequency of the digital signal is increased. 

 Baud (The symbol rate) = 2 B symbols/sec where B = 

1/(2Tp) 

  Now, let’s consider what happens when B < W and B > W 

Tp 

Tp 
0 

F.T. 

f 1/2Tp -1/2Tp 

 B - B s(t) = n an f(t- nTp) 

f(t) 
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Nyquist Rate 

  What happens when B < W? 

– The received signal is the same 

as the signal sent 

– Thus, applying the matched 

filter to the received signal and 

taking samples at 2B will get 

me the channel symbols back 

What happens when B > W? 

W      f - W  
Ch. 

B      f - B  
 Signal 

B      f - B  
Rec. 

Signal 
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Nyquist Rate (2) 

  When B > W, the received 

signal is not what you sent at 

TX? 

– Some of high frequency 

content of s(t) will get cut off 

– Error free transmission is 

impossible due to this  

distortion (Intersymbol 

Interference) 

 Thus, the maximum possible 

channel-symbol rate (1/Tp) for 

channel bandlimited by W Hz is 

2W symbols/sec [Nyquist Rate] 

W      f - W  
Ch. 

    B   f - B  

 Signal 

W      f - W  
Rec. 

Signal 
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Nyquist Rate (3) 

  Channel with W Hz (Flat, ideal spectrum) and no noise 

  Maximum Baud without distortion is 2W symbols/sec 

  When B ·  W, we can perfectly demodulate the symbols 

sent, by convolving the receive-signal with the matched 

filter f(t) and then taking samples at every Tp second.  

 That is, the samples at the receiver is exactly the same as 

the channel symbols transmitted 

  rn = an 

  But, when B > W, rn contains the distortion and never be 

equal to an 

  rn = an + distortion 
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Channel Capacity 

  For situations where B = W, let’s consider now that the 

channel also adds Gaussian noise to the receive-signal 

f(t) f(t) 

t=nTp 

{an} {rn} 

Additive white Gaussian noise 

w1(t) 

 

Channel (W Hz) 
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Bandlimited AWGN 

  What is the characteristic of white Gaussian noise which 
passes thru a filter bandlimited by B Hz, and sampled at 
the sampling frequency of 2B seconds 

  What is the autocorrelation function of w2(t)? 

– R2() = (NoB) sinc( /Tp) 

– Mean of w2(t)? 

 Finally, what are the mean and the variance of wn? 

f 1/2Tp -1/2Tp 

 B - B 

f(t) 

w1(t) 

t = Tp 

wn 

R1() = No/2 () R() = No/2 

w2(t) 
1 
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Channel Capacity 

  Now, everything comes down to finding out the channel 

capacity of the following equation 

  rn = an + wn  

 where 

– {an} is a random variable representing the channel symbol. 

– {wn} is the Gaussian random variable with zero mean and variance 

WN0, representing the bandlimited and sampled thermal noise 

(choose B = W). 

– {yn} is the random variable representing the received signal. 

– SNR = (E{an
2}s |f(t)|2 dt) /E{wn

2} = P/N. 
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Shannon Capacity 

  The channel capacity theorem gives the following results 

 

       [bits/symbol] 

 

  This results tell you that at a given SNR how many bits 

can be carried by a single channel-symbol an and almost 

error-free recovery of an can be obtained at the receiver. 

  Multiplying this number with the maximum Baud of 2W 

symbols/sec, we have the channel capacity in terms of 

bits/sec. 
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Shannon Capacity (2) 

  The channel capacity in [bits/sec] is 

 

 

 

    

SNR (dB) 

C/W 

[bits/sec/Hz] 

10 20 0 -10 

1/2 

2 

1 

log2(1+1) 

Unattainable 

region  
Practical Systems 
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Parallel and MIMO Channel Capacities 

365 © 200x Heung-No Lee 



Agenda 

 Parallel Gaussian Channels 

 Channels with colored Gaussian noise 

MIMO Capacity 
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Parallel Gaussian Channels 

 Yi = Xi + Zi, i = 1, 2, …, n, 

  with Zi ~ indep. N(0, Ni) 

 Power constraint: E{j
n Xj

2}·  P. 

 

 C = max I(X1, …, Xn; Y1, …, Yn) 

 subject to f(x1, …, xn): E{j
n Xj

2}·  P 

– Again, this capacity is the supremum of 

all achievable rates. 

 

Z1 

X1 Y1 

 

Zn 

Xn Yn 
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Example) Capacity over Frequency-Selective Channels 

 Maximize the channel capacity subject to the input distribution 

 

 Consider dividing up the channel with small chunks of bandwidth  

f 

N(f)/|H(f)|2 

Allocation of TX 

Powers 

Tx bandwidth 

n sub-channels 

(X1, X2, …, Xn) 

Frequency-domain 

(Y1, Y2, …, Yn) 

Frequency-domain 
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Parallel Gaussian Channels 

 Yk = Hk Xk + Wk, where Wk is i.i.d. Gaussian with fixed 

variance. 

 Or equivalently consider Yk = Xk + Zk, where noise Zk is 

independent Gaussian with a different variance. 
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Water Filling Capacity over PGCs (2) 

 The length of signal should be at least greater or equal to 

1/Df in order to meet the condition of independent channels 

– cf) In Orthogonal Frequency Division Multiplexing, the transmitter 

uses a fixed power for all frequency bins (Suboptimal) 

 

 Set of independent channels 

– Yk = Xk + Zk, k=1, 2, …, n, where Zk ~ N(0, Nk) 

– Find the optimum distribution f(X1, X2, …, Xn) that maximizes the 

channel capacity 

– When Gaussian is proven optimal, it is equivalent to find the 

optimum power allocation {Pk} 
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Water Filling Solution over PGCs (3) 

 Find the maximum mutual information 

 C = max I(X1,X2, …, Xn ; Y1, Y2, …, Yn) 

 subject to f(x1, x2, …, xn): E{k Xk
2 } ·  P 

 

 I(X1, …, Xn;Y1, …, Yn) = h(Y1, …, Yn) - k h(Zk) 

  ·  k h(Yk) – h(Zk)   --- (1) 

  ·  (1/2) k log(1+Pk/Nk)   --- (2) 

 where Pk:=E(Xk
2) and thus P =  Pk and Pk ¸  0 

– (1) Independent assumption (higher entropy) 

– (2) Entropy of Gaussian is maximum  

– The equality achieved when Yk = Xk + Nk is indeed a Gaussian 

 (X1, …, XK) ~ N(0, COV(X) = diag(P1, P2, …, Pn)) 
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Water Filling Solution over PGCs (4) 

 Now find the optimum power allocation vector  

  P = (P1, …, Pn) 

 which maximizes the R.H.S. of inequality (2). 

 

 Consider the Lagrange multiplier 

  J(P1, …, Pn) = (1/2) k log(1+Pk/Nk) + (P - k Pk) 

 with constraints Pk ¸  0 for 8 k, and k Pk = P. 

 

 Partial differentiation wrt Pk 

  (1/2)/(Pk + Nk) -  = 0 for all k 

 

 Thus, Pk + Nk = 1/2 = L or  

   Pk = L – Nk for all k 

 In fact, since power ¸  0, we choose Pk = [L – Nk]
+. 
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Water Filling Solution over PGCs (5) 

 The solution Pk = [L – Nk]
+  where L is chosen so that  

  k [L – Nk]
+ = P 

– This is called the water-filling solution. 

 

 The condition Pk ¸  0 makes the problem difficult. 

 

 We use the Kuhn Tucker conditions to verify the solution is indeed the 

assignment that maximizes the capacity. 
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Kuhn-Tucker Conditions:  

Constraint Optimization with inequality constraints 

 max f(x) 
– subject to g1(x) ·  c1, …, gm(x) ·  cm 

– xi ¸  0 for i=1, …, n. 

 First form the Lagrangian J 

  J = f(x) + 1 (c1 – g1(x)) + … + m (cm – gm(x)) 

 For a point x to be a maximum, the following must be 
satisfied (necessary conditions for a point to be max) 
– J/xi ·  0 & xi ¸  0  & xi(J/xi)= 0, for all i = 1, …, n 

– gj(x) ·  cj & j ¸  0  & j(ci- gj(x)) = 0 for all j = 1, …, m 

 Sufficiency conditions include 
– f(x) is differentiable and concave in the region xi ¸  0 

– Each gi(x) is differentiable and convex in the region xi ¸  0 
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Kuhn-Tucker Example 

 Problem:  find  max f(x, y) = 2x + 3y,  

  subject to g(x, y) =x2 + y2 ·  2 and x, y ¸  0. 

 Solution:  

  J = 4x+3y+(10-x2-y2) 
– Note that f and g satisfy the suff. cond’s   

– Check the necessary conditions for a point to be a maximum 

– (set 1) 2 – 2x ·  0, x ¸  0, x(2-2x) = 0 

– (set 2) 3 – 2 y ·  0, y ¸  0, y(3 – 2y) = 0 

– (set 3) x2 + y2 ·  2,  ¸  0, (2 – x2 – y2) = 0 

– (1)(iii) implies that either x = 0 or  x = 1. But (1)(i) cannot be satisfied 
with x=0. Thus, x = 1. 

– Similarly y = 3/2 from set 2; y > 0;  > 0. 

– Substituting x = 1/ and y = 3/2 to set 3 (iii), 2 – 1/2 – 9/42 = 0 

– 82 – 13 = 0, thus  = sqrt(13/8); x = sqrt(8/13); y = (3/2) sqrt(8/13) = 
sqrt(18/13); max f(x, y) = 5.099, and x2 + y2 = 2. 
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Kuhn-Tucker on Capacity 

 J(P1, …, PK) = (1/2) k log(1+Pk/Nk) +  (P - k Pk) 

 with constraints Pk ¸  0 for any k, and k Pk ·  P. 

 Sufficiency cond.’s are o.k. and log(1+x) is concave/diff.  

 Necessary cond. 

– (Set 1) for all k 

• Jk = (1/2)/(Pk + Nk) -  ·  0,   Pk ¸  0,    Pk [(1/2)/(Pk + Nk) - ] = 0  

– (Set 2)  

• k Pk ·  P,   ¸  0,   (P - k Pk ) = 0 

 Solution: 

– Using 1, = (1/2)/(Pk + Nk) for all k. Pk = [1/2 – Nk]
+ 

– Using 2, we have k [1/2 – Nk]
+ = P, 

– Let L = 1/2 be the water-level satisfying k [L – Nk]
+ = P 

 
Reference: Convex Optimization by Boyd/Vandenberghe 
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Water Filling Solution over PGCs (6) 

 Note over the region where Nk > L, no power is allocated; 

no transmission of information takes place over such a 

region. 

 Thus, C = (1/2) k log(1+Pk/Nk)  

   = (1/2) k (log(L/Nk))
+ 

f 

Tx bandwidth 

n sub-channels 

L 

 Nk ¼  

N(f)/|H(f)|2  

Pk 

Nk 
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Channels with Colored Gaussian Noise 

 Capacity of (Y1, …, Yn) = (X1, …, Xn) + (Z1, …, Zn) 

– with a power constraint (1/n) i E(Xi
2) ·  P (or tr(Kx) ·  nP ) 

– with correlated noise, i.e., Z ~ N(0, Kz) where Kz is not diagonal 

 I(X1, …, Xn; Y1, …, Yn) 

  = h(Y1, …, Yn) – h(Z1, …, Zn) 

  ·  0.5 log((2 e)n |Kx + Kz|) – h(Z1, …, Zn)    ---- (1) 

 Find the max |Kx + Kz| subject to the trace constraint on Kx 
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Channels with Colored Gaussian Noise 

 Kz is non-negative definite; thus, Kz can be decomposed 

into 

  Kz = Q  Qt 

 where Q is unitary such that QQt = 1 (|Q| = 1) 

 |Kx + Kz| = |Kx + Q  Qt|  

          = |Q (Qt Kx Q) Qt + Q  Qt| 

   = |Q (Qt Kx Q + ) Qt| 

    --- det(BC) = det(B) det(C) 

   = | Qt Kx Q +  | 

   = |A +  | 
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Channels with Colored Gaussian Noise 

 |Kx + Kz| = | Qt Kx Q +  | = | A +  | 

 tr(A) = tr(Qt Kx Q)  

    = tr(QtQ Kx)   --- tr(BC) = tr(CB) 

    = tr(Kx) 

 Thus, the problem is now to maximize |A + | with the 

constraint that tr(A) = i
n Aii ·  nP 

 Now we note that 

 |A + | ·  i (Aii + i)   --- chain rule on Gaussian X 

  with equality iff A is diagonal. 

 Now, going back to (1)   
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Channels with Colored Gaussian Noise 

 I(X1, …, Xn; Y1, …, Yn) 

  ·  0.5 log((2 e)n |Kx + Kz|) – h(Z1, …, Zn) 

  = 0.5 log((2 e)n |A+ |)  

     – 0.5 log((2 e)n |Kz|) 

  ·  0.5 i=1
n log((2 e) (Aii + i) 

     - 0.5 log((2 e)n |Q  Qt |) 

  ·  0.5 i=1
n log(1 + Aii/i) 

 The water-filling solution again (Aii ¸  0; i Aii ·  nP) 

   Aii = (L - i)
+ 

 where L is chosen such that i=1
n (L - i)

+ = nP 

 C = 0.5 i=1
n [log(L/i)]

 +  
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Channels with Colored Gaussian Noise 

 The following two problems are equivalent 

 Y = X + Z, where Z ~ N(0, Kz = QQt); find the best Kx with 

constraint that tr(Kx) ·  nP 

    ,  

 Qt Y = Qt X + Qt Z  ´  Y’ = X’ + Z’, where Z’ ~ N(0, Kz’) 

– Kz’ = E(Qt Z Zt Q) = Qt E(ZZt) Q =  

– Find the best tr(E(X’X’t) = tr(Kx’)=tr(Kx) ·  nP 

– Kx’=Qt Kx Q (=A in previous pages) 

– Note that the channel is simply the parallel channels to which we can 

apply the water-filling solution. 

– Thus, the optimal Kx’ = a diagonal matrix with water-filling powers. 

 Once we have found Kx’, which is diagonal, we can find Kx from Kx = 

QKx’Q
t  which is not diagonal in general.  
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Water-filling Solutions in Different Applications 

Water-filling over time-varying fading channels 

Water-filling over frequency-selective channels 

Water-filling over space-selective channels 

Water-filling over selective eigenchannels 

Water-filling over combination-selective channels 
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Water-Filling Over Selective Space-Frequency 

Gains (1/SNRi) 

Water-Level 

L 
Pi 

Qi 

f1 
f2 f3 
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MIMO Capacity 
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Agenda 

 Two papers dealing with the same MIMO problem 

– Telatar 

• This note 

• Ergodic capacity 

– Foschini 

• The Outage Capacity and practical algorithms 

• Upper and Lower Bounds on the Ergodic Capacity 
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The Channel 

 A memory-less channel which draws an independent nk 

and Hk for every new choice of xk 

  yk = Hk xk + nk. 

 For each k,  Hk, yk, and xk are independent: 

 I(x; (y, H)) = I(x; H) + I(x; y |H) 

 

H=H, Qn = Ir 

x  

 

with Q:=E(xx*) 

tr(Q) ·  P 

(y, H=H) 

Memoryless Ch. 
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 Mutual Information 

 I(x; (y, H)) = I(x; H) + I(x; y |H) 

   = 0 + I(x; y| H) 

   = h(x | H) – h(x |y, H) 

   =  

   = EH I(x; y| H) 
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System Equation 

We have y = H x + n, 

 where n is [r x 1] circularly symmetric complex Gaussian 

vector with zero mean and covariance E(nn*) = Ir, and x 

and n are mutually independent 

– y, n are [r x 1] 

– x is [t x 1] 

– H is [r x t] matrix 

 For a fixed H = H, find the channel capacity subject to  

  E(x*x) = tr(E(xx*)) < P 

 Find the ensemble average of the capacity for H 
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Entropy of Gaussian x 2 Cn is maximum  

under power constraint 

 For x 2 Cn with zero mean and covariance Q := E(xx*), 

  H(x) = E(-log(p(x))) ·  log det( e Q) 

 with equality attained iff x is CSC Gaussian with E(xx*)=Q 

 First, show that for CSC Gaussian x, the entropy is  

  E(-log(p(x))) = log det( e Q) 

 Then, show the inequality (see Telatar’s Lemma-2) 

– We have proved this already in Chapter 9 (Theorem 9.6.5.) 
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Show E(-log(p(x))) = log det( e Q) for CSCG x 

 First note that p(x) = det( Q)-1 exp(-x* Q-1 x) where x is 

 [t x 1] vector (thus Q is [t x t] matrix) 

 E(-log(p(x))) = log det( Q) - E(-x*Q-1 x) 

    -- E(-x*Q-1 x) = - E{tr(x x*Q-1)} 

    -- try to see it with 2x2 example 

      = log det( Q) + tr(E(xx*)Q-1) 

      = log det( Q) + (log e) tr(I) 

      = log det( e Q) 

 cf) For x 2 Rn, ~ N(0, K),   

  E(-log(p(x))) = 0.5 log[(2 e)n |K|] = 0.5 log |2 e K| 
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I(x; y|H) =: I(x; y) = H(y) – H(y|x) 

 I(x; y) = H(y) – H(y |x)  (definition of the mutual information) 

      = H(y) – H(x + n| x)   

      = H(y) – H(n | x)  

      = H(y) – H(n) (independence of n and x) 

   -- We know H(n) = log det( e Qn) with Qn = Ir 

      ·  log det( e Qy) – log det( e Qn)            --- (0) 

   -- ―=― achieved iff y is CSCG           

       = log det( e [HQH* + Ir]) + log det(Ir/( e)) 

       = log det(HQH* + Ir)   --- (1) 

 max I(x; y) is achieved when x is CSCG—thus, y is CSCG 
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det(I + AB) = det(I + BA) 

 I(x; y) = log det(Ir + HQH*) = log det(It + QH*H) 
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Finding Q that maximizes log det(Ir + HQH*)  

 Again, this should be the water-filling solution 

 Note that the covariance matrix Q is non-negative definite  

 H*H = U*U  (*  H*H is non-negative definite) 

– U is unitary matrix 

–  = diag(1, …, t) 

 (It + QH*H)  = (Ir + Q USV* VSU*) 

     = (Ir +  Q U1/2 1/2 U* )       --- note S=1/2 

 det(It + QH*H) = det(Ir + 1/2 U* Q U1/2 ) 

      ----  Let Q’=U*QU 

            = det(Ir + 1/2 Q’ 1/2 ) 
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Finding Q that maximizes log det(Ir + HQH*) 

 det(Ir + 1/2 Q’ 1/2 ) ·  k=1
r (1 + Q’kk k) 

– Equality attained when Q’ is diagonal (mutually independent 

{xk}).  

– Note while Q’ is diagonal, Q may not be diagonal. 

– Ex) A=(a  b;c  d): when b=c, det(A)=ad - bb 

  Q1) Why did I assume (Hermitian) symmetry? 
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Continuing the maximization from (1)  

 I(x; y) ·  log det(HQH* + Ir)  --- (1) 

      ·  log k=1
r (1 + Q’kk k)   

    --- Equality attainable when Q’ is diagonal 

      = k=1
r log(1+ Q’kk k)     --- (2) 

    --- Now, find the best {Q’kk} subject to  
        tr{Q’} = tr{Q} ·  P (Water-filling solution) 

    --- Q’kk = ( – 1/k)
+, where  is a const.  

        chosen to satisfy k=1
n Q’kk = P.     

      = k=1
r log(1+ ( – 1/k)

+  k)  

      = k=1
r [log( k)]

+    --- (3) 

    --- This is the channel capacity for H 

 

Note k are  

channel gains 
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The Channel Capacity for H = H 

 Finally, we have C = k=1
r log( k)

+  

 

 Steps of the derivation 

– Step (0) is obtained with the assumption of the channel that the noise 

is CSC Gaussian with zero mean and covariance Qn 

– Step (1) log det(HQH* + Ir) is obtained by choosing CSC Gaussian x  

– Step (2), k=1
r log(1+ Q’kk k) = k=1

r log(1+ (P/t) k),  is 

achievable by choosing CSCG x with diagonal Q=E(xx*)= (P/t) It 

which implies that x1, …, xt are mutually independent and have 

uniform power. 

– Step (3) is achievable with the water-filling power distribution which 

is possible to obtain only when H is available also at the transmitter. 
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The Channel Capacity for H = H 

 It may not be reasonable—for fast time-varying channels 
— that the channel matrix H is also known at the 
transmitter (It would perhaps be reasonable for indoors) 

 Telatar and Foschini papers investigate the situation where 
H is known only at the receiver (the transmitter does not 
know the channel H) 

Without knowing the channel, the best power allocation 
Qkk should be P/t for all k=1, …, t 

  -- Q = diag(P/t, P/t, …, P/t) 

  -- Q’=UQU* = diag(P/t, P/t, …, P/t) 

 Let’s call this capacity C(H)  

   C(H)= k=1
r log(1+ (P/t) k) 
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Rayleigh Fading Channel Matrix H 2 Cr x t 

 Let’s denote Hij for the i-th row and j-th column of H. 

 It’s modeled as a Rayleigh fading tap. 

 |Hij| is the Rayleigh r.v. 

 The power of each tap, |Hij|
2, is the Chi-square r.v. with 

two degree of freedom and unit power. 

 {Hij} are iid Complex Gaussian with zero mean and unit 

variance. The real and imaginary parts are independent real 

Gaussians with zero mean and 0.5 variance. 

 Note under unitary transformation, Cov(UH) stays the 

same as that of H, and so thus that of UHV* (Lemma-5). 
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The Channel Capacity [Thm 1] 

 Thus, the capacity is  

 C = EH{log det(Ir + QHH*)} 

   --- We already know Q=(P/t) It  due to H unknown at Tx 

     = EH{log det(Ir + (P/t) HH*)}    ----    (4) 

     = EH{log det(It + (P/t) H*H)}     ----    (5) 

     = EH{k=1
r log(1+ (P/t) k)}   ----    (6)  

   ---  note {H=H} ´  {k = k, k=1,…, min{t,r}} 

 Note that the distribution of the eigenvalues of H is the key 
information needed for evaluation of the capacity 

 Note that this capacity is achievable with the choice of  

    Qx = E(xx*) = (P/t)It 

© 200x Heung-No Lee 



401 

Capacity (t = 1 and r is arbitrary) 

 Using (5), we have C = EH{log det(It + (P/t) H*H)} 

– Note H=(H11; H21; …; Hr1) where each Hk1 is complex Gaussian 

with indep. real. and imag. parts with zero mean mean and 

variance ½  

– Thus, power of each tap |Hk1|
2 is Chi-square with two degrees of 

freedom with mean 1 

 Thus H*H = k=1
r |Hk1|

2 = k=1
n 2

2 = 2
2r 

– 2
2r is Chi-square with 2r degree of freedom with mean r 

 C(H) = log det(It + (P/t) H*H)  

    = log(1 + (P/t) 2
2r) 

 C = s0
1 p(x) log(1 + (P/t) x) dx  

 where p(x) = (1/(r)) xr-1 e-x  u(x) , is the pdf of 2
2r  
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Capacity (r = 1 and t is arbitrary) 

 Similarly we have 

 C(H) = log det (Ir + P HH*) = log(1 + P 2
2t ) 

 The pdf of the Chi-square r.v. with 2t degree of freedom 

with mean t is given by 

 p(x) = (1/(t))  xt-1 e-x u(x) 

 Thus, the averaged capacity C is given by 

 C = (1/(t)) s0
1 log(1+P x) xt-1 e-x dx 

 where (t) = s0
1 xt-1 e-xdx = (t-1)! for integer t. 
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Limit Capacity (fixed r and t ! 1) 

 Consider the inner product of i-th and j-th rows of H 

  (1/t) H(i, :) H(j,:)*= (1/t) n=1
t Hin Hjn

* 

    ! (i=j) as t ! 1 

    --- Note this is due to the law of large numbers 

    --- Hin and Hjn are mutually independent 

 Thus, using (4) the capacity in the limit of large t is 

 

   C ! r log(1+P)  as t ! 1 
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Limit Capacity (fixed t and r ! 1) 

 Using (5), 

  (1/r) H*H(ij) = (1/r) n=1
r Hin Hjn

*  

   ! (i=j) as r ! 1 

  ) log det(It + (P/t) r (1/r)H*H)  

  ! log det(It + (P/t) r It)  as r ! 1 

   = log n=1
t (1+rP/t) 

   = t log(1+rP/t)  

C = t log(1+rP/t) as r ! 1  
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Rigorous Proof of Thm-1 

 From (1), we have C(Q, H) := log det(Ir + HQH*) which is 

achievable with CSCG x with covariance Q 

 C(Q) = EH{C(Q,H)} 

We want to maximize C(Q) over all possible choice of Q 

 Q is a covariance matrix. Thus, we could have  

  Q = UDU*  

 where U is unitary and D is diagonal 

  ) C(Q) = EH{log det(Ir + HU D U*H*)} 

   ---- distribution of HU is the same as that of H 

  ) C(Q) = C(D) which means that we can restrict our 

attention to diagonal covariance matrices for optimization 
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Rigorous Proof of Thm-1 (2) 

 Thus, the problem now is to find the optimal distribution 
of the diagonal terms 

 Let Q0 be the average of all the possible permutation of a 
best non-negative diagonal Q with non-uniform diagonal 
terms, such that 

 Q0 = (1/t!) k = 1
t! (k Q k

* ) 

  = Const. It   (since Q is diagonal) 

  = (P/t) It   (since tr{Q0} = tr{Q} = P) 

We note that the function C(Q) is concave  of Q 

– Q  (Ir + HQH*),   this mapping is linear 

– Q  C(Q, H),   this mapping is concave 

– Q  C(Q),   this mapping is concave 
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Rigorous Proof of Thm-1 (3) 

 Applying the Jensen’s inequality (f(E(Q)) ¸  E{f(Q)}) to 

the concave mapping C(Q), we have  

  C(Q0) ¸  (1/t!) k = 1
t! C(k Q k

* ) = C(Q) 

   --- Since C(k Q k
* ) = C(Q) 

   --- This tells us that uniform power distr. is optimal 

 Thus, the capacity is achieved when x is CSCG with 

covariance Q = (P/t) It. The capacity is given by 

   

   EH{log det(Ir + (P/t) HH*)} ---- (7) 
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Summary of Theorem 1 

Theorem 1: The capacity 

 EH{log det(Ir + (P/t) HH*)} = EH{log det(It + (P/t)H*H)}  

 is achieved with the input x which is CSC Gaussian with 

zero mean and covariance (P/t) It , over memoryless 

channel with CSC Gaussian noise n with Qn = Ir and H is 

[r x t] Gaussian with 

H=H, Qn = Ir 

 x  

 

with Q:=E(xx*)  

            = (P/t) It 

(y=Hx+n, H=H) 

Memoryless Ch. 
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Evaluation of the Capacity 

 Using (6), we can carry out the calculation of the capacity 
once we know the distribution of eigenvalues of H*H 
matrix 

  C = E{k=1
r log(1+ (P/t) k)} 

    --- Let m=min{r, t} 

  = k=1
m E{log(1+ (P/t) k)} 

  = m E{log(1+(P/t) 1)} 

 Thus, obtain p(1, …, m), where {k} are unordered, and 
then obtain for the marginal p(1) 

 Thus, we need to evaluate  

  s log(1+(P/t)1) p(1) d1   ---- (8) 
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Theorem 2 

 The evaluation of the capacity based on the integral (8) 

  

 

 

 

 where m=min{r, t}, n=max{r, t} and the Laguerre poly. 

 

 

 The capacity is achievable with CSC Gaussian x with Qx = 

(P/t) Ir ,  over memoryless ergodic channel H  
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 One problem from Telatar’s paper 

 7 Problems from Cover & Thomas 

– P9.7, 9.8, 9.9, 9.10, 9.11, 9.14, 9.15  
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Telatar’s Paper  

 Consider 2x2 MIMO System, given by 

  Y = H X + Z, 

 where elements of the noise vector Z are i.i.d. real-valued Gaussian with zero mean and 

variance 1. X and Y is real-valued signals. The power budget on transmitted signal X is P, i.e., 

trace(E{XXH}) ·  P. 

1. For a fixed H = H, find the general expression of the channel capacity with the assumption that 

the channel is known both at the transmitter and the receiver. 

2. For H =     , evaluate the capacity for P = 4 and for P = 6. 

 

3. For P = 6, give a description of the signaling scheme which would realize the capacity you 

obtained. In particular, how would you transmit your signals at antenna-1 and antenna-2? 

3/4  1/4 

1/4  3/4 
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Cover & Thomas 

 P9.7, 9.8, 9.9, 9.10, 9.11, 9.14, 9.15  
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Not Required 
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Not Required 
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Singular Value Decomposition 

 Any [r x t] matrix can be factored into  

  H = USV*  

 --- the columns of U 2 Cr x r are the eigenvectors of A 

 --- the columns of V 2 Ct x t are the eigenvectors of B 

 --- S 2 Rr x t matrix with singular values, s1, …, smin(t,r) , 

 on the diagonal which are the square roots of the 

 eigenvalues of either A or B (the rest are all zeros) 

 where A:=H H* and B := H* H 

 --- Unitary matrices U and V have the following property 

  U*U = Ir, UU*=Ir, V
*V=It, and VV* = It  
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Singular Value Decomposition (2) 

 A := HH* = USV*VS*U* = U SS* U* = UA U* 

 B := H*H = VS*U* USV*  

      = V S*S V* = VBV* 

 q = rank of H = min{# of indept. cols, # of indept. rows}  

  ·  min{t, r} 

 Full rank system is when q = min{t, r} 

 Note that A and B are non-negative definite, such that,     

 8 x,  xAx ¸  0 

 Singular values and eigenvalues are non-negative 
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Example 

 H =  

 

 

 B=HH* =[2  -1;-1  2] has eigenvalues 3 and 1 

 

 H =  

 

 

 

 

 Check if UU*=U*U=I3 and VV*=V*V=I2 

– Use ―svd‖ in MATLAB 

-1   1   0 

 0   -1  1 

-1   1    

 1   1   

      0   0 

 0   1   0 

 (1  -2   1)   

 (-1   0  1) 

 (1   1   1) 
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Information Theory  
 

 

MAC + SW 

© 200x Heung-No Lee 



420 

Agenda 

 

 Network Information Theory 
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The Most General Communication Network 

M senders and N receivers 

Wants to communicate 

– Some are sources 

– Some are relays 

– Some are receivers 

(X1, Y1) 
(X2, Y2) 

(Xm, Ym) 
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TX-1 

RX-2 

TX-2 

Multiple Access Channels and Multi-User Detection 

TX-3 
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Water-Filling Over Selective Space-Frequency Gains (1/SNR) 

Water-Level 

f1 
f2 f3 

Pi 

Qi 
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SVD Beam-Forming over Spatial Channels 

TX-1 

RX-1 

Spatial channel-1: 

Gain: s1 = 1 

Spatial channel-3 

S3 = 0.1 

Spatial channel-2 

s2 = 0.5 

1 

1 

d sin(1) 

2d sin(1) 

1 
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TX-2 RX-2 

TX-1 

RX-1 

Space-Time-Frequency Agile OFDM Transceivers 

S-2 D-2 

S-1 D-1 
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A system with many senders/many receivers 

 Network channels 

– Interference, noises 

 Examples: Satellite network, broadcasting networks, 

cellular phone networks, sensor networks 

– Many to one (Satellite network, star network) 

– One to many (Broadcast network) 

– Many to many (Computer network—the Internet, adhoc network) 

 Problem: 

– Find the channel capacity 

– Find the optimal distributed source and channel coding strategy 
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Ford-Fulkerson Theorem 

(Max-flow min-cut solution) 

 CAB = min{C1+C2, C2+C3+C4, C4+C5, C1+C3+C5} 

 The maximum flow across any cut-set cannot be greater 
than the sum of the capacities of the cut edges. 

 Thus, min. of max. flow across cut-sets is an upper bound 
on the capacity 

 The Theorem shows that this capacity can be achieved. 

 Only applicable to some information theoretic problems 

A B 

C1 

C5 C2 

C3 

C4 
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Jointly Typical Sequences 

 Let Si denote an ordered subset of random variables X1, X2, 
…, Xk 

 Let S denote n independent copies of Si 

  Pr{S=s} = i=1
n Pr{Si = si}, si 2 Xn  

 For example, if Si := (X1, X2), then 

  Pr{S=s} = Pr{(X1, X2) = (x1, x2)} 

     = i=1
n p(x1i, x2i)  

 By the weak law of large numbers, for any subset of 
random variables, 

 - 1/n log p(S1, …, Sn) = -1/n i=1
n log p(Si) ) H(S1) --- (1) 

 for all 2k - 1 subsets S ½  {X1, X2, …, Xk} 
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Definition of Jointly Typical Set A
(n) 

 A
(n) = A

(n)(X1, …, Xk) 

 = {(x1, …,xk): |-1/n log p(s) – H(S)| < , 8S½ {X1,…, Xk}} 

 S is a subset of {X1, …, Xk} 

 For example, if {X1, X2} 

– S={X1}, S={X2}, S={X1, X2} 

– A(n)
 (X1, X2) = {(x1, x2):  

    | - 1/n log p(x1, x2) – H(X1, X2)| < , 

    | - 1/n log p(x1) – H(X1)| < , 

    | - 1/n log p(x2) – H(X2)| < } 

 

 

© 200x Heung-No Lee 



430 

Theorem 14.2.1: For any  > 0, for sufficiently large n 

1. P(A(n)
 (S)) ¸  1 - , 8 S ½  {X1, …, Xn} 

2. s 2 A(n)
 (S) ) p(s) $ 2-n(H(S) § ) 

3. |A(n)
 (S)| $ 2-n(H(S) § ) 

4. Let S1, S2 ½  {X1, …, Xk}. If (s1, s2) 2 A
(n)(S1, S2), then 

p(s1|s2) $ 2-n(H(S1|S2) § 2) 
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an $ 2n(b § ) 

 notation $ is to mean 

  | 1/n log an  - b| <  

 1/n log an – b <  

  an < 2n(b+) 

 1/n log an – b > -  

  an > 2n(b-) 
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The Multiple Access Channel 

 Two or more senders and one receiver (Satellite or base 
station) 

 The channel gives the relationship between the two input 
alphabets X1 and X2 and the output alphabet Y 

 (2nR1, 2nR2, n) code has two sets of integers. 

W1 = {1,2, …, 2nR1} and W2={1,2,…, 2nR2} message sets 

 Encoder is map 

  X1: W1 ! X1
n 

  X2: W2 ! X2
n 

 Decoder is a map  
  g: Yn ! W1 x W2
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The Multiple Access Channel 

 Pe
(n)= 2-n(R1+R2) (w1,w2) Pr(g(Yn)  (w1, w2) | (w1, w2) sent} 

 A rate pair (R1, R2) is achievable for the multiple access 

channel if there exists a sequence of ((2nR1, 2nR2, n) codes 

with Pe
(n) ! 0 

p(y | x1, x2) 

X1 

X2 

W1 

W2 

Y 

W1, W2 
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The Multiple Access Channel Capacity [Thm14.3.1] 

 The capacity of a multiple access channel is the closure of 
the convex hull of all (R1, R2) satisfying  

  R1 < I(X1; Y|X2) 

  R2 < I(X2; Y|X1) 

  R1+R2 < I(X1, X2; Y) 

 for some product distribution Q(x1) Q(x2) 

C1 

C2 

R2 

R1 

Hull: the outer covering of a fruit or seed  
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Proof of Thm 14.3.1 

 Codebook: generate 2nR independent codewords of length 

n 

– X1(i), i 2 {1, 2, …, 2nR1} 

– X2(j), j 2 {1, 2, …, 2nR2} 

 Decoding: Let A(n)
 the set of typical (x1, x2, y) sequences. 

The decoder chooses the pair (i, j) such that  

  (x1(i), x2(j), y) 2 A(n)
   

 if such a pair (i, j) exists and is unique; otherwise, an error 

is declared. 
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Proof of Thm 14.3.1 

 Error (assuming (1,1) was sent without loss of generality) 

– Either (x1(1), x2(1)) is not typical with the rec. sequence y 

– Or there is a pair of incorrect codewords (x1(i), x2(j)) that is 

typical with the received sequence 

 Note that (W1=1, W2=1) are the message indices that 

were sent. We still need to choose the message X1(1) and 

X2(1). 

– Let’s use Q(x1) and Q(x2) to make distinction 

 Eij = {(X1(i), X2(j), Y) 2 A(n)
} 
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The Union Bound on Prob. Error 

 (Proof of Thm 14.3.1)  

 P(n)
e = P(Ec

11   [(i,j)  (1,1) Eij)  

– Applying the union bound 

 ·  P(Ec
11) + i  1, j=1 P(Ei1) + i=1, j  1 P(E1j)+ i  1, j  1 P(Eij) 

 

 Here, P is the conditional probability that (W1=1, W2=1) was sent 

 Ec
11 = {codewords x1(1) and x2(1) are not typical with y} 

 Ei1 = {x1(i), i 1, is selected, and is jointly typical with (x2(1), y) } 

 E1j = {x2(j), j 1, is selected, and is jointly typical with (x1(1), y). 
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P(Ei1) 

 Marginal-1: x2(1) = z selected and sent over the channel  

– p(y|x1, x2) Q(x2(1) = z) = q(y, x2(1)=z | x1) 

– q(y, x2(1) = z) = x1  Q(x1) q(y, x2(1) = z  | x1) 

 Marginal-2: Select the codeword x1(i) later, independently drawn from Q(x1), 
for the purpose of decoding 

 Form a joint density using the two independent marginals:  

  Q(x1) q(y(x2(1)), x2(1)) 

 Thus, the probability of drawing a pair is q(x1, x2, y) = Q(x1) q(y(x2(1)), x2(1)) 

 Find the probability that the pair belongs to the jointly typical set 

 

p(y|x1,x2) 

W1=1 
 

W2=1 

y 
(x1, x2(1), y[x2(1)])  

2 typical ? x2(1) 

x1(1) Decoding Codeword 

Selection 

Q(x2(1)) & 

Q(x1(i)) 
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P(Ei1) = P{(X1(i), X2(1), Y) 2 A(n)
} 

 (Proof of Thm 14.3.1)  

 P(Ei1) = P{(X1(i), X2(1), Y) 2 A(n)
}  

  = (x1, x2, y) 2 typical Q(x1) q(y, x2) 

   ---  the joint prob. that the selections x1 and (y, x2) are  

   drawn independently from Q(x1) and q(y, x2) 

  ·  | A(n)
 |  £  2-n(H(X1) - )  £  2-n(H(X2, Y) - ) 

  ·  2n(H(X1, X2, Y) - ) 2-n(H(X1) - ) 2-n(H(X2, Y) - ) 

   = 2-n[I(X1;X2, Y) – 3] 

  = 2-n[I(X1;Y|X2) – 3] 

 

 X1 and X2 independent, then I(X1;X2, Y) = I(X1;X2) + 
I(X1;Y|X2) = I(X1;Y|X2) 
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Proof of Thm 14.3.1 (4) 

 i  1, j=1 P(E1j) ·  i1, j=1 2
-n[I(X1;Y|X2) – 3]  

        ·  2nR1 2-n[I(X1;Y|X2) – 3]  

X2
n 

yn 2nH(Y|X2) 

2nH(Y) 

2nI(X2;Y)  distinguishable  

X1
n 

2I(X1; Y|X2)  

2nH(Y|X1, X2) 
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Proof of Thm 14.3.1 (5) 

 P(n)
e = P(Ec

11   [(i,j)  (1,1) Eij)  

– Applying the union bound 

 ·  P(Ec
11) + i  1, j=1 P(E1j) + i=1, j  1 P(E1j) 

  + i  1, j  1 P(Eij) 

 ·  P(Ec
11) + 2nR1 2-n[ I(X1;Y|X2) – 3] + 2nR2 2-n[ I(X2;Y|X1) – 3]  

  + 2n(R1+R2) 2-n[ I(X1,X2;Y) – 4] . 

 

 All terms go to zero when the condition of the theorem is met. 

 This bound shows that the average probability of error can be made arbitrarily 

small as n ! 1, where the averaging is over all choices of codebooks in the 

random code construction. 

 There exists at least one code that achieves arbitrary small probability of error 
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Two User Multiple Access Channel 

 The channel gives the relationship between the two input 

alphabets X1 and X2 and the output alphabet Y 

 (2nR1, 2nR2, n) code has two sets of integers. 

W1 = {1,2, …, 2nR1} and W2={1,2,…, 2nR2} message sets 

 Encoder is map 

  X1: W1 ! X1
n 

  X2: W2 ! X2
n 

 Decoder is a map  
  g: Yn ! W1 x W2
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The Multiple Access Channel Capacity [Thm14.3.1] 

 The capacity of a multiple access channel is the closure of 
the convex hull of all (R1, R2) satisfying  

  R1 < I(X1; Y|X2) 

  R2 < I(X2; Y|X1) 

  R1+R2 < I(X1, X2; Y) 

 for some product distribution Q(x1)Q(x2) 

C1 

C2 

R2 

R1 

Hull: the outer covering of a fruit or seed  

Convex? 
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Convexity of MAC Capacity Regions 

 The capacity region C for MAC is convex, i.e. 

     

If (R1, R2) 2 C, and (R1’, R2’) 2 C,  

 then ( R1 + (1-) R’1,  R2 + (1-) R’2)2 C for 0 ·   ·  1 
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A little bit of Math Definitions 

 Given a set S ½  Rn 

 A convex combination of elements of S is a vector of the 

form i=1
m i si, where si 2 S, i ¸  0 and i=1

m i = 1 

 The convex hull of S, conv(S), is the intersection of all 

convex sets containing S. Also, it is the set of all convex 

combinations from S. 
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Capacity Region for Multiple Access Channel 

 Point A: maximum rate achievable for sender 1 when sender 2 
is not sending any information at all. 

  max R1 = maxQ(x1), Q(x2) I(X1; Y|X2)   --- (2) 

 I(X1;Y|X2) = x2 Q2(x2) I(X1;Y|X2=x2) ·  maxx2 I(X1; Y|X2 = x2) 

D C 

B 

A 

I(X1;Y|X2) R1 

R2 

I(X2;Y|X1) 

I(X1;Y) 

I(X2;Y) 

This capacity region is for some distr. Q1(x1) and Q2(x2) 
E 

© 200x Heung-No Lee 



447 

Capacity Region for Multiple Access Channel 

 Thus, the maximum in (2) can be achieved by selecting the 

input distribution Q1(x1) and Q2(x2) that maximize the 

conditional mutual information between X1 and Y. 

 Point B:  

– Now sender 2 also sends information.  

– The sender 2 achieves I(X2; Y), which is the rate obtained by 

treating X1 as noise.  

– Once decoded, X2 can be subtracted from the received  

– Then, we can obtain the channel, p(y|x1, x2=x). 

– The sender 1 can achieve the rate I(X1; Y|X2).  
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I(X1, X2; Y): Where, in the region? 

 Using the chain rule, we have 

  I(X1, X2; Y) = I(X1; Y) + I(X2; Y|X1)  

            = I(X2; Y) + I(X1; Y|X2) 
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MAC for Independent Binary Symmetric Channels 

What is the MAC capacity region 

for this channel? 
0 

1 

0 

1 

0 

1 

0 

1 

p1 

1-p1 

1- p2 

p2 
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Binary Multiplier Channel 

 Y = X1 X2, where X1 and X2 are 

binary 

What’s the MAC capacity region? 
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Binary Erasure MAC 

 Binary input {1, 0} and ternary output {0, 1, 2} 

  Y = X1 + X2 

 Ambiguity for (X1 = 1, X2 = 0) or (X1 = 0, X2 = 1) since 

for both Y = 1 

 Obviously, (R1, R2) = (1, 0) or (0, 1) are achievable. 

 How about when both transmitting? 

– Choose R1 = 1, and determine the maximum rate at which the user-

2 can send? 

 Draw the capacity region? 

 How do we achieve the point E? 
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The Cooperative Capacity of a Multiple Access Channel 

 Both X1 and X2 are 

allowed to carry message 

W1 and W2 

 Capacity region of this 

channel? 

 Calculate the capacity for 

the binary erasure MAC, 

i.e., Y = X1 + X2 and 

compare this with the 

non-cooperative capacity 

(W1, W2) X1 

X2 
p(y|x1, x2) 

Y 
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Gaussian Multiple User Channels  

  Single user channel  
– Y = X + Z,  Z ~ N(0, N) 

– C(P/N) = 1/2 log(1+P/N) 

 m transmitters, each with a power P, to one receiver 

– Y = i=1
m Xi + Z 

– The achievable rate region for the Gaussian channel is 

• R1 < C(P/N) 

• R1 + R2 < C(2P/N) 

• … 

• R1 + … + Rm < C(mP/N) 

• The right hand side keeps increasing as m (logarithmic though) 

 At high SNR, C(mP/N) ¼  0.5*log(m) + C(P/N) 

What happens to the average rate per sender as m ! 1? 
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Gaussian Multiple User Channels (2) 

 The optimal code 

– m codebooks 

– the i-th codebook has 2nRi codewords of power P 

ML decoding  

– Compare all 2n( Ri) possible combinations and select the one that 

minimizes the likelihood (Min. Euclidean distance)  

 As long as (R1, …, Rm) is in the capacity region, then P(e) ! 

0 
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CDMA, TDMA, FDMA 

 CDMA (Code division multiple 
access) 

– Simultaneous transmissions and 
receptions 

– Capacity region we obtained 
previous page 

 TDMA/FDMA: hard division of 
the channel 

 FDMA example: 

– Total RF spectrum W = W1 + W2 Hz, 
and Noise PSD = No  [J/sec/Hz] 

• R1 = W1 log2(1 + P1/NoW1) 

• R2 = W2 log2(1+P2/NoW2) 

 

? ? 
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Gaussian Multiple User Channels (3) 

 At high SNR, say 20 dB, let’s 
investigate the behavior of the 
sum-capacity with the number 
of users increased 

– The capacity grows to infinity 

– The complexity of the receiver 
grows with 2n*sum-cap 

 Which one better? 

– MUD vs. Time-Sharing 

 2 x 1 case example 

– Time-Sharing: 3.3 bits/sec, and 
thus each user sending at a rate 
1.65 bits/sec 

– MUD: 3.8 bits/sec, each user 
sending at a rate 1.9 bits/sec 

1 2 3 4 5 6 7 8 9 10
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
The sum-capacity vs. number of users

No. of users

T
h
e
 s

u
m

-c
a
p
a
p
a
c
it
y
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Gaussian Multiple User Channels (4) 

What if the maximum rate B and the transmit power P are 

fixed ? 

 For 2 users and 1 receiver case, then 2B bits/sec is 

achievable 

 Time-Sharing: B/2 bits/sec per user 

MUD: B bits/sec per user  
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HW#8 

 P15.1, P14.2, P14.3, P14.6, P14.9 

 Compare CDMA, TDMA and FDMA systems by drawing 

the capacity regions for each of them in one figure 

– Use No = 0.1 J/sec/Hz, P1 = P2 = 10 [J/sec], and W = 10 Hz 

– Do you think you need any convex combination operation (to 

make sure you have the convex hull)? Justify your answer. 

 No need to turn in. 
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Binary Erasure MAC 

 Binary input {1, 0} and ternary output {0, 1, 2} 

  Y = X1 + X2 

 Ambiguity for (X1 = 1, X2 = 0) or (X1 = 0, X2 = 1) since 

for both Y = 1 

 Obviously, (R1, R2) = (1, 0) or (0, 1) are achievable. 

 How about when both transmitting? 

– Choose R1 = 1, and determine the maximum rate at which the user-

2 can send? 

– Y = X2 + X1, where X1 is now an equally likely binary noise  
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Cooperative Capacity of Multiple Access Channel 

 Calculate the capacity region 

for the binary erasure MAC, 

i.e., Y = X1 + X2 and compare 

this with the non-cooperative 

capacity 

 Design p(x1, x2) that 

maximizes the capacity 

 C = maxQ(x1, x2) I(X1, X2; Y), 

instead of  

  maxQ(x1)Q(x2) I(X1, X2; Y)  

(W1, W2) X1 

X2 
p(y|x1, x2) 

Y 
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Cooperative Capacity of Multiple Access Channel 

 Both X1 and X2 are allowed to carry both messages W1 and 

W2 
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Idea 

 2nI(X; Y) = 2nH(X)/2nH(X|Y)  

  = 2n[H(X)-H(X|Y)]  

 Now, the problem is that  

– There are 2nI(X;Y) number of slots.  

– I have 2nR number of distinct balls 
numbered from 1 to 2nR. 

– Suppose that the number of slots 
are a lot more than the number of 
balls, such that 2nI(X;Y)/2nR = 2n 

– You can always choose a large 
enough n for every  so that the 
ratio is large, i.e., 2n = 210. 

– Find the probability that I assign 
two or more balls to a same slot. 

H(X) 

H(X|Y) 
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Idea (2) 

 Let B = 2nR and S = 2nI(X; Y). B << S 

 Let the index b = 1, 2, …, B; s 2 {1, 2, …, S}. 

 Balls are drawn from an urn B times with replacement. 

What’s the probability that you draw a ball more than once? 

 Pr{ distinct B balls}  

= first draw Pr{distinct B balls, first draw}  

= s1=1
S Pr{distinct B balls|first draw = s1}Pr{first draw = s1} 

= s1=1
S (1/S) Pr{distinct Balls|first draw = s1} 

= Pr{distinct Balls| s1 = 1} 

= s2=1
S  Pr{ distinct B balls, second draw=s2| s1 = 1} 
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Idea (3) 

= s2=1
S  Pr{ distinct balls, second draw=s2 | s1 = 1} 

= Pr{ distinct balls, s2=1 | s1=1} + s2=2
S Pr{ distinct balls, s2 

| s1=1} 

= 0 + s2=2
S Pr{distinct Balls | s2, s1=1} Pr{s2|s1=1} 

= 0 + (S-1)(1/S) Pr{ distinct Balls|s1=1, s2 = 2} 

… 

=  

 

 When S >> B, the last term dominates 

< (S – B )/S 
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Idea (4) 

 Pr{Ambiguity} = 1 – Pr{distinct balls} > 1 – (S-B)/S = 

B/S = 2-n(I(X;Y) – R) = 2-n 

 Thus, we now have proved that with a random assignment 

of message indices to a vector in a slot, an arbitrary small 

decoding error can be achieved. 

 This may not be a rigorous proof but will be very helpful 

for giving us insight in to what we are doing. 
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Idea (5) 

 Instead, calculate the Pr{Ambiguity} directly 

 Pr{Amb}=Pr{Amb|s1 =1}  

 = s2

B Pr{Amb, s2|s1}  

 = s2  1 Pr{Amb, s2|s1=1} + Pr{Amb, s2=1|s1=1} 

  = Pr{Amb|s2=2, s1=1} + 1/S 

  = Pr{Amb|s1=1, s2=2, s3=3} + 2/S + 1/S 

  = (1/S)*[1 + 2 + … + B-1] = (1/S)*((B-1)/2)*(1+B-1) ~  ¼  B2/2S 

 Pr{Decoding error due to Amb}  

 = c 2 {codewords} P(c) Pr{Amb, decoding error| c}  

 =  P(c) Pr{Amb} Pr{decoding error|Amb., c} 

 

 = (2/B)*Pr{Amb} = B/S The indicator func. with 1 if c is  

one of the two confused words. 
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The Slepian-Wolf Source Coding 

 A distributed source coding theorem where two sources 

must be encoded separately, but decoded together at a 

common node 

– For noise-less channels without interference 

 Source Coding 

– To encode X1, a rate R > H(X1) is sufficient 

– To encode two sources (X1, X2), a rate H(X1, X2) is sufficient if we 

encode them together 

– If we encode them separately a sum rate R > H(X1) + H(X2) is 

sufficient 

– But, Slepian Wolf showed that R=H(X1, X2) is sufficient even for 

separate encoding of correlated sources 
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The Slepian-Wolf Source Coding (2) 

 For the distributed source coding problem for the source 

(X1, X2) drawn iid ~ p(x1, x2), the achievable rate region is 

given by 

  R1 ¸  H(X1|X2) 

  R2 ¸  H(X2|X1) 

  R1 + R2 ¸  H(X1, X2) 

 

(X1, X2) 

~ p(x1, x2) 

Joint AEP 

Decoder 

X1 

X2 

Source 

Coding 

Source 

Coding 

R1 

R2 
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Rate Regions for Slepian Wolf Encoding 

 H(X1, X2)  

 = H(X1) + H(X2|X1)  

 = H(X2) + H(X1|X2) 

 ·  H(X1) + H(X2) 

 Equality, when? 

0 R1 

R2 

H(X1) H(X1|X2) 

H(X2) 

H(X2|X1) 

Achievable  

Region 
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Example of Slepian-Wolf  

 H(U, V) = log2(3) = 1.58 bits 

 H(U) = -[(1/3) log2(1/3) + (2/3) log2(2/3)] = 0.9183 

 H(V) = 0.9183 

 H(U)+H(V) = 1. 84 bits 

 You need only 1.58 bits, instead of 1.84 bits, with Slepian-

Wolf encoding 

p(u, v) u=0   1 

v=0 

v=1 
1/3 1/3 

0 1/3 
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Idea 

 There are 3 balls and 7 different 

color paints—the rainbow. 

 Take one color at random and color 

the balls 

 Find the probability that there are 

two or more balls with the same 

color = 1 – Pr(distinct colors). 

 Pr(distinct colors) = 7 (1/7)(6/7)(5/7) 

= (6/7)(5/7) 

 Thus, if the number of colors are 

sufficiently large, the chance that the 

probability of having an equivocation 

is small, especially when n ! 1 
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Idea (2) 

 Number of balls: B = 2nH(X2|X1) 

 Number of colors: C = 2nR 

 C >> B, C/B = 2n  

 Then, the probability of decoding error due to non-

distinctive colors in B balls = 2-n  
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Idea (3) 

 Encode X1 with rate R1 ¸  H(X1) 
and then the decoding should be 
no problem. 

 Now, how to encode/decode X2? 

 Encode X2 with a rate R2 ¸  
H(X2|X1): randomly color every 
elements in X2

n with 2nR2 colors 

– Pr( decoding error due to color 
equivocation, X1 = i) = 2nH(X2|X1) 
2-nR2 = 2-n 

– R2=H(X2|X1) +  

– Thus, we can choose a big 
enough n so that n be very big 

X1
n 

X2
n 
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The Slepian-Wolf Source Coding (3) 

 Proof of existence of the code with any rate pair (R1, R2) ¸  

H(X1, X2) of the code which maps 

– f1: X
n ! {1, 2, …, 2nR1} 

– f2: X
n ! {1, 2, …, 2nR2} 

– With AEP decoding the P(e) + 0 as n " 1. 

 Proof again uses  

– The typical set argument for the existence of a code 

– The Fano’s inequality for the achievability 

– Refer to Cover and Thomas for proofs 
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Slepian Wolf Source-Encoding Idea 

 Random code: 

– For each xn 2 Xn, draw a 
uniform random number from 1 
to 2nR1. Let the assignments f1 
and f2 known to the encoder and 
decoder. 

 Encoding (x1
n, x2

n): indices i = 
f1(x

n) and j = f2(x2
n) are sent. 

 Decoding: Find if there is a 
unique pair (x1’, x2’) 2 A(n)

 

where  

– x1’ 2 {x1
n: f(x1

n) = i} and  

– x2’ 2 {x2
n: f2(x2

n) = j}, i.e., the 
inverse images of i and j 
respectively. 

X1 

X2 1 2 2nR1 

2nR2 

1 

2 

Typical 
Non-typical 

f1: X
n   {1, 2, …, 2nR1} 

2nH(X1, X2) jointly typical pairs 
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Slepian Wolf for Many Sources 

 (X1, X2, …, Xm) ~ p(x1, …, xm) 

 The rate region is 

  R(S) > H(X(S)|X(Sc)) 

 where  
• S µ  {1, 2, …, m},  

• X(S) = {Xj: j 2 S} 

• R(S) = i2 S Ri 

 Ex) 3 sources (X1, X2, X3) ~ p(x1, x2, x3) 

– R1 > H(X1|X2, X3) & R2 > H(X2|X1, X3) & R3 > H(X3|X2, X3) 

– R1+R2 > H(X1, X2|X3) & R1+R3 > H(X1, X3|X2) & R2+R3 > H(X2, X3|X1) 

– R1+R2+R3 > H(X1, X2, X3) 
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A noble idea—or just for fun?  

 Use the powerful LDPC codes to encode the source data 

with a certain H(X1, X2, X3) 

– Huffman code will not be a good idea—why? 

 Choose a rate pair (R1, R2, R3) according to Slepian-Wolf, 

and design three independent codes whose code rate pair is 

slightly larger, i.e., (R1+, R2+, R3+) 

– What’s the  for? 

– What should be the magic secret here? 

 You want to consolidate the information collected by three 

sensors observing a common phenomenon (a tank goes by) 
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A noble idea (2)—or just for fun? 

Sensor-1 

Sensor-2 

Sensor-3 

Reconnaissance  

vehicle 

Slepian-Wolf 
MAC 

Joint Source-Channel Coding Problem 
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Appendix 

 Convexity of the rate region 

 Use an auxiliary random variable Q = {1, 2, 3, 4} 
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Convexity of MAC Capacity Regions 

 The capacity region C for MAC is convex, i.e. 

 If (R1, R2) 2 C, and (R1’, R2’) 2 C, then  R1 + (1-) R2 

2 C for 0 ·   ·  1 
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A little bit of Math Definitions 

 Given a set S ½  Rn 

 A convex combination of elements of S is a vector of the 

form i=1
m i si, where si 2 S, i ¸  0 and i=1

m i = 1 

 The convex hull of S, conv(S), is the intersection of all 

convex sets containing S. Also, it is the set of all convex 

combinations from S. 

 Every s in conv(S) can be represented as a convex 

combination of vectors s1, …, sm from S. 

 Caratheodory Theorem: Any point s 2 conv(S) can be 

represented with n+1 or fewer convex comb. of points 

from S (see example next) 
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A little bit of Math Definitions 

 S = {(0, 0), (1,0), (0,1), (1,1)} 

 0.5(1, 0) + 0.5(0, 1) = (0.5, 0,5) 

 

 Two dimensional: At most three-

vectors are needed. 0 1 

1 

© 200x Heung-No Lee 



483 

The MAC capacity using Time-Sharing R.V. Q 

 Achievable rates of a MAC is given by the closure of the 

set of all (R1, R2) pairs satisfying 

  R1 < I(X1; Y|X2, Q), 

  R2 < I(X2; Y|X1, Q), 

  R1 + R2 < I(X1, X2; Y| Q), 

  for some choice of the joint distribution 

p(q)p(x1|q)p(x2|q)p(y|x1, x2) with Q 2 {1,2,3,4}. 
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Information Theory 

Broadcast Channel Capacity 
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Agenda 

 Broadcast Channel 

– General broadcast channel 

– Degraded broadcast channel 

– Broadcast channel capacity solved by the dirty paper coding 

technique 
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Broadcast Channel Capacity 

 One source, many receivers 

 The channel p(y1, y2|x) is memory-less: 

  p(y1
n, y2

n|xn) = i=1
n p(y1, y2|x) 

 Code: ((2nR1, 2nR2), n) code,  

 Pe
(n) = P(g1(Y1

n)  W1, g2(Y2
n)  W2) 
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When Channel Introduce No Errors At all 

 Assume |X| > |Y1|, |Y2|, |Y1| x |Y2| 

 R1 ·  H(Y1) 

 R2 ·  H(Y2) 

 R1 + R2 ·  H(Y1, Y2) 

 No errors: X ´ (Y1, Y2)  

 Note that (y1, y2|x) = 1 or 0. 

 The coding scheme: For each and 

every typical pair (y1
n, y2

n), we 

simply need to assign a single 

deterministic input xn. As long as 

the rate is within the capacity 

region, the scheme should work 

– Ex) R1+R2 < H(Y1, Y2) 

Xn 

Y1
n 

Y2
n 
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When Colors and Shapes are correlated: 

When p(red|circle) ¼  1 and 

p(blue|square) ¼  1 

 I(Y1; Y2) > 0 

 H(X, Y) < H(X)+H(Y) 

(strictly) 

We must make sure that the 

sum rate chosen is smaller 

than H(X, Y). 

Xn 

Y1
n 

Y2
n 
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When Channel Introduces No Errors At all 

 Auxiliary r.v.s U, V 

– U is the partition 

– V is the colors 

 R1 ·  H(Y1) – H(Y1|U)  

  = I(U; Y1) 

– Ex) red circle becomes red triangle. 

 R2 ·  H(Y2) – H(Y2|V)  

  = I(V; Y2) 

– Ex) white becomes yellow; green 

sometimes becomes yellow too. 

 R1 + R2 ·  I(U; Y1) + I(V; Y2) – 

I(U; V) 

Xn 

Y1
n 

Y2
n 
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Degraded Broadcast Channels 

 Definition: if p(y1, y2|x) = p(y1|x) p(y2|y1), the channel is said to be 

physically degraded. 

 Assumption is that one of the channel is better than the other channel. 

 Degraded broadcast channel can be understood as: X  Y1  Y2 

 The capacity region of this channel is 

 R2 ·  I(U; Y2) 

 R1 ·  I(X; Y1|U) 

 for some utility random variable U whose cardinality |U| ·  min{|X|, 

|Y1|, |Y2|}. 

 NOTE: The rate R_1 and R_2 are rates of INDEPENDENT 

informations for user-1 and user-2 respectively. 
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Degraded Broadcast Channels (2) 

 As long as R2 ·  I(U; Y2), and 

 As long as R1 ·  I(X; Y1|U), we can encode the data and obtain an 

error-free transmission 

 Note that the code C2 (2
nR2, n) must be decodable to both receivers; 

the code C1 (2
nR1, n) is only decodable at the receiver 1. 

 Proof: Use the typical set argument again (see textbook) 

Xn Y1
n Y2

n 

U=0 

U=1 
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Common Broadcast Channel  

 The independent rate pair (R1, R2) can be re-interpreted as 

(R0, R1-R0, R2-R0) with a common rate R0 is achievable, 

provided that R0 ·  min(R1, R2). 

 TV broadcasting 

– HDTV: R1 

– Color TV: R2 

– R1 > R2 
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Binary Symmetric Broadcast Channels 

 Assumption: p1 < p2 < ½  

 U is the utility random variable:  

– p(x) = u p(x, u) = u p(x|u) p(u) 

 The degradation from Y1 to Y2: BSC with crossover  

– p2 = p1(1-) + (1-p1) 

–  = (p2 – p1)/(1-2p1) 

 R2 ·  I(U; Y2) = maxp(u) H(Y2) – H(Y2|U) = 1 – H()  

– where  =  (1-p2) + (1-) p2 

X 

Y1 
BSC with p1 

Y2 
BSC with p2 

X  Y1 Y2 

Cascade with encoding 

U 

 p1 
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Binary Symmetric Broadcast Channels (2) 

 R1 ·  I(X; Y1| U) = H(Y1|U) – H(Y1|X, U) 

   = H(Y1|U) – H(Y1|X) 

   = H((1-p1)+(1-)p1) – H(p1) 

 Example) 
– When  = 0, R1 = 0, R2 ·  1 – H(p2) 

– When  = 1/2, R1 ·  H(1/2) – H(p1) = 1 – H(p1), and R2 = 0 since  
= 1/2. 

  

 

R1 

R2 
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Broadcasting Gaussian Channels 

 Y1 = X + Z1  where Z1 ~ N(0, N1) 

 Y2 = X + Z1 + Z2  = X + Z3  where Z3 ~ N(0, N3 = N1+N2), N3 > 
N1 

 Achievable independent rate pair (R1, R2) is 
– R1 < C( P/N1) 

– R2 < C((1-)P)/( P + N3)) 

–  is a parameter that the transmitter can choose 

 Encoding: two codebooks  
– C1 with rate R1 and with power  P,  

– C2 with rate R2 and with power (1-)P 

– X = X1 + X2,  

 Decoding: 
– At Y2, search codebook C2 for match 

– At Y1, first decode Y2’s codeword and then subtract; then decode for the 
first codebook 
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Dirty Paper Coding 

 Max Costa, ―Writing on Dirty Paper,‖ IT, 1983. 

 Y = X + S + Z   

 Results: When the encoder knows the interference S (non-causal), but the 
decoder does not, then the channel capacity is C(P/N) = 0.5 ln(1+P/N). 

 Obvious/wrong option (when P > Q):  
– Encode X = X’ – S; Thus, Y = X’ + Z. Assuming all Gaussian, P = x’

2 + Q;  

– Thus, variance of X’ = P – Q;  

– Thus, we achieve C((P-Q)/N) where C(x) = 0.5 ln(1+x). 

– Certainly, this is worse than what the DPC promises. 

 Read the paper for further details. 

Encoder   Decoder 

S ~ N(0, QI) Z ~ N(0, NI) 

W X Y W’ 

(1/n)i=1
n Xi

2 ·  P 
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Dirty Paper Coding (2) 

 Y = X + S + Z 
– Y1 = X + S = X1 + X2 + S  --- the first channel (want to have zero rate across) 

– Y2 = X+S+Z = X1 + X2 + S + Z --- the second channel (want to maximize the rate) 

 Power distribution on P and (1-)P on C1 and C2 

– C1 < C( P/Q) 

– C2 < C((1-)P/(P + Q + N))  

 By choosing  = Q/(P+N),  
– C1 < 0 

– C2 < C(P/N2)  Q.E.D. 

 

Encoder   Decoder 

S ~ N(0, Q) Z ~ N(0, N) 

W X Y2 W’ 

(1/n)i=1
n Xi

2 ·  P 

Y1 
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Dirty Paper Coding (3) 

 The capacity of user-2 with poor channel is maximized. 

 The decoder does not know the state S; but the decoder 

knows the structure of the encoder. 
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Dirty Paper Coding (3) 

 Generate 2nI(U*; Y) sequences of U* drawn from N(0, 

P+*2Q) 
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Information Theory  
 

Course Overview 
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Agenda 

 Network Information Theory 

 Current status 

 Future direction 

 Final 

 Use of MIMO nodes in Networks 
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The Key Idea in IT is throwing balls at slots!!!! 

 2nI(X; Y) = 2nH(X)/2nH(X|Y)  

   

 Suppose 

– 2nI(X;Y) number of slots.  

– 2nR distinct balls, from 1 to 2nR. 

– Choose small , R = I(X; Y) - . 

– Choose large n, i.e.,  

– 2nI(X;Y) >> 2nR, i.e.,  

     2nI(X;Y)/2nR = 2n  = 210. 

– # slots >> # balls 

 

 Pr{#balls at any slot > 1} = Pr{ambiguity} 

H(X) 

H(X|Y) 
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Key Idea (2) 

 Let S = 2nI(X; Y) and B = 2nR.    Then, S>>B. 

 Let the index b = 1, 2, …, B; s 2 {1, 2, …, S}. 

 Pr{ambiguity} = 1 - Pr{distinct slot}  

 Pr{distinct slot} 

= first draw Pr{distinct slot, first draw}  

= s1=1
S Pr{distinct slot |first draw = s1}Pr{first draw = s1} 

= s1=1
S (1/S) Pr{distinct slot | first draw = s1} 

= Pr{distinct slot | s1 = 1} 

= s2=1
S  Pr{distinct slot, second draw=s2 | s1 = 1} 
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Idea (3) 

= s2=1
S  Pr{distinct slot, second draw=s2 | s1 = 1} 

= Pr{distinct slot, s2=1 | s1=1} + s2=2
S Pr{distinct slot, s2 | 

s1=1} 

= 0 + s2=2
S Pr{distinct slot | s2, s1=1} Pr{s2|s1=1} 

= 0 + (S-1)(1/S) Pr{ distinct slot|s1=1, s2 = 2} 

… 

=  

 

       When S >> B, the last term dominates 

~ (S – B )/S 
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Idea (4) 

 Pr{Ambiguity} = 1 – Pr{distinct balls} ~ 1 – (S-B)/S = 

B/S = 2-n(I(X;Y) – R) = 2-n 

 

 

 

 

 This shows that  

– with a random assignment of message indices to a vector in a slot, 

an arbitrary small error can be achieved. 

 

 This may not be a rigorous proof but insightful arguement.  
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The Slepian-Wolf Source Coding 

 A distributed source coding theorem where two sources 

must be encoded separately, but decoded together at a 

common node 
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The Slepian-Wolf Source Coding (2) 

 The source (X1, X2) drawn i.i.d. ~ p(x1, x2).  

 The achievable rate region is given by 

  R1 ¸  H(X1|X2) 

  R2 ¸  H(X2|X1) 

  R1 + R2 ¸  H(X1, X2) 

 

(X1, X2) 

~ p(x1, x2) 

Joint 

Decoder 

X1 

X2 

Source 

Coding 

Source 

Coding 

R1 

R2 
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Rate Regions for Slepian Wolf Encoding 

 H(X1, X2)  

 = H(X1) + H(X2|X1)  

 = H(X2) + H(X1|X2) 

 ·  H(X1) + H(X2) 

 Equality, when? 

0 R1 

R2 

H(X1) H(X1|X2) 

H(X2) 

H(X2|X1) 

Achievable  

Region 
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Example of Slepian-Wolf  

 H(U, V) = log2(3) = 1.58 bits 

 H(U) = -[(1/3) log2(1/3) + (2/3) log2(2/3)] = 0.9183 

 H(V) = 0.9183 

 H(U)+H(V) = 1. 84 bits 

 You need only 1.58 bits, instead of 1.84 bits, with Slepian-

Wolf encoding 

p(u, v) u=0   1 

v=0 

v=1 
1/3 1/3 

0 1/3 
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Idea 

 There are 3 balls and 7 different 

color paints—the rainbow 

 Take one color at random and color 

the balls 

 Find the probability that there are 

two or more balls with the same 

color = 1 – Pr(distinct colors). 

 Pr(distinct colors) = 7 

(1/7)(6/7)(5/7) = (6/7)(5/7) 

 Thus, if the number of colors are 

sufficiently large, the chance that the 

probability of having an equivocation 

is small, especially when n ! 1 
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Idea (2) 

 Number of balls: B = 2nH(X2|X1) 

 Number of colors: C = 2nR 

 C >> B, B/C = 2-n  

 The probability of non-distinctive colors in B balls = 2-n  

© 200x Heung-No Lee 



512 

Idea (3) 

 Encode X1 with rate R1 ¸  H(X1) 
and then the decoding should be 
no problem. 

 Now, how to encode/decode X2? 

 Encode X2 with a rate R2 ¸  
H(X2|X1): randomly color every 
element in X2

n with 2nR2 colors. 

 Then,  
– Pr( color equivocation | X1 = i) = 

2nH(X2|X1) 2-nR2 = 2-n 

– R2=H(X2|X1) +  

– Thus, we can choose a big 
enough n so that n be very big 

 What happens then? 

X1
n 

X2
n 
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Slepian Wolf for Many Sources 

 (X1, X2, …, Xm) ~ p(x1, …, xm) 

 The rate region is 

  R(S) > H(X(S)|X(Sc)) 

 where  
• S µ  {1, 2, …, m},  

• X(S) = {Xj: j 2 S} 

• R(S) = i2 S Ri 

 Ex) 3 sources (X1, X2, X3) ~ p(x1, x2, x3) 

– R1 > H(X1|X2, X3) & R2 > H(X2|X1, X3) & R3 > H(X3|X2, X3) 

– R1+R2 > H(X1, X2|X3) & R1+R3 > H(X1, X3|X2) & R2+R3 > H(X2, X3|X1) 

– R1+R2+R3 > H(X1, X2, X3) 
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A noble idea—or just for fun?  

 Use the powerful LDPC codes to encode the source data 

with a certain H(X1, X2, X3) 

– Huffman code will not be a good idea—why? 

 Choose a rate pair (R1, R2, R3) according to Slepian-Wolf, 

and design three independent codes whose code rate pair is 

slightly larger, i.e., (R1+, R2+, R3+) 

– What’s the  for? 

– What should be the magic secret here? 

 You want to consolidate the information collected by three 

sensors observing a common phenomenon (a tank passes 

by) 
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A noble idea (2)—or just for fun? 

Sensor-1 

Sensor-2 

Sensor-3 

Reconnaissance  

vehicle 

Slepian-Wolf 
MAC 

Joint Source-Channel Coding Problem 
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Broadcast Channel Capacity 

 One source, many receivers 

 The channel p(y1, y2|x) is memory-less: 

  p(y1
n, y2

n|xn) = i=1
n p(y1, y2|x) 

 Code: ((2nR1, 2nR2), n) code,  

 Pe
(n) = P(g1(Y1

n)  W1, g2(Y2
n)  W2) 
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When Channel Introduces No Errors At all 

 Assume |X| > |Y1|, |Y2|, |Y1| x |Y2| 

 R1 ·  H(Y1) 

 R2 ·  H(Y2) 

 R1 + R2 ·  H(Y1, Y2) 

 No errors: X ´ (Y1, Y2)  

 Note that (y1, y2|x) = 1 or 0. 

 The coding scheme: For each and 

every typical pair (y1
n, y2

n), we 

simply need to assign a single 

deterministic input xn. As long as 

the rate is within the capacity 

region, the scheme should work 

– Ex) R1+R2 < H(Y1, Y2) 

Xn 

Y1
n 

Y2
n 
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When Colors and Shapes are correlated: 

When p(red|circle) ¼  1 and 

p(blue|square) ¼  1 

 Let U, V auxiliary r.v.s 

– U is the partition 

– V is the colors 

 I(U; V) > 0. 

 H(U, V) = H(U)+H(V)-

I(U;V) < H(U)+H(V) 

(strictly) 

We must make sure that the 

sum rate chosen is smaller 

than H(U, V). 

Xn 

Y1
n 

Y2
n 
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When Channel Introduces Errors 

 R1 ·  H(U) – H(U|Y1)  

  = I(U; Y1) 

– Ex) red circle becomes red triangle. 

 R2 ·  H(V) – H(V|Y2)  

  = I(V; Y2) 

– Ex) white becomes yellow; green 

sometimes becomes yellow too. 

 R1 + R2 ·  I(U; Y1) + I(V; Y2) – 

I(U; V) 

Xn 

Y1
n 

Y2
n 
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Degraded Broadcast Channels 

 Definition: if p(y1, y2|x) = p(y1|x) p(y2|y1), the channel is said to be 

physically degraded. 

 Assumption is that one of the channel is better than the other channel. 

 Degraded broadcast channel can be understood as: X  Y1  Y2 

 The capacity region of this channel is 

 R2 ·  I(U; Y2) 

 R1 ·  I(X; Y1|U) 

 for some utility random variable U whose cardinality |U| ·  min{|X|, 

|Y1|, |Y2|}. 

 NOTE: The rate R1 and R2 are rates of INDEPENDENT information 

for user-1 and user-2 respectively. 
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Degraded Broadcast Channels (2) 

 As long as R2 ·  I(U; Y2), and 

 As long as R1 ·  I(X; Y1|U), we can encode the data and obtain an 

error-free transmission 

 Note that the code C2 (2
nR2, n) must be decodable to both receivers; 

the code C1 (2
nR1, n) is only decodable at the receiver 1. 

 Proof: Use the typical set argument again (see textbook) 

Xn Y1
n Y2

n 

U=0 

U=1 
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Current Status of Information Theory 

 Shannon’s Theory has been successfully applied in 

practice for the past 60 years.  

 The most problems Shannon posed in 1948 have been 

solved, especially in the point-to-point communications 

area.  

 Tremendous amount of beautiful ideas have been 

accumulated which can be applied to various fields. 

 

 Channel Coding Theory (Ph.D. level, soon to be offered) 

• Block codes, Cyclic codes, BCH codes, Reed-Solomon codes, 

Convolutional codes, Trellis codes, Turbo codes, Gallager codes 

• Group, Ring, Galois Field 

• Textbook: Error Correction Coding by Moon, Wiley 2005.   
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Networks, Networks, Networks!!! 

 Today, the focus is to understand network. 

 Application of information theory to networks 

– Network information theory  

– Network coding theory (2000 Ahlswede et. al.)  

 Network is not a simple thing 

– Many sources, many relays, many sinks 

– Many traffic types (fractal traffic) 

– Delays  

 Current trends: merge ideas from different fields 

– Information Theory, Convex Optimization, Queuing Theory, Control 

Theory,  Reinforced Learning Theory, … 

– Let’s learn from nature, for example from human brain network! 

 

 Advanced Network Theory (Ph.D. level, soon to be offered) 

 
523 © 200x Heung-No Lee 



Final Exam 

 Four problems 

 Topics of importance 

– Forward/Converse of the Coding Theorem 

– Capacity for simple channels 

– A simple MIMO problem 

– Do you understand AEP/Jointly Typical Decoder? 

– Product Distribution vs. Joint Distribution 

 Final materials  

– Every lecture note (not the materials in appendices) 

– Cover & Thomas Ch1, 2, 3, 4, 5, 7, 8, 9, 12.1 , 15.3(Multiple 

access channel) 

– All homework sets 
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The End 
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Jensen’s Inequality 


Jensen’s inequality is one of the fundamental tools very frequently used in information theory.  


 


A function ( )f x is said to be convex over an interval ( , )a b , if for every 1x , 2x ( , )a b∈  and 
0.0 1.0λ≤ ≤ ,  


 ( )1 2 1 2(1 ) ( ) (1 ) ( )f x x f x f xλ λ λ λ+ − ≤ + − . (1.1) 


It is said strictly convex if the equality holds only if 1.0λ =  or 0.0λ = .  


A function f is concave if f− is convex.  


Examples of convex functions include 2x  and x .  


Examples of concave functions include log( ),x x  over 0x ≥ .  







