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Lecture Note on Wireless Communications

E-mail

s My e-mail is
heungno(@gist.ac.kr

< I will use e-mail for sending lecture notes and special
g p
announcements.

©200x Heung-No Lee

Course Information

% Class hours: 9:00-10:30 am Monday, Wednesday
% Lecture room: B201
%+ Office hours:

— 10:30am ~ 11:30am Monday,

— 10:00am ~ 11:00am Tuesday.

— Or make an appointment via e-mail.

©200x Heung-No Lee
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Lecture Note on Wireless Communications

Grade Distribution

%> Two exams (Midterm#1: 20%, Final: 30%)

*» Homework + Homework Grading (20%)

¢ Term Project (30%)
— Binary modulation over AWGN channel simulation
— Add LDPC encode/decode simulation

— Add variations such as
» Wireless network codes
 Slepian Wolf distributed source coding
» Compressive sensing

©200x Heung-No Lee

Tentative Schedule

1t week General overview (Shannon’s 1948 paper)
2"d week | Optimal Transceiver
39 week |Gallager’s Channel Coding Theorem

4t week Gallager’s Channel Coding Theorem

5th week LDPC codes and probabilistic decoders

6th week Multipath fading channels/Diversity systems
7th week MIMO capacity theorems

8th week MIMO transceivers Midterm 1
9th week Design of LDPC and space-time codes and receivers
10th week | Performance evaluation of MIMO transceivers

11th week | Multi-user capacity/multi-user MIMO receivers
12th week | Design of pre-coding MIMO signals

13th week | Network codes

14th week | Wireless network codes
15t week | Overview

16t week | Final project + Final Exam Final project
due

©200x Heung-No Lee
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Lecture Note on Wireless Communications

Homework, Class-Project Policies

% Discussion and exchange of ideas are strongly encouraged.

“ You may submit your homework and project reports as a
team of two persons.
*# On each homework and class project set, a reviewer team
will be assigned (will take turns).
% The job of each reviewer team is to
— grade homework/project sets,
— type up the best homework solution(rec. WORD with Mathtype),
— get an approval of the solution manual from me, and

— distribute the graded homework and solution to the students within
a week.

©200x Heung-No Lee

Scope of this course

+%* In this course, we will learn wireless and MIMO networks with help of
— Information Theory
— Digital Communications Theory
— Channel Coding Theory
% What’s relevant are
— Complexity of the system (Is the system implementable?)
— Performance of the system (Probability of decision errors)
— How far is it from the theoretical limit?

©200x Heung-No Lee
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Lecture Note on Wireless Communications

Scope of this course (2)

Learn to apply the estimation/detection theory to communications
problems.

Learn to simulate communications systems for the purpose of
evaluating a communications system.

Be able to analyze the obtained simulation data and predict the
performance of a given system, and provide a better design.

Once we know how to predict/evaluate the performance of a
communications system, we will use these knowledge and tool sets to
design a better performing communications system.

I say this is the way how the communications theory has been evolved.

©200x Heung-No Lee

Text Books

Textbook: Proakis/Salehi, Digital Communications, 5th Edition,
McGraw-Hill.

Reference-1: Robert Gallager, Information Theory and Reliable
Communication, John Wiley & Sons, Inc. New York, NY, USA,
1968. ISBN:0471290483

Reference-2: David Tse and P. Viswanath, Fundamentals of Wireless
Communication, Cambridge Press, 2005.

ISBN: 0521845270

Reference-3: J. M. Wozencraft and I. M. Jacobs, Principles of

Communication Engineering, Prospect Heights , Illinois, Waveland
Press, 1990.

©200x Heung-No Lee
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Lecture Note on Wireless Communications

About Proakis/Salehi

% The book is like an encyclopedia of communications
theory.

— Covers a lot of topics
— I certainly will not aim to cover all of them

— I’ll go over certain topics quickly to help your reading.
“» Some homework problems will be taken from the book.

©200x Heung-No Lee

Interaction with other related areas

%> Optimization

< Signal and Image Processing
+* Estimation/Detection Theory
*» Pattern Recognition

% Neural Network

% Artificial Intelligence

¢+ Bio-informatics

©200x Heung-No Lee

(c)200x Heung-No Lee 6 of 232
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% Now, let’s begin...

©200x Heung-No Lee

Claude E. Shannon (1916 -- 2001)

e

Math/EE Bachelor from UMich (1936) >
MSEE and Math Ph.D. from MIT (1940)

A landmark paper “Mathematical Theory
of Communications” (1948)
— Founder of Information Theory

&

2
IR

s,
s

— Fundamental limits on communications

— Information quantified as a logarithmic
measure

% For more info on him, make a visit to

http://www.bell-
labs.com/news/2001/february/26/1.htm}

©200x Heung-No Lee
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Shannon’s Perspective on Communications

Messages Regenerate

oe © 00 o
o oo Channel ° OO

© o o o

@
B

Communications: Transfer of information from a source to a receiver
Messages (information) can have meaning; but they are irrelevant for
the design of communications system.
What’s important then?

— 4 message is selected from a set of all possible messages and transmiited,

and regenerated ai the receiver

— The size of the message set is the amount of information
* The capacity of a channel is the maximum size of message
set that can be transferred over the channel and can be
regenerated almost error-free at the receiver.

&
Exs

7
e

>
£
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Digital Communication

< Itis to send a message index m (out of M total) over the channel
— for the duration of time 7, and
— have an expectation that the same index m can be recovered almost error-
free at the receiver.
¢ Transmission rate R = log,(M)/T [bits/sec]
% If R <C, then almost error-free recovery can be achieved.
% We need to find a set of M waveforms to interface the channel.
— An analog (physical) waveform shall be chosen to carry the messages.
Why?
— We may choose orthogonal waveforms

*» Pulse-position, frequency-position (OFDM), sin(x)/x, ..., or any other
orthogonal signal set

— We need to find out how we can choose them.

©200x Heung-No Lee
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Lecture Note on Wireless Communications

Additive Noise Channel

s r()

— Channel [—

*»Let’s consider a simple channel

() = () + n(d)

— received signal = signal + noise

©200x Heung-No Lee

Digital Representation

+* Note that the simple ANC is based on continuous signals
and noise
<+ We aim to replace the ANC with digits and vectors. Why?
— Easier to deal with (digits rather than continuous waveforms)
« Computer simulations without loss of information
» Easier to do analysis
« Easier to design
“» How?

— Via the use of vector space idea.

©200x Heung-No Lee
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Hilbert Space

% Vectors of finite length can be added together and multiplied by scalars.
So they form a vector space (Hilbert space).
— Norm exists ( 2 [vi* < oo or [; [v(H)]? dt < o)
— Schwartz inequality holds (
© VeV Vil vl
© i fhg’ (O dil < (f IR d)¥2 (f; g dby?)

% Extension of the ideas of length and inner product from vector space to
signal space.

% Approximation of a function with a series of (finite number of)
orthonormal functions.
— the Karhunen-Loeve Expansion (pg. 76, Proakis/Salehi)

©200x Heung-No Lee

Hilbert Space

% Can we extend the idea of the Euclidean vector space to
functions and signals?
** Yes. But how?
— Use a set of orthogonal basis (e.g. Fourier, Harr, ...)
— Infinite dimensional the space becomes.
— Let’s consider only finite length vectors
e (1,%,1/3,...) included; but (1, 1, 1, 1, ...) excluded.
%* Vectors of finite length is closed under addition and
multiplication by a scalar:
— Triangular inequality: |x-+y||<|x]|+|y|
 But TI can be proved by Sch. Ineq. (Use z = x+y and consider z'z).

©200x Heung-No Lee
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Transformation

% A set of linearly independent vectors which spans a vector
space is called a basis.

%+ A coordinate system can be represented by a basis.

«¢ There can be infinitely many coordinate systems in a
veclor space.

* Any vector with a finite norm can be represented by a
linear combination of basis vectors.

* Any vector (a signal) with a finite norm can be represented
by any coordinate system.

+» Change of basis to represent a vector can be performed.
This is called transformation.

©200x Heung-No Lee

Transformation (2)

> Example of transformation of a vector in different
coordinate system
— Representation of vectors in Cartesian coordinate systems
% Usually, we choose an orthonormal set of vectors as a
basis
— Norm of each basis vector is 1.
— Inner product between any pair of basis vectors is 0.

©200x Heung-No Lee
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Transformation (3)

% A vector (a signal) represented by {b!, } can be transformed
into other coordinate system, or be represented by {b?}.

— Let {b',} and {b? } be two different bases (orthonormal)
* Let {b,}={(1,0,0,...),(0, 1,0, ...),(0,0,1,...), ...} be Cartesian

— Representation of a vector x= (X;, X,, ...) with the 1% basis is
x=X, (x- bl bl =X, v bly

— Representation of the same vector with the 27 basis is
x =2 (x- b3) b

|

projection k-th basis vector

©200x Heung-No Lee

Cartesian Coordinate

5

e X =(x, %) =(1,1)

Basis-1 = {b',, bl,} X
- bh=01,0 \ . X
~ b,=(0,1) L
- X=X b]l + X, b12 \€ | \ o b2l

* Basis-2 = {b21’ b22} %_ ,_.—;;/;';:‘6“3“5&——"‘\1
— b2, =(cos(), sin(6)) Ny

— b2, = (-sin(0), cos(0)) TN
— x=(x-b2) b +(x-b2) b2,
Transform (changing the basis from 1

2,
o

9,
x3

2,
Es

to 2) '
, Note that x stays the same,
% Inverse-Transform (change back to 1 throughout!

from 2)

©200x Heung-No Lee
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Orthogonal Signals

*¢ Functions y,(f) and y,,(#), a <t <b, are orthogonal when
[, )y () dt=0,form#n

— Inner-product is zero

% Self inner-product is the energy K, of the function
2w v (0 dt=K,

“+ A collection of orthogonal functions{y(t)} is said to be an
orthogonal set when the collection satisfies the following:

fab \Vn(t) \V*m(t) dr= Kn 8n,m

Kronecker delta func

©200x Heung-No Lee cf) Dirac delta function

Geometric View of Signals and Noise

% We aim to represent signals and noise with orthonormal
signals.

% Suppose we have a collection of signals,
{\vj(t), je1,2,...},0< ¢t < T, orthonormal to each other.

~ Orthonormality: [, y(t) w"(0) dt = 8(k - j)
where 8(k-j) is the Kronecker’s delta function.

%+ The set of orthonormal signals can form a vector space.
< We can use the first N signals {y(?), j € 1,2, ..., N} asa
basis for the signal space.

©200x Heung-No Lee
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Representation of signals using {y(?), j € 1,2, ..., N}

“» A basis can be used to represent ANY signal in the space
s() =2V WD), 0< 1 < T
where s, = [oT s() y*,(6) dt, for 1 <j < N.
< Finally, a continuous signal s(¢) can be written as an V-
tuple vector, 1.e., 8 = (5, 55, ... Sy).

©200x Heung-No Lee

Energy Conservation

“# The signal energy E
E=[o"IsOF dt = [i" [, 5, w0] [, s,w, (O] dt
=2 208557 ot WD) v (0) dt
= Zj=1N |Sj|2

©200x Heung-No Lee
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Representation of noise using {;(t)}

% Compute the projection onto each basis signal
n,= [of n(2) " (2) dt
< Then, we note the noise have two parts
n(t) = n(0) + ni(1)
where n(?) = X,V n; w(?)
(the noise which resides inside the signal-space)
no(t) = Xy ™ 1 WAk
(the noise orthogonal to, and thus resides
outside, the signal space)

¢ Then, we can say, n(f) =>n=(n, n,, ..., iy).
* The continuous noise can be represented by an N-tuple random noise
vector n.

©200x Heung-No Lee

Additive White Gaussian Noise #(¢)

%» Suppose n(?) is Gaussian white noise with zero mean and double sided
PSD Ny/2.

# Then, each projection coefficient ; is a random variable
— T *
n = [o n(@) W' () dt
< Whatkind of r.v. is n;?
— Linear combination of (Gaussian random variables is Gaussian.
— Mean and covariance?

+ Consider E{m;n",} = E{[,” n(t,;) w" ;) dt; [T n" (&) wi(ty) dty}
=" [o" E{n(t,) n* (1)} W' (1)) wy(t,) dt, de
= fol [oT Nol2 8(2p-1)) W'(t)) wi(t,) de, dry
=Nof2 [iT Wty) wilty) dty = Ny/2 8y

* Variance is Ny/2

'— Mutually uncorrelated Gaussian r.v.s

©200x Heung-No Lee
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Representation of signals and noise

% From the development so
far, we can say that

Sm,1 () = s(1) + n(h)
® Ch 1 st
wy(t anne

Sm2 ! ? ()] r(t)

: wi(t) : ;l % Thus, the figure on the

. right makes sense!!!
sm

N AWGN — Let’s check
n(1)

(Y0

©200x Heung-No Lee

How to choose the basis and the signal set

% It depends on your resource and what you want
+ Time division

*» Frequency division

% Code-division

%+ Let’s see some examples

©200x Heung-No Lee
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Examples

{Signal Space Representation)

% Time Division Examples

~~~~~ It7s simply because it's easier to Hlustrate the point

~~~~~ But, certainly you should not be limited by these simple cases
% Example 1:

Nty V2T X 2T Pyt = x (0
l I [ I (0 = %)
o T2 t o 12 T | Dimension = 2
% = (1 0}
Xt X(H % = (0 1)
X = (-1 0)f
o2 t Ul | | X = (0-1)

©200x Heung-No Lee

Signal Space Representation

% We may attempt to draw signals in the signal space
(it’s doable up to three dimension)
— Signal Space Plot, we call it.
— When you draw, treat each basis vector as a coordinate.

% Can you compare M and N?

©200x Heung-No Lee
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Example 2

() !
] I > % Find the dimensionality of

X the signal set

% Find a basis set

so— | ™

v

< Obtain a vector
representation

s3() ] +%» Draw signal space plot

% Compute distances
between signals

s4(t)

©200x Heung-No Lee

Big Picture View

Decision
log,(M) bits Variable
r(t)

m — Select the corr. s,,(t)
from M-ary signal sef

Demodulation || Dec. |»

channel

Waveform (Physical world)

%+ Communication over AWGN channel
r)=s,0+n(),0<t<T
» Choose a set of M distinct signal waveforms.

P

@

< From previous discussion (Sig. Space rep), we know we can represent
the set of M messages using a set of basis functions.

<+ The size of the basis set {y(?),j = 1,2,...,N} required to span the M-
ary signal set is the dimension N of the signal set.

©200x Heung-No Lee
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Big Picture View (2)

¥,

s,,(¢) over the channel.
— Transmission rate is & bit/T sec

decision variables

<,
b

&
b

©200x Heung-No Lee

¢ Modulation (wide sense) is to imply the mapping rule which takes a
string of k=logil(M) bits as input and transmits the corresponding signal

% Demodulation (wide sense) is to imply the process of converting the
analog waveform into a string of digits—a set of test statistics or

— Use the matched filter (or correlator) for optimum performance.
— This results in the receiver which is a mirror image of the transmitter.

The decision device makes the final decision m’ on the message.

A goal is to minimize the probability of error, P(e) = P(m = m’).

Optimal Transceiver

‘Sm,l ¥ 1
Jo" —
t Channel * (£ Max. Likely
Sma W10 S0 70 Vi F2 | Decision n’
I GRO==0 s
o wo \f/ N . Find m’ that
. 2 WD) minimizes
T o
g @ o [l$me —
mN AWGN 7 'y
70 ‘——%}—4 J'
) 0]
< Use abasis {y,, j=1,2, ..., N} to modulate and demodulate a message
m.
@ 5,00 < sm=(sm’1, Sm2s ++vs Smn)
& n(t) < n=(n,n, ..., 1y ny, Ny, ... i.i.d. Gaussian~ ¥(0, 62)
P ) r=(r, 1.y These are called sufficient statistics
(test variables, decision variables)
©200x Heung-No Lee
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Inner Product Receivers

% Note that at each receiver branch, the receiver calculates
the inner-product.

% After obtaining r, it’s easy to calculate the distance
||s,y —r|| for each candidate m’.
%* ML decision is the Minimum Distance decision.

¢ Thus, the inner product receiver is the ML sense optimal
receiver.

* We refer to the inner product operator as the correlator.
— The received signal gets correlated with each basis vector.

©200x Heung-No Lee

Optimum Decision Rules

@«‘0

> Let’s consider the optimal decision receiver.
The receiver has the received vector
— r=s,+tn,
— nis a multivariate Gaussian with p(n) = (21622 exp[-|[n||*/26?] .

— Each of the marginal distr. p(jn\? is Gaussian with zero mean and variance
o2 =N, /2 . We use notation M0, N,/2).

% Maximum a-posteriori (MAP) criterion:
Find the message index m, among 1, 2,..., M, that maximizes the
posterior probability

P(s,, | r) = P(s,, r)/P(r) < P(r s,,) P(s,)

Posteriors o< Likelihoods x Priors

#,
s

e

5
K2

When P(s,,) = 1/M (equally likely), maximization on the posterior
probability is equivalent to maximization on the likelihood function.
— Implies that Maximum A Posteriori decision = Maximum Likelihood decision

©200x Heung-No Lee
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MAP = ML Detection, with equally likely input
= Min. E. D. Rule, with Gaussian noise

3,
o

The MLD rule for AWGN
P(r|s,) =P(n=s, —r)=(2nc?)N2 exp[- ||Ir — s,/ 267?]

T~

2,
@

distance

X3

» Log is monotone increasing function
Use log[Pr(r|s,)] < —|| r—s,||% 202

,

2
@

hypothesis s,

P

» Finally, we note that
Maximum Likelihood Detection rule = Minimum Euclidean Distance
Rule

©200x Heung-No Lee

Norm/Euclidean

Between r and

Optimal Transceiver (Again)

m,1
L' —
Channel e Max. Likely
Sm2 wy(2) Sm(t) nn r(t) V() . r Decision -
SO o -
. o Find m’ that
WD) minimizes
T [ ]
. lI$ 5 — rll
AWGN . Y
n(t) X1
W) WD)
< Useabasis {y;, j=1,2, ..., N} to modulate and demodulate a message
m.
% 85,(0) < S, (S 15 Sm2s <05 S ) - _
< n() < n=(n,ny, ..., 1y ny, Ny, ... i.i.d. Gaussian~ M0, N,/2)
S )y r=(r,ry, ..., ry) These are called sufficient statistics
(test variables, decision variables)
©200x Heung-No Lee
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Decision Cells and Decision Boundary

<+ Example) a binary signal set

% Example) 4-ary signal set

©200x Heung-No Lee

Signal Design Criteria

< Bandwidth efficient design
» Power efficient design

** A signal requires resources
— Signals occupy time and frequency
* Use as little frequency bandwidth as possible
* Use as little time as possible
¢ Fundamental limit—Time-frequency uncertainty
¢ Thus, need a balance
% Another resource is power
— Use as little power as possible

©200x Heung-No Lee
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Good/Bad Constellations

{Signal Space Representation)

©200x Heung-No Lee

Example with 4-QAM

< Let’s consider a 4-ary signal space r n,

plot again. l
% 4-QAM constellation is a two n n

).
&

dimensional signal set.

% Basis vectors of this space are [ 8¢
v1(0) = sqrt(2/7) cos(w,), '
Wa(t) = - sqrt(2/7) sin(w),
for0<t<T

<+ The input/output signals can be
represented with 2-tuples

0
S
e
\4

r=s+n.

©200x Heung-No Lee
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Example with M-ary FSK signals

% M-ary FSK signals, for 0< m < M-1
s,(t) = Re{g, (1) exp(j 2n £, )}

= V2 cos2nft+2nmAfi], 0<t<T,

g0 = /2 exp(j 21 m Af1), 0<t<T,
where E is the energy of the signal.

< The minimum frequency separation between adjacent signals, for
orthogonality, is 1/2T.

©200x Heung-No Lee

S
0] T 2
M=N=3 M=N=2

©200x Heung-No Lee
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Matched filters, why?

*» We use the inner-product receiver (or the correlator) for
the optimal receiver.

% The correlator output can also be obtained from using
matched filters.

+» Thus, the optimal receiver can also be realized with a
matched filter bank.

%+ Matched filter is sometimes easier to implement than the
correlator.

% The following discussion shows that matched filter
maximizes the SNR when it is sampled at the right
moment.

©200x Heung-No Lee

Schwarz’s Inequality

*» Schwartz inequality
< |v; - vy < ||vy|| [|v,]| with equality iff v, = ¢ v,

* LA g W) dil < ([ KO dyV ([; |g®)I? dr)'” with
equality if and only if f¥) = K g(¢)

©200x Heung-No Lee
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Matched Filter Maximizes (S/N)

out
deterministic
1 t=T
(1) = s(t) + n(t) HO), bt N / yoT)

Yolt) = 56(8) + (1)

“* y(#) is the received signal. We know that the signal s(¢) has
a duration 0< ¢ < 7, and the PSD of the noise n(?) is P,(f).

+ Find the best filter H(f) so that (S/N),,, := ||ls,OIE{|n,()|*}
is maximum at =T.

¢ The signal part: s (+=T) = [ H()S(f) exp(j2= f T) df.
% The noise part: n,(+=7) = [ H(f) N(f) exp(j2n /' T) df.

©200x Heung-No Lee

Matched Filter maximizes (S/N),,,

@ E{n" (1) n(D)} = [ [HP P,(H) df
«* Thus, the output SNR is

| J2% H(H)S(f)e?™ T 4f 2
S22 NH DR Pa()df .
_ PEHDPPDY 12
- I \H(H)PPa(£)df
— where the second line is due to Schwartz’ inequality
— Equality is achieved iff A(f) = K B(f)

+ A() = H() P,
« B(f)=S"() exp(-j2n fT)/P (H)2

(S/A’r)out =

©200x Heung-No Lee
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Matched Filter Maximizes (S/N),,

@ (SIN)out < JISOOPIP, () df
% The equality is attained when

H(f) = K S*(f) e327T/P,(f)

“* When the noise is white, then P,(f) = N /2, we have
H(®) = S"(f) e32T (From IF = h(f) = s* (T-1))

r 8 2 \
= ($/N)ou < LIEDFY = s,

©200x Heung-No Lee

Closer Look at SNR

2,
o

> When the noise is white, H(f) = S*(f) e32/T

The variance of the noise sample n (7) (note that the mean is zero) is

E{n,' (Dn(T)}

= E{J [ H'(§)H(E,) N(&,) N(£)) exp(2n ;) exp(-i2n £,T) df; df;}

= [ [H'(E)H() E(N'(5) N(F)} exp(i2n ;) exp(j-2x £,T) df, df,

= [ [H'(f)H(f) (N/2) 8(f,-f,) exp(i2n(f,— £, )T) df, df,

=(Ny2) [ H'(DH(f) df

= (N/2) [ [H(DP df

=(Ny2) [IS(HP df

=N/ E,

% Orsimply we note that the PSD of the noise after the filter is (N/2) |S(f)[2.
Thus, the noise power at the output of the matched filter is (N/2) [|S(f)?| df =
E, (N,2).

% The energy (power) of the signal s (T) isE.2.

< Thus SNR, = E2/[E(N,/2)] = E/(N,/2) .

@,
€2

©200x Heung-No Lee
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Correlator Realization of Matched Filtering
(White noise only)

(t) = s(¢) + n(?) ro(to)
(){’(} Jo H)s(d) de [——>
s'(0) Integrate and dump
¢ For white noise, the matched filter result is the same as the
correlator output—integrated and dumped.

©200x Heung-No Lee

Correlator for Switched Sinusoids

1,0,1 0
“ Integrator resets every t =T © Mmdm&ﬂ%a
r B H—
% The sampler takes sample
every t=T
AANAAARARLARA
Lo WUTVTTTYRTu
Integrator
output
T
Sample ]
& Hold L

©200x Heung-No Lee
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% Now let’s consider a very simple transmitter and receiver
pair.
% The purpose is to illustrate the overall idea of what we
have learned so far.
— What are they???

©200x Heung-No Lee

Transmitter

+«» Consider the following example
Orthogonal basis

Tx Shaping ¥, a, f(t-nT,)

Vector-in Filter

g-bit Phbiil
ﬂSignaling [

0 T,

29 combinations

©200x Heung-No Lee
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Receiver

% The Receiver is a mirrored system of the transmitter

Rx
Filter

Al
f

©200x Heung-No Lee

fit)
t l
Sampling

0 T, Att=T,

Vector-out

% On-Off Keying:

— A, cos(wt) for “1”

— Nothing for “0”
%> Binary Phase-Shift Keying (BPSK)

— s(t)= A, cos[w, t+ /2 m(t)]

— m(t) is the polar baseband signal.

— A, sin(w,t) for “1” and —A, sin(w,t) for “0.”
¢ Binary Frequency-Shift Keying (FSK)

— Two FM signals for “1” and “0.”

— s(t)= A, cos(w, t+0;)or A cos(w,t+8,)

©200x Heung-No Lee

Binary Signals: Pass Band

(c)200x Heung-No Lee
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BEAARY DATA

Binary Bandpass Signals FENEE
s rm 3
g Lnipaitan sty
% Shown left are two kinds of e
signals. Do ] 3
— Baseband signals e B S
— Bandpass signals
%+ Baseband signals GO St WMM& { ¢ e
— Unipolar
— Polar
< Bandpass signals s MEWW&WWMW
—  On-Off keying
— Phase Shift Keying
- Frequency Shift Keying e SE S s ﬁaﬁm&ﬁ ﬂ?ﬁ'{fﬁjﬂﬁ%’%’ {,{U
The pictures scanned from Crouch, 6 Edition.
o oot

Figowe £-38  Basdpuss diphally moddaed dpmls

©200x Heung-No Lee

Multi-level Modulated Bandpass Signals

% M-ary Phase Shift Keying
— s()=A,cos(w,t+ 6),fori=0,1,2, ..., M—1.
— The phase carries information

— We use two-dimensional signal space plot in order to represent the
signal.

4-PSK

©200x Heung-No Lee
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8 PSK

% 8 PSK example o
i=0,1,2,...,7
< m/4 is the angle between 3 —
any two adjacent points ‘0 8
in the signal space plot. oy

< We call the plot shown
right digital signal
constellation.

©200x Heung-No Lee

Baseband vs. Pass band

“s(=A4,cos(w,t+ 6),fori=0,1,2, ..., M—1.
% Get rid of the carrier
%+ () = Re{d, exp(j (w,! + 6))}
=Re{4, exp(j 6) exp(jw 1)}
= Re{g(1) exp(jw, 1)}
< Baseband signal: g(¢) =4, exp(j 6))
< Complex number - real and imaginary part

©200x Heung-No Lee
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4-QAM signals

% Baseband signal: g(¢) = x(¢) + j () = R(?) exp(j A¥))
— R(?) is called the envelop signal (the magnitude part). It’s A, here.
% Let f{t) = rect((z — 7/2)/T) for now.
% Suppose g(?) in the k-th signaling interval takes a value from the four
predefined constellation points.
= A (14])), A1 +]), A(-1-]), A(+]1 =)
— A, (x,+]jy), where x; , y,=+1 for bit “1” and -1 for bit “0”

Yx bits
01) (11)
@ © 8(t) =2y AL, +jyp) ft—kT)
=A4. Ly ft - k) + jA, S n Nt — kT)
X =x(2) +j W)
(00)\.J \J(IO)

©200x Heung-No Lee

Quadrature Amplitude Modulation

< Two independent channels can be obtained over the same RF spectrum
(Orthogornality: (7, cos(2 £.f) sin(2n £, £) d¢ = 0)
% s(6) = x(f) cos(w.f) — y() sin(w 1)

on i (1D
Addition of the two
* carrier signals
(00) (10)
x(t)
11 0 1 \\
L L AL i .
2TEL) oo
s IR R
y(®)
10 11 .
4 11 [1 \c)lb""'(z £1) 1011
e y BT 100, 0§ QR R
I = cos(2nf t+n/2) D / -
T l—'I_L'
©200x Heung-No Lee
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.......................... Digital Transmitter J

Bits-to-Sym
Mapping

LDPC
encoder

Para

Linear Muti-input Multi-output
Model for the Channel

" ©200x Heung-No Lee

Realization on
Software Radio

TX: supports
4 tx-channels
* 4 DSPchips
*1FPGA

*up to 70 MHz IF

coding

©200x Heung-No Lee

GNU Software Radio

% “GNU Radio is a free software development toolkit that
provides the signal processing runtime and processing
blocks to implement software radios using readily-
available, low-cost external RF hardware and commodity
processors.” http://gnuradio.org/redmine/wiki/gnuradio.

% INFONET’s software radio

— Three wireless nodes

— Aim to do network coding, multi-user detection, distributed source

(c)200x Heung-No Lee
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16 QAM Constellation

% Each symbol carries four
information bits.

“* In general the in-phase x(¢) Y
and quadrature part y(¢) can
be written as
x(t) = Xy x, it — kT))

WO =2y, it — kT)

¢ For example of 16-QAM, y,,

x, € {A, 3A, -A., -3A}

y
Q)
©

P
O

©200x Heung-No Lee

Decision Regions for BPSK

Minimum distance rule gives a decision
boundary which divides the entire space
into two mutually-exclusive decision
regions.

Let’s assume s; was sent, we note that
error occurs whenn < |s, —s,|/2

.
e

s;(t) = A, sin(w,t), 0 < t < T, for binary digit “1 .”

+ s,(t)=—A_ sin(wt), 0 <t < T, for binary digit “0.”

The dimensionality of the signal set is 1 (use y(t) = sqrt(2/T) sin(w, t)).
s;(t) <> s, = A, sqrt(T/2)
sy(t) ¢ s,= -A_ sqrt(T/2)

Thus, the difference energy E; < d;2=2A2T.

“=*achieved when the matched filter is used.

P

2,
P4

*,
Ex3

©200x Heung-No Lee
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¢

Error Probability for Binary Signaling

Prob. n
densit
Y1 flsy)

f(r]s;)  Conditional pdf

T I h
S, Vi=(s5;+s,)2 S
Decision boundary
< Pr(error) = P(error, s, sent) + P(error, s, sent)
= P(error | s, sent) P(s, sent) + P(error | s, sent) P(s, sent)
=P(r < V,|s, sent) P(s, sent) + P(r > V,| s, sent) P(s, sent)
=P(n < V,-5,) P(s, sent) + P(n > V,—s,) P(s, sent)
--- Let pdf of n is P(n) = f(n)

=P(s, sent)[ Ve f(rls,) dr + P(s, sent) th°° f(r]s,) dr --- (1)

©200x Heung-No Lee

P, for binary signaling

% Assume s, and s, equally likely P(s, sent)=P(s, sent)=0.5
“ f(n) is Gaussian with zero mean and variance 2
— f(r]s;) = (=N, )y 2 exp(-(r— s, )¥ N,)
— f(rls;) = (N2 exp(-(r — s,)/ N,))
“» We note that because of symmetry, the optimal choice of
V, is the half point (s, + s,)/2.
%* Making use of symmetry of the Gaussian pdf’s, we can
write
- P, = f(s] )2 > sqrt(nN,_)! exp(-n¥ N,) dn

= izl = o(/ o527 = o[ f)

©200x Heung-No Lee
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Probability of Making Errors for Binary Signaling

n-dimensional vector space

< dg=|| s; —s, || is the Euclidean distance between the two signals.
2 dg? is the difference in signal energy.

% Decision error depends only upon the one dimensional noise acting along the line shown
above (the noise components perpendicular to the line do not contribute toward
generating the decision error event.).

<» Assume that any one signal is sent. Then the error event is the set of all outcomes in
which the received signal lands on the decision regions of the other signals. This event
occurs when the one dimensional noise is directed toward the other codeword with its
magnitude large enough to move across the decision boundary.

©200x Heung-No Lee

P(e) for General Cases

“» How to find P(e) for general high dimensional M-ary
constellations?

%> Difficult to obtain exact P(e)
% Let’s use
— Union upper bound
— Lower bound
— Approximation
< Note the in/out relation
—r=s,tw
— w ~ each element of w is i.i.d. with M0, V,/2)

©200x Heung-No Lee
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Union Upper Bounds

+» Equally likely symbols
P(e) = iiP{r e D) s,.} p(s;)

i=l j=i

M 1 M
= i:l—M;P{reDjls,}

— Let’s denote the pairwise error probability P(s; —> s j)
— It’s an error probability assuming there are only two symbols in the signal space.

— Thus, we have P{r eD| 5;} <P(s, > S_,)' Why?

Let’s denote d;; the distance between s, and s;.

- d’,j
Then, we note P(s;, »>s,) =0

J2N,

©200x Heung-No Lee

Union Upper Bounds(2)

Mk

1 d.
P(e)<Y — ) 0| =L
(@< M;Q[ h_zNOJ

* Let’s denote d, := min{d,

i.j?

o]

= Let’sdenote d,,;,, '=min{d, :i=1,2,...,.M}

. This is a useful upper bound often used.

T

i#j, j=12..,M}

<

'Mi
|-

©200x Heung-No Lee
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Lower Bounds
» Equally likely symbols
Pe) =Y P{re Dl Is,} p(s)

i=1
# Note P{reDf 's,}zP{s, es/} for any j
M 1 d AM

=) — i — 0| —
2w Q[JzN ] 2w Q[./zN ]
= To make the bound tight we may want to choose d..

= We continue with the tighter one and use only those terms
thatd,=d,,,

o N | Lain_
el

where N, is #{i: di=d,;,,i=1,2, ..., M}

©200x Heung-No Lee

Upper and Lower Bounds for General M-ary
Constellations

Nmin dmin mm
jY; 0 \]_27\/:0_ <Ple)s(M-1)Q \]__

++ This relation can be used for any constellation

%» Note there are only two parameters
— d_. : minimum Euclidean distance of constellation

‘min *

= Ny = 1 d =4, 7=1,2, ..., M}|

©200x Heung-No Lee
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Example

% Obtain P(e) for the following constellation
- s;=JE[1-1-111-1];

s,=vE [-1-11-1-11];

s;=yE[-11111-1];

- §,=JE[1-11-1-1-1];

|

% Obtaind,,;,, and N,

% Simulate the system and find symbol error rate, and
compare it with the upper and lower bound as SNR is
varied.

©200x Heung-No Lee

Appendix -
Often Used Identities

“*sin(x+y) = sin(x) cos(y)+ cos(x) sin(y)
“*cos(X+y) = cos(X) cos(y) F sin(x) sin(y)
**cos(x) cos(y) = ¥z (cos(x+y) + cos(x-y))
%*sin(x) sin(y) = -%2 (cos(x+y) + cos(X-y))
“*cos(x) sin(y) = % (sin(x+y) — sin(x-y))
<esin(x) = (1/2)(ei* — e¥)

P cos(x) = (1/2)(e* + e¥)

©200x Heung-No Lee
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Problems

i.  (the Q(x) function) Assume X is a Gaussian distributed random
variable with mean 1 and variance of 62. Find the probability Pr{X >
5}. Express the probability with the Gaussian Q function (see
definition in Section 2.3).

2. Find out if sin and cos waveforms are orthogonal to each other. If yes,
under what condition?

P2.3 (KL Decomp),

P2.11 (Rep. of Signals),

P2.25 (Bounds on Q(x) function),
P2.51 (Sampling theorem)

Pors R LR < R N

7. P3.2 (Signal Representation)
&, P3.6 (Power Efficient Constellation)

4. P4.5 (Signal Representation/Constellation)

©200x Heung-No Lee

Problems

% Consider a communications system with the following
conditions:
—  There are eight users and one access point.
—  All eight users make accesses to the access point simultaneously.

—  They use the same frequency band as well. The bandwidth is
IMHz.

—  Each user sends 1Mbps with arbitrarily small errors.

% Is it possible to design a set of waveforms for such a
multiple access system which support all the statements
above ? If'yes, please provide one design. For full
credits, justification to the level of this lecture note should
be given.

©200x Heung-No Lee
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Information Theory and Gallager’s
Random Coding Bound

©2004 Heung-no Lee

Agenda

%> Shannon’s Information Theoretic Capacity and Channel
Coding Theorem
— Read his 1948 paper

< Random Coding Bounds by Gallager (Chapter 5 of
Gallager; Chapter 6 of Proakis/Salehi)

— Read Gallager’s 1965 paper

©2004 Heung-no Lee
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Brief Discussion on Channel Capacity

* Shannon introduced two measures of information
— Entropy
-~ Mutual Information

©200x Heung-No Lee 3

Definition of Entropy

* Entropy is the average measure of uncertainty of a
distribution, py, p,, ..., Py, -

H(p;, pos -5 Po) = Zj=1n p; log(1/p;)
< If p; < p;, then log(1/p;) > log(1/p;).
— Less probable event means larger uncertainty.

— More probable event means smaller uncertainty.
— The sure event has zero uncertainty.

% Uncertainty = Amount of Information = The number of
bits needed in representation.

©200x Heung-No Lee 4
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Entropy of a RV

¢ Let X be a random variable with alphabet A = {x,, x,, ...,
X,} and its probability mass function p(x) = Pr{X=x; € A}.

% We define entropy for r.v. X
H(X) := Xyeq P(X) log(1/p(x))

— When the base of the logarithm is 2, the unit is “bits.”
—  When the base is e, “nats.”

©200x Heung-No Lee

H(X) is the Average Uncertainty (Information) of X

B

% Let’s take some examples
% Ex1) When X is binary
— X~ Uniform [1/2, 1/2].

~ X ~Bemoulli(p=2"%).  H(X)= 1—1610g2(16) + 1—210g2 Gg) - 0.337

% Ex2) When X is quaternary

As a stmple example of some of these results consider a source wlich produces a sequence of letters
chosen from among 4, B, C. D with probabilities 1, % 11

3+ 5 successive symbels being chosen independently.
We have

: Liget s lioed 2100t
Ha - {3logs+ glogy + slogg)
= % bits per symbol.
[Shannon1948, pg. 18]

©200x Heung-No Lee
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Maximum Entropies

< H(X) < log|&|, where | is the size of alphabet, with
equality iff X is uniform over Z.

¢ Gaussian distribution gives max. entropy under average
energy constraint. For any X whose 2™ moment is N, we

have 1
h(X) < 510g2(2ﬂeN) =h(Y)

where Y ~ MO, N)

©200x Heung-No Lee 7

Meaning of Entropy

% Let X be a 1-0 Bernoulli with 1 appearing with prob. 1/16.
— H(X) = 0.337 from previous page.

% Consider a sequence of X’s of length n, (X,, X,, ..., X,)-

¢ For a large n, due to the LLN, the set of sequences can be
divided into two sets.
— A ypical set of sequences which occur in real experiment

— An atypical set of sequences which almost never occur

*» Shannon noted that there are only 2"/ typical ones.
©200x Heung-No Lee 8
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Typical Set

%> Consider the sequences of length

32 (n=32). | | elements

¢ Let’s count the number of 1s in
any sequence.

— What is the number of 1sin a
sequence you would see typically?

Non-typical set

Typical

*» What is the probability to see a
sequence of all 1s?

%+ Atypical sequence happens very
rarely. Why?

— Law of large numbers

Happens most of
the time; smaller

©200x Heung-No Lee 9

Summary on Entropy

¢+ Entropy measures the degree of randomness.
— Uniform distribution
— Gaussian distribution

% An information generating source can be modeled as a
random variable with entropy.

— The amount of information a source produces can be quantified by
its entropy.

% There are about 2"#(*) typical sequences of length » when a
source with entropy H(X) generates n symbols.

©200x Heung-No Lee 10
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Recall Communications System

Digital Tx TX Radio [ O | RX Radio Digital Rx
Channel

< Input/Output Relationship between Digital Tx and Rx
- Y=HX+W
— Rec’d signal matrix Y =[N, x T],
— Ch. matrix is H= [N, x N},
— Noise matrix W = [N, x T] ~ i.i.d. M0, N /2) each dimension
— Ch. symbol matrix is X =[N, x T]
— One tx and one rx antennas, then Yy, = H ;) X(1,)+ Wy, -

% Let’s assume H is the identity matrix for now.

%+ Information Theory tells us how close Y =X + W is to X.

©200x Heung-No Lee 11

Joint Entropy and Conditional Entropy

+* Joint Entropy: The joint entropy H(X, Y) of a pair of
discrete random variable (X, Y) with a joint distribution

p(X, y) is defined as
H(X9 Y) = Zx z"y p(X, Y) lOg p(X9 Y)
=- E{log p(X, Y)}

+» Conditional Entropy:
H(Y | X) =- X, 2, p(X, y) log p(y | x)

= - E{log p(Y[X)}
=-2, ) H(Y | X =x)
=- 2, p(x) X, p(yx) log p(y[x)
©200x Heung-No Lee 12
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H(X, Y) = H(X) + H(Y|X)

* HX, Y) =-2, X, p(x, y) log p(x, y)
= -2 2y P(X, y) log[p(x) p(y[x)]
= -2 2y P(X, y) [log p(x) + log p(y[x)]

= -2, p(x) log p(x) - 2 X, p(x, y) log p(y|x)
H(X) + H(Y[X)

or similarly
=H(Y) + H(X|Y)

©200x Heung-No Lee 13

Self Exercise

s H(X) = 3/8 * log,(8/3) + 5/8* Y 0 1
log,(8/5) = 0.9544
 H(Y) = 6/8 * log,(8/6) + 0 28 48
2/8*log,(8/2) = 0.8113
 H(YIX) = 2, p(x) H(Y|X=x) 1 /8 178
= 3/8*H(Y|X=0)+5/8*H(Y|X=1)
= 3/8*H(2/3, 1/3)+5/8*H(4/5, 1/5)
=3/8*%0.9183+5/8*0.7219
=(0.7955
+ H(X, Y) = H(X) + H(Y|X) = 1.75
» H(X,Y)=-E{log p(X, Y)}
= 2/8*log,(4) + (4/8)*log,(2) + The units are [bit].
2*%1/8*log,(8)
=1/4*2+1/2+2*3/8=1+3/4=1.75

&,
@

2,
A3

#,
g

#,
)

,
A5

©200x Heung-No Lee 14
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Mutual Information I(X; Y) = H(X) - HX|Y)

%+ The measure of amount of information about X we can have knowing
Y (vise versa).
— Cf) Measure of correlation between X and Y

%* Ex) Suppose Y = X, then H(X|Y) = 0 (no uncertainty). = Self-mutual
information is entropy.

— Thus, knowing Y means knowing X exactly (the full information H(X) =
H(Y) is obtained)

% Ex) Suppose Y and X independent, then H(X|Y) = H(X), then I(X;Y)

=HX)-HX)=0.
— Knowing Y cannot tell anything about X.

©200x Heung-No Lee 15

I(X, Y) = H(X) - HX | Y)

21X Y) = Zyex Xy e v PX, Y) log[p(x, y)/p(x)p(y)]
=Tyex Ty e P, ¥) logl P px [¥)/PCIRY) ]

= 2xex Zy ey P(x, y) {log[p(x[y)] - log[p(x)]}
= H(X) - HX|Y)

** Reduction in uncertainty of X due to the knowledge of Y
% Also, I(X; Y) = H(Y) — H(Y|X)
% How much can I tell about X knowing Y?

“* How much can I tell about Y knowing X?
< I(X;Y)=1(Y; X)

©200x Heung-No Lee 16
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Conditioning reduces entropy

s H(X|Y) < H(X), with equality iff X and Y independent
- I(X;Y)=H(X)-HX|Y) >0
— cf)I(X; Y)=0 iff X and Y independent.

%> Meaning of conditional entropy H(X|Y) or H(Y|X)
— Given the output Y =y, H(X|Y=y) tells the uncertainty on input X.
This means that there are about 2"HXIY=) typical inputs for a
particular input y.

— Given the input X = x, H(Y|X=x) tells the uncertainty on output Y.
This means that there are about 2°H(YX=) typjcal inputs for a
particular input x.

©200x Heung-No Lee 17

Shannon Capacity

“» We aim to show that R < C for very small P(e).

“+ See page 23 and 24 in his paper and read the key insight in
his own words.

©200x Heung-No Lee 18
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Main Story in Shannon’s Paper

%+ Given a channel relation (Y = X + W), find out the size M of the input
message set which results in very small P(e).
— You are allowed to use the same channel many times, say » times.

s+ The strength of the noise limits the size of the input message set.
(Obvious)

> There are 2"H(X) typical input sequences of length n.
< We choose 2"R messages randomly out of total 2"HX) typical words.
<» We want only one message out of total 2"R messages falls into the fan

< Determine the range of rates R = log,(M)/n that gives P(e) very small.

s» Each input message fans out to 2"
X=x
nH(Y)

% If we select only Y = QHICET)

number of messages, no

equivocation would occur.
— P(e) is close to 0 (LLN)

% So, such a codebook exists and
can be constructed, though
difficult. *

— What if it is constructed randomly?

of 2nHXIY),
©200x Heung-No Lee 19
Shannon’s Key Idea
¢ There are 2" typical outputs. X Y

nH (Y X=x)

©200x Heung-No Lee 20
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*» Let’s select the message
set(Codebook) randomly.

<+ And, see if we can make P(e)
very small.

<» Given a fan of size 2" *V=»)
decoding error occurs if
there are more than one
messages.

— See the analysis in the
following page

©200x Heung-No Lee

Shannon’s Key Idea:
P(e) in Random Codebook Construction

X
QnH (X)

X=x

nH (X|V=y)

<

Y=y

21

“ Steps:
— Select the first message (the
red dot) and send.

get the typical output y.

— Randomly select the rest of
messages.

— Consider the fan of y and find

Shannon’s Key Idea:

P(e) in Random Codebook Construction (2)
onH(X)

— With probability close to 1, we

i (X|Y=y)

QnH ()

out the probability of decoding R
error. . .
— Decoding error occurs when ° .
any one of 2°R — 1 other
messages falls within the fan.
©200x Heung-No Lee 22
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v eV
P(e) in Random Codebook Construction (3)

zgﬁmn )2

@ P(e)—l—( - ZanX)/
- 2nR
Sl—(l_z'"[”(X)-”(XlY)])

~1— (1 _ 2nR2-n[H(X)—H(xu')])

_ 2—n[I(X:Y)—R]

<« Thus, as long as R is chosen slightly smaller than I(X; Y), P(e) decreases
to zero as » increases.

— Now we maximize I(X; Y) by selecting the best input distribution, and obtain the
capacity, C = max, I(X; Y).

< Note that our objective has been achieved.

©200x Heung-No Lee 23

“Information” Channel Capacity

< C=maxy,, I(X;Y)
— The maximum is taken over all input distr. p(x)
¢ I(X; Y) is the mutual information between X and Y
- I(X;Y) =H(X) - H(X|Y),
---- maximum input-size which causes no equivocation
on X given an output Y

=H(Y) - H(Y|X)
---- maximum output-size which causes no uncertainty
on Y given an input X
— H(X) = Size of uncertainty (information)
— H(X]Y) = Size of uncertainty (information) on X given Y

©2004 Heung-no Lee 24
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Noiseless Binary Channel

% C=max_,, [(X;Y)="?

p(x)

©2004 Heung-no Lee 25

Noisy Channel with Non-Overlapping Output

@ C=?
1/2
0 0
M
2
13
1 1
\k
3
©2004 Heung-no Lee 26
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Noisy Typewriter

¢ The typewriter writes the
input letter with prob. 1/2 or
the next letter in the
alphabet with prob. 1/2

2 C=7?

< C=max,, [(X;Y)
=max[H(Y) — H(Y|X)]
=max H(Y) -1
=log,(26) -1
= log,(26/2)
= log,(13)

A
B
Cc
D

o o0 o >

<
<

©2004 Heung-no Lee 27

Binary Symmetric Channel

< I(X; Y)=H(Y) - H(Y|X)
=H(Y) - X px) H(Y|X=x) 1-p
=H(Y) -H(p)
<1-H(p)

% The equality is when H(Y) =1 1 1

— Y is uniform when X is uniform
¢ p(x) ~ uniform
%+ C =1 - H(p) bits

©2004 Heung-no Lee 28
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Binary Erasure Channel
% Some bits are lost (no decision)
¢ C=maxy, I(X;Y) T 1-p
= max,, H(Y) — H(Y|X) 0 0
= max,,, H(X) - H(X|Y)
e
1-n p
1
1 1-p
©200x Heung-no Lee 29
The Additive White Gaussian Noise Channel
X; Y;
Z
Q:Q Y1 = Xl + Zl’ Zl ~ N(O, N)
X, and Z, are independent
% Constraint on the input X
- EX?) <P
— Successive use of the channel (trying to exploit the LLN)
— Send a codeword (x;, X,, ..., x,): (I/n) 2, x2 =P
©200x Heung-No Lee 30

(¢)200x Heung-No Lee 56 of 232



Lecture Note on Wireless Communications

Information Capacity of AWGN

@ C=maxyy gxy-p 1(X;Y)
2+ I(X; Y)=h(Y) - h(Y|X)
=h(Y) - h(X+Z|X)
=h(Y)-h(Z)
=h(Y)-0.5log(2 me N)
—- E(Y?) = E(X?) + E(Z2) - X, Z indep
=P+Z

< 0.5 log(2 m e (P+N)) — 0.5 log(2n e N)
= 0.5 log(1+P/N)
When do we have the equality?

©200x Heung-No Lee 31

Some Properties of Channel Capacity

[. C>0,since (X;Y)>0
2. C <loglX|, why?
3. C <log|Y|, why?

32

©2004 Heung-no Lee
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%> Capacity
— What is it?
— How to achieve it?

Error exponent
Block length n

= log,(M)/n

Summary of Shannon’s Result

* Motivation for Gallager’s Channel Coding Theorem
P(e) due to Maximum Likelihood Receiver

E(R)

P(e) < e

©200x Heung-No Lee

33

E(R)

Motivation for Gallager’s Channel Coding Theorem

It provides P(e) due to Maximum Likelihood receiver
— Error exponent E(R) gets smaller as R gets closer to C.
— Block length » ~ complexity
— Transmission rate, R = log,(M)/n [bits/symbol]
— R, is called the cut-off rate.

+» It shows how difficult it is to achieve a rate R closer to C.

P(e) < e

©200x Heung-No Lee

34
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Comparison

%+ Sketch of ideas Shannon (Gallager) used
— Allowing arbitrarily small but non-zero error probability
— Successive uses of channels (utilize the LLN)

— Calculate the average performance of codebooks, rather than that
of a single codebook

— Use typical set decoder (Lise ML detector)

©2004 Heung-no Lee 35

Channel Coding Theorem

+ All rates below capacity C are achievable. Specifically, for
rate R < C, there exists a sequence of (2"}, n) codes with
maximum probability of error A™ — 0.

< Conversely, any sequence of (2R, n) codes with A(™ — 0
must have R < C.

©200x Heung-No Lee 36
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Ensemble Average over All Codebooks

%+ Consider a prob. of error for a particular word w of a
particular code C
— It’s difficult to calculate A, (€) because codewords in € are chosen
random
<+ But if averaged over all codebooks
~ 3¢ P(€) 14(€) = X P(€) (@), for any i and j, by symmetry

©200x Heung-No Lee 37

P, in Random Coding Experiment

Code-1 Code-2 Code-3

000 @ 00 @30 0,0 0

00 0O e'o o o 00 0 &| o0e
0;0 0, O ©® 0,0 ©;0 o1o

00 0O o00°0 o oo elo

%» Ensemble of codes
— Select one, according to a prob. dist. [T,,-,M Q.(X,,)
— Each code has its own probability of error

% Ensemble avg. P(e), instead of a particular P(e)
— Easier to calculate
— Quite a tight bound can be obtained

©200x Heung-No Lee 38
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The Coding Theorem

(nis length; R is the code-rate)  Discrete

5 oo o Channel ML Decoder ,
m oOeoe Xm m
000 o0 P,,(y |x) max; Pn(ylxj) I
® OO0 e
I<Km<M
M = 2R

WX = (X)), Xgs ves Xp) AN Y=(¥15 Y25 +-05 Yo)

% Q,(x): probability of selecting a particular word as a
codeword

% Pr(m#m’) =P, ,, < (M-1) 5, [2, Q(x) P,(ylx)11+0)] +p

forsome 0 <p < 1.

©200x Heung-No Lee
39

The Probability of Word Error

% P, == Pr{word error}
= Z:m=1M P(m)[zxm zy Qn(xm) Pn(y |Xm) PI‘{CI’I‘OI‘ |m9 Xmo y}]
= Zm=1M P(m) Pe,m

\

Prob. of error assuming message m is transmitted

< Suffice to calculate P,
selection of codewords.

, due to the argument of random

©200x Heung-No Lee 40
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P

e, m=1

* Pe, 1= le Z:y Qn(xl) Pn(ylxl) Pr{error | m=1, X y}

Prob. of choosing Prob. of observing the
X, as the first channel output y
codeword in a code

% Now, how do we calculate Pr{error | m=1, x,, y}?
— Use bounds and approximations, and so on
— Parameters involved are n, R, and P(e)

©200x Heung-No Lee 41

Considering Pr{error | m=1, x,, y}

Code-1 Code-2 Code-3

0 0,0 0 0 0% o o o o
oo o & |[xeo o e 00 O @/ goe
Q0 0,0 o e%e“o %® 0 0 0

00 o0 o0 00 O O ox3o“®o

% Given x, and y, the error event depends on the selection of
the rest of (M-1) codewords
— Choose one, out of 2" possible selections (allow repetitive
selections for simplicity)
- Any of the (M-1) selections will result in an error whenever a
selection gives rise to
P.(ylx)) <P (y|x) forj=2,3,..,M-1

©200x Heung-No Lee 42
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Considering the selection of x,

Random Code

06,0 0
oo o &

oOe o ©
©o0 o o \_ij Plyix;) < Plyixgy Qu(X2)

% With prob. Q,(x,), a particular location will be selected out
of 2" possible locations (allow a multiple selection for
simplicity)

+¢ If the selection x, falls within the error region E,, an error
will occur.

©200x Heung-No Lee 43

Chernoff Bounds and Pr{E,m=1, x,, y}

Random Code

oo o @ | Error region: E; = {x;: 1 <P, (y|x)/P(y[x,)},
: o forj=2,3,...,.M

(]
o @® No-error region: E = {x;: 1 > P (y[x;,)/P,(y|x;)}

% Pr{EyJm=1, x;, y} = X, Q,(x))
--- now, apply the Chernoff bound

< 2y, Qu(xp) [P(yIx)/Py(ylx)
» We will choose the optimum 0<s<1 later on

©200x Heung-No Lee 44
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Events of other selections are similarly obtained

':0 E_] = {xj: Pn(y|xl) S Pn(ylxj)}s.]=2a 39 ceey M
< Thus, we have
Pr{Ejl m=1, x;, y} = zEj Qn(Xj)
< 25 Qux)[PL(yx)/P(ylx )

% This is the same for any j, thus we may drop the index on
the right-hand side

Pr{Ejlm =1, x, y} <%, Qu®)[P,(yIx)/P,(ylx)F

©200x Heung-No Lee 45

Union Bounds

< Pr{error| m=1, x,, y}< min{1, ¥ . ,MPr(E, | m=1, x,,y)}
% Then, for 0 < p < 1, we have

Zm# lM Pr(Eml mzla b SP y)} S [Zm;e lM Pr(Eml mzla bSE Y)]p
— Ex)see 0.912=0.9487 > 0.9, or see 0.9V = 0.97

<» Thus, we have

Pr{error| m=1, x, y} < [X.. M Pr(E,| m=1, x,, y)J’
= (2 1 25 QP (yX)/P(yx )]
= [(M-1) X, Q[P (y[x)/P,(ylx)]* I

©200x Heung-No Lee 46
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Combining All terms

# P, = T, T, Qux)) Py(ylx,) Pr{error | m=1,x,, y}
< (M-1)P Zy 21 Qu(xp) P(ylx;) x
{2x Q) [PL(yIx)/Py(yIx)I’}?
=M-1)p Zy 2 Qu(x)) Py(ylx;) %
Po(ylx;) - {2, Qu(x) Py(y[x)*}°

=(M-1)° X, [, Qulx)) Po(ylx) P H{X, Q (0P, (yx)*}P
e (1)

Note that x; also is a dummy

Let’s try to minimize the RHS (blue)

©200x Heung-No Lee

47

Combining All terms

P,y < (M-1P 5, [, Qufx,) Po(yix) 1, Q0P (yix)'}
(1)

equality is achieved when a,!"¢ = baforall i.

Consider [Y,; Q,(x,)P (y/x,)I?]"1*0) x [¥_Q,(X)P,(y|x)s]/1*
Let q=1/(1+p) & 1- q = p/(1+p),
a1 = Q,(9 P, (y1)" = [Q, (00 P, (ylx) 01 ]
b, 10- = Q(x) P, (¥ = [Q,(x) P, (ylx "9 11,
,b,= Qy(x) P, (yfx) (s
the equality is achieved when a,t=ba for all i.
Thus, s = (1-sp)

©200x Heung-No Lee

Use Holder’s Inequality >; a; b; < (% a;/a)d [3, b, /(1-9)1-a | the

[Zx QP (yx) P [0 < T3 Q)P (y1x) 0] x [, Q,(OP(¥x)]°

48
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Minimization of the RHS

++ For a tighter bound, minimize the RHS wrt s
% Use the Holder’s inequality
- Zia b < (Zia"®p [Zi b 0], -2
fora, > 0 and b, > 0 forall i, and 0 <s<I,
with equality iff for some c, a;!* = ¢ b;* for all i,
— Special case is the Schwartz inequality (s=1/2)
% Applying the holder’s inequality, we can prove that the RHS is
minimized at s = 1/(1 + p) or s=1 - sp, (See HW#5)
[Zx QuE)P(y[x)VH ] <[, Qu(x)P, (¥x,) 7] %
[Zy QP (yx) ]
O

©200x Heung-No Lee 49

Finally, we obtain the first coding theorem
(or Gallager ‘65 paper Eq. (11))

+» Continuing the derivation for P,
Pey < (-1 %, [Z, Q)P y1x)1*0)] -
2, Q.(X)P,(y[x)/d+ P ]p

Pe,] S (M,.l}ﬂ };) ‘/L‘ Qn(x)Pn(yéx)l:’{l+p) ](H- o) . (4)

% Eq. (4) is the union bound for either memory or
memoryless channels, and can be generalized to
continuous channel outputs.

% Let’s continue the derivation for the memory-less channel

— Memory-less channel means that P (y | x) = [T,.," P(y;x,)

©200x Heung-No Lee 50
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Signal and Channel-Output Alphabets

% X; € input alphabet
— Indexk=1,2,...,K

% y; € channel-output alphabet
— Indexj=1,2,...,J

% Let Q(k) be an arbitrary prob. distr. on the input
= Quk) =TI’ Q(x))

“ Using these indices, Eq. (4) can be rewritten

©200x Heung-No Lee 51

Use Memory-less Channel: P (y|x) = [ 1 P(y;[x;)

W Py < (M-1)P2 [2 Qu(x) Py(ylx)H0Je!
= M-Iy Zy1 "'zyn[le e 2 Tie™ Q(xy) P(yjfxp) 0 *P]pH
= M-I Zyi [2,; Q(x) P(yj[x)1"1*p)]e*1
= (M-1)P { X! [Z4e® Q(k) PG | k)10t o

“* P(j | k) is the channel transition probability
% (k) is the prob. of selecting a symbol in the alphabet

% Ex) n=2,j=1,2, (ignore k loop for this example)
Zj1=12 7 j2:12 QG1QGIP(yili ) P(y2liz)* = Zj QG)P(y,li)* 2

©200x Heung-No Lee 52
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Gallager’s Random Coding Bounds for
Memory-less channels

¢ We want the relationship between R and »
— IfR closer to C, then n needs to be longer (for P(error) small)

% R = In(M)/n, [nats] (cf. log,(M)/n [bits])
— M= e™Ror ceil(e™?)
* Continuing the derivation
P < M-1P { Ty [E® Q(K) PG | K)Oepert 3o
<e™e exp{n In[X;_,’ [X,,* Q(k) PG | K)"eerI]}
-= Eolp. Qe - (3L [ 5 QO PG Iy
= ™% exp{n E,(p, Q)}

droped 1, why? 5

©200x Heung-ﬁg'i:geﬂ

P, <expl-n(Ep, D)-pR)] | —(5)

53

(see Gallager’s 1965 paper Eq. (19)-(22))
% Memoryless Channel: P (y |x) = [1; P(y;x,)

% Theorem is

— where Ey(p. R} o= - log2,, {2 Q(K) P(jliy70reifiee
— For a tighter bound, we maximize the exponent such that
' E(Ry= max, max, (Eq(p, Q) - pR)

Coding Theorem for Discrete Memoryless Channels

** Discrete: the value of y; is quantized — P(y,x;,) =P( | k)

P, < exp(-n E(R)) <exp[-n( E(p. R)-pR)I] |- (6)

where 0 < p < 1 and the selection of distribution{Q(1), Q(2), ...

Q(K)}
©200x Heung-No Lee 54
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Implications of The Channel Coding Theorem

“# P, can be made approach 0 exponentially fast as n 1 oo

*» This was the ensemble average over all possible codes.
Thus, there exists at least one code whose error probability
P(e) is smaller than or equal to the ensemble average P, :=
E{P(e)}

% A random selection of a code will do a good job most of
the time

Ya>>1, Pr[P(|C)>aP,]<1/a
(Markov Inequality: a P, L . pec) > o pey < P(€|C) )

+ Finding a good code is not a problem, but finding a
practical encoding and decoding scheme for such a code is.

©200x Heung-No Lee 55

Random Coding Exponent
E(R) = max, max, (Eq(p, Q) - pR)

E(1 x=R
o b=Ey(p)
Ey(1/2)
Ey(1/4)

0 Ey(1) 2E((1/2) C

“* E(R) is a convex-U, decreasing, positive function of R, 0 <
R < C (See section III of the paper)
------ For symmetric channel, the optimum Q is uniform.
— Calculate E(p, Q) for0 < p < 1.
‘— Draw the tangential lines—ifrom (Ey{p)/p, 0) to (0, Eg{py—for
each p
— Then, E(R) is the least upper bound of the tangential lines.

©200x Heung-No Lee 56
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Interesting Example: Parallel Channels
(Theorem 5 of the paper)

< Two parallel channels with two transitional prob. P'(jlk)
and P(qlp)

% Consider the coding theorem for the combination channel
where input is (k, p) and output is (j, q) with trans. prob.

PI(jlk)P*(qlp)

Capacity adds up
E(R) Exponents adds up

R'R? R

©200x Heung-No Lee 57

Interesting Example: Parallel Channels
(Theorem 5 of the paper)

< Two parallel channels with two transitional prob. P!(jk)
and P¥(q|p)

«* Consider the coding theorem for the combination channel
where input is (k, p) and output is (j, q) with trans. prob.

PI(jIk)P(qlp)

Capacity adds up
E(R) Exponents adds up

©200x Heung-No Lee 58
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Interesting Example (2):
(Proakis 7.1-52)

% Recall that we have derived the P(e) union bound for M-ary orthogonal
signals in Lecture-4 over (infinite bandwidth) AWGN channels

& Py < 2% exp(-k Ey/2N,)
= 2k Dlog2(exp(-kEb/2No )) = 2k -k Eb/2No log2(e)
= 9k -k (1/2) Eb/(No In(2)) = 2-k[0.5 Eb/(No In(2)) ~1]
— where k = log,(M), where M is again the size of the message set
- R=K/T, bits/channel use, T = duration of signal in time
— Thus, k=TR.
— Note that the infinite bandwidth capacity
o Cy =limy_,  Wlog)[1 +PANW)]) (See Proakis pg. 386)
+ C,=RE/(N, In(2)) =P/(N, In(2))

s PM _<__, 2#3’{(!.5(,300 ~ R}

©200x Heung-No Lee 59

Example (3): Binary Symmetric Channels

< BSC with cross-over prob. p
< Equally likely Q is optimum

L Eo(p=1, Q)

™,
™,
“

©200x Heung-No Lee 60
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Other Use of Random Coding Bounds

¢ Criteria for Code Construction

% Select a code at random and discard codewords which
results in large P,
— Not very useful when M is very large
“» We will see Gallager’s example next week on constructing
a random ensemble code (LDPC code)

©200x Heung-No Lee 61

Shannon Capacity (2)

% The channel capacity in [bits/sec] is

C = Wlogo(1+ 7]\2,) = W logo(1 + NOEW)

53 W,
[bits/sec/Hz]

Unattainable
region

Practical Systems

/’\ log,(1+1)

0 1r0 2b SNR (dB)

©2004 Heung-no Lee 62
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Shannon Limit

% The bit rate of the transmission
R [bits/sec] = R, [symbols/sec] x & [bits/symbol]

+* Signal Power P = Energy per symbol x Baud = E x R,
< Energy per bitE, =E/k
“P=E xR
% P/N = (E, R)/(N,W)
+ Thus, the spectral efficiency [C/W] is
C/W =log,)[1H+(E/NO)R/W)]  —meemeem- 1)

©2004 Heung-no Lee 63

Shannon Limit (2)

<» We are interested in finding out the smallest E;/N, that
error free transmission is possible

¢ In Eq. (1), substitute R for C in the right side of Eq.

¢ Then, we have
C/W = log,(1+(E,/N,)(C/W)),

<+ Arranging it for E,/N_, we have
E/N, = (W/C)2W - 1)

% Let x:=(C/W) — 0

% Ey/N, =lim, _, (1/x)(2X— 1) =log,2 =0.693 =-1.6 dB

¢ This is the ultimate limit below which no error-free
transmission is possible no matter how small R/W we may
choose

©2004 Heung-no Lee 64
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Shannon Limit (3)
-1.59 dB
C/wW
14
0 Eb/No
$1/4
©2004 Heung-no Lee 65

Codes that Achieve the Shannon Limit Very Closely

% Turbo code (1993)
% Low Density Parity Check Code (1963, 1995)

#,

¢ Both approaches Shannon limit within a fraction of dB
over AWGN channels

©2004 Heung-no Lee 66
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Gallager Bounds

Motivation: Gallager bounds are good for Maximum Likelihood performance evaluation. They lead to
tight performance bounds.

purpose of this note: Derive Maximum Likelihood performance evaluation for AWGN channel.

Let

e M s the size of the codebook. Use m as the index.

o P(m) is the probability of sending an index m.

e (,(x,) be the selection probability that an n-tuple vector X,, is selected to carry the message
index m.

o The received vector is y = X, +W where w is multivariate Gaussian noise whose mean is zero
and Cov(w)=R,,.

e P(ylx,) be the likelihood function for message index m.

The probability of error can be calculated by

P, =Pr{error}

1.1
= Z:zl P(m)Pr{error|m} (-

Assume equally likely transmission of symbol index, i.e., P(m)=1/M .

We assume the first codeword X, is selected and sent and y is observed as the result. Then, we

would like to evaluate the probability of error, which can be written by
P, =Pr{error|m=1}

(1.2)
= j L Prie|m=1,x,y}0,(x)P,(y | x,)dx,dy

We note that error happens when we choose a second codeword X, , or any other codeword,

closerto y than X, isto y. The same goes for the other codeword selections.

Now working on the first part and use the union bound idea, we may write the first part as

Prie|m=1,x,,y} < (M —1) j om0 (%)%, (1.3)

2 B,0m)

We would like the upper bound to be tight. We note that the L.H.S. can grow as big as only up to 1 since
it’s a probability. But the union upper bound is not a probability and thus can grow unbounded as M
grows. That is, M can be very large while the pairwise error could be a small number less than 1. Thus,
we would like to make an upper bound which would give us the following effect
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Pr{e|m=1,x,,y} =min {1 WM - l)j ”ml)le (xz)dxz} (1.4)

2 P (¥I2)

This effect can be made by raising the union bound by a power of p > 0:

Prie|m=1 xl,y}<[(M 1) j e (xz)dxz] (1.5)

27, (¥ix2)

We choose 0 < p<1. When (M — I)I y Q (x,)dx, 21, we can choose p very close to 0 so that

2Py (yx2) 7=

the value stays close to 1. For example, 100°®"' ~1.00046. When (M — I)I oy Q (x,)dx, <1,

S ATy

on the other hand, we can choose p arbitrarily close to 1 so that it can stay smaller than 1. For example,
0.001°” ~0.00107.

On the other hand, the selected integration in the union bound is difficult to evaluate. Thus, we
use the idea of Chernoff bound. That is, we replace each integration with a selected geometry with the
following one:

f o, O (%)%, <[ 0,(x,) 222 ax, (1.6)

2P Ok2)

Note that the integration on the R.H.S. is not restricted to any region. This bound can be tightened by
raising the ratio with power of s > 0. That is, we have

£ (ylx;)
[ g @), < [ 0,00)(2535) i, (1.7)
n(yix2)
By choosing a right value s, we can make the ratio to work for us as if it is an indicator function. When
ACLE) : BO)) s —s8
Pomg > 1, we can choose s very closeto 0, i.e., ( o )) ——1. On the other hand, when
ha) <1, we can choose s close to infinity, i.e (P"(y'xz’ " =2 (. Thus, we can tighten the
BORY S > 1€ \B0m) > g &

bound, i.e. making the R.H.S. of (1.6) arbitrarily close to the L.H.S. of (1.6).

Now we substitute (1.7) into (1.5). Thus, we have

Prie|m=1,x,y} < [(M -Df 0,(x,)($e2) dx, ],, (1.8)

Further substituting (1.8) in to (1.2), we have
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=l ] momsia[0r-n] 0.0(55) o ancy

(1.9)
=M=17[ [ 0,00 ) dx [ [ QxR X dx, | dy
Now note X, and X, are dummy variables each. Thus we can write
s-1r[ [ [ wrw [ 0,0nIx dx| dy (1.10)

By choosing the optimal values of s and o, one can tighten the upper bound (make the smallest upper
bound). In Lemma, we have done such an optimization. We use the Holder’s inequality and show that

1
when s = 7 , the R.H.S. of (1.10) is minimized. With this result, the upper bound can then be written
+ .

as

P<M-17[ [ [ReXeVAT x)ﬁdx][ [RACIAT x)“dx] dy
" 1.11)
=M-1°[ [j Q"(X)R,(yIX)EdX] dy

Now it should be noted that the value s is restricted to the interval from 1/2 to 1 since 0 < p <1. Note

that this bound is for vector input vector output channel and thus is very general.

0
Lemma. We want to show that the integration(l:_[ 0,(x)P,(y|x) dx:“:_[ O.x)P(y| x)‘dx:l ) is

minimized when s =

l+p
p
Proof: We note that (U O,(X)P,(y|x)"™* dx]“ O,(x)P.(y| x)sdx:| )is minimized when

1
P \l+p
[D‘ O,(X)P,(y|x)"* dx] [I O,(x)P.(y| x)"dle ] g is minimized. Then, by applying the Holder’s

p

1 l+p I
inequality, '[ a(x)b(x)dx < U a*? (x)dx]”p [I b”* (x)dx:l with the equality achieved when

d™(x) =c b’ (x), we notice
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=———and 1-h= ad
(1+p) 1+ p)

a”(x)=0,(X)P,(y | x)~**
p""(x)=Q,(x)B,(y | %)

Then, we have

l=sp

e a®=(0,MEEIN™") =0 WP yIx)™

¢ =00 ) =g Wy

By equating @' (x) = 5" (x), the inequality is met with equality. We have
1

S Lo\ (2 FAND
[QJ”’(X)P,,(H x)'** ) = [Q,l,+p(x)1’,,()’| X) (HPJJ (1.12)

which leads to

L P l=sp_p L 1 3(_p_] 1
O IRy |0 T | =| I ()P, (y [ x) (1.13)

Equating the exponent of P,(y | x), we have

1—
sp_p__ (£ |1 (1.14)
I+p (+p) \1+p )1+ p)
Thus, we have
l-sp=s (1.15)
Thus, the optimal value s is s = .
1+p

Then, the L.H.S. of the Holder’s inequality is

(c)200x Heung-No Lee 78 of 232



Lecture Note on Wireless Communications

l-sp p

% o om (s U s

[ ambmdx=[ 0 ®)P(y%)
sp(1-sp)

P
=[ oM R yIx) " ax (1.16)

_P sp(l=sp) (1+0)
2| [ QM 0Py %) ¢ dx

In fact, we do not need to obtain the expression for the L.H.S. of the Holder’s inequality for this problem.

to the R.H.S. of the given problem.

. - N 1
We can obtain the minimum by substituting s = N
+p

End of Proof

End of Document
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vector
Error word e

% m, ¢, r and m’ are vectors: From Shannon’s work, we know block
processing of information over noisy channel helps, rather than
processing them in a bit-by-bit manner.

+» As the size of the block increases, the larger is the potential to
achieving the capacity; but the greater is the difficulty in decoding.

©200x Heung-No Lee

Linear Block Codes
1
©200x Heung-No Lee
Coded System
r=cte
m c m
Encoder Channel Decoder
Message Codeword T Received Decoded
word word

(¢)200x Heung-No Lee
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(n, k) Block Codes

% The block length 7.
% The message length £.

*» The code is g-ary, if each tuple is taking a value from
GF(q).

— This course we only consider binary GF(g=2) codes.

* Rate of the code R = log (M)/n
% Redundancy r = n —log (M)

©200x Heung-No Lee

(n, k) Linear Block Code

% A linear code C spans a vector space with dimension &. I is a
collection of M codewords.

% Linearity: For any a, b € GF(q) and any v, u € C, av € C and av+bu =
cel.
— Ifcisacodeword, Oc =0 is a codeword.

— Let d(v, u) denote Hamming distance between any two different
codewords v, u € C and w(v) Hamming weight of codeword v

respectively.
— Then, d ;, =mind(v, u)
=min w(v + u)
=min w(c=v + u)
= min w(c), over all non-zero ¢ € C

— It is the minimum weight of non-zero codeword.

©200x Heung-No Lee
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A linear code = a generator matrix = a parity check
matrix

% A linear block code can be defined by either a generator
matrix or a parity-check matrix.

< Generator matrix is obtained by k linearly independent
codewords.
— The rows of G, generator matrix [#R x n] of a code, span the code space

“*The rows of H, parity check matrix [n(1-R) x n], span the
linear space perpendicular to the row space of G.
— There are n(1-R) number of simultaneous linear homogeneous parity check

equations.
— There are n(1-R) rows of H which span the null space of the code.
GH” =0

©200x Heung-No Lee

Syndrome

< Given the I/O relation r = ¢ + e, a syndrome vector s is
obtained by

s =rH” = (c+e)H” = eH”

—Non-zero s indicates “there is a problem.”

©200x Heung-No Lee
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Distance Spectrum

% Hamming weight of a codeword is the number of non-zero
coordinates.

% A, is the number of codewords with weight 4, #=0, 1, 2, ...,
n, in a code C.

% Distance spectrum {A,, #=0, 1,2, ..., n} is a collection of
A,
<+ Polynomial representation is useful.
- A(z) = Z A,z"
h=0

- A(Z)|z=1=hZ=OAh=2k

©200x Heung-No Lee

Minimum Distance of a Linear Code

% d_;, of a linear code C is the smallest weight of codeword
in a code.

— It is the minimum distance between any two codewords in a code

dpyip = min, gec d(c;, ¢;) (This definition i§ most general and
works for non linear codes as well)

— With respect to distance spectrum, it can also be written as
dy,=min{h=1,2, .., mA,#0}

— It can also be obtained by investigating the parity check matrix H.

* d,,, is the smallest number d such that there exists d linearly
dependent columns of H.

©200x Heung-No Lee
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Max. Likelihood Decoding

Decoding

Failure

< Encoding: m-> c, it is a mapping from a block of message bits to a
codeword.
% ML Decoding: make decision in favor of a message index m that
maximizes Pr{Y|m}.
— This leads to a minimum distance decoding rule.
— Minimum distance error event dominates the error performance.

©200x Heung-No Lee

Minimum Distance Decoding and Correctable Errors

weight one
codeword j

codeword i

% Note d,,;, =4. The code can detect all error patterns up to
weight 3.

‘¢ MLD = minimum distance decoding.

«; If the blue ball is a received word, it leads to decoding
failure because it has the same distance to codeword i and
to codeword ;.

% A code with d_;, can correct all error patterns of weight
<= floor(d - 1)/2)

©200x Heung-No Lee
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Error Correction and Detection Capability of a Code

% A code can correct up to all # error patterns if

dmin_-1
t<| ——
2

%* A code can detect up to all d,,,, — 1 error patterns.

% A code can correct up to e, error patterns and e, erasures if

e +e,<d_. -1
and
- ¢ <e

©200xHeung-No Lee

Simultaneous Correction & Detection

* Example with d;, =7

“ Correct 0 error and detect 6 errors
+¢ Correct 1 error and detect 5 errors
< Correct 2 errors and detect 4 errors
% Correct 3 errors and detect 3 errors
“dy,=e te,tlande,>=¢,

©200x Heung-No Lee
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Standard Array

% Itis a [2(~K) x 2K] table of words on length n.

“» All 2" words appear once and only once.

«¢ It shows decoding cells.

+ The first row lists up all possible 2% codewords.

< The first column lists up all 2(*¥) distinct error patterns e
that can be recovered.

©200x Heung-No Lee

Standard Array for (5, 2) LBC

Info bits 00 01 10 11 Syndrome
Codewords | 00000 01110 10111 11001 | 000
00001 01111 10110 11000 | 001

g;:gfg‘ablez 00010 01100 10101 11011 | 010 gr=( 111

Error 00100 01010 10011 11101 | 100 110

Patterns 01000 00110 11111 10001 | 110 (1)(1)8
| 10000 11110 00111 01001 | 111 001

Correctable  [~10100 11010 00011 01101 | 011

Error

Patterns (w=2)| 10010 11100 00101 01011 | 101

% Construct it row by row by adding the error pattern (the 15 column
element) to the codewords.
— Make sure not to select the error pattern which have appeared already
% When choosing the error patterns (1t column), make sure they lead to

distinct syndrome. 16
©200x Heung-No Lee T e
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d,;, and Detectable Errors

2,

» Received = codeword(i) + error pattern

S

> Undetectable error patterns:

— When the error pattern itself is a codeword, then the received is a
codeword but is not the transmitted codeword (i).

— This is an undetectable error event.
- It happéns IFF the error pattern itself is a codeword.
— The syndrome is zero in such a case.
— Minimum weight of such error patterns is d_;, .
% An error pattern with weight less than d,;, can always be detectable.

3,

&

> A code with d,;, can detect all error patterns of
weight <=d,; -1

©200x Heung-No Lee

The Singleton Bound (Linear Codes)

¢+ The minimum distance dmin of a linear (n, k) code is
bounded from above by d_,, <=n—k +1.
— An (n, k) code has a parity matrix which contains (n — k) linearly

independent rows.

— The dimension of row space, and thus that of the column space, is
(n—k).

— Thus, any collection of (n— k) +1 columns of H has to be linearly
dependent.

©200x Heung-No Lee
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@
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©200x Heung-No Lee
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Decoding of (7, 4) Hamming Code

% Compute the syndrome s =r HT = ¢ HT
+ Can correct all error patterns of weight = 1
< For a single error occurred at j-th coordinate, the syndrome
is equal to the j-th column of H
% Thus, decoding step is
— Compute the syndrome. If zero, then the rec. word is a codeword.

— Ifnot equal to zero, examine if any match can be found from
columns of H. Record the index j of the column.

— Complement the j-th bit of the received word.

©200x Heung-No Lee

e
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HW#5

4 P.1 (Gallager bound for binary input AWGN channel) Let’s consider a binary
input {+1,-1} AWGN channel. The PSD of the noise is N /2.

- (a) Obtain Gallager random coding bound, similar to lecture note, for this channel.
—  (b) Obtain the error exponent expression of this channel . What type of Q is desirable? Why?
— (c) Obtain the expression for error exponent E(R) and sketch it.

< Proakis/Salehi:
- P7.13
- P725
- P7.28
- P7.29
- P732
- P733
- P7.34

23

©200x Heung-No Lee
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LDPC Codes

Heung-No Lee |

Review on Linear Code

%> Here we define R as the rate of a linear block code.
< The block length is ».
< H, parity check matrix [#(1-R) x n]
—n(1-R) rows, [n x 1], of H span the null space of the code
< G, generator matrix [#R X n] of a code
—Row-space of G is space of the code
% GHT=0
%> There are n(1-R) number of simultaneous linear homogeneous parity
check equations.
% tHT= (c+e)HT = eHT = s
—Non-zero s indicates “problem”

Heung-No Lee 2
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&,
E x4

.
R

s,

P

Gallager’s Thesis (‘63)

(n, j, k) low density parity check code.
Parity check matrix H [n(1-R) x n] of the code has
— j number of 1’s in each column
— Kk number of 1’s in each row
— The coderateisR=1 - j/k
% Min. distance of a typical (n, j, k) code forj > 3
— increases linearly with » for fixedj & k.
» Practical decoding method exists
— Simple or probabilistic

Heung-No Lee

Parity Check Matrix on Bipartite Graph

1
0
0
1
0
0

00100100
10010010 s,
0100100 1]f" 5,
0001000 1|[™|7]:
10001100l | |s
01100071 0]

Heung-No Lee
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[Mlustration of Decoding Concept with
Simple Hard-Decision Decoder

% Works only for BSC
+ Compute all parity checks

< Change the digit involved in more than a fixed number of
unsatisfied parity checks
*» Re-compute all parity checks

B,

% Repeat

Heung-No Lee

Simple Decoding Example (j=2, k=3)

% Suppose we have
=[100000000]

% Violates check nodes
(equations) 1 and 4

% Check nodes 1 and 4
send down instruction to
correct

% Error-node 1 corrects it,
having two instructions

< Error-nodes 4, 5,7 &9
do not correct, since it
has only one instruction
to correct

Heung-No Lee
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Probabilistic Decoding

+» Bayes’ Theorem on The Total Probability
% Total Probability: If A={A,, A,, ..., A,} is a partition of S
and B is an arbitrary event
Pr{B} =2"_Pr{B N A} = 2" Pr{B | A;} Pr{A;}
+» Bayes’ Theorem: We know
prialp) = LA 0B "}{)f{"‘;}B b

“+ The aposteriori probability is then given by Likelihood

ity Pr(BlA)Pr(A)
Ay | Al o] Al PrOAIB) = e (A
B /P ]
aposteriori

prior
Heung-No Lee 7

The Iterative Graph Decoding Theorem

o
““*m/,

TE Pr(x=0|S) 9 bitnodes

fi £ £ £ 5

Get the input probabilities
from the channel output y, = (2%, -1)+n,  n, ~ M0, Ny/(2E,))

Gallager’s Decoding Theorem
Prisg=0y.8) _ 1-Prin=1y) & L (I - 2000
: )y Do Ty (2 2)

Heung-No Lee
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Decoding Theorem

% Bayes Theorem:

(xg=1,y,
Pr(zg=1ly.5) = Pr(zg=1.y.5)

»(y,S)
— Pr(Slzg=1y) plzg=1.y)
p(y, S)
_ Pr(Slzg=1y) Pr(eq=1ly) p(y)

p(y. S)

## The ratio is of our interest

Pr(zg=0ly.S5) _ Pr(Slxq = 0,y) Pr(zy = Oly)
Pr(zg=1ly,S) Pr(Slzgq=1l.y) Pr(zq=1ly)

Heung-No Lee 9

Decoding Principle

< A posteriori probability: Pr(zg = 1|y, S)
— Event S: All participating check equations are satisfied.
— Event {y}: Observed output of the channel.

< First, let us think about a codeword in a sub-code.

— A sub-code is a collection of codewords which satisfy all j parity
checks.

— Each of the j parity check equations involves (k- 1) bit nodes.
— Note a codeword in this sub-code is comprised of j*(k-1)+1 bit nodes.

_ (gl 1 1 L g )
A codeword ¢ == (24, 24, Tdy- RN TR R ..,,.z:{jk_l)
______ k-1terms k-1 terms
k—1¢ >)
bit-nodes - - - A Ny
J check eqn’S\J x . 00 v
d
Heung-No Lee 10
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Decoding

% Let S, : = {the i-th check is satisfied}
% Then,S=8§,; and S, and ... and S,
s Thus, we have

]
Pr(Sjzg=0.y) = [] Pr(Silea=0,y)
i=1
- it [=y (1 - 2pi)
=] 2

% Similarly, we have

) 1Tl - 2py)
Pr(sleg = 1.y) = [ —=——=

im=1

Heung-No Lee 11

Decoding Theorem

% The decoding theorem is

PGy =0y, $) | 1= Priag=1ly) f 1+IEZHG 200
Pir(zy = 1y, 8) Pr(z,=1y) ;= 1- n;’”____ll(l - 20i)
Py =
j =101 . 2
1—-pg 1+ lh.—l (1~ 2pip)
Pe =1 LIRS =20

i

% Note py and py, i=1, 2, ..., j, 1 =1, 2, ..., k-1 are posterior
probabilities of having digit “1” at the particular location
given the complete output y

pe = Przg=11y)
Py = P?'(;I:ﬁ,( =1ly)
Heung-No Lee 12
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Iterative Decoding

#» We can consider the sub-code scenario for each of the
Jj¥*(k-1) first tier bit nodes

<» Now, we have {f - 1) check equations for each bit node
(why?)
— Each check equation checks (k — 1) bit nodes

J-1 check eqn’s ™ 2

Heung-No Lee 13

tanh and tanh! function

% Note tanh(}) = f’f—,—_“ﬁ

% Note

tanh™z) = }49‘91—‘“

2 "1—g
= %iqn(’l')}»lo L+ ] / i
stgnl) g]__.lml 1 / |

Heung-No Lee 14
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Log Ratio Algorithm

+ Take the log of the ratio of the posteriors

Pr(zg=1ly.S) Pa i1t -2py)
~ = log log
Y Pr(zy = Oly, 5) 9T, T Z—:l ¥ n,:l(l —2p1)

% Using tanh(3) = ‘“¥T , the summand of the second term
is

B Yl 1 T o WO ¥ o D | L G )
1H(-1)k- 1“1_1 l"",(11?<[}'£)) 1-(~1)* H:-—1 (aﬂ‘z(”{(p‘ﬁ)

e Makmg use of tanh™1(z) = llogH"L it becomes

_4; 1 2 tanh~1 ((—-1 )1‘ H;”__. 1 larlh(-{{ﬂggﬁ) )) Making use of tanh-!
being odd function

= }) 1 (= 1)1‘2&2)1/& I(H lfnnh( 'Rg['u)))

Heung-No Lee 15

Product of Real Numbers

+ [l o = [I1; sign(oy)] - exp(3; log(|ay]))

< a b= sign(a) sign(b) exp(log(|al)) exp(log(|b|))
P Hg"; ll tanh(ﬁgﬁ)

= [[T¥22 sign(LR(py))]-eaxp(F=t log(tann(LERLLYy

Heung-No Lee 16
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Ax) := - log(tanh(x/2)) =log%t}

+» Use the identity of product of real numbers to get rid of

product
‘i (~1)F 2 tanh™ ]( H tanh(- R(le)))
i=1 =1
k=1 i
- Z( 1)* {H sign(LR(py))] 2 tanh™Heap( Y log(tanh(&]-{'(?pi‘_)l))] ,
7 =t =1
= Z [H sign{LR(pi))] - F~ 1(2 FALRGDOD
=1l =l

Information generated

by the i-th check node Log ratio: info.

from bit nodes

Heung-No Lee 17

~Ha) = f(=)

% Symmetric wrt y=x

Heung-No Lee 18
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Finally, the Log Ratio Algorithm

*» Note the ratio here is Pr(x=1)/Pr(x=0), which is the inverse
of the ratio used in Gallagar’s thesis

%+ With the following definitions

— LR(pg) :=logy™-  LR(p;y) = logsHL-
Pr(rg=1|5y)

AN
- LR(pd) T 51 {(24=0]3,y)

«» Theorem becomes

LR(p)) = LR(pg)+ Tl [T sign(LRpaDIFISEE FULR(p)))]

Heung-No Lee 19

Number of Edges in Bipartite Graph

Pr(Sixs=1.y)

() Pr(xs7~1S,y)

+» There are n bit nodes and L check equations
— Then there are E=n*j = L*k edges

— The total number of messages flowing from bit to check, and also
from check to bit, is £

Heung-No Lee 20
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Let’s Label the Edges

+ Starting from the left of the graph
them to be *11” and ’14’ respectively

them to be *22” and 25’ respectively
— And soon

<* And, define r,; the message from the check-/ to bit-

Heung-No Lee

— For the edges connecting bit-1 to check-1 and check-4, let’s name

— For the edges connecting bit-2 to check-2 and check-5, let’s name

** Now, let’s define g,, the message from the bit-z to check-/

21

Likelihoods as Input

% ¥, =(2x,- 1) + n, where n is AWGN for =1, 2, ..., n
where n, is M0, Ny/(2E,)) with E=E, *R
* Obtain the likelihood function p(y,x,)
¢ The log likelihoods are used to start the iteration
% Let’s denote the likelihood functions
- (1) =p(y{x=1) and £,(0) =p(y,x~0)
<+ The Log Ratio of Likelihood Probability is
LR(f,) =log(f(1) /£(0))=(4E/Ny)y,

Heung-No Lee

22
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In the beginning, we have LLR(f})

LR(f) LR(£) LR(fy) LR(f,)
LR(f;) LR(fy) LR(f;) LR(f;) LR(f)

¢ The log likelihood ratios (or {f(1)}) are the input to the
message passing decoder, to start the iterative decoding

Heung-No Lee 23

Until the last iteration

% Do the second tier calculation

*» Each bit node generates j bit-to-check messages

— Each bit-to-check message is generated by checking j-! check
equations, excluding the check equation to which the message
flows

* Each check node generates £ check-to-bit messages

— Each check-to-bit message is generated by utilizing k-1 posteriors,
excluding the edge connecting to the bit node to which the
message flows

Heung-No Lee 24

(c)200x Heung-No Lee 103 of 232



Lecture Note on Wireless Communications

Parity Check Matrix on Bipartite Graph
(n=9, j=2, k=3) example

t
Q1(m,t): Row in a column
100100100
0100100710 5, [123456789
001001001"‘_s2 m=1{123123123 j
I ltooo1 000 1|2[7]: m=2|456645564
010001100 | s
' loo1 10001 0*
L the number of checks Q2(m, I): Column in a row
11123456
m=1{123123
m=2|456564 k
m=3{789978
Heung-No Lee 25

Summary of Decoding (Log Ratio)
(n, j, k) code with f{x) := -log(tanh(x/2)) = log[(e* + 1)/(e* -1)]

< Initialize:
~ LR()-(4E/N,)y,
— LR(r,)=0,#=1,2,...,nand I=1,2,..., k
% [teration:
— Bit-to-Check messages: LR(q, g(m > =12,...m;m=12,...,j
LR(q; qi(myy) = LR() + Xy 2 LR(T 1)
— Check-to-Bit messages: LR(rqomp s F1.2,...,.L;m=12,.... k
LR(to20m.) = I 2 m SEU(LR(AQ26n7,)) X M Epy 2 mULR(AQam0, M1 1
<« Output:
~ LR(p) =LR(f) + , LR(t, 1)
% Decision:
— if LR(p)>0 x,=1;elsex,=0

Heung-No Lee 26
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Calculate Check-to-Bit messages
] 7]

0.1 -0.1 -1 -6 -0.2

Do/=1,m=1 & Q2(1,1)=1=t
r,.,= (-1) (-1)(-1) fIf(-0.15])+£(}-.6])] = (-1) f2.59 + 1.23) =-.44
Do/=1,m=2 & Q22,1)=4=t
1y, = (-1)* (+1)(-1) fIf(|0.1))+£(-.6])] = £(3.0 + 1.23) = 0.029
Dol=1,m=3 & Q23,1)=7=t
17,= (-1)% (+1)(-1) f[£(|0.1|)+£(]-.15])] = (3.0 + 2.59) = 0.0075
Do /=4, m=1 S Q2(14)=1=t
1= (-1 (1D fIf-1)+H(-.2D] = (1) £0.77 + 2.3) = - .093
Heung-No Lee 27

Calculate Bit to Check messages

Dot=1,m=1 S QI(l,1)=1=1
4, =0.1+1,,=.007 (m’=2- QI(2,1)=4)

Dot=1,m=2 & Ql(2,1)=4 =t
q~01+r,=-033 (m’=1->QI(1,1)=1)

Heung-No Lee 28
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Generation of H matrix

% There are many ways to generate the H matrix

% Any solution that satisfies the two constraints will do the
job (Some bad choice will increase the code rate)

{. jnumber of ones in each column
2. knumber of ones in each row

Heung-No Lee 29

Using s-random interleaver to generate
the parity matrix H: (n, j=3, k=4) example

[ |
14’3\4! 5”/6% ooo %E?E

Seq-2

seol 17 S E2 E1E
W OO OO0

% We know there are E=n*j = L*k edges
— Obtain the edge index sequence, say this is Seq-1.

~ — Find a randomly interleaved (e.g. s-random interleaver: s>k)
sequence 1t

— Let Seq-2 = m(Seq-1)=(64E-1 ..))
— Make connections according to Seq-1 and Seq-2

Heung-No Lee 30
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Generate H directly

% Randomly select the j positions of 1s in each column,
while making sure that the number of ones in that
particular row is not greater than &

+ Equivalently, we can construct the Q1(m, t) matrix or
Q2(m, /) matrix

Heung-No Lee 31

Example with (n=9, j=2, k=3)

% Let’s generate Q1(m,t) matrix
— Rows={1,2,3,4,5,6}

s+ At t=1, randomly select two numbers from Rows
— Suppose the two were 2, 5

“ At t=2, select two numbers again from Rows
— Suppose they were 2, 4

< At t=3, select two numbers again from Rows
— Suppose it were 2, 3
— Remove ‘2’ from Rows

% At t=4, select two numbers from Rows-{2}
<> And so on

Heung-No Lee 32
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Gaussian Elimination on H

% Once H is found, perform Gaussian Elimination on H and
find a systematic H, say H;
— Keep track of the column exchanges made in GE

<+ Do the same set of column exchanges on H and obtain new
H matrix H .,

% Find G, using the relationship GH,T = 0
“ Use G in encoding the data
** Design the message passing decoder according to H,,,

(Why?)
- GanewT =0
Heung-No Lee 33
Finally, we have
u X N y M 1
| - essagePassing
G, 2(x-1) Decoder with H,_,,

+%* Noise is AWGN with mean 0 and variance Ny/(2E;)

Heung-No Lee 34
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Results of the rate 2 LDPC code, N=4096

@ Baos Rate

Try to obtain BER=10-5

Heung-No Lee 35

HW #5

% The following homework questions are due by April 29.

Heung-No Lee 36
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Prob. 1: Design of Any Code/Performance Evaluation

6-tuple vectors (X;, X, X3, X4, Xs, X¢), Where x; € {0, 1}

Modulo-2 addition = 0 (coding constraint)

BSC
1 1
p
P
0 0
Heung-No Lee 37

Prob. 1 cont’d

> From the linear code class, we can say that coding is nothing but choosing some words
in a bigger dimensional space. Now consider a set of codewords which are related with
each other as shown in the above graph.

< A) Find all valid codewords. List them and identify their Hamming weights (the
number of ones in each codeword).

< B) How many bits can each codeword carry? And what is the coding rate of the code?

< C) Assume the use of the code over a discrete memory-less binary symmetric channel
with the parameter p (0 < p < 1) as shown above:
—  What is the word error probability expression due to the minimum distance neighbors?
— What is the probability of bit-error due to the minimum distance error event? Give a general
expression as well as your answer at p=0.01.

Heung-No Lee 38
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Prob. 2: Log Likelihood Generation

Mapse | x Y| LR 2
— Rate 1/4 4-PSK > .
Generation ?
symbols 1 00
n~N(0,Ny/2)
10

% Derive the expression for the initial log-likelihood ratio as a function of E,/N,
in the following problem set up:
— The channel noise is AWGN ~ MO0, Ny/2).
— The modulation scheme is binary phase shift keying.
— The channel code rate is 1/4.

%+ Now, make the following modification and do it again:
— The modulation scheme is 4-Phase Shift Keying.
— The bit-to-symbol mapping is shown in the constellation.
— The channel noise is also two dimensional; each is AWGN ~ MO, Ny/2).

— Note that each channel symbol carries two coded bits. So, obtain LLR for each bit
upon receiving y (= x + n).

Heung-No Lee 39

Prof. 3: Obtain Systematic Parity Check Matrix

< Perform the Gaussian elimination and 100100100
bring the parity check matrix into the 0100100T1F0
systematic form. i 001001001
1100010001
0100O0OT1T1O0TO0
00110O0O0T10

Heung-No Lee 40
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Prob. 4: MATLAB programming of LDPC code

s+ Design an (#=12, j=3, k=6) Gallager code in MATLAB. The objective of this problem
is to implement the LDPC decoder algorithm in MATLAB, and verify its successful

operation.

(a) Obtain H.

(b)  Program Gaussian elimination and obtain Gg,.

(c)  UseEy/N,=10dB and obtain the receive vector y. From y, obtain the LLR
vector LR(f).

(d) Do one iteration of Bit-to-Check and Check-to-Bit calculations. Print out your
example, and verify your calculation results.

(e)  Neatly write the procedure (a) to (e) carefully. The aim is to illustrate that you
have verified a successful operation of your decoder.

—  State the method to obtain H

—  State how Gaussian elimination procedure were i d

—  Explain the decoding procedure in a step-by-step manner

— Do you think your decoder algorithm is programmed right and it works? Why?

(e)  Now you are 100% sure from the procedure so far that your decoder is
programmed right. Evaluate the performance of your code via Monte Carlo
simulation over the AWGN channel. Do not simulate WERs < 10-3.

Heung-No Lee 41
Prob. 4 (MATLAB) 2" part
“* (f) Obtain a tight upper (or lower) bound expression on the word error rate, which
depends on the block length », and use it to compare the simulation result. If
necessary, use quantization on the received signal (and increase the level of
quantization and see the effect).
s (g) Increase n to 1024 and investigate its word error performance (word-error rate

vs. Ey/N,). Also, obtain the bit error rate and compare it with the analytical P(e)
result for uncoded BPSK. This part is due by May 6th,

Heung-No Lee 42
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wireless Communications 2010

prof. Heung-No Lee

In this note, my aim is to illustrate the decoding procedure in a step-by-step manner. The example code
used here is a Gallager (n=12, j=3, k=6) code.

We want to simulate at Ep/N, = 4dB =2.5119. We let Es = 1.

The Rate of this code is 0.6667. It is not exactly equalto 1 —j/k =1 -3/6 = 1/2. It is a little bit higher
than %. Why?

The parity-check matrix of Gallager code always has j-1 dependent rows. Thus, the number of
independent parity-check equations is always less by j-1. The actual rate is 1 —j/k + (j-1)/n. When n =12,
therate R=1/2 +1/6 = 0.6667.

Now, let’s calculate N,. E;= R*Ep,. Ep=E¢/R =1/0.6667 = 1.4999. Thus, N, at Ex/N, = 4dB is equal to

N, = (1/2.5119)*(Es/R) = 0.5972.

txSymbols =

101 111 0 0 0 1 1 1

1 11111 -1 -1 -11 11

rxSignal = txSignal + noise

0.5873 -1.2776 0.9279 0.8469 1.5371 1.5159 -0.9929 -1.1936 -0.5111 0.5562 0.9401
-0.4926

LRft = (4*Es/No)*rxSignal

3.9339 -8.5578 6.2157 5.6731 10.2957 10.1539 -6.6506 -7.9953 -3.4236 3.7259 6.2974

-3.2999
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LRb2c =
3.9339
3.9339

3.9339

-3.2999
-3.2999

-3.2999

LRc2b =
3.2766
2.7376
-3.2092
2.8085
-2.6367

3.5895

LRpt =
13.6085

8.7388

-8.5578 6.2157 5.6731 10.2957 10.1539 -6.6506 -7.9953 -3.4236 3.7259 6.2974

-8.5578 6.2157 5.6731 10.2957 10.1539 -6.6506 -7.9953 -3.4236 3.7259 6.2974

-8.5578 6.2157 5.6731 10.2957 10.1539

2.8952 2.8604

-2.7889 -2.7353

-3.1618 3.1920

-2.5310 2.5724

-2.5905 2.5945

-3.0584 3.0976

-2.8826

2.7399

3.1690

2.5291

3.1576

3.0552

-3.6997

-3.1969

-3.2054

-3.0513

-2.6147

-3.0821

2.8924

3.5722

5.2025

2.8862

3.2640

3.7684

-6.6506 -7.9953 -3.4236 3.7259 6.2974

-11.4096 8.9992 2.8200 7.4038 13.0028 -9.4233 0.5080 -7.0169 7.1836 3.3697

If we make decision right now, it should be

(c)200x Heung-No Lee
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1-11111-11-1111
Thus, the 8™ bit 1 is an error, comparing the decided symbols with the txSignal.
txSignal =
1 11111 -1 -1 -1 1 1 1
Now, let’s see what happens in the second iteration.
LRb2c =
10.3319 -14.1473 6.1040 5.6088 4.5435 15.7381 -6.5407 -2.2318 -3.3173 10.3805 0.4774
10.8001 -8.8786 12.2084 0.2476 10.5657 10.4738 -12.6152 -2.6610 -3.9657 4.2974 6.5751

10.0190 -8.3512 5.9016 5.4566 9.9943 9.9477 -6.3412 -2.0864 -10.1745 3.4152 5.9844

5.1666
3.5363

5.4748

LRc2b =
0.4299 0.4319 0.4394 -0.4312 -0.4634 2.9844
-2.1489 2.1804 2.1489 -4.6669 2.1491 2.1984
2.3005 2.3007 -2.3005 -3.4884 2.3143 2.6408
0.2318 -0.2318 3.4192 0.2318 -0.2408 0.2382
2.0340 2.0028 -4.5044 -2.0027 2.0210 2.0334

3.2795 -3.2846 3.3536 3.2796 -3.3262 5.3338

LRpt =

7.8751 -14.2232 12.3016 13.3067 15.0387 15.8141 -12.7084 -20.6551 -6.1305 11.4471
13.6171 3.5727
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Now making decision with this sequence, we have
1 11111-1-1-1111

We note that this is equal to the txSignal. Thus, the error has been corrected.

The matrices for this illustration were

H=
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o1 0 0 0 0 OO O U1 000
o1 110000 O0O0T10O0

10110000000 1

>>Ql

121 21 2 1 2 1 2 1 2
4 4 3 4 3 4 3 3 4 4 3 3

6 6 6 55 6 6 5 5 6 5 5

>> Q2

1 3 5 7 9 11
2 4 6 8 10 12
3 5 7 8 11 12
1 2 4 6 9 10
4 5 8 9 11 12

1 2 3 6 7 10

| hope with this step-by-step illustration everyone can design their own LDPC encoding/decoding system.

End of illustration.
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Fading Channels/Multiple Antenna Diversity

Diversity Benefits

©200x Heung-No Lee 1

Agenda

¢+ Fading Channels
# Chi-Square Random Variables
< Multipath channel
% Diversity system
— Multiple receiver
— Multiple transmitter

©200x Heung-No Lee 2
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Fading Channels

*%* One of the characteristics of terrestrial wireless channels is the
signal-strength fading

% The culprit of the fading is multi-path propagation of the radio-
wave signals

% Thus, the fading phenomenon becomes significant in rich
scattering environment where a large number of reflectors and
scatters are around the receiver

<% In this course, we model the channel as the tapped delay line
with fading taps

%+ Good transceiver design provide a solution that is not limited by
fading but rather takes advantage of it

% Recentresults show that we can utilize the signal strength
fading to boost up the channel capacity

©200x Heung-No Lee 3
5 . .
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Multipath Fading ISI Channels

111
IR .
I -] -

N Overall pulse

/
"
ISl occurs

Statistical Channel Characterization

¢+ Channel response is parameterized with delay and time
c(1, t).

Variation of channel
response over time

“* We can use the two dimensional auto-correlation function
0o(T1, T35 1y, 1) = E{c" (1, 1)) (1, 1)}
—~ Delay characterization: Multipath delay profile

— Time variation: Doppler spread
©200x Heung-No Lee 6
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Wiener Kintchine Theorem

< How do you measure the frequency content or the degree
of time-variation (frequency content) of random processes
(signals)?
— Autocorrelation function < Power Spectral Density (Fourier
Transform pair, Wiener Kintchine Theorem)
— Wide-sense stationary
< R(1) = E{G*(t+1) G(t)}, -c0o < 1 < 0
< P(f) = F{R(7)} due to WK theorem
< In many engineering problems, we also make the
assumption that the process is ergodic and use the time-
averaging operator to estimate R(t) or P(f)
- R (k)= (1/K) X,_,¥ g*(k-+n) g(k) where g(k) is a sample-path

©200x Heung-No Lee

Two Types of Frequencies in this note

%+ Frequency response of a channel at a fixed time instance
— Fourier transform of the impulse response at the particular time

— Measures channel’s response(magnitude, phase) to a sinusoidal
input as its frequency is varied

— Channel’s response to different tones.

¢ Frequency of channel variation
— How quickly the channel changes?
— Doppler frequency

©200x Heung-No Lee University of Pittsburgh
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Two Autocorrelation Functions of Importance

% Multipath Power Delay Profile
— ¢(1) =E{c"(1) c(1)}

s Time autocorrelation function
— ¢(At) = E{c*(t, t,) c(t, t;+ At)}
— Doppler spectrum

©200x Heung-No Lee University of Pittsburgh

Multipath Power Delay Profile

< One of them is the multipath power delay profile

¢o(1) = E{c’(7) c(1)}
— It’s the average power of a multi-path component at delay .
— Multiplication in time domain = Autocorrelation in Frequency

Domain
O (Af)
(T
#(0 Coherent BW
<,—\_E> O(l/T,)
0 T, " Af
©200x Heung-No Lee 10
(¢)200x Heung-No Lee 122 of 232



Lecture Note on Wireless Communications

Delay dispersive/Frequency-selective channel

Multipath delay spread~T,, Goherent BT
: Fouier P
l Trans.
1t t3 .
time Observation RF BW frequency

* T, ~ the time difference between the first and the last arriving pulse
Indoor ~ up to a couple of meters ---> 10s of nano seconds (10s of MHz)
Outdoor ~ up to 1000s meters ---> 10s of micro seconds (10s of KHz)

VEpw Lower time-domain Fgw T Transmission BW
resolution —
Fouier H
_l Trans.

00x H L time ] . .

©200x Heung-No Lee frequency
What is happening at the receiver antenna?
Most delayed signal

+* The phase and strength of the electro-magnetic excitation
at the receiver’s antenna is proportional to the summation
of all the incidental waves arriving to the receiver antenna
with different phases and magnitudes due to multipath
propagation

©200x Heung-No Lee 12
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Delay Spread vs. Gaussian Fading Model

T % When arrival-time differences
_ T are relatively small (T, <<
A T), the signal perceived at the
m receiver is the addition of all
U U U arriving sinusoids.

Sum WAL ® Y=X_A,exp(i2n6,)

Of all NN % Add constructively or
destructively depending on
the phase

<» The delay t,, is translated to

T, = 1/, is the period  the phase difference 6, € [0,

T,<<T 27], uniform distributed.
< Invoking the Central Limit
T Theorem, Y is modeled as a

Arrival times complex-valued Gaussian.

©200x Heung-No Lee 13

Flat-Fading: When delay-spread is negligible (T,, << T)

T

Transwigied pulse Mubiputh Froy
F

i

Figrz 2-2 Coublost sire kess sonmmmnication chameels i cellular stneture Boribe typical
rural aren.

Only local scattering objects, then we have a single Rayleigh fading tap
Such that y, = g, x, + n,, where |a,| is Rayleigh distr.

©200x Heung-No Lee 14
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Frequency-Selective Fading:
When delay-spread is significant (T,, = T)

** Shown left is a wideband

I [ T hT channel response
: ¢ The pulse used to sound the
T, channel is very wide so that

it is resolvable at the

Tapped-delay-line channel model receiver as shown

(Proakis 14.5.1)
w0 < If a pulse of shape g(t) is
7] used then the received
signal is convolution of g(t)
with the wideband channel

¥ = 2 X(k-1) hy + 1y < Ex) g(t) = Rect(t/T)

©200x Heung-No Lee 15

When delay is significant (T,, = O(T))
We model the channel with tapped delay line filter

TR ooo . E.M. Propagation
- Characteristics
] H H H }%_ -- Scattering
nn |-| r‘HZD -- Refraction
-- Reflection
Traventijied pulse ?&culnmdi Propaigabicn Magnimde

| /\/‘{T\\
Fagure 2-5 Outdoorwire kess communtzation chamszls i ool ular siocwre fo the tgpial
whsan area.

©200x Heung-No Lee 16
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Summary on Delay Spread

%+ If delay spread is small, T,, << T, then we say the channel
is frequency non selective and use a single tap channel
model.

— This happens when the transmission bandwidth is smaller than the
coherence BW of the channel.

+ If delay spread is large, T,, >= T, we say the channel is
frequency-selective and use multi-tap FIR channel model.

— This happens when the transmission bandwidth is larger than the
coherence BW of the channel.

©200x Heung-No Lee University of Pittsburgh 17

Time-Varying Fading Channel
due to Mobility

<\2.1\_43V ing?
1. Moving? //\ 1

+
-
--------

3. Moving?

)

» Multpaths may add constructively or destructively,
depending on location—central lintit theorem

* Vehicle movement

» Fading at every O(wavelength)

« If £,=900 MHz (A=c/f_, A=1/3 meter) -
* Doppler spreading (measured as the max. Doppler
frequency)

* fym=Ffo(v/ic)=vIA = 33 [m/sec] / 1/3 [m] ~ 100 Hz

* Vmax= 120 km/hr = 33 m/sec
©200x Heung-No Lee 18
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A sample path of a single fading tap over time,
of a moving receiver

%
3
¥
g!{xs : A
B L I o
O | |
E :
5 H =
@ i i
21k i |
4 E =
. 3
: E 3 ]
Eor " :
L. ] i
15 i i 1 1 L i - g
£ [ZEx] G i it S AL 5 Eite
Berind casicel
— it 417 Wsec]

©200x Heung-No Lee

A2 0.165 m = 120 ticks * 33 [m/sec] * 41.7 [ sec/tick]

19

Time Autocorrelation Function vs.
Doppler Power Spectrum

< The time auto-correlation function measures the degrees of time-
variation in the channel response

q)c(At) = E{C*(t, tl) C(‘L', t1+ At)}
< The F.T. of this function is called the Doppler power spectrum Sc(f)
4* For the outdoor Doppler spectrum, we usually follow the Jakes’
model

ScM) = (1 - /g2 if |f] < fyp,
=0, o.w.

.y

0 (AL) = Jo(2m £y, AY),

>

(c)200x Heung-No Lee

0 fim the zeroth order Bessel function of the first kind
©200x Heung-No Lee 20
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Time Auto-correlation Function
(Outdoor channels)

i ok Fancti of  ap e i e The zero-th order Bessel
function of the first kind

o

Obtainable from inverse
gan | F.T. of Sc(f)

s

Camnbation vl
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| e
Y ==
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Sample Singlation

|\ / f e
\ N
o N
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’
“l

e e L i
] 3 i ]
Time-Difference | Symbol period]

©200x Heung-No Lee 21

Doppler Power Spectrum

% The F.T. of this Time-Autocorrelation function is called
the Doppler power spectrum S(f)

< It gives you the idea of how fast the channel is time-
varying

% For a discrete-time example, we can estimate the S(f)

— choose a time-varying tap and collect the tap values over a specific
amount of time forming a sequence

— Take ‘xcorr’ and take ‘fft’ of the results

©200x Heung-No Lee 22
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A fading tap is a band-limited random process

Determined by
The speed of the
receiver
£, =, v/A
Figurz 210 The autearelation fmetion anid the Dippler peaser speetam of Raglaigh
fischng tap.
©200x Heung-No Lee 23

Further Reading on Fading Channels

% Proakis Chapter 14, Digital Comm.
+¢ Stein and Sklar, Comm Magazine, Sept. 97

«¢ In general, you can use IEEExplore to find any IEEE
papers

“* MATLAB has a Rayleigh Fading Channel Simulator

©200x Heung-No Lee 24
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Time-Varing Frequency-Selective Fading Channel Model

[The Bottom Line]
Sk Sk-1 S
il 1 1 | kL
wrmwr 114
o) (k)

@ ) 1 = 2 8 G(K) + wy

T,

< (k) = (co(k) cy(k) ... ¢ (k)) may represent the samples of the overall wireless channel’s
impulse response sounded by a pulse whose bandwidth is W Hz.
%+ Once we have a wideband pulse channel model, we can make narrow-band channel
model very easily
— Use the samples of g(t) * c(t) * g(t), where g(t) is the shaping filter
< Wide-sense stationary uncorrelated scattering wide-band channel model (WSSUS)
— Each tap is a Rayleigh fading process; each fading process is uncorrelated with each other
—  Multi-path delay profile describes the powers of each tap, [E{|c,*} E{lc,[*} ... E{lc*}]
— How fast each tap is fading is described by the Doppler spectrum; the maximum Doppler rate

©200x Heung-No Lee 25

Proakis/Salehi Ch 2: Some Useful Probability Distributions

% Gaussian random variables: X, i.i.d. ~ #(m,, c?)
¢ Chi-square random variable: Y := X2 + X,?
B R= Y1/2

'~ Rayleigh-distributed r.v. when m, = 0

— Rice-distributed r.v. when m, # 0

©200x Heung-No Lee 26
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Ricean Fading Simulation

% K ~ Ricean factor
% m = sqrt(K/(2*(K+1))) and s = sqrt(1/(2*(K+1)));
% Ricean simulation

r = {s*randn(1,1)*+m} +j*{s*randn(1,1) + m};
++ R = abs(r) is in general a Ricean variable.
% We note m? +s>=1/2 and E(r?) = 1.

©200x Heung-No Lee 27

Random Variables (Processes) to Represent
Fading Channel Statistics

% Zero-mean Complex-valued Gaussian process G(t)
“» For fixed ¢, G(¢) is complex-valued Gaussian r.v.

— The distribution of the power, |G(t)|?, is Chi-square

— The distribution of the mag., |G(t)|, is Rayleigh
%+ PDF of Chi-square r.v. with two deg. of freedom

— Y = G(®" G(t) = G2 + G2 where G, and G; are independent
Gaussians with zero mean and variance 62

— P(y) = (1/26%) exp(-y/(25?)) U(y)

% PDF of Rayleigh r.v.
— R:=Y"2 with P(r) = (+/c?) exp(-r¥(252)) U(r)
— The magnitude of the signal

©200x Heung-No Lee 28
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Chi-Square Distributed R. V.

% Let
— nYy.z2
Y o ZJ=1 X_l
where {X;} are iid Gaussian rvs with zero mean and

variance G2
s It’s pdfis

n, -2
py(¥) = e 2?U(y)

1
o n 2n:‘2 r (%) y
where I'(p) is the gamma function
- T(p)= o> t-'etdt,p>0
— I'(p) = (p-1)!, p an integer > 0
— T(1/2)=n"2,T(3/2)=0.5 n'?

©200x Heung-No Lee 29

The Gamma Function

I'(p)
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So much for the fading channel-model

% Let’s move on to the communications theory again

©200x Heung-No Lee 31

Simple Communications Model

% Consider the flat-fading channel case where the received signal is
y=redx +n,
where 7 is Rayleigh distr., 6 is uniform over (0, 2m), and n, is complex-
valued Gaussian with mean and variance 2(N/2)

% Consider the coherent communications where 6 can be estimated
perfectly; then what matters is the magnitude-part only (multiply y,
with ei9)

% Thus, it is equivalently

Y =7 X + Wy, w, ~ real valued #(0, Ny/2) now (why?)
which we already know it’s P(e)

©200x Heung-No Lee 32
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The Adverse Effect of Fading

oL N\
VAR

time

<+ Communication when the instantaneous channel gain is
below a certain threshold — P(e) is large and the channel

capacity is zero (useless)

©200x Heung-No Lee 33

P(e) averaged over the single fading tap

“# Let the instantaneous power be a = 12 which we know that
it’s a Chi-square r.v. with two degrees of freedom.
< Py(a) = Q((2a/Ny)'?), note that 2a/N,, is the instantaneous
SNR
< P(e) = [Pr{error | a} p(a) da = [,> P,(a) p(a) da
where p(a) is the Chi-square pdf with p(a) = e U(a)
¢ In fact, it’s convenient to obtain the averaged P(e) in terms
of the averaged SNR
— Lety=2a/N,;
— Let the channel power E(a) = 1
e thenE{y} =2 /N,

©200x Heung-No Lee 34
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P(e) =~ SNR'!

% Then, we can represent the P(e) as a function of SNR=E(y)
% First, Q((2a/Ny)"?) = Q((a SNR)?) < exp(-a SNR/2)
< Evaluate P(e) = [, P,(a) p(a) da

©200x Heung-No Lee 35

Using the result

% Using the Chernov bound over AWGN channel

P(error) < Q (y!;g;) < exp (_Qii{zf;)
%« It leads to
Pb(d) = Q (\/za ;O) = Q (V @ SA’R) < e;z’p(_q_‘%y&)

P(e) = / * Py(a) p(a)da

40
s SN

< / exp .- R) exp(—a) da

/ a (2 + SNR)
= (- —da

2 + SNR
~2SNR™!

©200x Heung-No Lee University of Pittsburgh 36
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Receiver Diversity

% Add more receive-antennas

— to scoop up additional signal energy

» This seems to be equivalent to increasing the diameter of your dish
antenna in order to increase the SNR

— And to achieve higher diversity order

* The diversity benefit is obtained only when the receive antenna picks
up the signal whose strength is independently faded

©200x Heung-No Lee 37

Diversity Antenna Technique
(Receiver Diversity)

% Diversity Receiver .
Antennas are at least half

the wave length apart

with each other in order

to obtain independent

fading

©200x Heung-No Lee 38
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Diversity Receiver Scenarios (N, = 2 example)
(So called Maximal Ratio Combiner)

Receiver
X 1>+
0>-1[7
o1 .
re n, Detection——
2=
E(r?)=1
r, &% n, r, e

P yg=ryexp(6y) x +ng, d=1,2, ..., N, where N, is the
number of diversity antennas and n, is complex-valued
Gaussian with zero mean, variance 2(N/2)

% Coherent communications at each of the receivers

©200x Heung-No Lee 39

Signal Space View

.
@

Leta=r > +|r,?

» Thus, the decision statistic is

&

y=axtw W
where w = r,w, + r,w, and w, and
W, are i.i.d. real-valued Gaussian
with variance Ny/2.

% Thus, w is real valued Gaussian —0 -5
with variance aNy/2. -r W

% Thus, the instantaneous SNR v is

% y=a/lN,

< SNR=E(y) = E(a/N,)

= (E(ry?) + B(r,2)YN,

= 2/N,

©200x Heung-No Lee 40
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Two Orders of Diversity with Two Receive Antennas

%» Now consider the P(e) over such setting
y=ax+w,w~real. ¥/(0, aN,/2)
< It’s
Q((2a/Ny)'"?) = Q((a SNR)'2) < exp(- a SNR/2)
+* Thus, we again can evaluate the integral
P(e) = [4= Py(a) p(a) da

* p(a) can be easily obtained from using the characteristic function
(convolution of pdfs = multiplication in characteristic functions)

» Using (1), n=4, 6=1/2, P(a) = a e* U(a)
% P(e) ~ SNR>2

©200x Heung-No Lee 41

Using the Chernov bound Py (a) < exp(- a SNR/2)

< P(e) = [p>® Py(a) p(a) pa
< [exp(-a SNR/2) a exp(-a) pa
= [xexp(- x [2 + SNR]/2) px
Let c := (2+SNR)/2
= [x exp(- cx) px
Lety :=cx
=c? o>y exp(-y) dy
=2
= 4/(2+SNR)?

High SNR
~ 4 SNR?

©200x Heung-No Lee 42
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P(e) =~ SNR™N; for N, receive antennas

% The bottom line is that P(e) is
power-law decaying with
order N,, for N, receive
antennas and 1 Tx

% As N, increases to oo, P(e)
converges to that of AWGN
channels

Prob. of symbal error

» If you pick up signals
coherently from many
diversity antennas, you will
get rid of the fading effect (of
the signal strength of the
decision statistic y at all)

Note here L =N,

©200x Heung-No Lee 43

Summary of MRC

% The averaged probability of making bit error in antipodal modulation
is

Py~ (ASNR:)Nr (2%:1)

forL=1,2,3, ... where SNR_ = E{r,?}/N,, is the per-channel SNR (or
use the full expression in pg. 825 Proakis)
% Note that the above result applies whenever we have a decision
variable in the form
y=axtw,
where a=r2+ ... + 1,2 (r, is Rayleigh or r,? is Chi-square with 2
degree of freedom) and w ~ N(0, aN/2)

©200x Heung-No Lee 44
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Transmit Diversity

% Use multiple transmit antennas in order to obtain the
diversity, why?

% Alamouti code
— Only length-two code

— Some extensions of this code, but only up to a certain length
(say length 8)

+ Delay diversity code

— Use the same symbol across all the transmit antennas, but
delayed by one symbol epoch at each antenna

©200x Heung-No Lee 45

Matched Filter Bounds On Multiple Transmit Antennas

+“» Now consider at least two signaling epochs, say k = 0 and
k=1 (N, signaling epochs for N, transmit signals)

*yo=hy x'+h, x2+n,

%y, =h; x>+ h, x! +n,

¢ Thus, we may write y=Hx +n

Yo |= h1 h2 x! + | Mo (1)
Y1 h, h || ¥ n,

wz=H'y=HHx+H"'n

©200x Heung-No Lee 46
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Matched Filter Bounds On Multiple Transmit Antennas

“z=(z,2,))=H'Hx+H'n
% y?2=H'H
— Diagonal terms of %2 = |h,[? + |h,|?
— Off diagonal terms of x> = h*;h, + h*, h; =2 Re{h", h,}
% q=H"n, is a complex-Gaussian vector with zero mean
vector and correlation matrix E{qq*} =N, %2

> Ignoring the cross-correlation, we could have the optimal
decision variable (the matched filter bound)

Z,=ax,twg
where w, ~ N(0, aNy/2) and a is xzth
% Thus, the optimum system will achieve N, order of
diversity (If there is one)

©200x Heung-No Lee ) 47

Optimal Transceivers That Achieve the MFBs Very Closely

% A simple delay-diversity scheme: with a simple transmission scheme
that avoids repeating the same channel symbol in other antennas at the
same epoch (send repetitive symbols at other antennas in different
time-epoch)

— Maximum Likelihood Sequence Detection
» The Viterbi Algorithm

— Maximum A Posteriori Algorithm
» The BCJR Algorithm

4 With special schemes:

— Alamouti Scheme (Alamouti, S.M. JSAC 98’)---A simple transmit
diversity technique for wireless communications
'— Space-Time Trellis Code or Space-Time Block Codes (Tarokh et al, ...)

©200x Heung-No Lee 48
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Alamouti Scheme

< Use a special repetition scheme

* Yo=h x'+hyx®+n, - (2)
Y1 =h; x" +hy (x") +n,
Obtain z, = h,* y, - h, y*,

=|h,|?x! + h;* h, x2- h, h;* x2+|h,[> x' + h,"ny— h, n,*

= (Il +|hy? ) x' +h;'ng—h, n;*
< z,=h%y,+h y'

= h*",h; x' + |h,2x2+ |h> x? -h;h," x' + h,"ng+ h; n;*

(Ihy* +|hy|*) x2+h,"ng + hy n*
Thus, the scheme perfectly achieves the MFB performance

3

@,
L

%,
&

I

%,
e

2,
e

This scheme, however, exists only up to N, = 4 systems (Refer
Tarokh on Space-Time Block Codes)

©200x Heung-No Lee 49

Delay Diversity Coding

¢ Consider N, =2, N =1 and L=1 case

@Y =h x!p +hy X% +ny
where n, is a complex-Gaussian with zero mean and
variance N,

% Consider the case where x?, = x!, ; (Delay diversity):

—h x!

Yie=hy xly +hy x4y

<+ This looks like an ISI channel

— Use the maximum likelihood sequence detection method
— Obtain the full diversity with the VA

©200x Heung-No Lee 50
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Simple Maximum Likelihood Detection

% Use Eq. (1) and use MLD

¢ For an example of binary modulation

< x; € {(-1,-1), (-1, 1), (1, -1), (1, 1)} for i=0, 1, 2 and 3

¢y =H x + n where the CSC Gaussian channel matrix
H=(h; h, ... hNt) and n is a multivariate CSC Gaussian [N,
x 1] with zero mean and variance R, =N, INr XN,

% The MLD then is to find the best input x; which maximizes
P(y | x;) ~ min (|| y — x{[)

©200x Heung-No Lee 51

Delay-Diversity with VA detection

Alamouti vs. Simple MLD: BPSK
T T T

% Seq. MLD

10 —“?'—1
ik (VA) is the
7 geouo e
< o ) delay-diversity

case

12 14 16
SNR/bit (Eb/No)

©200x Heung-No Lee 52
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Diversity Analysis

% Read the following paper

— Space-time codes for high data rate wireless communication:
performance criterion and code construction
Tarokh, V.; Seshadri, N.; Calderbank, A.R.; March, 1998.

— Read the introduction.
— Pay attention to the derivation of diversity benefit
— Try to understand equations (1) thru (20).

©200x Heung-No Lee 53

Summary of Transmit Diversity

*» With more transmit antennas, the diversity order can be
improved.
— Order of diversity = N,
— P(e) ~ SNRM

©200x Heung-No Lee 54
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Chi-Square Random Variables

Chapter

Chi-Square Random Variables and
Diversity Benefits using Multiple
Antennas

This chapter provides some useful results on Chi-square random
variables and their relationship to the probability of making error
averaged over the fading ensemble.
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2

Recall that the error probability can be expressed as the Gaussian Q-function. For
2E,
N,

example, the bit error probability of binary antipodal modulation is given by Q( \ /—) .

Letting SNR = % , P,(SNR) = Q( 2SNR) . Note this is a little bit different definition

than what I have done in my ppt chart note.

Now, suppose the communication takes place over a fading channel. The gain of
the channel is a random variable. Let’s denote y the channel gain and its
distribution p, (y). Suppose for now the mean of distributionis 1. We are interested in
calculating the probability of error averaged over the fading channel. This problem
becomes the evaluation of the Gaussian Q-function over the distribution of Chi-square
random variables. The average probability of error at a certain average SNR is then

P,(SNR) = [ O(/2-SNR-y) py ()dy , (1.1)
where p, (y) denotes the pdf of Chi-square random variable of a certain degree.
For this purpose, the Gaussian Q-Function can be simplified as an exponential
function of the SNR using the Chernoff bound, i.e.
O(J2-SNR- y) <exp(-SNR-y). (1.2)

Or, the Craig-Identity can be used

Q(\/ZSW):%Imzexp(_SNR'y}Jﬁ. (1.3)

0 sin? 6

Note that in both expressions we have the exponential function of y. We take advantage
of this fact in evaluating the integral. Namely, the expression in (1.1) can turn in to the
form of the moment generating function of ¥ using (1.2) or (1.3) into (1.1).

The moment generating function is defined as M( ry= E[e”’ ] = [e”py )y .
0

For example, substituting the Craig Identity of O(x) in (1.3) into (1.1), one have

Lz (e —SNR -y
BN =—["" [ exp( —y )my)dyde

=lj”’2M(t= ‘SNR)de ’ 9

w0 sin” @
where M(¢)is the moment generating function of pdf p,( y). Even though it is an exact

result, it should be noted that using CI involves an integration over the variable theta.
Using the Chernoff bound (1.2), however, one can obtain the result in a compact form,
ie.,
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P,(SNR) < j: exp(=SNR-y) py (»)dyd0
= M (t=-SNR).

(1.5)

Therefore, the error probability averaged over the fading ensemble can be obtained
using the moment generating function.

In fact, the fading distribution takes the form of Chi-square distribution. Depending
upon the degrees of the Chi-square random variable, varying results can be obtained.

The Chi-square distribution with n degrees of freedom: Let’s denote Y as the sum of
squares of independent Gaussian random variables ~ N(m,, s?), i.e.

y=3x2. (1.6)
i=1

Note that we will be dealing with the case where # is even. (Why?)
The moment generation function of this random variable is

n 2
M) ! [tz"ﬂm" ] , 1.7

C(1-125%)""? “‘ﬂ 1-125°

and the pdf is

(n-2)/4 n 5 Zn 2 1/2
_m+ i1 T
Pr) == ( > 2} exp[—Zﬂ'z——leﬁ_1 \/5(———;—2———)—— , (1.8)
2

257 3" m 257
=17

where I, (x) is the A-th order modified Bessel function of the first kind which can be
evaluated in the following infinite series

w (x/z)k+2i
1 = —_— .
K= 2T (19
where T'(p)is the Gamma function, i.e.,

I(p)= jt""e"dt, forp>0 (1.10)
0

[(p)=(p-1)! for positive integer p, (1.11)
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and few evaluations are I'(1/2)=z land I'(3/2) =%\/;7 . The alternate expression for I (x)

is useful, i.e., I,(x)= lj: e **dg . Thus, we know I,(x =0)=1.
T

Application of Chi-square distribution to obtain the probability of error averaged
over fading channel

The single tap fading case:
Consider a Ricean random variable R defined as R=| «| where

a:=(sX, +m)+ j(sX, +m) (1.12)

1

5= /z(KH), (1.13)
K

m= /2(K+1), (1.14)

for a Ricean Factor,0<K <o . X, and X; are mutually independent normal ~ MO0, 1).

and s and m can be chosen as

We define the Ricean factor with respect to s and m as
K=" (1.15)

Note that the Ricean factor K implies the power ratio between the direct and the diffuse
components. If K= 0(i.e. m=0), then we note that there is no direct component; then, R
is Rayleigh distributed. If s =0orK = oo ; then, R =1 for sure; then the channel is
AWGN channel (after phase equalization is done).

In addition, we note that ¥ := R? =||* is in general a non-central Chi-square random
variable with two degrees of freedom with E(Y) =2(s* + m*) =1.

The moment generating function M(r):= E[e”} = [e” py(»)dy of the random
0

variable Y is given by

B (1.16)
:[ 1 ]exp[ t((K+1) ]
() 1= tlwis)
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2
The pdf of Y is obtained by letting n =2, E(¥)=2(s>+m?)=1 and K =% into (1.8),

SZ

. (zmz)l/z
() =—ex (—K—L)J
Pr)=5Fexp 7 )l N >

1 (21<s2)”2
- y =
_FeXP(—K_E?)]" e ' (17

1 y 1
= Lexp[ k-2 1,(Ly2x
257 p( ZSZJ 0( y)

N

Alternatively, we sometimes represent the Ricean variable by fixing s* = 1/2, and thus K
=2 m’. We note that unlike previous case, E(Y) = 2(s* +m*) =1, in this case the expected
value of the power variable Y increases with the Ricean factor X such that

EY)=2s*+2m*=1+K . (1.18)

In this case, the moment generating function can be written as

M(t)=(L) exp(ﬁ). (1.19)

1-¢ 1-¢
And the pdf of Y is

5 ) (2m2)1/2
pr(y)= eXP(—mTer]lo y—

L2 (1.20)

=exp(~(K +3)) 1o (2 yK)

We may use any of the two representation systems as long as we are aware that the
average channel power is different, 1 vs. (1+K).

Note that the pdf can also be obtained by taking the inverse Fourier transform of the
characteristic function (obtained by letting ¢ = jw ), which is given by

)1 2 _(2m*+y)

27 10(@%], (121

1(y
P = | 2
¥ (») e (2m2
where I,(x) is the zeroth-order modified Bessel function of the first kind.

We are now ready to evaluate the probability of error averaged over the fading ensemble
for the single tap case. First, using the Chernoff bound (1.2) we have
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P,(SNR) = [ O(/2-SNR-y) py (»)dy

< Iow exp(-=SNR - y) py (¥)dy (1.22)
= M(t ==SNR).

Using the un-normalized representation given in (1.19), the answer is

1 —SNR-K
P,(SNR) £ M (¢t=-SNR) =( ) exp( )
1+SNR 1+SNR (1.23)
( 1 ) ( -SNR-K )
= exp .
1+SNR 1+ SNR
Setting K = 0 (Rayleigh case), it becomes
1
B,(SNR) < 1.24
(5 )<(1+SNR)’ (1-24)

where SNR = E, as we have defined in the beginning of this note.

Note that this result is consistent with the one we obtained in class using the direct
integration method.
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Two or more fading tap cases:

We now want to consider the two tap fading channel case in which the signal is
coherently received. For example, take look at the chart shown below:

Diversity Receiver Scenarios (V, = 2 example)
(So called Maximal Ratio Combiner)

Receiver
X 1>+ Vi z
—10>-1 X
jol
ne o, Detectionf—>
Z
> 2 .@-2
E(r2)=1
1, &9 n, e

Py =ryexp(iBy) x +ng, d=1,2, ..., N, where N_ is the
number of diversity antennas and n, is complex-valued
Gaussian with zero mean, variance 2(N,/2)

% Coherent communications at each of the receivers

©200x Heung-No Lee University of Pittsburgh 18

Figure 1: Maximal Ratio Diversity Reception of signal over fading channel

As depicted in the chart in Figure 1, let’s assume we have a bank of receiver antennas
available and the received signal y, in the d-th antenna, i.e.,

yy=re’%x+n, ford=1,2, ..., N, (1.25)
d =t i

We define «, :=r,e’*. There are total N, receive antennas. Consider coherent detection

of signals such that the receiver has perfect estimations of the channel’s fading
coefficients. Then, the optimal maximal ratio combining is to multiply each received
signal with the conjugate of the complex valued channel fading coefficient. Denoting
zg=a, y;, we have

zy= |rd|2x+rdej6"nd . (1.26)

We note that the sum of all z,, d=1,2, ..., N,, is a constructive addition for the
perspective of the signal component but not for the noise component. Now, by defining
z:= 30 2, it is written as
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z:= 25;1 z;= z;v;l Ir |2 X+ Z;V;l re’%n,
\—;\:‘z_/

(1.27)
= ax+2fiv;l rdeja"nd
We note that the multiplicative factor a is the sum of all channel gain squares, i.e.,
2
a=Y . (1.28)

Thus, a is Chi-square random variable with 2N, degrees of freedom.

Now, making use of our assumption that the signal x is real valued binary antipodal
{+, |E,,—\E, } , we don’t need to worry about the noise along the imaginary axis. Then,

the equivalent real-valued channel model for (1.27) becomes

z=ax+w (1.29)

where w is real-valued Gaussian ~ A (0,aN,/2). Thus, the probability of making bit error

is simply Q[E‘—/z———\/sziJ = Q[ 2:,E‘ ]
0 0

Let’s denote y:= %fito be the instantaneous SNR. Then, the average SNR, is defined as

o

SNR, = E(7) = E(a) 2. (1.30)
NO
Using the normalized version, it is
E E
R, = = S = = .
SNR, = E(y) E(a)NO N, N (1.31)

The other definition of SNR we could use is the average SNR per receive channel, i.e.,

SNR:=SNR, /N, = L (1.32)
NO

With the average SNR per channel, the binary error probability is

Q( /z"N_E] =0(~2aSNR) < exp(-a-SNR). (1.33)
8
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Making use of the un-normalized approach given in (1.7) (i.e. s* = 1/2 and 2m?* = K), the
moment generation function of Chi-square random variables with 2 N, degrees of
freedom is

[ 28, 2

1 0 m
M@= ~—CXDP Z"l
a=0™ 1t

__ 1 foNm
1-n™ p' 1-¢
1 [N, K
=—F"eXp|—

a-n" Pl }

(1.34)

This result is good for showing how performance can be varied as X is reduced down to 0
(Rayliegh fading). That is, the probability of making bit errors averaged over the
Rayleigh fading channel can be obtained by setting K = 0 of the following expression:

P,(SNR) = [ " O(/2-SNR-y) py ()ely

< |7 exp(=SNR- y) py (¥)dy
= M(t=-SNR) (1.35)
1 exp[tN,K]
a-n" 1-1 1=—SNR

1 [ONRN,KT
A+SNRYY | 1+SNR |

K

On the other hand, using the normalized approach (s= ! and m= ), the
2(K +1) 2K +1)
moment generation function is
1 1 m
M(t)=—————exp| =
© (1-£25%)""? P 52 }
(1.36)

B 1 RACS]
R T P

This result is good for showing how performance changes as X is increased to the infinity
(AWGN channel).

When K is approached to the infinity (AWGN channels), the probability of error becomes
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P,(SNR) = M (t = -SNR)
1 RACS]
A=t )7 = ]

= exp(-SNR-N, )
=exp(—SNR,).

=—SNR,K= (1.37)

1
K+

For N, =2, the Chi-square random variable has four degrees of freedom, i.e.,

a=|af +laf =52 +1F, (1.38)
where

o, =re’% fori=1,2, ... (1.39)

2
m

Again, the Ricean factor is K =—-.
s
The moment generating function for four degrees of freedom can be obtained from
(1.7) and using the un-normalized representation (such that s*> =1/2) itis
1

12K

The probability expression is again

P,(SNR) = [ " O(J2-SNR-y) py (y)dly
<[ " exp(-SNR-y) py (v)dy (1.41)
=M (t=-SNR),

except that the moment generating function is for Chi-square random variable with four
degrees of freedom. Using (1.40), we have

1 —2SNR-K
P,(SNR) < . )
2 )<(1+SNR)ZeXp[ 1+SNR ] (1.42)

Setting K = 0 for Rayleigh fading channels, we note that

, 1
P,(SNR)< —— ~ SNR2 . 1.43
2(SNR) < (1+ SNR)? (1.43)

10
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HOMEWORK EXERCISES

1. (Why use moment generating and characteristic functions?) Let X; and X, be
i.i.d. random variables. Each takes values 1, 2, 3 with a corresponding
distribution [0.3 0.4 0.3].

(a) Let Y = X + X, and obtain the distribution for Y.

(b) Obtain the characteristic function of Y.

(c¢) Obtain the distribution of Y from the characteristic function of Y.

(d) Now check if your procedure can be used to find the distribution for Y :=
Xit... + Xio. Ifyes, describe how.

2. (P(e) for Rayleigh fading) Obtain the average error probability P(e) of BPSK
transmission for Rayleigh fading channel. Assume coherent receiver. Do it for
both N, =1 and N, = 2.

(a) Obtain the pdfs of the overall channel gain of the maximal ratio combining
receiver.

(b) Use the direct integration method for average P(e) and show that your
results are consistent with (1.24) and (1.43).

3. Let P= Z: X? where X, ~ A/ (m=1,s> =1). What kind of random variable is

pP?
(a) Write its pdf.
(b) Find its mean, second moment, variance, moment generation function, and
characteristic function of P.
4. Evaluate the following integration

P = [O(\) py ey, (1.44)

at the Ricean factor K = 3, where p, (»)is the pdf of random variable Y.
Y= z;|a,.|2 and a, =(aX, + )+ j(aX,+p). X and X,are independent
Normal distributed.

5. (Diversity receiver) Consider N, =2 case shown below. In this problem, analyze
the receiver where only phase equalization is done at each branch. Obtain the

expression for P(e) averaged over the fading. Explain the difference with the
maximal ratio combining receiver. Are they the same in performance?

11
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Chi-Square Random Variables
X Py
: 1541 )
3o

1y et 1y Detectionf——
k-
1y i€

2 1,

6. (MATLAB, Ricean, Craig Identity) Suppose BPSK transmission and the maximal
ratio coherent detection at the receiver with N, number of receive antennas, and
plot the probability of bit error for Ricean fading channel with k=0, 1, 5, 10 and
for N, =1, 2, 3, as the function of average SNR per channel (0 dB ~ 30 dB). First
use the Chernoff bound and then the Craig-identity. Compare the results from the
two methods. Also, compare the result with the BPSK transmission over AWGN
channel. Comments on your results.

REFERENCES

[1] JOHN G. PROAKIS AND MASOUD SALEHI, DIGITAL COMMUNICATIONS, 5™ EDITION,
MCGRAW HILL, BOSTON, USA.
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Third Possible Class Project + Class Note

compare the method given here in this note with the new Gallager bounds for fading channel.

Reference

[1]X. Wu, H. Xiang, and C. Ling, “New Gallager Bounds in Block-Fading Channels,” IEEE Trans.
Information Theory, Feb. 2007.

® The Spherical bound given in Theorem 2 seems to be most simple. So, as a
class project, try to compare with it.

® Make note of the complexity
Read the conclusion of the paper. It would be interesting to pay attention to the
part where the authors says their method is still too complicated since they have
to evaluate the bound per distance profile base [h] and thus complexity of bound
is still very high.

® See if you can incorporate the idea learned in the class and improve the bound

in terms of complexity while not losing the tightness of the bound.

Class Note begins here.

In class, we learned that the word error probability can be expressed as the

following

w<2ai] 2w len 0

J=1

=4(h)
For MIMO fading case, the beta is the pairwise symbol error averaged over the

fading matrix, i.e,

N, N, 1 FA&ZU)
B =TIT1 exp 4 . (1.2)
n=1 m=1 1+%_/1'E’/) 1+%/1'Elj)

We now define a sequence of utility coefficients¢(), i.e.,

sir= 3 o T8

d(h)es, j=1

Then, the union bound becomes

(¢)200x Heung-No Lee 157 of 232



Lecture Note on Wireless Communications
N -1
P, sZAh(hJ d(h) . 4
h
From (4), we note that once ¢(h)is given, the union bound can be obtained easily,
However, calculation of ¢(#) using (3) is not easy because the set partition operation
according to each distance profile, i.e.,d(h) € Q,, is very complex and difficult. = Recall that
Q, is the collection of all distance profiles for a Hamming weight 4. The cardinality of ©,

grows prohibitively large when 4 approaches N/2 (and when N is large), and thus a brute-
force partitioning would take large amount of time and computation.

We solve this problem by resorting to the multinomial theorem given without a proof.

The Multinomial Theorent. Let m and n be positive integers. Let A be the set of
vectors x=(x,....x,) such that each xis a nonnegative integer and > x =m.

Then, for any real numbers p,, ...,

nt
!

m m: P X,
(p+tp) =Y ———pnr
xed XX,

In order to apply the multinomial theorem in our problem, we first consider the

following polynomial with respect to the dummy variable z,

z)= il Bz (%)

Note that this polynomial is readily computa&)le once we know the constellation map and
the Chernoff upper bound on the PEP for each IST symbol. IST symbol here implies the
internal space-time symbol. Thus, indeed the framework we have here can be extended to
space-time symbol set as well. But for single antenna case, an IST symbol set is just the
regular symbol set we know such as BPSK or 8-PSK. All we need to know is the mapping
table between binary strings and symbols.

The transmitted IST symbol is assigned to the all-zero bit string of length N,.  The j-th

IST symbol is mapped from the bit-string 5, which has weightw,.  Now write the result of

the expansion of the polynomial in the ascending power of z and consider taking the D-th

power of this polynomial. Then, the sequence of coefficients ¢(k) will appear as the

power expansion coefficients with respect to the dummy variable z, i.e.,
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@)=Y ¥ [ y )ﬁ(ﬁf’)"’

=0 a(hyee, \d(1) )55
- ©)
=2 ¢(h)2"
h=0
Making use of this result, one can obtain the expansion coefficient ¢(#) from p(z)in the

following routine:

Step-0: Define an IST symbol set and a constellation map.

Step-1: Evaluate the pairwise error probabilities g7, /=1, 2, ..., J, at a particular SNR p, .
Step-2: Obtain the Hamming weight w, of each bit-string 5, from the constellation map.
Step-3: Obtain the base polynomial y(z) by arranging the polynomial with respect to
ascending power of z. Note that the degree of the polynomial is~,. Thus, there are N, +1
polynomial coefficients, i.e., y(z)= 2””0 7z'. Let’s put them in to a vectory = [yo W be:l .
Step-4: Take the D-fold convolution of the vectory, which is of length ~,+1. The
outcome is the sequence of coefficients (¢(#),2=0,1,2,---,N) of length DN,+1=N+1. Once
the sequence of expansion coefficients (g¢(h),h=0,1,2,---,N) is known, the union bound can

be calculated readily.
Summarizing what we have so far, for the transmission of a linear (v, K) block code

with a given distance spectrum (4,) over the block Ricean fading (N, N,) MIMO channel

with the Ricean factor F,, the union upper bound on the probability of making codeword
errors is given by (4) and the sequence of expansion coefficients g(4)is obtained from the
multinomial expansion (6) and B/ given.

It should be noted that the routine provides a compact and easy-to-compute method to
obtain the performance of the concatenated coded modulation system. We note that the

multinomial expansion (6) has been the key step to reduce the complexity of the union

bound.  In addition, (6) provides the following insights: The base polynomial,

J N,
DBz = >'7,#’, is the union bound for a single IST channel usage. For a single block
j=1 w=0

channel usage, a total of N, bits are transmitted via an IST symbol. Evaluating the base

polynomial at z=1, a union upper bound on the probability of symbol error for the

(¢)200x Heung-No Lee 159 of 232



Lecture Note on Wireless Communications

transmission of a single IST symbol is obtained. The result in (6) provides a easy-to.
compute method to calculate the union upper bound on the maximum likelihood receiver for
the concatenated transmission in which there are D-consecutive IST symbols mapped from g
long block code whose block length is DN, . Thus, (6) provides information as to (1) how
the union bound for a single channel use is related to the union bound of the concatenated
system in D-consecutive channel uses, and (2) how the D-th order time-diversity can take its
effect into the overall performance.

A. Union Bounds for Multilevel/phase modulation over the AWGN channel
The result in section can be used to obtain special cases such as the results for the
independent fading and for the quasi-static fading channels by manipulating the pertinent
system parameters (by either 7; =1 or D =1 respectively).  In addition, it can be brought
down to the union bound result for the AWGN channel.

One can use alternate pdf and MGF for the Ricean variable defined earlier in our class

notes by fixing the mean of Y to be equal to 1, i.e., E(¥)=2(s* +m*)=1. Then, the MGF can

be written as

M(t) = S — exp @ . 7)
) 1)

The expression (7) is convenient for lettingF, =» and reducing our main result to the
AWGN channel case. The moment generating function becomes M (r)=exp(r) withF, =.

Then, we obtain the union bound expression for the AWGN channel by substituting

t=—%/1(” into M(r) such that we have ,Bf=exp(—'3’ /1“") where  4Y s

*

AP = (50 =5y) (5 =5, ) for a J-ary symbol set {s,,j =1,2,--,J} .

B. 8 PSK symbol set over the AWGN channel

Let us consider the 8-PSK symbol set, the eight equi-spaced symbols on the unit circle. The
symbols are named ass,,, s, , ... andsg, taking the counter clock wise turn starting from the

first symbol ats, =1. The Gray map is used such that (000), (001), (011), (010), (110), (111), (101)
and (100) are given for the eight signals respectively. Thus / = 8, and N, =log,(J)=3
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[bits/symbol]. ~ We let s, =5, =1 (000). The received signal is modeled as r,=p,s,+z,
where z, is zero mean and unit variance complex Gaussian with independent real and imaginary
part. There are four distinct symbol distances from s, =1 to the rest of 7 symbols. Thus, there
are four 2's such as 05858, 2.0, 34142 and 4.0. There are four corresponding distinct 8,°.

5.858

Assuming p, =10 (10dB), they areexp(-252), exp(—Z), exp(-!), andexp(—%).

Numerical Evaluation Results Compared with Simulation

8PSK gray map over AWGN
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/
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Figure 1:  Union Bound on Word Error Probability for 8 PSK modulation over the AWGN
channel. Numbers shown inside the figure are the block lengths of pertinent (3, 6) Gallager
codes. Union bounds are shown as the dashed lines; while the simulation results for block

length 126, 180, 258 and 1032 are shown as solid lines with the plotting symbols.
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4PSK Alamouti gray map over (Nt=2, Nr=2) MIMO Fading Channel
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Figure 2: Union Bound on Word Error Probability for 4 PSK Alamouti block code over the (2,
2) MIMO block fading channel. Numbers shown inside the figure are the block lengths of
pertinent (3, 6) Gallager codes. Union bounds are shown as the dashed lines; while the
simulation results for block length 120, 180, 252 and 1032 are shown as solid lines with the
plotting symbols.
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Chapter

Union Bounds for MIMO Channels

The use of turbo-like codes—such as the turbo codes and the low-density parity-check codes--over multi-input
multi-output (MIMO) channels has recently gained significant interests from the communications and coding
theory communities. The turbo-like code takes the role of the outer code while the space-time block code does
that of the inner code. The outer linear block code transforms into the sequence of short internal space-time
blocks according to a fixed constellation mapping rule. The soft-input soft-output decoder can be combined
with a constellation de-mapper which generates aposteriori log-likelihood-ratios for turbo-iterations. This
transceiver scheme has shown promising performance results. In this chapter, a novel performance evaluation
framework based on the maximum-likelihood union-bound is proposed for the analysis of the concatenated
coding scheme. The analysis is combinatorial. The codebook is decomposed into mutually exclusive subsets in
such a manner that the pairwise error probability for any codeword in the subset is identically the same. The
union bound is then obtained as the sum of all distinct pairwise error probabilities each of which is weighted by
the cardinality of the subset. A union bound in its basic form may be useless if too difficult to be evaluated,
especially for long block codes; the idea of using polynomial expansion is introduced and the union bound is
simplified into a form evaluated efficiently. In addition, the random coding error exponent is obtained for fully
random outer block codes. System simulation results and the numerical evaluations of the bounds are
compared for different channel scenarios as well as for different space-time transmission schemes. The results
indicate that the derived bounds are useful as benchmarking tools for the practical turbo-iterative decoding and
detection receiver.
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CHAPTER PREREQUISITE
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The paper by Telatar on MIMO capacity

2. The paper by Tarokh et al on the calculation of pairwise error probabilities over
fading channels.

The paper by Alamouti for transmit diversity

4. The paper by Hassibi and Hochwald on the linear dispersion code

w
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[. INTRODUCTION

Recently the low-density parity-check (LDPC) codes and the turbo-codes have been
proposed as the outer code of a concatenated scheme which drives space-time block
transmissions as the inner code for multi-input multi-output (MIMO) systems [i, ii, iii].
One of the most desirable characteristics of the LDPC or the turbo-like codes is that the
complexity of the decoder grows only linearly to the length of the code, thanks to the
message-passing decoding-algorithm. This advantage can be utilized to attain a capacity
approaching performance in many kinds of channels by letting the block length of the
code grow toward infinity. As reported in the literature [iv], the performance of the
LDPC or turbo codes approaches the capacity limit within a fractional dB at the block
length of more than a few hundred thousands with the binary modulation over the
AWGN channels. When employed for the MIMO channels, the use of the outer block
code, via the soft-input soft-output message passing decoder on the Tanner code-graph,
can be used as means to exploit the diversity benefit available in space- and time-domains
because a codeword, or the space-time transmitted matrix mapped from it, is spread out
in all directions. As the result, if we let the length of the outer code grow to infinity, the
performance of the concatenated scheme is expected to be brought very close to the
MIMO channel capacity.

On the other hand, there are practical reasons to limit the length of the outer code. For
example, in JEEE 802.11n standardization activities (see [v] for example), the length of
the binary LDPC code is proposed to be about two thousand. A simple calculation would
show that with the maximum clock speed of several hundred MHz (assuming state-of-
the-art VLSI systems), the desired transmission speed of a few hundred mega bit-per-
second is not an easy objective to be met. Due to decoding delay, it seems that the
implementation of the receiver is quite a challenging task already at the length of two
thousand.  This implies that the performance evaluation of a moderate length
concatenated block code is to be of our interest for high speed MIMO transmission
applications. An accurate performance bound, therefore, by which system simulation

results can be contrasted, shall serve as an invaluable tool. The performance analysis
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based on the constraint channel-capacity [i] can serve as the ultimate bound; but at the
block length of a few thousands they are usually too loose to be useful. The maximum
likelihood union bounds obtained in the chapter scales well with the block length. The
other motivation for union bound is that we may be able to use them as an optimization
tool for designing a better performing space-time block code or concatenated coding
scheme.

In this chapter, we study a set of maximum likelihood (ML) union bound analysis
techniques, tailored out for each class of MIMO fading channels. In [vi], the authors have
introduced the union-bound based ML upper bounds on BPSK modulated MIMO
systems over independently fading channels: the LDPC code is used as the outer code,
and the orthogonal space-time block codes (OSTBC) [vii] and the direct-transmission
scheme (or better known as the V-BLAST transmission scheme [viii]) are compared as
the inner coding method. In this chapter, we generalize the analysis framework so that
different space-time block transmission schemes, such as OSTBC, V-BLAST
transmissions [viii] and Linear Dispersion (LD) codes [ix ], can be uniformly
accommodated. In addition, we extend the union bound analysis for block- and quasi-

static fading channels.
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Concatenated Coding Scheme for MIMO Transmission
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Figure 1: Transmission of concatenated code
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The union bound in its basic form is the summation of every pairwise error probability
(PEP). Using the distance spectrum [x], it can be simplified as the sum of every distinct
PEP each of which is weighted by a codeword multiplicity. The multiplicity is the
number of the codewords (pairwise error events) in a codebook that result in an identical
PEP. For BPSK modulated coding system over AWGN channels, for example, each
distinct pairwise error event can be delineated by Hamming distance between pairs of
codewords. For linear codes, a codeword multiplicity is simply the number of codewords
with a certain Hamming weight. Note that the straightforward summation of all pairwise
error probabilities shall be computationally burdensome, even for the block length of a
thousand; a distance-spectrum based union-bound would be easier to evaluate, even for a
block length approaching infinity.

A similar but a careful approach should be taken to develop a computationally feasible
union bound expression for the concatenated coding scheme for the MIMO system. The
overall transmission scheme is depicted in Figure 1. The constellation mapping from the
binary outer codeword to the space-time word is one-to-one correspondent. The key step
is thus to partition the codebook into subsets of outer codewords. In each subset, the
pairwise error event must lead to an identical pairwise error probability. Since the
pairwise error probability for the MIMO system is due to the Euclidean distance of the
pair of space-time words, knowledge of the distance spectrum on the binary code alone is
not sufficient.

It proves to be that the outer codebook can be partitioned further, in addition to the one
based on the Hamming weight. The cardinalities of the partitioned Sets are not easily
computable for a specific outer codebook. Thus, we resort to an ensemble average over
all codebooks. Then, the calculation of codeword multiplicities becomes combinatorial
problems by making use of the statistical property (see Theorem I) of the ensemble. An
analogous partition for the space-time codebook can be conducted taking into account the
one-to-one correspondence relationship between the outer code and the space-time code.

Union bound methods for fading channels have been studied extensively in the past
[xi] and séveral have been introduced recently for space-time block codes. Some have
focused on short space-time block codes (for example see the most recent one [xv]) and

others do on space-time trellis codes [xii, xiii, xiv]. For trellis codes, the idea of
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truncation to a certain maximum number of pairwise error terms is used to obtain a
computationally efficient bound. For short space-time block codes, maximum likelihood
detection is manageable; thus computational efficiency needs not be of a focus either. In
addition, one can exploit the availability of the geometric information of the space-time
block code, and apply more sophisticated bounding techniques such as the Bonferroni-
type bounds to obtain tight upper- and lower-bounds [xv].

We take the perspective of making use of a powerful outer block code to interface the
MIMO block-channel-uses. Depending on the statistical information gathered on the
fading channel, one may adaptively choose a certain type of space-time block code. For
the block fading channel, say with a coherent time of 7 channel uses, one may use a
rate-optimized space-time code with dimension [N, x 7p]. A space-time block code
which is a collection of J-ary [N, x Tp] space-time block matrices can then be designed
with the objective of maximizing the mutual information theoretic channel capacity for a
single block-channel-use (see [ix] for example). In this setting, the role of the outer block
code, which is long enough to cover many independent block-channel-uses, can be used
as a means to achieve a coding performance close to the channel capacity.

The rest of the chapter is organized as follows. In Section II, the system model is
described. The ensemble of outer code and its statistical properties are developed in
Section III. The union bound on the block fading channel is given in Section IV. Union
bound on independent fading and slow fading cases are given in Section V. In section VI,
the turbo-iterative detection and decoding algorithm is described. In Section VII,
simulation results and numerical evaluation of the bounds are compared. Finally, we

conclude in Section V.
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II. SYSTEM OF INTEREST

Consider the MIMO system with N-transmit and N,-receive antennas, as illustrated in
Figure 1. A sequence u of K information bits is encoded into a binary codeword ¢ of
length N by the systematic encoder. Let R =k /N be the rate of the block code. A
codeword c¢ of length N is mapped onto a [N, x 7] space-time transmission matrix X in a
one-to-one correspondent relationship. 7 is the total number of channel uses for a
codeword to be transmitted. Compared to the whole space-time codeword, we have
shorter space-time symbol-matrices, named here as the Internal Space-Time (IST)
codewords. We will take two slightly different approaches to describe the mapping
relationship from the codeword c¢ to the space-time transmission matrix X.

The first approach goes as follows: Taking N, coded bits at a time and mapping them
to a channel-symbol out of an M-ary digital constellation ( A =2" ), we can transform the
codeword into a sequence of channel-symbols of length N/N. (which is assumed an
integer without loss of generality). Then, we put symbols into [N, x 7p] (internal space-
time) IST symbol-matrices each of which carries N,7p M-ary channel-symbols; and thus
each IST symbol-matrix carries N.V,Tp coded bits (R.N.N,Tp message bits). Thus, we
can consider an IST matrix-constellation of sizeJ = 2""" .

In the second approach, we have a set of [V, x Tp] IST symbol-matrices of size J—a
signal-matrix constellation. Each [N, x Tp] symbol-matrix carries N, :=log,(J)number of
bits. The second approach is more simple and general.

The second approach is more suitable to model the linear dispersion codes and
orthogonal space-time block codes.

We use the notation s, j =1, 2, ..., J, to denote the J-ary [N, xTp] IST codeword.

There are a total of D IST words within a space-time codeword X:=[S; S, ... Sp],
indexed by d =1, 2, ..., D = T/ Tp (assumed an integer WLOG). We use S, as a time-

parameterized value-holder for an IST word: the d-th IST word S, takes a value s, from

the J-ary IST constellation.
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Assume each ST codeword X is selected equi-probably and transmitted over the flat
fading MIMO channel. Then, the [, x Tp] receive signal R; due to the d" IST block
transmission is given by

R,=\pHS,+Z,, d=12,--.D 0))
where p, = p,R/M and p, = E,/N, are the symbol-energy and the bit-energy to noise-power-
spectral-density ratios respectively; R=DN,R/T is the transmission rate in bits-per-channel-
use (bpcu); £, is the information bit energy; N,/2 is the two-sided power-spectral-density
of the white Gaussian noise present at the receiver. Z, denotes the [N, x 7] noise matrix
each of whose entry is mutually-independent complex additive-white-Gaussian noise

with zero mean and variance 0.5 per dimension. H, = {«;,},, denotes the [V, x N/] fading

matrix. Fading coefficients «;, for different row and column indices » and m are

mutually independent identical Ricean distributed. The channel matrix is held fixed
during each block of 7, channel uses. The block channels parameterized by d are
mutually independent.

For slow fading channel, the fading channel matrix is held fixed throughout all 4. For

fast (independent) fading channel, each and every channel use, we have independent

fading.
The probability density function of any of the fading gain magnitude o :=|o/, | is given
by
P.(@)=2acexp(-a’ -F,)1,(2a\F,), a>0 ?)

where [,(-) is the zeroth-order modified Bessel function of the first kind and F, is the

Ricean factor. The moment generation function (MGF) associated with * is given by

o,
M(s):l—_l—sexp(Fr ﬁ) 3)

III.  ENSEMBLE OF OUTER CODES
The problem of codeword enumeration, for a given one-to-one correspondence
relationship, from the block code to the space-time code needs to be solved for the
derivation of the union bound on the concatenated code. We start with the assumption

that the distance spectrum of the outer code is available (see [xvi]) and attempt to come
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up with something equivalent to that for the space-time code. For this, we first

investigate the statistical properties of the following outer block codes:

o The ensembles of LDPC codes, each of which is distinctively specified by a set of
fixed parameters--block length L, variable- and check-node degree distributions. Note
that this set-up can be useful for defining an ensemble for both the Gallager codes [xvii]
and the irregular codes [xviii, xix].

e The ensembles of concatenated turbo codes (or any other linear block code), each generated by a

specific random interleaver.

e The ensemble of fully random block codes, defined by the fixed block length » and code rate

R.=KIN.

Now consider an ensemble C of codes. Assume any code C,, in the ensemble C is
selectable with equal probability, i.e.

Pr(C,

 is selected ) =|C|™, for vC,, eC @)

where we use |®| to denote the cardinality of the set. For a fully random (¥, K) block

code, we note |(C|=(§:) Let us denote the average distance spectrum of a code in the

ensemble as {4,}. That is, 4, is the number of codewords of weight 4, averaged over all

codes in the ensemble.

For the interested ensembles given above, We have the following statistical properties summarized in
the following theorem:

Theorem-I: If Ay, > 0 for a certain h, each of the (j" ) distinct binary sequences of length

N and weight h is a valid codeword in a certain number of codes in the ensemble. The
probability of any of these binary sequences of length N appearing in any randomly

selected code C,, as an element codeword is equal.

‘sel

Proof: Both LDPC and turbo codes are /inear block codes. Hence both codes can be
completely defined by their associated parity-check matrices. Instead of the ensemble €
of codes, we may equivalently consider the corresponding ensemble # of parity-check
matrices without loss of generality.

In case of LDPC codes, it is clear the ensemble # is closed under column permutation:

any column permutation of a particular parity-check matrix randomly selected from
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produces another matrix belongs to it (any column permutation does not change the
variable- and the check-node degree distributions). The same statement applies to any
ensemble of concatenated codes equipped with the random interleaver which plays the
role of arbitrarily permuting the parity-check matrix in a column wise manner.

Ay > 0 means that at least one codeword, say c; 1, of weight 4 exists in a certain number
of codes in the ensemble. Assume ¢, is an arbitrary permutation of ¢;;. That is, ¢, =
z(cn1), where z(.) is the associated column permutation pattern. Denote H, and H, as the

sets of all parity-check matrices in # that ¢, and ¢y, satisfy, respectively,
H,:={H|H e M, He}, =0} 5)
H,={H|H e M, He], =0} (6)
The cardinality | M, | of M is a positive integer. Based on the statement given in the last
paragraph, it is clear there is a one-to-one correspondence between M, and H,, i.e.
H, ={z(H)|H eH,} @)
Therefore, N,:= |H,| = || > 0. Since each of the (}) binary sequences of weight /

can be regarded as a permutation ¢;, of ¢y, the first statement of the theorem is proved.
With the assumption in (4), the probability for each ¢, of these sequences to be included

in the randomly selected code C,, is the same (i.e. equal probability) and given by

Pr(x,,eC

sel

)=N, | 8)

END

For the ensemble of fully random codes, it can be shown that a similar proof can be
given although the codes are generally not linear.

Theorem-I is essential for calculation of a “distance profile” of the ST code in the
following manner.

Consider the binary sequence of length N as a serial concatenation of a number D of
sub-sequences of length L/D=N, (Assumed integer WLOG). We denote all J = 2"
distinct sub-sequences as b, by, ... , by), their weights as wy, wy, ..., w,, and the
numbers of their appearances in the whole sequence as di, d,, ..., dj, respectively. Note

from the definition that
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d, €{0,1,2,...,D} and idj =D. ®

We may collect these numbers in an array d = (d), &, ..., dj) and name it as the
pairwise distance profile (PDP). Then, we want to compute the number of distinct
codewords which possess the same PDP d = (d), d», ..., d)) in a code, which is a difficult
task if we specify a particular code. An easier approach is to have the number averaged
over the code ensemble.

We call this 4,,, as compared to the average number of codewords 4, with

Hamming weight A.
Note that, all codewords that have the same PDP have the same Hamming weight 4 =
AW
According to Theorem-I and resorting to the combinatorial techniques, the

fraction of words among all possible words of weight # which have the PDP d(#) is given
by

M*( D
Pr(c has a metric d|c is of weight ) = ( \ ) (d(h)) s (10)

where (Zx,)é( Ix, jz(ZX.)! denotes the multinomial coefficient. The collection of all
Xo Xna Ix

x Xy, X,

possible combinations of d contributing to a Hamming weight # can be defined as

Q,: {d(h)deOlz D}Zd DZdw—} 11)

NY'(D
Note, it can be verified that Zmﬂ a4l 1.

From (10), the average number 4, ,, is given by,

wesl(8)

We note that d(/) can be used as a criterion to further divide the codebook in addition

to the partition made according to the Hamming weight.
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IV. THE UNION BOUND ON THE BLOCK FADING CHANNEL

We will consider the system depicted in Figure 1. We first evaluate the union bound over the general
block fading channel model. The fast (independent) and quasi-static fading channels are special cases of the

block fading channel model.

A. The Pairwise Error Probability Averaged over Channel

We assume perfect channel state information, H, available at the receiver. Then, the
pairwise error probability between any two space-time codewords X =[S; S, ... Sp] and

=[S"1 S'; ... S'p] conditioned on a channel realization is given by
P(X—>X’|H)Sexp(—dz (X,X’)%), (13)
where d(X,X’) is the Euclidean distance between X and X'. It is expressed as

d*(X,X')=

z nm (t)( "'1)‘
; (14)

where in the first equation X, and X', are the m” row and /" column element of X and

X' respectively; «,, (¢) is the fading gain from the N, -th transmit to the N,-th receive

antenna during the #-th channel use. In the second equation, the assumption used is that in

the block fading case «,, (¢) is held fixed during the transmission period of a single IST
block, i.e. during the 7p channeluses. Thatis, «,, (¢)=«f, fort=(d-1)Ta+ 1, (d-1)Ta +

2, ..., dT,. S,,, and S',, , represent the m-th row and #-th column element of the d-th

dm .t dm,t

block S;and S’y in X and X' respectively.

Denoting ®,, = (o,

n,1o%n 257"

.y, ), we can rewrite (14) in a matrix form,

N,

d)d,nAdd)g,n (15)
=1

& (XX)=Y

d=1n
where (+)" denotes the conjugate transpose, A, is a [N, X N;] matrix in which the pth-row
and ¢™-column entry is obtained by 4, - (8,-S",)(s,-s")" -

Consider the eigenvalue decompositiona, = U,A,U?, where U, is the associated

d >

unitary matrix and A, is a diagonal matrix whose diagonal terms are the eigenvalues of
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Aa. Let’s have the eigenvalues be denoted as, 47 | for » = 12, ..., M. Denoting

®,,U, = (70, Van7nn), WE have

33 (0,04, (2,0,
d;ln:] (16)
=2

2
}/m,n .

d=1n=1m=1

Since Uy is a unitary matrix and @, ,'s are independent matrices with independent entries
al,, 7a,'s have the same probability distributions as those of o, 's given in Eq. (2) and

they are independent for different m, n and d.

Substituting (16) into (13) and averaging it over the channel H (i.e. »,'s), we have the

pairwise error probability,

P (X > X')sﬁﬁﬁMR [-%,{;‘,J

d=1 n=1 m=1
D N N, B2
~TITIT[——exp| -—4 17)
d=1 n=1 m=1 Py 14 1+&A"
4 m 4 m

The first step is based on the MGF-based approach in [xx]. Note that P* (S, - S',) is

defined for the pairwise error probability between IST codewords Syand S’;. Note that

we use the superscript BL to denote the block fading case.

B. The Worst Test IST Symbol and Further Upper Bound

Our union bound is an average over an ensemble of codebooks. All codes in the
ensemble are linear and thus any code contains the all-zero codeword. While the outer
code may be linear, however, the space-time code is not. Thus, in general a union bound
for the space-time code should be evaluated in an average sense such that each space-
time codeword should be used once as the test codeword. Since such an option is too
costly—there are 2* different codewords, we circumvent this problem by resorting to a
further upper bound which is based upon the transmission of a selected test space-time
codeword composed of the worst IST symbols.

An upper bound to the IST word error probability is given by
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IST
P <E, [ZP(S“’ -, j))}
J#i

J
<max ) P(s, —>s,) =max y P(s,, —s,)~1
=

S ai S

a8)

where the first inequality is merely due to the union bound; E, [-] is the expectation over
the equi-probable selection of one ISI codeword s, as the test word, and the last step

follows from P(s;, —s,)=1. Let us denote the argument of the maximum operation in the

)

last equation as sg), i.e.,

S, =arg trsxﬁngBL (s6y=>50) - (19)
Hence, s(+ is the IST codeword that contributes to the worst summation of IST pairwise
error probabilities.
Now, we move on to the union bound for the ST code. Making use of a specific

space-time word X, we can have an upper bound to the word error probability as

P, <E, [\Z;( PE(X - x')]s (Z;P“(x' -X), (20)
where the first inequality is from the union bound argument and Ex[*] is the expectation
over the equi-probable selection of transmitted codeword X. The second inequality holds
as long as X" is selected to be one of the codewords which make the sum of the pairwise
error probabilities be larger than the average. It is reasonable for us to select X' =s * S

¢) --- S(»] and use this for the union bound throughout this chapter.

C. The Pairwise Distance Profile

Due to a large population size of the outer block code, a straightforward evaluation of
(20) should be avoided. For this, we want to enumerate all pairwise error events and
count the multiplicities of each and every event which leads to the same pairwise error
probability. We then use a polynomial representation of the union bound and come up
with the final expression for the union bound.

First, let us count the number d; of IST pairs among the total of D IST pairs which is

characterized by a transition from the IST symbol s () to the j-th IST symbol s (. A

collection of these numbers in an array, d = [di &, ... dj], will be named as the Pairwise

Distance Profile (PDP). It keeps the record of the number of occurrences of all possible
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IST pairs, i.e. (s¢+), S¢)) for j=0,1,2, ..., J-1, in a pair of space-time words (X*, X). Recall
thatJ =2" is the size of the IST constellation.

Suppose X" is mapped from the all-zero codeword. Let us denote yq(») as the set of all
ST codewords X having the same distance profile d(%) from X". The distance spectrum of
the ST code thus can be defined as the set {4ag} of cardinalities, i.e., Aaw:=| xam)-

Denote the pre-image of ya(;) in the outer code as Cy(sy; they have the same cardinality.
Cacn is actually the set of all binary outer codewords with the same metric d(%). The
cardinality of Ca() (averaged over the code ensemble) is therefore given by (12), so is that

of xaw)-
Let’s use Xg¢;) to denote any erroneous word X which renders a particular PDP d(/)
from X'
Therefore, we can write the pairwise error probability between X" and any other

EST codewords X4 of distance metric d in the following way

PP (X" > X)) < ﬁP‘” (s0y>8,)
= 1)

J s
- HPBL(SP) -> s(j))d] = H('B;n )dj
yE

j=1
where in the second step we group like terms under power exponent d;. Note using (17)
we denote

BL .
B =P (s, >

wov FLeay 22)
=[——ep|—)—
n=l m=l | 4 K5 20U 1+ 20
2. 36 o 4

where 4, m=1, 2, ..., N, are the eigenvalues of (s., —s; )(s., -5, S

Example-1: The pairwise error probability, conditioned up on a channel realization,
between any two space-time codewords depends in general on the Euclidean distance of
the two space-time cdewords at the receive signal space. Having the pairwise error
probabilities averaged over a block fading channel, they depend on the so-called column-
distance profile of the doifference matrix of the two space-time codewords. This will be
illustrated in detail in this example and the notion of the distance spectrum for the

concatenated coding scheme will be established.
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Consider a two-transmit antenna case and assume independent fading in each channel
use. Thus, the block length of inner space-time block code is 1. Assume the binary block
code is of length 10. Each codeword of length 10 is transformed into a 2 x 5 space-time
matrix via the binary phase shift keying (BPSK) modulation. For the transmission of an

entire binary codeword, therefore, the independent MIMO fading channel should be used

five times.
Suppose the one-to-one Binary codewords ST codewords
. . The two pairwise
correspondent relationship > errors are
different in ST
between the binary codeword and codewords, while
Ty <> they are the same
the space-time codeword shown in gpgg G wih
. dulation.
the figure. The all-zero binary 0011000000] <> moduation

codeword is mapped to the all -1

space-time codeword matrix. Also indicated in the figure are the two space-time
codewords for the two weight-2 binary codewords. Assume that the all-zero codeword is
sent at the transmitter, and consider the two pairwise error events. Each event leads to a
different pairwise error probability in general, while exact difference dependent upon the
exact channel realization, because the Euclidean distances at the receive signal space for
the two cases are different. Averaging them over the ensemble of the fading channel [30,
48, 52, 54], unconditional pairwise error probabilities are obtained. From inspection of
the pairwise error probabilities, we note that the crucial information comes from
the columns of the pairwise difference matrix X(c,)-X(c,).

Now let us consider the five columns of the difference matrix for the two pairwise error
events. We note that there are only three kinds of columns. The first is an all-zero
column vector. The second is that there is a single difference in a column such that it is
either (+2, 0)' or (0, +2). The third kind is that there are two differences in a column; it is
(+2, +2). Thus, there are three kinds of per-column Euclidean distances, 0 (no
difference), 2° (a single difference), and 2* + 22 (two differences).

Among all weight-2 error events, the first pairwise error shown in the figure represents
all such error events that both differences occur in the same column. The second
pairwise error represents all such error events that both differences occurred in a single

column.
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In order to systematize the approach we introduce a column count variable g; for each
weight i = 0, 1, ..., N, (the number N, of transmit antennas is 2 in this example). The
variable g; stores the count-up of the number of columns in the difference matrix for each
weight i. We can store all column count variables into a column count vector q and call
it column count vector. For example, the column count vector for weight-2 codewords
can be written as q(2) := [go ¢1 ¢2]. The number in the parenthesis is used to denote the
Hamming weight. With this convention, the column counter vector for the first error
event is [3 2 0]. It is [4 0 1] for the second case. Note that the sum has to be 5, the total
number of columns. Collectively, we can call the set of vectors as column count profile
for weight 2. Then, the pairwise errors due to Hamming weight 2 codewords can be

written as

(5] (o)) ~4(5) o))
4, 4 +4, _
2 [320]) {1+ p, 2 [401]){1+2p,

Distance Profile for pairwise error due to Distance Profile for
the column count [3 2 0] such a column count the column count [4 0 1]

where we note that (10)=4( > J+( > J (they are the binomial and multinomial
2 [320]) \[401]

coefficients) and thus all combinations for weight 2 are accounted for. The interpretation
of this goes as follows: The distance profiles for each column count vector can be
obtained by ensemble averaging over all codes. There are (10 choose 2) words in the set
of binary words of length 10. Two positional differences can be selected randomly out of
the ten positions. Then, what is the probability that both differences end up in any

10

column? It’s ( 32007 *

) 4( ’ ) where the multinomial coefficient ( ’
[320) [

) is computed as 21
320]

2
In addition, we note that all unconditional pairwise error probabilities belong to the same
column count vector is exactly the same.

We now conclude our set-partitioning example for weight-2. This example can be
extended to any other weight, and finally union bound is obtained by collecting all the
terms with weights.

End of Example-1

Example-2 (Set partitioning for weight 4 and beyond)
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Again, let’s assume there are five columns and N=N,=2. Find the set-partitioning column
profiles for weight 4, 6, 8, and so on. Describe a pseudo algorithm to find them
systematically.

End of Example-2

D. Union Bound in a Numerically Efficient Form

Now the main result of this chapter is derived.
Making use of the result (21) and (17) into (20), the union bound can be written as,

P, <Y PP(X > X),

X=X"

;o 24)
= Z 2 Ad(th ('Bj ) :
h d(h)eQ, =1
Then, making use of the combinatorial result (12), the R.H.S. of (24) can be rewritten
M D q,
r=3aly) 2 (o 167)
h d(heQy, Jj=1 (25)

=2Ahm (h),

where the second line is simply from the definition of ¢(4), i.e.

shy= 3 (da )jﬁ( oy ©6)

d(heq, j=1

Recalling that , is the collection of all pairwise distance profiles with the Hamming
weight 4, the coefficient ¢(#) can be efficiently calculated by making use of the

following power expansion. That is, we utilize a dummy variable z in the following

manner

BL_w S D\ BL\% _h
[Zﬂ' Zj) 2. (d(h)jl—[(ﬂ, )’z
j=1 h=0 d(h)eQ, J=1 (27)

N
=Y 4,2
=0

>

Using (27), one can find a way to readily calculate the expansion coefficient ¢(k) . We

suggest the following approach: First, evaluate the polynomial coefficients inside the
parenthesis of the L.H.S. of (27). Second, arrange the coefficients into a sequence of

increasing power index on the utility variable z. The length of the sequence is N, +1 such

thatthere are -=°, -', ..., and - because w; is the Hamming weight of a binary string of
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length Ny. Third, take the D-fold convolution of the ordered sequence of length N, +1.
The outcome of the D-fold convolution is the coefficient sequence(4(k),h=0,1,2,---,N) of
length DN, +1=N +1.

Now we can summarize our main result in the following theorem.

Theorem-I1: For the transmission of a linear (N, K) block code with a given distance

spectrum (4,) over the block Ricean fading (N;, N;) MIMO channel with the Ricean

factor F,, the union upper bound on the probability of making codeword errors is given

by
v (N
rs3() ) aem (28)
h=1
D)y 8L\ % BL o o
where g(h)= (d)H(B’ )" and p* is given by
deQ, Jj=1
N, N, 1 E.&i,;ﬂ
B =T1I1 exp 4 . 29)
n=1 m=1 1_,_%,1;}1) 1+%/1’flﬁ

m

F, is the Ricean factor and 29 , for j=1,2,....J, are the eigenvalues of the
. H
matrix A, =(s,=s,)(8 =) -

The bound on the codeword error (28) can be extended to the bound on the bit error

probability by replacing 4, with 4,

PO
4, = ;E Am,h (30)

where A4, is the number of the codewords with input weight w and output weight 4. For

the ensembles interested in this chapter, (30) can be simplified as (see Appendix for proof)

4=y, €D)
L
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V. UNION BOUNDS ON INDEPENDENT, QUASI-STATIC FADING, AND

RANDOM CODING CASES

In this section, we extend the main result to independent and quasi-static fading

channels, as well as for the random coding case.

A. Fast (Independent) Fading Case

We now focus on the concatenated code over the fast (independent) fading case. The
channel model given in (1) is modified a little bit to accommodate the independent fading
even within the transmission of an IST symbol-matrix, ¢ = 1, 2, ..., Tp. Stacking the
column of the matrix Ry, and similarly for those of others, S, and Z,, into a single column,
we first obtain rs s; and z; with dimension [N,7p x 1], [N.Tp x 1] and [N,Tp x 1]
respectively. Then, we can transform the input-output relationship in to the following
equation:

I, =\//_):fldsd+zd, (32)

where we define the [N,Tp x N,Tp] matrix H, as a block diagonal matrix, i.e.,

(33)
0 H,,

Each matrix H,,along the diagonal is the channel at the #-th time epoch, for =1, 2, ...,
Tp; they are mutually independent; 0 denotes the [N, x Tp] matrix with the elements of
zeros. This input-output relationship can be used for the derivation of the union bound
for independent fading case, as well as in the description of MIMO detection and
decoding operation given in section VI.B.

Each column of an IST symbol-matrix undergoes an independent MIMO fading
channel. Thus, we note that any J-ary [V, x Tp] symbol-matrix is composed of 7
columns, i.e.

$;) =[50 Sip2 Sipm, 1 34)

for j=1,2,..., J.
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We first consider a single transmission of IST symbol-matrix. The pairwise error

probability from the symbol-matrix s+ to s(; is given by,

E&s -
s ) —>S) ﬁ(l+—|s(.,, s”,|) exp[—N 4 1

2
(G su)l
T f] (35)
i s ,|
o

1+2]s
4

ot

= ﬂ,F
where s+ is obtained from (19). As usual, we assume each of the J-ary IST symbols, s (1),
S @) ---» S (), is equally likely selectable for transmission. Then, the pairwise error
probability between any two ST codewords X' = [s¢)S(+)...sx] and X =[S;S,... Sp]is
given by,
P —)X)sﬁPF(s(.) >8,)- (36)
As was done in previous section, we can decompose the R.H.S. of (36) with respect to the

pairwise distance profile d. ~Then, the pairwise error probability between X* and any

word Xg(») with PDP d is,

Z PX’ —)Xd(l))<l_[P(s(1_)s(/)) ’ _HﬁFd €0

a2

by grouping the like terms in (36) under power exponent d,.
Now the fast fading result can be summarized in the following corollary:
Corollary-1: For the transmission of a linear (N, K) block code with distance spectrum

Ay, over the fast (independent) Ricean fading (N, Ny) MIMO channel with the Ricean

factor F,, the union upper bound on the probability of making codeword errors is given

P, szm Ad, (38)

where each @y, is the coefficient of the polynomial expansion,

by

J Lo
(zﬁjpzwj) =§¢h2h . That iS, ¢h' Z (d(h)]HﬂF.;

j=1 d(h)eqy,
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B. The Quasi-Static Fading case

In the case of quasi-static Ricean fading, the channel model in (1) can be used with a
modification that the channel matrix H, is held fixed throughout the entire transmission
period of a space-time codeword, i.e., Hy = H, = ... = Hp. For this channel, the pairwise
error probability between X = [s) S¢+) ... S¢»] and other ST codeword can be obtained as

(see [5] for details),

N, F,E‘—/l

. N 1
ps (x - X, ) <TIT1 Sexp| - ;" (39)
n=1 m=1 1+Ts/1m 1+Tsﬂ'm

where 4, 's are the eigenvalues of A = BB” where B is the difference matrix, i.e.,
B:=X"-X,, . The R.H.S. of (39) satisfies the following property.

Lemma-1: The matrix A are determined completely by the pairwise distance
profile d of Xap).

Proof: It is sufficient to prove that A; = (X*- X)) (X' X7 is equal to Ay = (X*- X5)
(X"- X»)" where X;and X; are any two matrices which produce the same PDP d when
compared with X". In such a case, X; and X; can be regarded as a block permutation of
each other. By the block permutation, we mean the permutation of the IST blocks
within a ST codeword. Analogously, the difference matrix (X"~ X)) is a block
permutation of (X*— X3). Therefore, A, = A;. END

As an immediate result of Lemma-1, we note that the sets of eigenvalues of A and A,
are exactly the same, and thus the pairwise error probabilities with respect to A; and A;
are exactly the same. From this, we note that the pairwise error probability is determined
completely by the pairwise distance profile d of Xgp). This implies that for each distinct
PDF d(h) there is a distinct set of eigenvalues of matrix (X'-X,,)(X"-X d(h))ﬁ .

Similarly to the block fading case, therefore, we can write the upper bound in the
following way:

Corollary-2: For the transmission of a linear (N, K) block code with distance spectrum
Ay over the quasi-static Ricean fading (N, N;) MIMO channel with the Ricean factor F,,

the union upper bound on the probability of making the codeword error is given by,
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v NY' D SL oy *
i SZ:‘A"(h) 2 [d(h))PL(X = Xaw) (“0)

aneq,
and an upper bound on the ST bit error probability is given by replacing Ay in with A’y in
3.

Unlike fast and block fading cases, the idea of using polynomial expansion cannot be
applied here and thus (40) cannot be simplified any further. The straightforward and

direct way is to enumerate all elements in the set Q,'s and evaluate the bound given in

(40). This approach is not in desirable form because of high computational complexity.
Thus, it remains to be seen as a future task to find an efficient way to proceed with the
current expression (40).

In addition, the union bounds for quasi-static fading case may produce a loose bound in
its current form, especially for a small number of receiver antennas. The pairwise error
probability for a particular PDP d(%) would be dominated by the term of the largest

eigenvalue, such as

N, Fr_4“ m N 1 " a4

S exp| - ~[1 exp > , 41)
netmet 4 £ g 14800 | 14 Le g 1+£5 4,

4 4 4 4

where A :=max{i,,m=12,.,N,}. For Rayleigh fading cases, it can be approximated as

a +%A)“"' ; note that the order of the power-law decreasing PEP is only ~,. This rate of

decrease may not be fast enough to suppress the influence of the spectral component 4,
in the product. Thus, another interesting research issue remained as a future task is to
come up with a tight bounding technique for the qausi-static fading channels. One
feasible idea is to apply the Fano-Gallager’s tight bounding technique to the

instantaneous signal-to-noise ratio, as explored in [xxi].

C. Error Exponent for Random Code

The error exponent can be obtained by assuming random code. The advantage is that a
meaningful bound can be obtained quickly (in closed forms) and used to ascertain the
performance even without the knowledge of the distance spectrum which requires a
numerical evaluation of its own or sometimes is not even available.

The random block code is not linear in general since they are selected randomly out of
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the binary N-tuple space. Therefore, we need to provide a little bit of adjustment to the
lines of analysis given for the linear code case. Namely, the analysis has been based on
the assumption that X' is mapped from the all-zero codeword that exists in each and
every code in an ensemble. For random codes, however, we cannot find such a codeword.
The all-zero codeword does not exist in every code in an ensemble. This problem can be
dealt with the following procedure.

Consider the ensemble of random codes defined by the fixed block length N and code rate R, . For
any code Cin the ensemble, we randomly select any one of its codewords as the test

codeword. Define 4f as the number of codewords in the code that have the same
Hamming distance 4 from the test codeword. The average of A° over the ensemble is

denoted by 4, and can be obtained as

A h>0
A4, =4 42
e 1o @

where

. 2™ _1(N
4, ?=2—N(h)-

It can be shown that (42) is obtained by considering the facts that there are in total (Q’ )

distinct binary sequences of distance # from the test codeword, and that the odd for each of these
sequences (other than the test codeword) to be included in a particular codebook is
2" _1 out of 2" . Since the test codeword is actually a codeword with distance zero from
itself, we add the additional one to Ao. It should be noticed that (42) holds without regard
to the specific selection of a test codeword from each codebook.

Note that this definition of distance spectrum is more precise than what was used in
previous sections where the weights (the Hamming distances from the all-zero sequence)
of codewords determines the spectrum. Under such a definition, the distance spectrum

would have been given as
MR,
4= Z—-(N ) : 43)

Assume X is mapped from the corresponding RC in each code. We therefore have the

following corollary of Theorem II:

(¢)200x Heung-No Lee 189 of 232



Lecture Note on Wireless Communications

Corollary-3: For the transmission of a random (N, K) block code over the block Ricean
fading (N1, N;) MIMO channel with the Ricean factor F,, the union upper bound on the
probability of making the block codeword error is given by

P, <27V HE) (44)

where the error exponent E(R,p,) is

E(R,p,)=1-R ==& (45)
Proof: Based on the distance spectrum in (42) and the upper bound on the block fading
channel (25), an upper bound is obtained as follows

P,< Y P(X > X)

w

Xzx*

N ONY' D\ oou
=Z(h) Ahd(z (d(h)]l'[ﬁ 4

neq, Jj=l

N(1-R, < D L BLS
e s (o e o)

h=0 d(hey, Jj=1

_N(I-R. J @
= V(-R) |:Zjﬂ /g]BL]
- 2-”[‘-&]2“0gz (ZL' pfm)

END
We may define g, as the cut-off SNR such that p,"=inf E(R.p,)>0. With minor
Py
manipulations on the system parameters the bound and exponent can be also written as
P, <2708k~ 47
where the error exponent E(R, p,) is

E(R.p,):=N,—-N,R ~log,(Z/, B").

=Risy

Note that R, := N,R, denotes the transmission rate per IST symbol which is taken over

the duration of 7, channel uses. Thus, the transmission rate is obtained as R = RTﬁ bit-
D

per-channel use.
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VI. THE LDPC CODE AND ITERATIVE DETECTION/DECODING
ALGORITHM

We now discuss the LDPC code, encoding and decoding operation, and the super-
iterative MIMO detection and decoding. The encoding and decoding operations are
mainly from the Gallager’s thesis [xvii]. The super-iterative MIMO detection and
decoding algorithm straightforwardly follows the maximum aposteriori (MAP) log-
likelihood radio (LLR) generation methods. Thus, the algorithm is standard but we will

briefly discuss them for completeness.

A. The (N, dy, d.) Gallager code

In this chapter, we assume the (¥, ds, d;) Gallager codes. There are dj, 1s in each column
and d, 1s in each row in the parity check matrix of a code. The parity-check matrix is
generated randomly by using the Gallager’s approach [xxii]. Once a parity check matrix
is obtained, it is systematized by going through the Gaussian elimination process. From
the systematic parity check matrix, the systematic generator matrix is obtained. Making

use of the systematic format, the decoding operation is simplified.

B. The super-iteration algorithm

The super-iterative detection and decoding algorithm is based on the MAP LLR
generation algorithm. For the description of the iterative algorithm, we introduce an index
which describes the relevant position of the bits in the codeword vector ¢. Referring to
Figure 1, the bits in a codeword are categorized into D consecutive groups (each group
with N bits), i.e.,

e=[c, Cpm-Cuy, 36y CogeeeCopys "3Cny Cpa-e-Coy, 1+
Focusing on one of the IST blocks, without loss of generality, we will describe the steps
to generate the extrinsic LLR on bits. Without loss of generality, let’s focus on the first

IST block, and bits ¢, ¢,,...¢,,, . For simplicity, we will omit the block index and refer to

them simply as ¢, c,...c,, .
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Making use of the general linear dispersion code and the corresponding procedure
given in [ix], one can transform the input-output relationship of the IST symbol-matrices
(1) into the following linear systems of equation with the real-valued [2Q x 1] input
vector s and [2V,T x 1] output vector r, i.e.

r=\Jo,Hs+w, (48)
where A is the equivalent [2N, Tp x 2(Q] real-valued channel matrix which subsumes the
effect of the original channel matrix H and the set of QO linear dispersion matrices {A,,

B,} 4=1...., o; and w denotes the noise vector each element of which is independent
identically distributed real-valued additive-white-Gaussian noise with zero mean and
variance 0.5. This model will be useful for the block fading channel model. For fast
(independent) fading model, one can use the input-output relationship given in (32).

With the input-output model (48), explanation on the routines of the MIMO log-
likelihood ratio (LLR) generation and the super-iteration will be given (while it is
analogous to use the input-output relationship given in equation (32) for the independent
fading case). Note that one can simply use the input-output relationship (1) as well; but
using (48) might have an advantage for implementation point of view since all values in
(48) are real valued.

First, note that each symbol-vector s carries N, coded bits. Thus, upon receiving an IST
symbol, the LLR Generator should produce the extrinsic LLRs on N, coded bits.
Following the standard procedure, one can generate a maximum likelihood ratio on a

particular bit ¢, in the following manner:

P ,H} P
Pr{c, =1|r,H} “lo ,;, rirls. HiPris)
Pria =0InE} 7 3 priv|s, &1} Pr(s)

5:6,=0

> exp{““‘"‘\//_':HsNz * :/z" LP,(ci):‘ @)

L,,(c):=log

=1

sic =1

%o -f- o8 « ¥ 1)
5.0, =0 ikic;=1

Lew (Ck )

>

=L,(c)+log

for k=1, 2,3, ..., Ny, which can be feed-forwarded to the decoder. Note that 7 ,(c,)’s are

the extrinsic messages forwarded from the LDPC decoder. Referring to the illustration

(¢)200x Heung-No Lee 193 of 232



Lecture Note on Wireless Communications

given in Figure 2, the extrinsic messages, L,,(c,)’s, are the ones that need to be

forwarded to the LDPC decoder. This exchange of extrinsic messages between the

decoder and the MIMO detection unit will be referred to as the super-iteration.

C. The internal iteration for LDPC decoding

The message-passing decoding algorithm follows the development of Gallager described
in [xvii]. The message-passing algorithm runs on the bipartite graph. A number of
decoding iterations are run and the aposteriori LLRs on each and every coded bit is
obtained for final decision at the end of a fixed number of iteration. In Figure 2, we name

this aposteriori LLRs as L,,(c,). The prior messages (or the extrinsic message fedback to

the MIMO detection unit) can be generated by removing the message forwarded to the

decoder, ie.L,(c,) =L, (c,)-L,(c,) . Ascompared to the super-iteration between the

xt

decoder and the MIMO detection unit, we will call this loop the internal LDPC decoding

iteration.
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VII. NUMERICAL EVALUATION AND SYSTEM SIMULATION

In this section, we will consider two kinds of experiment. One is a non-ensemble based
approach and the other is an ensemble based approach. A non ensemble based approach
is to select an LDPC code randomly from an ensemble and simulate. Usually, the
probability of selecting a bad code is small, thus the selected code does not exhibit any
error floor behavior. The probability of such event is much higher than selection of a bad
code and exhibiting an error floor. Since the error floor of the union bound is always
caused by the weight 2 component of the distance spectrum, the union bound for LDPC
codes almost always shows an eminent error floor. This may make one wonder if there
is an inconsistency. To remedy this problem, we consider simulation based on an
empirical ensemble. This is a randomly selected ensemble of codes. How big the size of
this ensemble should be? The right size for this ensemble can be quantitatively
calculated from the distance spectrum.

We will first discuss our simulation results based on the ensemble approach, then

the non ensemble based approach.

A. Ensemble Based Simulation Approach

In this section, we compare the derived upper bounds with simulation results for fast
Rayleigh fading channels. The bounds are evaluated for the ensemble of Gallager’s
LDPC codes, whose distance spectrum is calculated according to [xxiii]. In simulation,
the receiver is assumed to have perfect channel state information and deploys the
standard turbo-iterative decoding algorithm. While interested readers are referred to [xxiv]
for details on turbo-iterative procedure, we briefly sketch the algorithm of the turbo-
iterative receiver shown in Fig. 2 used in our simulation. The detector takes both the
channel observations and the a priori information La; from the decoder to compute the

new a posteriori information Lp; on each coded bit. The calculation is based on the
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standard maximum a posteriori (MAP) algorithm. The difference between Lp; and Ly is
referred to as the extrinsic messages which are used as the a priori input, Las, to the
LDPC decoder. Then, the decoder generates the a posteriori information Lp,, and
feedbacks the corresponding extrinsic messages as a priori information to the detector,
thus completing a single cycle of an iteration. There are two kinds of iteration—the
super and the internal iteration. The super iteration refers to the iteration between the
detector and the decoder. The internal iteration refers to the message passing iteration
between the check and the bit nodes within the LDPC code graph.

To obtain the average performance of a given code ensemble, we use each randomly
generated LDPC code for ten codeword transmissions. There are a total of 10,000 LDPC
codes in an empirical ensemble (the choice of the size will be discussed shortly later).
The simulation is terminated at each SNR point if either 1,000 word error events have
occurred or 100,000 transmitted codewords have been transmitted. For fair comparison,
the error performance is plotted with respect to the normalized SNR, E/Ny = MNp; /R,
where p;, as defined before, is the average symbol energy at each transmit antenna, R, =
RMK} is the transmission rate of the system in information bits per channel-use and R =
K/L is the rate of the LDPC code.

The turbo receiver operates on the combined graph of the detector (or the constellation
demapper) and the decoder. Union bound is an upper bound on the maximum likelihood
receiver. While the two receivers are different, union bounds have been successfully
used to gauge the performance of the iterative algorithms. In this section, we compare
the performance of turbo receivers with the union upper bounds for LDPC codes with
different block lengths, the results of which is illustrated in Fig. 3. In simulation, the
detector and the decoder exchange the extrinsic information over 10 super-iterations,

while the LDPC decoder runs its own message-passing decoding operation over 20
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internal iterations. This means there are a total of 200 iterations per decision on a
codeword.

We settle on these iteration numbers after repeated simulation experiments, and have a
confidence that the decoding results will not be improved any significantly further
without orders of magnitude increase in the number of iterations. Thus, it is likely that
the simulation results reported in this paper are close to the best performance that the
turbo-iterative receiver can provide for each scenario. The ultimate limit for the turbo-
receiver would be the threshold value computable by the EXIT chgrt analysis or the
density evolution method. Since these analyses are meant for infinite length and infinite
number of iterations, one may not be assured 100% anyhow on how close the
performance is to the limit at a finite block length and a finite number of iterations. On
the other hand, we note from simulation that smaller iteration options, say 2 super and 5
internal iterations, renders performance curves which go well above the upper bound
curves.

The foregoing discussion implies that the union bound results can be used as
benchmarking references for turbo receiver designs. One can get a sense on how many
iterations should be done to come close to, or even surpass, the maximum likelihood
union upper bound, for a given constellation, at a given block length, and for a given
coding scheme.

As shown in Fig.3, the performance of LDPC coded MIMO systems improves as the
block length is increased; but still stays around the cutoff-rate limit [xxv] for block
lengths up to few thousands. It is known that union bounds work well within this cutoff
rate region. This is verified in the figure where the derived upper bound provides close
prediction on the waterfall position (less than 0.5dB SNR gap) and on the error floor.

Note that this is meaningful observation as LDPC codes with moderate block lengths up
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to few thousands are suitable for high speed communication applications with stringent
requirements on decoding complexity and delay.

As the block length approaches infinity (e.g., more than a million), the turbo-iterative
receiver will likely perform at a level very close to the threshold value predicted by
density evolution [xxvi]. The threshold would be located at a point beyond the cut-off
rate and come near the capacity. For a large block length at which the union bound
becomes loose in describing the water-fall behavior, one can resort to some tighter
bounding techniques such as the first and second Gallager bounding techniques and their
recent variations. These tight bounding techniques are yet to come for MIMO systems,
even though we envision that a tighter bounding technique can be built upon the
combinatorial union bound developed in this paper.

Another observation is that the error floor predicted by the union bound is consistent
with the simulation result, except that it is shifted upward by 5 to 10 dB. This upward
shift in the error curve is mainly due to the Chernoff bound, O(x) < exp(—x*/2), used in
obtaining the pairwise error probability in (36). To see this effect, let us consider the case
of (3000, 3, 6) LDPC code in Fig. 3 and suppose Ep/No = 5dB or p, = 1.5832. The
minimum possible Hamming distance of these codes is 2 because only codewords with
even weights are valid. For simplicity, let us roughly assume the fading gain is equal to 1.

In this case, it is easy to verify that the pairwise error probably between any two

codewords of distance 2 is always equal to O(y/4, ) . The ratio of this O function and its

Chernoff bound is 0.14, or —8.52 dB, which explains the result shown in Fig. 3. In
addition, it is clear that the error floor is lowered as the block length is increased.

Our simulation result is consistent with our expectation. The error floor of the
ensemble is the manifestation of one of well known Gallager’s results (See Theorem 2.4

[Gallager’s thesis]): as the block length is increased, an ensemble of codes tends to
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contain fewer and fewer bad codes which contain the codewords of “small” weights but
these few codes dominate the performance over the ensemble. Small here is meant to
indicate a number less than the minimum distance of the ensemble of codes. Thus, a
small number of few bad codes dominate the error floor behavior of the ensemble. In
reality, it is difficult to choose such a bad code in random selection, especially for a code
with a large block length. This is the underlying reason why we choose to take the
approach of ensemble average in simulation to determine the performance of LDPC
codes, rather than the approach to simulate a particular code randomly chosen from the
ensemble.

The appropriate size of this empirical ensemble of codes can be determined from
examining the distance spectrum of the ensemble, and thus depends up on the choice of a
block length. For a quantitative discussion, let us take the ensemble of (3000, 3, 6)
LDPC codes. Only words with even weights are candidates for valid codewords. The
poorest codes are thus the ones with weight 2 codeword. The error floor due to weight 2
looks almost flat, as shown in our union bound figures. The distance spectrum of this
ensemble at Hamming weight 2 is 4> = 0.0018. This number roughly implies that in the
worst case there are as much as 18 bad codes in 10,000 selections each of which has a
single weight 2 codeword. In the best case scenario, there is a single code out of 10,000
which has 18 weight 2 codewords. From this argument, we note that our choice of
ensemble size 10,000 makes sense. It is highly likely that the ensemble of 10,000 codes
includes at least one bad code. In turn, this implies that one can easily avoid the selection
of a poor code in practice: just draw another code upon noticing an error floor in
simulation. -

It is worth noting that the error floor behavior predicted in union bound is somewhat

different for the turbo code case. Some features in turbo code cases include that the
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slopes of error floors are usually stiffer, and the simulation result of a randomly selected
single code coincides well with the prediction made by the union bound. Why? The
short answer for this question is that there is no fractional component in the distance
spectrum of the turbo code ensemble. The constituent convolutional code in turbo codes
is usually chosen with a decent minimum (free) distance, usually much larger than 2.
Thus, the error floor shows a stiffer slope. The distance spectrum of the ensemble of
turbo codes is obtained through the random scramble and normalization of two distance
spectra (or weight enumerating functions in [xxvii]) of the two components codes via an
abstract device called the uniform interleaver. Since the component code has no
fractional component, the distance spectrum of the turbo code does not have fractional
components either. The distance spectral component of the turbo code is simply zero for
all those weights smaller than the minimum distance of the constituent code. This means
with probability close to 1, no code in the turbo code ensemble has any codeword whose
weight is less than the minimum distance. With probability approaching 1 asymptotically
. as the block length increased, therefore, a turbo code with a randomly selected interleaver
will exhibit the typical performance predictable by the error floor of the union bound.

We next compare the upper bound and the simulation results in different channel and
modulation scenarios. In this case, the iterative algorithm runs 5 super iterations and 20
LDPC internal iterations. Illustrated in Fig. 4 and 5 are the comparisons of the bounds
with the two different bit error rate simulation results: The first bit error rate, denoted as
Py, is obtained by simulations where the all-zero codeword is transmitted all the times.
The second, denoted as P,, is obtained in simulations where all codewords are
transmitted equiprobably. This has been done to measure the tightness of the further
upper bound with the all-zero codeword mapped to the worst space-time symbols in the

constellation. As expected, the two error probabilities P, and Py are very close to each

(¢)200x Heung-No Lee 200 of 232



Lecture Note on Wireless Communications

other for PSK modulation systems because of the symmetry in the Q-ary base
constellation and thus in its hyper-constellation of the space-time words. In the case of
8QAM modulation, however, the all-zero codeword is mapped onto a space-time word
closest to the mass-center of the hyper-constellation, and thus simulations with the all-
zero codeword only transmissions leads to a performance result worse than those with all
codewords transmitted equiprobably. From the results, we can at least expect that the
upper bound developed can be useful for PSK modulation systems, while for
constellation with unequal energy symbols the bound should be improved. Nevertheless,

in all scenarios, the bounds are shown useful to predict the error floors.
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B. Non-ensemble based simulations

For Non-ensemble based approach, we will consider a few space-time block code
examples for numerical evaluation of the bounds and for Monte Carlo system simulation
of the turbo-iterative receiver described in Section VI. We first consider our choices of
two different constellation maps. Then, discussion and comparison on the bounds and

simulation results will be given.

1) Constellation Map, the All-Zero Outer Codeword and The Matched Masking

In this section, we shall address the constellation maps.
A specific constellation map between the outer code and the space-time block code is
needed for both numerical evaluation of union bounds, as well as for system simulations.
Recall from section IV.B that we obtained a further upper bound by resorting to a test
codeword composed of the worst IST symbols, i.e. X" =[s,, s., s, ]. This helps us to
avoid the average operation in which one has to choose each and every space-time
codeword as a test word.
We have taken the following steps with regard to the mapping rules in our bounds and
simulation results:
e Step-I: On the base constellation, such as 4-PSK or 8-PSK, regardless of the IST
coding scheme, we select and use a Gray-map. This is a basic set up which will
be called ‘Scheme 1.’

o Step-II: Find the worst IST symbol s, from (19), and form the test space-time
codeword X' =[s, s, 5,1

e Step-IlI: From the selected map in Step-I, obtain the bit pattern for
X' =[S, 8u -5, ]. Let’s use b’ to designate the bit-pattern for s.,. The length
of b"is N,. Thus, [b" b’ ---b"] is forX".

e Step-IV: Designate b’ as the mask and apply this mask to obtain a new mapping

rule for all bit patterns for the J-ary IST symbols. The masking operation is to
take the bit-by-bit XOR operation to each and every map under Scheme I with
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the mask b°. One consequence of this masking operation is to have the pre-
image of the space-time word X' be the all-zero codeword. Let’s call this
‘Scheme II.

Both mapping schemes can be implemented easily for system simulations. In
simulations, therefore, we attempt to examine if there should be any performance
difference between the two mapping schemes. From intuition, we expect no performance.
A verification of no simulative difference between the two schemes will give us the
assurance that the union bound, obtained based on Scheme II as the mapping rule and the
transmission of all-zero outer code\;vord as the test word, is well defined and will provide
a useful bound.

In table I, we tabularize the Almouti code example for both mapping schemes. Note
that the basic map for the 4-PSK constellation is given as 00, 01, 10, 11 for —j, -1, 1,
andj. Scheme I is simply the concatenation of these for the two symbols s, and s5. Since
the PSK constellation is symmetric, any IST symbol can be selected as the test word.
Choose (- j, - j) as the test word. Then, the bit pattern (1 0 1 0) is selected as the mask.
XOR’ing the bit strings with the mask, one can obtain Scheme II, as shown in Table I. A

table for the linear dispersion code can be generated similarly.

2) Examples

The upper bound analysis conducted below is done under the Scheme II mapping rule.
However, it is also expected to serve as a good performance benchmark for
Scheme I as well. In fact, system simulation results indicate that both schemes yield
almost the same performance (See Figure 5 and Figure 6).
Example-1: (The Alamouti code) Let’ us consider the (V~=2, N,) Rayleigh fading
channel. We suppose the use of 4-PSK (M=4) base constellation and the Alamouti code
[xxviii]). Alamouti code takes two channel symbols and maps them to a two-by-two

space-time matrix in the following way,

H - s[ ] (50)
Sy Sy S,

There are thus J = 16 different space-time matrix-symbols (Alamouti codewords) in the

constellation; each symbol is transmitted over Tp = 2 channel uses. We have
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=2N,

J - N
Zﬂ;"’:l-ﬂ(n%) z+6(1+p,)" " 2
=

(5D

3 2N,
+4(1 +—%] 2142, 2.

Note that Eq. (51) is the key step to obtain the union bound (47). For the union bound
calculations (for (28) or (38)), we first collect the coefficients of the utility variable z into
asequence, i.e., [1 4(1+p,/2)™" 6(1+p)™" 4(1+3p,/2)*" (1+2p,)**] and take the D-fold
convolution of the sequence. The output of the convolution is the sequence (¢(#)) , from

h=0,1,2,...,N.

Example-2: (The Linear Dispersion code [ix, Eq. (35), (36)]) Hassibi and Hochwald
proposed a new class of space-time block codes in [ix] which is claimed to subsume
many previously proposed space-time schemes including the orthogonal space-time block
codes, Alamouti codes, V-BLAST, and others. A linear dispersion code is a collection of
J [N; x Tp] dispersion matrices. Each dispersion matrix is composed of O basic
dispersion matrices, A, and B, for ¢ =1, 2, ..., O. Each A,, or B, are real valued
matrices found from an optimization which is aimed to maximize the so-called perfect-
knowledge channel capacity (ensemble averaged over the fading channel). By
modulating these base matrices with regular complex-valued constellation points, a, + j a;,

one can obtain a space-time transmission symbol S, i.e.
[
$=Ya, A, +a,B,. (52)
9=1

By ensuring, through a design in the optimization process, the dispersion matrices, Aq

and By, =1, 2, ..., J, disperse the energy of the symbols 4, , and q,,equally in all spatial

and temporal directions. One of the contributions of the chapter is to be able to explicitly
show the benefit of the rate optimized space-time block code in the form of favorable
error performance. For Alamouti code as an example, they show that when N, > 1, the
use of Alamouti code is deficient in terms of capacity. That is, it does achieve the order
of diversity two times N,; but it falls short in terms of the transmission rate. Using the
linear dispersion code, one can achieve the same maximum order of diversity while
significantly reducing, or almost recovering in some cases, the sacrifice in transmission

rate.
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In this chapter, we consider two example linear dispersion (LD) codes given in
[ix] for (N, =3, N,=1, Tp=4, Q =3). The LD code in [ix, see Eq. (35)] is given by

1tJa, a,,+Ja, a.+ja,
ar + Ja, R [ 0
S= g . 53
\/— —a,3+]ja;; 0 a,,—Jja, (53)
0 -a,;tja; a,-ja,

The other linear dispersion code is from Eq. (36) in [ix] for (N, =3, N, =1, Tp = 4):

il G2t Gy 2=, g G2~ 0
a, +a,3+][ +a,,4] ﬁ*—j[Tz‘+T]

a,,+a, 4y a;, 2=G;3

~Gra2tar4 | G ‘7 279 P92t [7 ]
—J[ 3 ] A=)
s=% I 54
3 0 Gratay, + Ji:an i~ :] 1 ar 3+ |:a J;J ] ( )
A i

A2~ A G 9i2=0;3 ”y,.“am A i 24 3

N7 +J|:7{+ 7 :I —-a,;+ja;, +J[_z 7 ]

The LD code given in (53) in fact is the orthogonal block code with Q = 3, and achieves a
mutual information 5.13 bits/channel-use at 20 dB SNR; while the LD code (54) has been
obtained from a gradient search with O = 4, and has mutual information 6.25 bit-per-
channel-use at the 20 dB SNR (As compared to the capacity 6.41 bpcu). In this chapter,
the performance of these codes will be compared in both the union bound analysis as well
as the system simulation with the turbo-iterative detection algorithm.

One thing to notice is that the optimized LD code gives about 2-3 dB SNR
performance advantage over the orthogonal space-time block code (see Fig. 6 in [ix]) in
all SNRs when both are compared at a fixed transmission rate for fairness. For this, we
use 8-PSK as the base constellation for the LD code (53) and 4-PSK for the LD code (54).
Once all the symbol-matrices are given, one can find the reference symbol-matrix s+
according to (19), and evaluate the sum of the pairwise metrics as done in example (51)

for any specific channel model.

3) Comparison of the Union Bounds and System Simulation Results

We have three scenarios. In Scenario 1, the IST code is the linear dispersion code
given in Eq. (54). We use 4-PSK base constellation. Thus, the number of coded bit each
IST symbol carries is N, = Qlog,(M) =4log,(4)=8. In Scenario 2, the IST code is the

linear dispersion code (which is in fact an orthogonal space-time block code) given in
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(53). The number of coded bits each IST symbol carries is 3log,(8)=9. In both scenarios,
an IST symbol consumes 7, =4 channel uses. In Scenario 3, the Alamouti code with 4-
PSK is used. Thus, each Alamouti codeword carries 2log,(4)=4 coded bits in 7, =2
channel uses. The rate of outer LDPC code is 1/2. In order to make N to be a multiple of
Np, Gallager’s (N=2700, dp=3, d.=6) LDPC code [xvii] for Scenario 2 and (3000, 3, 6)
for Scenario 1 and 3 are used. With these schemes, the transmission rates for Scenario 1,
Scenario 2 and Scenario 3 are calculated respectively as 8x1/2x1/4=1, 9x1/2x1/4=9/8,
and 4x1/2x1/2=1 [info-bit-per-channel-use]. = Thus, in all scenarios, around 1
information bit per channel use is transferred. = The first two scenarios use
(N, =3,N, =3) MIMO, while the third scenario uses (N, =2,N, =2) MIMO, Rayleigh flat-
fading channels.

The detector and the decoder exchange the extrinsic log-likelihood ratios in super
turbo-iterations, while the decoder runs its own internal LDPC decoding operation.

For the Scheme II mapping rule, we select the mask vectorstobe [101 11000 1] and
[1 0 1 0] for Scenario 1 and 3 respectively because with 4-PSK the function in used to
obtain s¢ (19) yields the same value for each and every sg). In Scenario 2, there exist
several maximizing IST symbols s+. We select the one with the smallest index j; the
corresponding mask vectoris [0001000 1].

We first compare the bounds and simulation results for Scenario 2 over the independent
fading (V=3, Ny=3) channel. For Figure 3, we use five super-iterations and ten internal
LDPC iterations, while for Figure 4 we use fifty LDPC internal iterations. From the
figures, we see the impact of super-iteration vs. the internal LDPC iterations. We see that
the impact of super-iteration becomes very small after three iterations. But note that the
impact of internal LDPC iteration is relatively large. Increased from 10 to 50, the
internal LDPC iteration has given us about 0.5 dB SNR advantage.

For the rest of simulations, we use three super iterations and ten internal LDPC
iterations. Therefore, the decoder runs thirty iterations in total.

The derived bounds for the independent fading case are compared with system
simulation results in Figure 6. First note that, as expected, the performances of Scheme I
and Scheme II are almost the same in all investigated scenarios. The figures generally

show less than a 0.5 dB SNR difference between the union-bound upper bound and the
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simulation result. This is in contrast to the case of binary coded AWGN systems, where
about 2-3 dB SNR gap usually exists between the union bound and turbo-iterative
simulation result.

The same coding schemes and scenarios are used for block fading cases, shown in
Figure 5. In block fading cases, the channel stays fixed once randomly chosen during the
transmission of an IST symbol—during 7p channel uses. The figure again shows very
small SNR differences between Scheme I and Scheme II and they are less than 0.5 dB
away from the water-fall SNR of the union-upper bound.

From the two channel cases, we note that the upper bounds derived in this chapter shall
serve as a good performance prediction tool. We also note that the performance is almost
the same for the two different channel cases. Basically, it is because the amount of time-
selective diversity is very large in both cases. Even in block fading channels, the
duration of fixed channel fading (7 channel uses) is much smaller than the total number
of channel uses 7. For Scenario 2, Tp =4 while T =1200, and D=2700/9=300; thﬁs the

order of time-diversity is 300.
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VIII. DISCUSSION FOR THE BOUNDS ON THE QUASI-STATIC FADING

CHANNELS

During the past several years, much research effort has been spent on the prediction of
the error performance for turbo- and low-density parity-check (LDPC) coded systems
with the maximum likelihood (ML) decoding assumption. This interest has been
motivated by the splendid error correction performance of turbo-like codes which comes
very close to the theoretical limit at a large block size. In a region close to the capacity
limit, it has been known, that the usual union bound is loose. Thus, the demand for
finding tight performance bounds that would continuously be useful in this region has
been very high. Fulfilling this need, there has been a series of substantial recent progress
such as 0,0,0,0,0,0. Namely, they are variations on the so called Fano-Gallager’s tight
bounding methods (also called as the /imit-before-averaging bounding technique), which
were originally introduced by Fano 0 and further developed by Gallager for tight bounds
on the error performance of LDPC codes operating on AWGN channels in 1963 0. There
is a semi-tutorial paper by Shamai and Sason 0 for further reading to understand recent
developments and how the recently developed bounds are inter-related with each other.
Included in this chapter are the Duman-Salehi bound, the Divsalar bound, the Viterbi-
Viterbi bound, and the Suman-Feder bound.

In this chapter, we are interested in developing a tight performance bounding technique
for the space-time transmission of low-density parity-check code over the multiple input
multiple output channel. One of objectives is to strike a balance between the
performance and the complexity of the evaluation technique.

Under the assumption that the all-zero codeword ¢y is transmitted, the Fano-Gallager

bounding technique can be started with the following decomposition:
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Pr(error) = Pr(f € R)Pr(error | f e R)+Pr(f € ﬁ) Pr(error | f € ﬁ)
where f is an utility function, called the Fano-Gallager tilting measures, of performance-
related random variables such as the additive white Gaussian noise w and the channel
fading gain o. R and R are disjoint geometrical regions. They can be found sought to
minimize the right hand side of (55). On the first error term, the union bound is applied;
on the second term, a trivial bound Pr(error | f € R) <1 is used.

Depending on how tight a bound we want to have, a rather complicated definitions on
the geometrical region and the utility function f can be made, as we examine from the
tight bound results obtained for single input single output channels. Considering the

received signal over a AWGN channel,

y=oax,+w, (56)

where xg is the modulated signal for the all-zero binary codeword ¢y, « is the channel
gain of 1, and w is the AWGN noise, for example, Divsalar 0 defines the region to be a
hyper-dimensional sphere, fR, and takes the approach of optimizing the radius and the
position of the sphere for a bound. Since the region is a rather simple sphere, the bound
is obtained in a closed form. But we note that the bound is not tight and the bound is
greater than 1 in low SNR region.

A tighter bounding technique for single-input single-output fading channel takes in
general the more complicated form. For the discussion of fading channel, let’s model the
channel as having in equation (56) with an independent fading gaina for each channel
symbol transmission. In this case, the utility function f and the region depends both on
the noise w and the fading gain «, and a full blown application of the Fano-Gallager
tilting measures becomes a very complex task and the obtained bounds are cumbersome
to be evaluatéd. For example, the result obtained in 0 has three parameters in the final

expression of the bound to be optimized numerically.
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In this chapter, we aim to find a simpler but effective approach that does not leave any
parameter to be optimized numerically. This will help us proceed with the more
complicated transmission cases which is the space-time transmission of binary block
codes over multiple transmit and multiple receive antenna cases.

In our approach, we select the regions R and 2% in order to make the distinction
between the “high” and “low” instantaneous SNR events. By adopting the union bound
for the high instantaneous SNR region, i.e. f € R, while the trivial bound is used for the

small instantaneous SNR region, we have

Pr{error} < Pr(f € R) Z P(c, > c'|f eR)+Pr(f e R). 57

The summand in the inequality is the pairwise error probability from ¢y to any other
codeword ¢' conditioned on f € fR. Namely, we take the event to be defined as an
“outage” event such that the fading gain is smaller than a certain optimal threshold value.
We note that a similar approach has been independently adopted by Bouzekri and Miller
in 0 to find tight union bounds for turbo-coded modulation signals over quasi-static
fading channels.

Our analysis framework can be used to subsume the materials in 0 as a special case.
The work in 0 focuses on binary coded modulation over Rayleigh channels, while our
work, see Proposition 2, formulates the idea of Fano-Gallager’s bounding technique in a
general form so that the bounds can be obtained for any arbitrarily-sized constellations
and for any fading channels with non-degenerate distribution (such as a distribution with
a point mass), including Rayleigh, Ricean and Nakagami channels. Second, making use
of the classical ideas of performance averaging over an ensemble of codes, we develop
the notion of a distance spectrum for space-time transmissions, see Proposition 1. We

develop this for the ensembles of LDPC codes but it can be readily extended to other
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linear block codes, including the turbo codes. Third, we make use of the fact that an
equivalent SISO channel model can be derived for space-time block coded MIMO
systems and have the upper bound extended to MIMO systems. Fourth, Bouzekri and
Miller use the Chernoff bound, Q(x) < exp(—x2/2), to upper bound the Gaussian Q-

function. This is rather loose and can be improved by making use of the Craig

Identity 0(x) = - [ ’”zexp(
7 do

integral of a smooth function over a finite interval. In this chapter, we evaluate both

2
3 — 0}6. Note that it is not difficult to numerically evaluate the
sin

approaches and illustrate the amount of benefit of our approach for both SISO and MIMO
channels. Roughly, using the Craig identity gives us a tighter result, about 1dB in SNR.

This part is not complete yet.
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IX. CHAPTER SUMMARY

Union bounds for the concatenated coding scheme have been obtained in this chapter
for different classes of fading channels. The outer block codes assumed in this chapter are
liner codes, except for the random block codes, with a known ensemble-averaged
distance spectrum. The union bounds are then obtained by carefully considering a
number of combinatorial codeword-enumeration problems arising from the use of the
long block code deriving a sequence of short space-time block codes. We took the
approach of taking the space-time transmission of size [N; x Tp] as the unit of block-
channel-use to accommodate the most general space-time transmission scheme over the
block fading channel. Each inner space-time (IST) block matrix can carry N, number of
coded bits and is transmitted during 7p channel uses.

Through a number of specific examples explored in this chapter as to the selection of
inner space-time block transmission schemes, including the linear dispersion codes, the
usefulness of the concatenated scheme has been verified. With a length that is
sufficiently long to cover a sizable number of the independent block-channel-uses, the
use of a long outer block code shall bring the operation region of the concatenated
scheme to a region (in terms of both SNR or transmission rate) very close to the ergodic
channel capacity.

The usefulness of the proposed union bounding technique has been verified since the
bounds faithfully predict the simulated performance of the iterative MIMO detection and
decoding receiver. The verification was done at the block length of about 3000.

It is well known for the additive-white Gaussian channels and the single-input single-
output fading channels that the use of a union bound for turbo-like codes is loose for the
region of around and beyond the cut-off rate. A number of tight union bounds over the
single-input and single-output channels with binary modulation schemes have been
obtained in the past by a number of researchers (see, for example, a recent publication
[xxix] and the references therein). Their basic methods are rooted on the so-called Fano-
Gallager’s tilting measure techniques [xxx]. For the concatenated MIMO transmission

scheme considered in this chapter, we took the combinatorial union bound approach first.
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This was motivated to see how the union bound will perform as compared to the
simulated performance of the message-passing algorithm. On the foundation of our
combinatorial union bound techniques developed in this chapter, more sophisticated
performance analysis techniques, such as using the Fano-Gallager’s techniques and the
Bonferroni type bounds, can be applied to tighten the bounds. It is remained to be seen

how these techniques can be used to tighten the gaps observed in this chapter.

APPENDIX

Consider the ensemble of LDPC codes or concatenated codes in section III. Each of
these codes map K information bits into codeword of length L. Denote the generating
matrix of the code as G; we can find its systematic form G, = (P Ix) by Gauss-Jordan
elimination, where Ix is the [KxK] identity matrix. Therefore, the last K bits of the
codeword are the information bits. For any codeword with input weight o and output
weight A, the weights of its first L - K bits and last X bits are @ and % - w respectively.
For simplicity, we denote this (w, 4 - w) as a metric of the codeword.

Resorting to Theorem-I, we obtain the probability that any codeword ¢ of weight 4 has
a metric (o, #-w) as

Pr(c has a metric (@, —o)|c is of weight /)

I IR

The average number A, of the codeword with metric (w, /#-®) in one code is therefore

S I

given by

A,,=A4F

h

By simple manipulation, we arrive to the final result:
Ky Ko(LY' (KYL-K
A=N24 = it
" Z,K s A"Z;K(hJ (w)(h—a))

_h4, (L1 &(K-1\(L-K Yy
L \n-1) SGlo-1\h-0) LT

™
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(N, =3, N.=3) MIMO, LD (35), 8-PSK
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Figure 3: Scenario 2: (N,= 3, N,=3) MIMO with Linear Dispersion code given in (53). The base
constellation is the 8-PSK. The bounds compared with the simulated bit-error rate at each stage of super-
iterations. There are five super-iterations. In each super-iteration, there are ten internal LDPC decoding

iterations.

(c)200x Heung-No Lee 219 of 232



Lecture Note on Wireless Communications

(N, =3, N.=3) MIMO, LD (35), 8-PSK
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Figure 4: Scenario 2: (N,= 3, N,=3) MIMO with Linear Dispersion code given in (53).
The base constellation is the 8-PSK. The bounds compared with the simulated bit-error rate at each stage of
super-iterations. There are five super-iterations. In each super-iteration, there are S0 internal LDPC

decoding iterations.
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Figure 5: Comparison of simulation results with the union upper bounds for independent fading channel:
(10 LDPC decoding iterations and 3 Super Iterations)

Scenario 1: N=N, =3, 4PSK, LDPC(3000, 3, 6) + Linear Dispersion code in Eq. (54);

Scenario 2: N=N, =3, 8PSK, LDPC(2700, 3, 6) + Linear Dispersion code in Eq. (53);

Scenario 3: N=N, =2, 4PSK, LDPC(3000, 3, 6) + Alamouti Code.
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Figure 6: Comparison of simulation results with the union upper bounds for block fading channels
LDPC decoding iterations and 3 Super Iterations).

Scenario 1: N=N, =3, 4PSK, LDPC(3000, 3, 6) + Linear Dispersion code in Eq. (54);

Scenario 2: N=N, =3, 8PSK, LDPC(2700, 3, 6) + Linear Dispersion code in Eq. (53);

Scenario 3: N=N, =2, 4PSK, LDPC(3000, 3, 6) + Alamouti Code.
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Table 1: N=2 with 4-PSK modulation, Gray mapping
(Scheme II with a mask vector [10 1 01)

Big:;(})'r:t}i‘ng Binary string|
after (Sa 88) | SG) before & | (sa 55) | o)
masking after masker
(0000)— | (<4, =) (1‘ -j) 1000y—> [ (L, 9) | (1 -j)
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ao1rny -1 ©0011) (-l 1
(© ?1100())—(;) [C)) (-j -1) 1010> | (1) [1 _1)
1 0000) 11
001> | (-5,0) | (4 ,-) 101D— | (1,)) (1 j)
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0100)> [ (-1, ) [-1 -j) 1100 | G, 4) (J -j)
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HW#2

P.1 (Noise power spectral density, what is it?) Power spectral density of filtered and

sampled noise.
Y(t) /' Ts

X(t)

_._____—’

White Gaussian noise with Yi
zero mean with PSD N,/2

As shown above, a continuous random process X(t) is filtered and sampled to produce a
discrete random process Yi. X(t) is a white Gaussian process with zero mean and the
power spectral density No/2. No is measured. It is 10 Watts/Hz. The filter is a brick
wall whose bandwidth is B = 10 kHz. The sampling rate is 40 kilo samples per second.
Do this problem twice, once for Ts = 1/(2B) and the other for 1/(4B).

a. Obtain and sketch the PSD and the autocorrelation function of Y(t)

b. Obtain the PSD and sketch the autocorrelation function of Y.

P.2 (The Nyquist rate of a channel with bandwidth W Hz) First define the following
terminology (in your own words and in one or two sentences maximum).

e Channel symbol

e Channel symbol alphabet

e Baud

e Symbol energy (average)

o Bit energy (average)

e Wide sense stationary random processes

e Cyclostationary random processes

e Baseband

e Passband

e Roll off factor and Square root raised cosine filter

Now, suppose a channel with W Hz bandwidth. What is the maximum baud that
can be supported by the channel? What happens when a baud is chosen larger
than the Nyquist rate 2W?

P.3 (Transmission over AWGN channel) Consider the following block diagram.
Suppose the channel is brick wall filter with bandwidth W Hz. At the receiver, AWGN is
added to the received signal. A transmit shaping filter f{t) is used at the transmitter to
modulate the channel symbol sequence {a,}. The same filter is used at the receiver to
demodulate the signal. Let’s suppose the shape of the filter is given by a square root
raised cosine filter (see Proakis/Salehi) f{¢) whose roll off factor is 20%. The energy of
the filter is 1.
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t=nT,
{an} f(t) S(t) . R f(t) I'(t) f o {rn}
A B

Additive white Gaussian noise
Wl(t)

(a). Suppose the channel-symbol sequence is {1 -1-1 1 1 -1}. Sketch the
corresponding signal s(t) for this sequence. For sketching, use the filter shape
A(®) which is truncated for four symbol periods around the origin. Ignore the
noise for now.

(b). Do the same for the received signal r(t). Sketch the signal r(t).

(c). Now consider the sampled sequence {r, = r(t = n7})} at the receiver.
While still ignoring the contribution of the noise, obtain the input-output
relationship from point A to point B. At this point, comment on our choice of
shaping filter f{t).

(d). Now let’s include the AWGN, and re-obtain the input-output relationship
from point A to point B (the discrete-time channel).

(e). N, has been measured. It is 10 Watts/Hz. Obtain the statistical
characteristics of the noise sample at the output of the A/D sampler. Assume
wide-sense stationary noise, and obtain the mean and the auto-correlation
function of the noise samples. '

(f). Now, let’s suppose the channel-symbol a, is drawn randomly from an
alphabet. Every symbol is independent from each other. Let E{a,} =0 and
E{a?} = E,. Note E is the avg. energy of channel symbol at the receiver.

Now, find E; such that the ratio £/N, = 30dB.

(g)- Now further suppose a, is Gaussian distributed with mean zero and
variance E,. Use the value you found in (f), and obtain the capacity of the
discrete-time channel of (d). That is, how many bits per channel-use can be
transferred to the receiver with very small P(e)?

(h). Suppose we have a channel with bandwidth 7 = 10 KHz. Obtain the
signal-to-noise ratio. What is the maximum transmission rate [bits/sec] that is
achievable over this channel?

(i). This time, let’s suppose that the channel-symbol a, is not Gaussian
distributed. Instead, it is a binary uniform random variable over the alphabet
{+JE, -JE }. Use the same E and N, obtained previously. What would be
the consequence of making this change to the achievable transmission rate?
More specifically, what would be the maximum transmission rate for this case
when SNR is very large, say 100dB? Justify your answer.

(c)200x Heung-No Lee 227 of 232



Lecture Note on Wireless Communications

P.4 (Matched filter) Suppose there is a signal whose waveform is given by
fO)= {Ac cos2nf,t), 0<t<T

0, ow.
We want to design an optimal receiver and sampler system which observes the signal
under the additive white Gaussian noise (zero mean and PSD %) and makes a decision
variable at time = 5.57. That is, the received signal is

YO =fO)+z00)
where z(t) is the AWGN noise.

(a). Determine the impulse response of the optimal filter used by the optimal receiver,
and obtain the expression of your decision variable which achieves the maximum
possible signal-to-noise ratio.

(b). Obtain the expression for the signal-to-noise (SNR) ratio of your decision variable
and show that it attains the maximum possible SNR.

P.5 (P(e) calculation) Recall the Time Division example (Example 1) given in the
lecture. Derive the probability of symbol error P(e) as a function of E/N,. In this case,
what is the relation between E}, and Eg where E; is the symbol energy while E,, is the
energy required to transmit a single information bit. You can use the Q-function (or the
erfc function) as the final answer. Note there are four signals. Suppose we give a binary
map to the four signals in the following way: 00, 01, 10, 11 for x,(t), X2(t), x3(t), and x4(t)
respectively. Now for this map, derive the bit error probability Py, expression as a
function of Ey/N,. Evaluate the two expressions in MATLAB and draw graphs. You
may refer to Proakis/Salehi Figure 4.3-8.

P.6 (MATLAB simulation) Verify the symbol error probability and the bit error
probability of P.5 in MATLAB simulation. For simulation, you need to obtain at least
100 errors for each simulation point. In each graph, show both theoretical and
simulation results, and make sure your results match.
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HW#3

For each MATLAB part, please turn in your MATLAB code. Reading the Shannon’s 1948 paper
will help. The 2™ lecture note here implies my note on “Information Theory and Gallager’s
Random Coding bounds.”

P.1 (Geometric View of Signals and Noise) In this part, we design an 8-QAM system. (a).
Design a rectangular-shaped 8-QAM constellation whose average energy of the constellation is 5.
Give all x- and y-labels for each constellation point.

(b). What is the dimension of your signal constellation? That is, how many orthogonal signals for
your signal set are needed? Obtain the set of basis signals and normalize them. Show how each
signal in the constellation can be represented by your basis signals.

(c). Draw transmitter and receiver systems based on your normalized basis. Include the sampler
and the signal detector (the decision maker) in your system.

(d). Consider an AWGN noise (zero mean and PSD %) present at the front end of the receiver.

What is the variance and mean of the noise at the sampled output of your system?
(e) . Obtain an upper and a lower bound on P(e) as tight as possible.

P.2 (M-PSK, M-QAM) Obtain P(e) for 8-PSK and simulate 8-PSK system for symbol error rate.
Compare the simulation results with the theoretical P(e). Repeat for 8-QAM. Comment on your
8-PSK and 8-QAM results.

P.3 (Entropy calculation exercises)
a. Entropies of two random variables, i.e. H(X), H(Y), H(X]Y), H(Y|X): Do P6.5
Proakis/Salehi

P.4 (An example for Shannon’s key idea) Consider a BSC with parameter p which was
considered in the class. Let X; denote an input 1-0 binary vector of length ». Say this input
vector has five 1s in it. Suppose we send this input vector over the BSC channel and obtain an
output vector Y. Use p = 1/16 and block length n=32.

a. Describe the typical set for Y in your own words (Two or three sentences maximum).

b. Give the size of typical set in a. Compare it with the size of the complete set.

c. Suppose we have obtained a typical output Y. Say this vector contains only two
differences compared with the input X. Now describe the typical set for the input X
which could have generated the output Y. How big is this typical set? Compare it with
the complete set size for the input.

d. At this point, let’s consider selecting another input word X, randomly. Obtain the
probability that a newly selected word X, belongs to the typical input set obtained in c.
Discuss the consequence of selecting X, which belongs to the typical input set of c¢. In
particular, describe the decoding error when both X1 and X2 are used in a codebook as
codeword elements.

P.5 (Upper/lower bound on P(e)) Use P2.11 Proakis/Salehi in HW#1. Obtain the upper and
lower bounds on P(e) for the constellation as function of N,. Be specific to the distance
calculations. Now do MATLAB simulation and verify the upper/lower bound expressions.

P.6 (Reading Shannon’s 1948 paper)
1. Obtain the entropy of a Bernoulli random variable with parameter p. Draw the entropy as
function of p as p is varied from 0 to 1. Use MATLAB.
2. Let X and Y be mutually independent binary random variables with the alphabet {0, 1}.
Let X be a Bernoulli with parameter p= 0.1 (i.e., Pr{X = 1}), and Y be a Bernoulli with q
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=0.2 (i.e., Pr{Y=1}). Let Z=0 when X =0, 1 when X=1and Y =0, and 2 when X =1
and Y = 1. Prove/disprove H(Z) = H(X) + (1-p)H(Y).
P.7 (Shannon’s Entropy) Read page 12 of Shannon’s paper and design two binary random
variables X and Y which give the following results.
a) The joint entropy H(X, Y) is smaller than the sum of individual entropies H(X) +
H(Y).
b) The joint entropy H(X, Y) is equal to H(X) + H(Y).
¢) The conditional entropy H(X|Y) is smaller than H(X).

P.8 (Equivocation and channel capacity) Provide definitions/comments for the following items
(one or two sentences of your own at maximum)

a. Equivocation.

b. Relation of equivocation to conditional entropy

c. Relation of equivocation to channel capacity

d. Commenton Theorem 11. Why does it make sense?

P.9 (Capacity of a channel) Suppose there is a channel which transfers three letters a, b and c.
The channel transfers the letter @ without error. The channel however makes errors while
transferring b and c. With probability p, it changes b to ¢; with equal probability, ¢ to 5. Find the
capacity of this channel with respect to the given parameter p.
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HW#4
P.1 Proakis/Salehi P6.42 (Mutual Information for Gaussian Noise Channel)
P.2 Proakis/Salehi P6.43 (Capacity of 3 input 2 output channel, non symmetric case)

P.3 (Derivation of capacity for the erasure channel) Find the capacity of the erasure channel with
parameter p. This time, use I(X; Y) = H(Y) — H(Y|X) to prove that the capacity is 1 — p.

P.4 (Proakis/Salehi Section 6.5-2 Channel Capacity) Read Section 6.5-2. Suppose there is a
channel which can be described by Y = X + E mod 2, where E is Bernoulli with parameter p. X
is Bernoulli with parameter g. Let’s use g =0.5 and p =0.01.

(a). Find H(Y|X).

(b). Suppose using the same channel #» = 1000 times. Suppose that the input vector X is the all-
zero word. Describe the set of typical output sequences in English (Three sentences maximum).
(c). What is the size of the typical set Proakis/Salehi talk about in Section 6.5-2?

(d). Use the Stirling’s approximation and show there is a nice relationship between H(Y|X) and
the size of typical set.

P.5 (Proakis/Salehi P6.48, Coding vs. No Coding)
P.6 (Proakis/Salehi P6.58, Capacity)

P.7 (Proakis/Salehi P6.59, Rate over BSC with p)
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HW#5

P.5 (P(e) for M-ary orthogonal signals) Consider P(e) for M-ary orthogonal signals over infinite
bandwidth AWGN channel, and show that P(e) can be upper bounded by

P(e) S exp(~k(z-~In(2))).
where k =log,(M). Draw the upper bounds as M is increased, once with respect to E/N, and

once more with respect to Ey/N,. Explain your results. According to this bound, what is the
minimum required Ey/N, for reliable communications?

P.6 Prove that (4) in lecture note is minimum of (1) at s = 1/(1+p) (of the 2nd lecture note). Use
the Holder’s inequality given in (2).

P.7 (Derivative of the exponent) Find the expression of the derivative of E,(p,0) with respect to
p at p=0 (Read Chapter 5 Gallager)

P.8 (Gallager bound for binary input AWGN channel) Let’s consider a binary input {+1, -1}
AWGN channel. The PSD of the noise is N/2.
(a) Obtain a tight union bound, similar to eq. (4) of the 2nd lecture note, for this channel.

(b) Obtain the error exponent expression of this channel E, (0, Q). What type of Q is

desirable? Why?
(c) Obtain the expression for error exponent E(R) and sketch it.
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