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Wireless Communications

Module-1
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Agenda

v Course Schedule 
v Signal Space Representation & Optimal Receiver 



©200x Heung-No Lee 3

E-mail

v My e-mail is
heungno@gist.ac.kr

v I will use e-mail for sending lecture notes and special 
announcements.
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Course Information

v Class hours: 9:00-10:30 am Monday, Wednesday
v Lecture room: B201
v Office hours: 

– 10:30am ~ 11:30am Monday, 
– 10:00am ~ 11:00am Tuesday.  
– Or make an appointment via e-mail.
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Grade Distribution

v Two exams (Midterm#1: 20%, Final: 30%)
v Homework + Homework Grading (20%) 
v Term Project (30%)

– Binary modulation over AWGN channel simulation 
– Add LDPC encode/decode simulation
– Add variations such as 

• Wireless network codes
• Slepian Wolf distributed source coding
• Compressive sensing
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Tentative Schedule
1st week General overview (Shannon’s 1948 paper)
2nd week Optimal Transceiver
3rd week Gallager’s Channel Coding Theorem

4th week Gallager’s Channel Coding Theorem
5th week LDPC codes and probabilistic decoders
6th week Multipath fading channels/Diversity systems
7th week MIMO capacity theorems
8th week MIMO transceivers Midterm 1
9th week Design of LDPC and space-time codes and receivers
10th week Performance evaluation of MIMO transceivers
11th week Multi-user capacity/multi-user MIMO receivers
12th week Design of pre-coding MIMO signals

13th week Network codes
14th week Wireless network codes
15th week Overview
16th week Final project + Final Exam Final project 

due
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Homework, Class-Project Policies

v Discussion and exchange of ideas are strongly encouraged.
v You may submit your homework and project reports as a 

team of two persons. 
v On each homework and class project set, a reviewer team 

will be assigned (will take turns).
v The job of each reviewer team is to

– grade homework/project sets, 
– type up the best homework solution(rec. WORD with Mathtype), 
– get an approval of the solution manual from me, and 
– distribute the graded homework and solution to the students within 

a week.
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Scope of this course

v In this course, we will learn wireless and MIMO networks with help of
– Information Theory 
– Digital Communications Theory
– Channel Coding Theory

v What’s relevant are
– Complexity of the system (Is the system implementable?)
– Performance of the system (Probability of decision errors)
– How far is it from the theoretical limit?
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Scope of this course (2)

v Learn to apply the estimation/detection theory to communications 
problems.

v Learn to simulate communications systems for the purpose of 
evaluating a communications system.

v Be able to analyze the obtained simulation data and predict the 
performance of a given system, and provide a better design.

v Once we know how to predict/evaluate the performance of a 
communications system, we will use these knowledge and tool sets to 
design a better performing communications system.

v I say this is the way how the communications theory has been evolved.



Text Books

v Textbook: Proakis/Salehi, Digital Communications, 5th Edition, 
McGraw-Hill.

v Reference-1: Robert Gallager, Information Theory and Reliable 
Communication, John Wiley & Sons, Inc. New York, NY, USA, 
1968. ISBN:0471290483 

v Reference-2: David Tse and P. Viswanath, Fundamentals of Wireless 
Communication, Cambridge Press, 2005. 
ISBN: 0521845270 

v Reference-3: J. M. Wozencraft and I. M. Jacobs, Principles of 
Communication Engineering, Prospect Heights , Illinois, Waveland 
Press, 1990. 
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About Proakis/Salehi

v The book is like an encyclopedia of communications 
theory.
– Covers a lot of topics
– I certainly will not aim to cover all of them
– I’ll go over certain topics quickly to help your reading.

v Some homework problems will be taken from the book.
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Interaction with other related areas

v Optimization
v Signal and Image Processing
v Estimation/Detection Theory
v Pattern Recognition
v Neural Network
v Artificial Intelligence
v Bio-informatics
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v Now, let’s begin…
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Claude E. Shannon (1916 -- 2001)

v Math/EE Bachelor from UMich (1936)
v MSEE and Math Ph.D. from MIT (1940)
v A landmark paper “Mathematical Theory 

of Communications” (1948)
– Founder of Information Theory
– Fundamental limits on communications
– Information quantified as a logarithmic 

measure
v For more info on him, make a visit to 

http://www.bell-
labs.com/news/2001/february/26/1.html
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Shannon’s Perspective on Communications 

v Communications: Transfer of information from a source to a receiver 
v Messages (information) can have meaning; but they are irrelevant for 

the design of communications system.
v What’s important then?

– A message is selected from a set of all possible messages and transmitted, 
and regenerated at the receiver

– The size of the message set is the amount of information
v The capacity of a channel is the maximum size of message 

set that can be transferred over the channel and can be 
regenerated almost error-free at the receiver.

messages

Channel

Regenerate
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Digital Communication

v It is to send a message index m (out of M total) over the channel
– for the duration of time T , and
– have an expectation that the same index m can be recovered almost error-

free at the receiver.

v Transmission rate R = log2(M)/T [bits/sec]
v If R < C, then almost error-free recovery can be achieved.
v We need to find a set of M waveforms to interface the channel. 

– An analog (physical) waveform shall be chosen to carry the messages. 
Why?

– We may choose orthogonal waveforms
• Pulse-position, frequency-position (OFDM), sin(x)/x, …, or any other 

orthogonal signal set

– We need to find out how we can choose them.



Additive Noise Channel

vLet’s consider a simple channel
r(t) = s(t) + n(t)

– received signal = signal + noise
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Channel

s(t) r(t) 



Digital Representation

v Note that the simple ANC is based on continuous signals 
and noise

v We aim to replace the ANC with digits and vectors.  Why?
– Easier to deal with (digits rather than continuous waveforms)

• Computer simulations without loss of information
• Easier to do analysis
• Easier to design

v How? 
– Via the use of vector space idea.
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Hilbert Space

v A vector in the vector space (Hilbert space) can be added 
together and multiplied by scalars
– Norm exists ( åk |vk|2 < 1 or st |v(t)|2 dt < 1)
– Schwartz inequality holds (|v1 ¢ v2| · ||v1|| ||v2|| or |st f(t)g(t) dt|  ·

st |f(x)|2 dt)1/2 (st |g(t)|2 dt)1/2)

v Extension of the ideas of length and inner product from 
vector space to signal space.

v Approximation of a function with a series of (finite 
number of) orthonormal functions.
– the Karhunen-Loeve Expansion (pg. 76, Proakis/Salehi)
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Transformation

v A set of linearly independent vectors which spans a vector 
space is called a basis.

v A coordinate system can be represented by a basis. 
v There can be infinitely many coordinate systems in a 

vector space.
v Any vector with a finite norm can be represented by a 

linear combination of basis vectors. 
v Any vector (a signal) with a finite norm can be represented 

by any coordinate system.
v Change of basis to represent a vector can be performed. 

This is called transformation.
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Transformation (2)

v Example of transformation of a vector in different 
coordinate system
– Representation of vectors in Cartesian coordinate systems

v Usually, we choose an orthonormal set of vectors as a 
basis
– Norm of each basis vector is 1.
– Inner product between any pair of basis vectors is 0.
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Transformation (3)

v A vector (a signal) represented by{b1
k} can be transformed 

into other coordinate system, or be represented by {b2
k}. 

– Let {b1
k} and {b2

k} be two different bases (orthonormal)
• Let {b1

k} ={(1, 0, 0, …), (0, 1, 0, …), (0, 0, 1, …), …} be Cartesian
– Representation of a vector x = (x1, x2, …) with the 1st basis is 

x = åk (x ¢ b1
k) b1

k   = åk vk b1
k

– Representation of the same vector with the 2nd basis is 
x = åk (x ¢ b2

k) b2
k 

projection k-th basis vector
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Cartesian Coordinate

v x = (x1, x2) = (1, 1) 
v Basis-1 = {b1

1, b1
2}

– b1
1 = (1, 0)

– b1
2 = (0, 1)

– x = x1 b1
1 + x2 b1

2

v Basis-2 = {b2
1, b2

2}
– b2

1 = (cos(q), sin(q))
– b2

2 = (-sin(q), cos(q))
– x = (x ¢ b2

1) b2
1 + (x ¢ b2

2) b2
2

v Transform (changing the basis from 1 
to 2) 

v Inverse-Transform (change back to 1 
from 2)

q

b2
1

x

Note that x stays the same,
throughout!
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Orthogonal Signals

v Functions yn(t) and ym(t), a < t < b, are orthogonal when
sa

b yn(t) y*
m(t) dt = 0, for m ¹ n

– Inner-product is zero

v Self inner-product is the energy Kn of the function
sa

b yn(t) y*
n(t) dt = Kn

v A collection of orthogonal functions{yn(t)} is said to be an 
orthogonal set when the collection satisfies the following:

sa
b yn(t) y*

m(t) dt = Kn dn,m

Kronecker delta func
cf) Dirac delta function
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Geometric View of Signals and Noise

v We aim to represent signals and noise with orthonormal
signals.

v Suppose we have a collection of signals, 
{yj(t), j 2 1,2, …}, 0· t · T, orthonormal to each other.
– Orthonormality: s0

T yj(t) y*
k(t) dt = d(k - j) 

where d(k-j) is the Kronecker’s delta function.

v The set of orthonormal signals can form a vector space.
v We can use the first N signals {yj(t), j 2 1,2, …, N} as a 

basis for the signal space.



Representation of signals using {yj(t), j 2 1,2, …, N} 

v A basis can be used to represent ANY signal in the space
s(t) = åj=1

N sj yj(t), 0· t · T
where sj = s0

T s(t) y*
j(t) dt, for 1 · j · N.

v Finally, a continuous signal s(t) can be written as an N-
tuple vector, i.e., s = (s1, s2, …, sN).
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Energy Conservation

v The signal energy E
E = s0

T s2(t) dt = s0
T [åj sj yj(t)] [åq sqyq(t)]* dt

= åj åq sj s*
q s0

T yj(t) y*
q(t) dt

= åj=1
N |sj|2
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Representation of noise using {yj(t)}

v Compute the projection onto each basis signal
nj = s0

T n(t) yj(t) dt
v Then, we note the noise have two parts

n(t) = ni(t) + no(t)
where ni(t) = åj=1

N nj yj(t) 
(the noise which resides inside the signal-space)

no(t) = åj=N+1
1 nj yj(t)  

(the noise orthogonal to, and thus resides 
outside, the signal space)

v Then, we can say,  n(t) => n = (n1, n2, …, nN).
v The continuous noise can be represented by an N-tuple random noise 

vector n. 
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Additive White Gaussian Noise n(t)

v Suppose n(t) is Gaussian white noise with zero mean and double sided 
PSD N0/2.

v Then, each projection coefficient nj is a random variable
nj = s0

T n(t) y*
j(t) dt

v What kind of r.v.s are nj?
– Linear combination of Gaussian random variables is Gaussian.
– Mean and covariance?

• Mean = 0
• Consider E{nj n*

k} = E{s0
T n(t1) y* 

j(t1) dt1 s0
T n* (t2) yk(t2) dt2}

= s0
T s0

T E{n(t1) n* (t2)} y*
j(t1) yk(t2) dt2 dt1

= s0
T s0

T N0/2 d(t2-t1) y*
j(t1) yk(t2) dt2 dt1

= N0/2 s0
T y*

j(t2) yk(t2) dt2 = N0/2 dk,j

• Variance is N0/2 
– Mutually uncorrelated Gaussian r.v.s



Representation of signals and noise

v From the development so 
far, we can say that
r(t) = s(t) + n(t) 

=>r = s + n

v Thus, the figure on the 
right makes sense!!!

– Let’s check
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y1(t)

y2(t)

yN(t)

S S

AWGN 
n(t)

Channelsm(t) r(t)

sm,1

sm,2

sm,N



How to choose the basis and the signal set

v It depends on your resource and what you want

v Time division

v Frequency division

v Code-division

v Let’s see some examples
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Signal Space Representation

v We may attempt to draw signals in the signal space 
(it’s doable up to three dimension)
– Signal Space Plot, we call it.
– When you draw, treat each basis vector as a coordinate.

v Can you compare M and N? 
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Example 2

v Find the dimensionality of 
the signal set

v Find a basis set
v Obtain a vector 

representation
v Draw signal space plot
v Compute the distances 

between signals
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0 T

3

1

-1

s1(t)

s2(t)

s3(t)

s4(t)
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Big Picture View

v Communication over AWGN channel
r(t) = sm(t) + n(t), 0· t · T

v Choose a set of M distinct signal waveforms.
v From previous discussion (Sig. Space rep), we know we can represent 

the set of M messages using a set of basis functions.
v The size of the basis set {yj(t), j = 1,2,…,N} required to span the M-

ary signal set is the dimension N of the signal set.

Select the corr. sm(t)
from M-ary signal set

log2(M) bits

channel Demodulation Dec.m
r(t)

m’

Waveform (Physical world)

Decision
Variable
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Big Picture View (2)

v Modulation (wide sense) is to imply the mapping rule which takes a 
string of k=log2(M) bits as input and transmits the corresponding signal 
sm(t) over the channel.

– Transmission rate is k bit/T sec

v Demodulation (wide sense) is to imply the process of converting the 
analog waveform into a string of digits—a set of test statistics or 
decision variables

– Use the matched filter (or correlator) for optimum performance. 
– This results in the receiver which is a mirror image of the transmitter.

v The decision device makes the final decision m’ on the message.

v Minimize the probability of error, P(e) = P(m ¹ m’).
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Optimum Decision Rules

v Let’s consider the optimal decision receiver.
v The receiver has the received vector

– r = sm + n,
– n is a multivariate Gaussian with p(n) = (2ps2)-N/2 exp[-||n||2/2s2] .
– Each of the marginal distr. p(ni) is Gaussian with zero mean and variance 

s2.
v Maximum a-posteriori (MAP) criterion: 

Find the message index m, among 1, 2,…, M, that maximizes the 
posterior probability

P(sm | r) = P(sm, r)/P(r) / P(r |sm) P(sm)

v When P(sm) = 1/M (equally likely), maximization on the posterior 
probability is equivalent to maximization on the likelihood function.

– Implies that Maximum A Posteriori decision = Maximum Likelihood decision

Posteriors / Likelihoods £ Priors
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MAP = ML Detection, with equally likely input
= Min. E. D. Rule, with Gaussian noise

v The MLD rule for AWGN
v P(r | sm) = P(n = sm – r) = (2ps2)-N/2 exp[- ||r – sm||2/ 2s2]

v Log is monotone increasing function
v Use log[Pr(r | sm)] / – || r – sm||2/ 2s2

v Finally, we note that 
Maximum Likelihood Detection rule = Minimum Euclidean Distance 
Rule

Norm/Euclidean 
distance
Between r and 
hypothesis sm
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Decision Cells and Decision Boundary

v Example) a binary signal set

v Example) 4-ary signal set



©200x Heung-No Lee 40

Optimal Transceiver

v Use a basis {yj,  j=1, 2, …, N} to modulate and demodulate a message 
m.

v sm(t) $ sm=(sm,1, sm,2, …, sm,N)
v n(t) $ n = (n1, n2, …, nN) n1, n2, … i.i.d. Gaussian~ N(0, s2)
v r(t) $ r =(r1, r2, …, rN) These are called sufficient statistics 

(test variables, decision variables)

y1(t)

y2(t)

yN(t)

S S

AWGN 
n(t)

Channel y*
1(t)

y*
2(t)

y*
N(t)

s0
T

s0
T

s0
T

sm(t) r(t)

sm,1

sm,2

sm,N

r1

r2

rN

Max. Likely
Decision

Find m’ that
minimizes 

||sm’ – r||

m’



Inner Product Receivers

v Note that at each receiver branch, the receiver calculates 
the inner-product.

v After obtaining r, it’s easy to calculate the distance
||sm’ – r||  for each candidate m’.

v ML decision is the Minimum Distance decision.
v Thus, the inner product receiver is the ML sense optimal 

receiver.

v We refer to the inner product operator as the correlator.  
v The received signal gets correlated with each basis vector.
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Signal Design Criteria

v Bandwidth efficient design
v Power efficient design
v A signal requires resources

– Signals occupy time and frequency
• Use as little frequency bandwidth as possible
• Use as little time as possible
• Fundamental limit—Time-frequency uncertainty
• Thus, need a balance

v Another resource is power
– Use as little power as possible 
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Example with 4-QAM

v Let’s consider a 4-ary signal space 
plot again. 

v 4-QAM constellation is a two 
dimensional signal set.

v Basis vectors of this space are
y1(t) = sqrt(2/T) cos(wct),
y2(t) = - sqrt(2/T) sin(wct),
for 0· t · T

v The input/output signals can be 
represented with 2-tuples
r = s + n.

n1

n2

s0

n

r
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Example with M-ary FSK signals

v M-ary FSK signals, for 0· m · M-1
sm(t) = Re{gm(t) exp(j 2p fc t)}

= cos[2p fc t + 2 p m Df t],       0 · t · T,
gm(t) = exp(j 2p m Df t),                    0 · t · T,

where Es is the energy of the signal.

v The minimum frequency separation between adjacent signals, for 
orthogonality, is 1/2T. 
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Matched filters, why?

v We use the inner-product receiver (or the correlator) for 
the optimal receiver.

v The correlator output can also be obtained from using 
matched filters.

v Thus, the optimal receiver can also be realized with 
matched filter bank.

v Matched filter is sometimes easier to implement than the 
correlator.

v The following discussion shows that matched filter 
maximizes the SNR when it is sampled at the right 
moment. 
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Schwarz’s Inequality

v Schwartz inequality 
v |v1 ¢ v2| · ||v1|| ||v2|| with equality iff v2 = c v1

v |st f(t) g*(t) dt|  · (st |f(t)|2 dt)1/2 (st |g(t)|2 dt)1/2 with 
equality if and only if f(t) = K g(t)
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Matched Filter Maximizes (S/N)out

v y(t) is the received signal. We know that the signal s(t) has 
a duration 0· t · T, and the PSD of the noise n(t) is Pn(f).

v Find the best filter H(f) so that (S/N)out := |so(t)|2/E{n2
o(t)} 

is maximum at t=T.
v The signal part: so(t=T) = s H(f)S(f) exp(j2p f T) df.
v The noise part: no(t=T) = s H(f) N(f) exp(j2p f T) df.

y(t) = s(t) + n(t)
H(f), h(t)

t = T

yo(t) = so(t) + no(t)

yo(T)

deterministic
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Matched Filter Maximizes (S/N)out

v E{n*
o(T) no(T)} = s |H(f)|2 Pn(f) df

v Thus, the output SNR is

– where the second line is due to Schwartz’ inequality
– Equality is achieved iff A(f) = K B(f) 

• A(f) = H(f) Pn(f)1/2 

• B(f) = S*(f) exp(-j2p fT)/Pn(f)1/2
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Matched Filter Maximizes (S/N)out

v (S/N)out · s |S(f)|2/Pn(f) df
v The equality is attained when 

H(f) = K S*(f) e-j2p fT/Pn(f)

v When the noise is white, then Pn(f) = No/2, we have 
H(f) = S*(f) e-j2p fT

–
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Closer Look at SNRo

v When the noise is white, H(f) = S*(f) e-j2p fT

v The variance of the noise no(T) is 
E{no

*(T)no(T)} 
= E(s s H*(f1)H(f2) N(f2) N(f1) exp(j2p f1T) exp(-j2p f2T) df1 df2)
= s s H*(f1)H(f2) E(N*(f2) N(f1)) exp(j2p f1T) exp(j-2p f2T) df1 df2
= s s H*(f1)H(f2) (No/2) d(f2-f1) exp(j2p(f2 – f1 )T) df1 df2
= (No/2) s H*(f)H(f) df
= (No/2) s |H(f)|2 df
= (No/2) s |S(f)|2 df
= (No/2) Es

v Or simply we note that the PSD of the noise after the filter is (No/2) |S(f)|2. 
Thus, the noise power at the output of the matched filter is (No/2) s |S(f)2| df = 
Es (No/2).

v The energy (power) of the signal so(T) is Es
2.

v Thus SNRo = Es
2/[Es(No/2)] = Es/(No/2) .
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Correlator Realization of Matched Filtering
(White noise only)

v For white noise, the matched filter result is the same as the 
correlator output—integrated and dumped.

r(t) = s(t) + n(t)
s0

T r(t)s(t) dt

s*(t) Integrate and dump

ro(to)
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Correlator for Switched Sinusoids

v Integrator resets every t = T
v The sampler takes sample 

every t = T

1 0 1 0

LO

r(t)

Integrator
output

Sample
& Hold

T



v Now let’s consider a very simple transmitter and receiver 
pair.

v The purpose is to illustrate the overall idea of what we 
have learned so far.
– What are they???
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Transmitter

v Consider the following example

q-bit
Signaling

2q combinations

f(t)

0 Tp

Tx Shaping 
Filter

t

{an}
ån an f(t-nTp)

Vector-in

Orthogonal basis
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Receiver

v The Receiver is a mirrored system of the transmitter

t

f(t)

0 Tp

Rx  
Filter

Sampling
At t = Tp

Tp

t

Vector-out
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Binary Signals: Pass Band 

v On-Off Keying: 
– Ac cos(wct) for “1”
– Nothing for “0”

v Binary Phase-Shift Keying (BPSK)
– s(t) = Ac cos[wc t + p/2  m(t)]
– m(t) is the polar baseband signal.
– Ac sin(wct) for “1” and  –Ac sin(wct) for “0.”

v Binary Frequency-Shift Keying (FSK)
– Two FM signals for “1” and “0.”
– s(t) = Ac cos(w1 t + q1) or Ac cos(w2 t + q2)
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Binary Bandpass Signals

v Shown left are two kinds of 
signals.

– Baseband signals
– Bandpass signals

v Baseband signals
– Unipolar
– Polar

v Bandpass signals
– On-Off keying 
– Phase Shift Keying
– Frequency Shift Keying

The pictures scanned from Crouch, 6th Edition.
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Multi-level Modulated Bandpass Signals

v M-ary Phase Shift Keying
– s(t) = Ac cos(wc t + qi), for i = 0, 1, 2, …, M – 1.
– The phase carries information
– We use two-dimensional signal space plot in order to represent the 

signal.

In phase (Real part)

Quadrature (Imaginary part)

qi

4-PSK

Ac
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8 PSK

v 8 PSK example
i=0, 1, 2, …, 7

v p/4 is the angle between 
any two adjacent points 
in the signal space plot.

v We call the plot shown 
right digital signal
constellation.

p/4
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Baseband vs. Pass band

v s(t) = Ac cos(wc t + qi), for i = 0, 1, 2, …, M – 1.
v Get rid of the carrier
v s(t) = Re{Ac exp(j (wc t + qi))} 

= Re{Ac exp(j qi) exp(j wc t )}
= Re{g(t) exp(jwc t)}

v Baseband signal:  g(t) = Ac exp(j qi))
v Complex number à real and imaginary part
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4-QAM signals
v Baseband signal: g(t) = x(t) + j y(t) = R(t) exp(jq(t))

– R(t) is called the envelop signal (the magnitude part).  It’s Ac here.
v Let f(t) = rect((t – T/2)/T) for now.
v Suppose g(t) in the k-th signaling interval takes a value from the four 

predefined constellation points.
– Ac (1 + j), Ac(-1 + j), Ac(-1 – j), Ac(+1 – j) 
– Ac (xk + j yk), where xk , yk = +1 for bit “1” and -1 for bit “0”

(11)

(10)(00)

(01)

xk

yk

g(t) = åk Ac(xk + j yk) f(t – kT)
= Ac åk xk f(t-kT) + j Ac åk yk f(t – kT)
= x(t) + j y(t)

bits
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Quadrature Amplitude Modulation
v Two independent channels can be obtained over the same RF spectrum 

(Orthogornality: sT
0 cos(2p fct) sin(2p fc t) dt = 0)

v s(t) = x(t) cos(wct) – y(t) sin(wct)

cos(2pfct)

1011

-sin(2pfct) 
= cos(2pfct+p/2)

1101

T

1101

1011

Addition of the two 
carrier signals

x(t)

y(t)

1/T

å

(11)

(10)(00)

(01)

xk

yk

1011

1101
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16 QAM Constellation

v Each symbol carries four 
information bits.

v In general the in-phase x(t) 
and quadrature part y(t) can 
be written as
x(t) = åk xk f(t – kTp)
y(t) = åk yk f(t – kTp)

v For example of 16-QAM, yk, 
xk 2 {Ac, 3Ac, -Ac, -3Ac}

x

y
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Decision Regions for BPSK

v s1(t) = Ac sin(wct), 0 · t · T, for binary digit “1 .”
v s2(t)= –Ac sin(wct), 0 · t · T, for binary digit “0.”
v The dimensionality of the signal set is 1 (use y(t) = sqrt(2/T) sin(wc t)).

s1(t) $ s1 = Ac sqrt(T/2)
s2(t) $ s2=  -Ac sqrt(T/2)

v Thus, the difference energy Ed · dE
2 = 2Ac

2 T. 
– “=“ achieved when the matched filter is used.

s1

s2

0
Let’s assume s1 was sent, we note that 
error occurs when n · |s1 – s2|/2

Minimum distance rule gives a decision 
boundary which divides the entire space 
into two mutually-exclusive decision 
regions.

r

n
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Error Probability for Binary Signaling

v Pr(error) = P(error, s1 sent) + P(error, s2 sent)
= P(error | s1 sent) P(s1 sent) + P(error | s2 sent) P(s2 sent)
= P(r · Vt |s1 sent) P(s1 sent) + P(r ¸ Vt | s2 sent) P(s2 sent) 
= P(n · Vt - s1) P(s1 sent) + P(n ¸ Vt – s2) P(s2 sent) 

--- Let pdf of n is P(n) = f(n)
= P(s1 sent)s-1

Vt f(r|s1) dr + P(s2 sent)sVt
1 f(r|s2) dr  --- (1)

Prob.
density

f(r|s1)

s1s2

Decision boundary

n

Vt = (s1+s2)/2

f(r|s2)

r

Conditional pdf
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Pe for binary signaling

v Assume s1 and s2 equally likely P(s1 sent)=P(s2 sent)=0.5
v f(n) is Gaussian with zero mean and variance s2

– f(r|s1) = (pNo)-1/2 exp(-(r – s1)2/ No)
– f(r|s2) = (pNo)-1/2 exp(-(r – s2)2/ No)

v We note that because of symmetry, the optimal choice of 
Vt is the half point (s1 + s2)/2.

v Making use of symmetry of the Gaussian pdf’s, we can 
write 
– Pe = s(s1-s2)/2

1 sqrt(pNo)-1 exp(-n2/ No) dn
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Probability of Making Errors for Binary Signaling

v dE = || s1 – s2 || is the Euclidean distance between the two signals.
v dE

2 is the difference in signal energy.

v Decision error depends only upon the one dimensional noise acting along the line shown 
above (the noise components perpendicular to the line do not contribute toward 
generating the decision error event.).

v Assume that any one signal is sent. Then the error event is the set of all outcomes in 
which the received signal lands on the decision regions of the other signals. This event 
occurs when the one dimensional noise is directed toward the other codeword with its 
magnitude large enough to move across the decision boundary.

dE

One dimensional space

s1

s2

0
n-dimensional vector space
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Appendix --
Often Used Identities

vsin(x   y) = sin(x) cos(y)   cos(x) sin(y)
vcos(x   y) = cos(x) cos(y)    sin(x) sin(y)
vcos(x) cos(y) = ½ (cos(x+y) + cos(x-y))
vsin(x) sin(y) = -½ (cos(x+y) + cos(x-y))
vcos(x) sin(y) = ½ (sin(x+y) – sin(x-y))
vsin(x) = (1/2j)(ejx – e-jx)
vcos(x) = (1/2)(ejx + e-jx)

± ±

±±
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Problems

1. (the Q(x) function)  Assume X is a Gaussian distributed random 
variable with mean 1 and variance of s2.  Find the probability Pr{X > 
5}.  Express the probability with the Gaussian Q function (see 
definition in Section 2.3). 

2. Find out if sin and cos waveforms are orthogonal to each other. If yes 
under a certain condition, provide them. 

3. P2.3 (KL Decomp), 
4. P2.11 (Rep. of Signals), 
5. P2.25 (Bounds on Q(x) function), 
6. P2.51 (Sampling theorem)

7. P3.2 (Signal Representation)
8. P3.6 (Power Efficient Constellation)

9. P4.5 (Signal Representation/Constellation)



Problems

v Consider a communications system with given conditions:
– There are eight users and one access point.  
– All eight users make accesses to the access point simultaneously.  
– They use the same frequency band as well. The bandwidth is 

1MHz. 
– Each user sends 1Mbps with arbitrarily small errors.

v Is it possible to design a set of waveforms for such a 
multiple access system which support all the statements 
above ?  If yes, please provide one design.  For full 
credits, justification to the level of this lecture note should 
be given. 

©200x Heung-No Lee GIST 72


