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Abstract 

These days, because of the centralization problem of proof-of-work (PoW), many researchers propose 

application-specific integrated circuit (ASIC)-resistant PoW and alternative consensus algorithm (e.g., 

proof-of-stake, delegated proof-of-stake, and Byzantium fault tolerance). However, networks of these 

alternative consensus algorithms present less decentralization than ASIC-resistant PoW. Specifically, in 

alternative consensus algorithms, a limited participant can generate blocks; but in ASIC-resistant PoW, 

anyone can join to generate a block. Thus, ASIC-resistant PoW presents a better-decentralized network 

than alternative algorithms. In this work, we utilize error-correction code based proof-of-work 

(ECCPoW) as known as ASIC-resistant PoW. The ECCPoW utilizes a low-density parity-check (LDPC) 

code that has flexible parameters: variable length code, continuously changed parity check matrix 

(PCM). Thus, ECCPoW is possible to impair ASIC by changing the parameter of LDPC. Previous 

researches on ECCPoW algorithms present its theory and the implementation on Bitcoin. However, 

they do not discuss the stability of its block generation time. Block generation time (BGT) must follow 

a distribution that has a finite mean to achieve the stability that can ensure confirmation of transactions. 

In ECCPoW algorithms, BGT follows a long-tailed distribution due to varying cryptographic puzzles. 

If this long-tailed distribution has a none finite mean, such as the heavy-tailed distribution, the 

confirmation of transactions is not guaranteed. Thus, validating the distribution of BGT is necessary to 

determine if consensus algorithms can guarantee the confirmation of transactions. In this work, we 

present the implementation, simulation, and stability validation of ECCPoW Ethereum. In the 

implementation, we demonstrate how Ethereum applies ECCPoW algorithm as a consensus algorithm. 

Moreover, in simulation, we perform a multinode simulation to show how ECCPoW algorithm works 

on Ethereum with difficulty change. In stability validation, to present moderate evidence if the BGT 

MS/EC 

20191003 
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has a finite mean, we obtain a goodness-of-fit result using the Anderson-Daring test. Our 

implementation is at GitHub1.  

  

                                           

1 https://github.com/cryptoecc/ETH-ECC 
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Chapter 1 

1 Introduction 

1.1 Research background 

Unlike reliable network which consists of trust nodes, decentralized network consists of trustless 

nodes. In reliable network, there is no peers that would send wrong information on purpose. However, 

in decentralized network, it must be considered for possibility that there are some peers who may send 

wrong or forged information to others. To consider these issues in decentralized network, Nakamoto 

has presented blockchain and consensus algorithm [1]. 

In blockchain of Nakamoto, there are miner nodes who generate a block which is including transac-

tions. When one of miner generate a block, block is propagated to other miners with hash of transactions 

and miners who received a block validate it. If validation is done, block is linked to previous block like 

chain. Figure1 shows structure of blockchain. Nakamoto considered that blockchain is utilized by trust-

less nodes so one of node may send false of forged information to other peers. Thus, Nakamoto pro-

posed proof-of-work (PoW) as a consensus algorithm. In PoW, there exists crypto puzzle. All of miners 

try to solve a puzzle by using hash function (e.g., SHA256). When a miner finds a hash value from hash 

function which can meet a condition of crypto puzzle, then miner sends a block with hash value to other 

miners. Other miners validate that the sender really solves a crypto puzzle. If it solves, then valid block 

is generated and linked to previous block. The generated block includes information of previous block. 

Thus, if someone want to change a one of block in chain, all previous block of changed block also must 

be changed. Therefore, it is impossible to send a block which is including false or forged information 

to other nodes unless the network is centralized by a particular group. 

 PoW needs a lot of computational power. Thus, when a miner success to generate a block, miner 

get a kind of incentive to reimburse a cost which is derived by computational work. In blockchain of 

Nakamoto, incentive is called as Bitcoin. In the early days of Bitcoin, the price of incentive is not high. 

However, as the price of the incentive increased, miners who want to monopolize incentives have ap-

peared. They use application specific integrated circuit (ASIC) which has higher computational power 
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than general purpose unit such as central processing unit (CPU) or graphic processing unit (GPU). As 

a result, network of PoW blockchain is centralized by ASIC miners. In centralized network, a minority 

of nodes which occupy a most computational power monopolize the chance to generate blocks. Cen-

tralized network yields vulnerability to blockchain network. Because consensus algorithm cannot sup-

press malicious attack such as filtering out some transactions or 51% attack in centralized network [2], 

[3].  

Since Bitcoin experienced centralization problem, Buterin and Wood proposed ASIC-resistant PoW 

which is called as Ethash with Ethereum [4], [5]. In Ethash, miners must mix a data which are stored in 

memory. Thus, there is a bottleneck between arithmetic logic unit (ALU) and memory. Even though 

ALU such as ASIC has strong computational power, the number of attempts to generate a block depends 

on bandwidth of memory. It has shown ASIC-resistant for a long time. However, in 2018, Bitmain 

released ASIC for Ethash. Not only Ethash but also there are various consensus algorithms which are 

designed for ASIC-resistant. All of them have at least one of these features. One is intentional bottleneck 

such as Ethash and the other is high complexity of design suck as X11 of Dash [6] or X16R Raven [7]. 

Figure 1 Structure of Blockchain 
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In Bitcoin, there exist only one hash function. However, in X11 and X16R use more hash functions to 

make design ASIC hard. More details are described in Chapter 2. 

To utilize error-correction code (ECC) for ASIC-resistance, in [8], they proposed how to apply ECC 

to PoW and in [9], they showed that ECC based PoW (ECCPoW) can be applied to real world by 

presenting implementation on Bitcoin. In [8], they defined that block generation follows geometric dis-

tribution with the number of try to generate a block. However, in [9], they mentioned that ECCPoW 

has an unstable block generation time. Namely, block generation time follows long-tailed distribution. 

If this long-tailed distribution follows a distribution which has none finite mean such as a heavy-tailed 

distribution [10], it cannot be expected that when block will be generated. As a result, geometric distri-

bution of block generation which is defined in [8] is not guaranteed. In this paper, we present a way to 

apply ECCPoW to Ethereum. Also, we discuss stability of distribution of block generation time of 

ECCPoW which is not presented in [8] and [9]. 

The contributions of my work are listed as follows: 

 We present how to implement ECCPoW on Ethereum 

Figure 2 Trilemma and Consensus algorithms 



-4- 

 

 We present how to control difficulty of block generation in ECCPoW Ethereum and show 

simulation of ECCPoW Ethereum with difficulty change 

 We present moderate evident that exponential distribution describes distribution of block 

generation time of ECCPoW Ethereum by showing goodness-of-fit result which is derived 

by Anderson-Darling test  

The remainder of this paper is organized as follow: in Chapter 2, I present brief introduction of con-

sensus algorithms and comparison with PoW. In Chapter 3, I present requirements of ASIC-resistant 

PoW with example. In Chapter 4, we explain implementation of ECCPoW on Ethereum. In Chapter 5, 

we formulate a problem. In Chapter 6, we present simulation results and statistical analysis. In Chapter 

7, We summarize my work and present conclusion. 

  

Figure 3 Structure of Proof-of-Work 
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Chapter 2 

2 Consensus Algorithms and Its Comparison 

In this Chapter, we briefly review commonly used consensus algorithm and present why we must use 

proof-of-work (PoW) for decentralized network. In blockchain, there is a trilemma that security, scala-

bility and decentralization cannot be achieved at the same time. Thus, consensus algorithm gives up one 

of things in trilemma. PoW gives up scalability but it achieves decentralization and security. Proof-of-

Stake (PoS) cannot achieve scalability too. Practical Byzantium fault tolerance achieves decentraliza-

tion, but it gives up decentralization. Figure 2 shows trilemma according to consensus algorithms. More 

detail of these consensus algorithms and comparison are explained in following subchapter.  

2.1 Proof-of-Work (PoW) 

PoW is proposed by Nakamoto for Bitcoin [1]. In PoW, there exists a crypto puzzle and miners. 

Crypto puzzle is kind of puzzle which can be solved by brute force; miners are defined as nodes who 

try to solve crypto puzzle. To solve a puzzle, miner use hash function. After getting an output of hash 

function, miner compare output with target value of crypto puzzle. When miner success to find a hash 

value which is lower than target value, then miner can publish a block. Figure 3 presents structure of 

PoW. One of benefits of PoW is that PoW has O(1) message complexity [11]. Namely, even though 

there are a lot of nodes, sending only 1 message is enough for PoW network. Thus, PoW can increase 

the number of nodes for network. However, in PoW, block is generated by competition. When blocks 

are generated at the same time, it is called as fork. If blocks are generated at same time, only one block 

will be selected and transactions which are included in non-selected blocks are rolled back. Because of 

roll back, PoW cannot generate a block fast. For example, if block is generated every 1 second, then 

forks and roll backs will be happened frequently. Thus, even though PoW has good decentralization, 

there is a limit to increase transactions per second (TPS). Because of low TPS, PoW cannot meet scala-

bility of trilemma. 
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2.2 Proof-of-Stake (PoS) 

In PoS, block generation depend on quantity of stake. The time which takes to generate a block is 

called round. There is only one miner who generate a block in one round and this miner is called as 

proposer or leader. Proposer is changed every round depend on quantity of stake. When there are 100 

rounds and one miner has 30 % of total network staking, then probabilistically, this miner generates 

about 30 blocks. Unlike PoW, there is block proposer to generate a block. Thus, PoS has better scala-

bility than PoW. Also, PoS has O(1) message complexity like PoW [11]. However, it has less decentral-

ization than PoW. Because in PoW, anyone can join to block generation, but in PoS, there is a minimum 

stake for generating a block in PoS. 

2.3 Practical Byzantium Fault Tolerance (PBFT) 

PBFT [14] is a consensus algorithm which is based on Byzantium Fault Tolerance (BFT) [12], [13]. 

BFT is proposed to consensus when malicious nodes exist and PBFT defines that it needs 3N + 1 

Figure 4 Message complexity comparison of PBFT and PoW 
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nodes when there exists N malicious nodes. In PBFT, there are three steps: pre-prepare, prepare, com-

mit. Thus, it has O(n2) of message complexity. It means when there are 10 nodes, PBFT has 100 times 

message exchange. Thus, there is a limit to the number of nodes so it has lower decentralization than 

PoW. However, there is no fork so PBFT has higher scalability than PoW. Figure 4 presents different 

of message complexity between PBFT and PoW. 

2.4 Comparison  

We briefly introduced consensus algorithms which are commonly used in blockchain. In this sub-

chapter, we present comparison of aforementioned consensus algorithm and explain why PoW is im-

portant. We have mentioned that PoW has more decentralization than any other consensus algorithms. 

Because PoW can increase the number of nodes which can generate a block. However, PBFT has limi-

tation of the number of nodes. Because PBFT has O(n2) as message complexity. Thus, when the number 

of nodes increase, overhead of network also increase. PoS is decentralized than PBFT and anyone can 

Figure 5 Overview of consensus algorithms 
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join like PoW. However, there is a minimum stake to join mining. Thus, for decentralized blockchain 

network, PoW is utilized as consensus algorithm. However, PoW has lower scalability. Namely, PoW 

has low transaction per second (TPS). Thus, PoW needs a solution to increase TPS in future work such 

as off-chain solution. Figure 6 shows example of off-chain solution. It reports only last transaction to 

main blockchain network. 

Even though PoW has good decentralization, there are many blockchains which are not using PoW 

as consensus algorithm due to appearance of ASIC. ASIC has better efficiency than general purpose 

unit (e.g., CPU, GPU). As a result, miners who utilize ASIC dominate mining of PoW and network is 

Figure 6 Example of off-chain solution 
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centralized by ASIC nodes. To solve centralization problem, ASIC-resistant PoW is needed. 
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Chapter 3 

3 Requirement of ASIC-Resistance in PoW 

In this Chapter, we introduce requirements of ASIC-resistant in PoW with example. ASIC-resistant 

PoW utilizes at least one of these two methods: intentional bottleneck and high complexity of ASIC 

design. The intentional bottleneck which is also termed as memory-hard technique. The Intentional 

bottleneck uses bottleneck between arithmetic logic unit (ALU) and memory. This method is used in 

Ethash of Ethereum [4], [5]. The High complexity of ASIC design is make ASIC design hard; for exam-

ple, it uses sequence of hash functions unlike Bitcoin which uses only 1 hash function. This method is 

used in X11 of Dash [15] or X16R of Raven [16]. Furthermore, Random X of Monero [17] combines 

both methods for ASIC-resistant. More detail of these methods are explained in next Chapters. 

3.1 Intentional Bottleneck 

This method uses bottleneck between arithmetic logic unit (ALU) and memory. Even though ALU 

has high throughput like ASIC, if memory has not enough bandwidth, ALU cannot fully utilize through-

put of ALU. Specifically, if miner has to use a data which are stored in memory, the number of attempts 

to generate a block depend on bandwidth of memory. The most known PoW of intentional bottleneck 

is Ethash of Ethereum. Ethash uses a directed acyclic graph (DAG) which cannot store in cache memory; 

therefore, DAG is stored in memory. Miners who want to generate a block in Ethash have to mix a data 

of DAG. This method has been ASIC-resistant for a long time. However, ASIC is released in 2018 by 

Bitmain.  

3.2 High Complexity of ASIC Design 

This method makes ASIC design hard such as using sequence of hash function. Namely, purpose of 

this method is to be less efficient compared with the general purpose unit (e.g., CPU and GPU). For 

example, if it is expensive to design an ASIC with the same performance as that of a CPU or GPU than 

buying CPU or GPU, there is no reason to design and develop an ASIC. X11 or Dash [15] and X16R 

of Raven [16] are utilizing this method. X11 uses 11 hash functions: BLAKE, BMW, Grostel, JH, 



-11- 

 

Keccak, Skein, Luffa, Cubehash, SHAvite-3, SIMD and ECHO. First hash function; BLAKE uses 

header of blocks as an input and pass an output to next hash function. Using the result of ECHO, miner 

determines whether the miner obtains a correct nonce. X11 had been shown to be ASIC resistance but 

Bitmain released an ASIC for X11 in 2016. There are few PoW algorithms which extend X11 (e.g., 

X13, X14 and X15); however, the ASIC for these have been released. X16R is also extended PoW of 

X11. Unlike X11, it randomly shuffles 16 hash functions. However, T. Black, who designed X16R, 

mentioned that it is evident that there are ASICs for X16R [18]. Our method ECCPoW gets ASIC-

resistance by using high complexity of ASIC design. However, unlike previous research, ECCPoW uses 

continuously changed crypto puzzles. We give more detail in next Chapter. 

3.3 Combine Two Ways 

Random X of Monero combines two aforementioned methods. Random X uses memory-hard tech-

niques for bottleneck with random code execution [17]. Random code execution is optimized for CPU. 

Even though it is possible to perform mining using FPGA or ASIC but it is less efficient than CPU 

mining. In other word, currently mining random X using FPGA or ASIC is inefficient. However, in 

future, if chip price decrease, FPGA or ASIC mining can surpass CPU mining. Also ASIC of ECCPoW 

Figure 7 Scheme of ECCPoW Ethereum 
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can be released when chip price decreased. However, by changing parameters which are used for mining, 

it is possible to make ASIC powerless.  
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Chapter 4 

4 ECCPoW Implemented on Ethereum 

In this Chapter, we introduce ECCPoW and present how it is implemented on Ethereum with Figure 

7. Also, we present how difficulty of ECCPoW Ethereum is controlled. 

4.1 Overview of ECCPoW 

Blockchains which are utilizing PoW as consensus algorithm, nodes must solve a crypto puzzle to 

generate a block. The first node who solve a puzzle first get an authority to generate a block. This 

process to solve a puzzle is called as mining. In Bitcoin, crypto puzzle is finding a specific output of 

Secure Hash Algorithms (SHA) which is lower than target hash value. Ethereum uses a similar puzzle 

to that of the Bitcoin by replacing SHA with Ethash. 

The ECCPoW algorithm proposed in [8] utilizes error-correction code for PoW. There are two factors 

that make ECCPoW ASIC-resistance: variable length code and random puzzle generator. ECCPoW can 

generate variable length code by slicing or concatenating result of hash function. Furthermore, unlike 

previous research for ASIC-resistant PoW, ECCPoW generate continuously changed crypto puzzle by 

utilizing random puzzle generator. A random puzzle generator is defined by parity check matrix (PCM). 

In ECCPoW, nodes generate a new PCM which is distinct from other previously generated PCM. Also, 

PCM is generated by previous block. Thus, it is impossible to generate a PCM in advance. Figure 7 

shows above steps; more details are discussed in the next subchapter. 

4.2 ECCPoW on Ethereum 

In this subchapter, we present how error-correction code is applied to proof-of-work with Figure 7. 

Our definitions of this Chapter are based on [8]. We utilize low density parity check (LDPC) code for 

error correction. 

 
1

{ | { }: 0,1}
nC 

  c Hc 0 c  (1) 
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When a parity check matrix (PCM) H is given, a vector c which satisfies (1) is referred to as an 

LDPC code. The goal of ECCPoW is succeeding a LDPC decoding when a PCM and hash vector are 

given to the LDPC decoder. These steps are described in Figure 7. We use variable length code and 

continuously changed PCM for ASIC-resistance. A Vector c which is used as a code has variable length 

code. We denote how to generate variable length code in next subchapter. A PCM is randomly generated 

but all of miners use same PCM until the block is generated. Specifically, we randomly generate the 

PCM using the Gallagher’s way [19] and a previous hash value. A previous hash value is used as a seed 

when matrix is shuffled in Gallagher way. More details are presented in 4.2.2. 

 

 

 

 

 

 

 

 

Figure 8 Difficulty control mechanism of Ethereum 
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Figure 9 The heaviest chain rule of Ethereum 

Figure 10 The Longest chain rule of Bitcoin 
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4.2.1 Variable Length Code 

In this subchapter we present how to get a variable length code. This subchapter corresponds to Gen-

erate hash vector of Figure 7. 

Definition 1. Hash vector r in which the size of n can be obtained as follows: 

 
256

1 : ( ) {0,1}Keccak nons ce   (2) 

Where Keccak denotes the hash function applied in Ethash of Ethereum, and nonce is randomly gen-

erated in the same way as Ethash. 

 

1

1 1

[1: ] if 256
:

[    [1: ]] if 256l l

s n n

s s s j n


 


r

 (3) 

Where / 256l n     and 256j n l   . For example, when n is less than 256, r gets the same length 

as n by slicing 1s  , and when n is not less than 256, the results are concatenated with 

1: ( )l nKeccak ss  .  

4.2.2 Continuously Changed Parity Check Matrix 

For PCM, there are few conditions which must meet. First, all of nodes must use same PCM without 

broadcasting. Second, PCM has to be changed every block. For these condition, we use Gallagher’s 

way [19] with previous hash vector. Below steps show example of how to generate PCM which has: 

two ones in column, four ones in row and 12 length of code 

Step 1: Construct a matrix such as 

 

      

:       

      

 
 


 
  

4 4 4

1 4 4 4

4 4 4

1 0 0

A 0 1 0

0 0 1
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Where : [1   1   1   1]
4

1  and : [0   0   0   0]
4

0 . 

Step 2: Permute 1
A randomly to form 2

A  

For permutation, we use previous hash vector as a seed. Thus, 2
A is randomly generated but all nodes 

can generate same PCM. 

Step 3: Construct a PCM 

:
 

  
 

1

2

A
H

A
 

The Figure 11 shows result of above steps. 

4.2.3 Proof-of-Work of the LDPC decoder 

The goal of the LDPC decoder is to find a hash vector ĉ  that satisfies (1). The below definition ex-

plains decoding steps. 

Figure 12 Example of parity check matrix 
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Definition 2. When PCM H, and hash vector r are given, the LDPC decoder uses H and r as inputs 

and obtains output ĉ   using message-passing algorithm [8], [20]. When ĉ   satisfies (1), ĉ   be-

comes an LDPC code and LDPC decoding is completed 

 
1ˆ:{ , } {0,1}n

npD r H c  (4) 

A PCM H is randomly generated, but all miners use the same previous hash value derived from the 

previous block. Thus, it is not possible to generate the next PCM to mine a block in advance. In the 

PoW of Bitcoin and Ethereum, nonce is changed when the result of hash function is smaller than target 

value. We follow similar way as that used by Ethereum to obtain a hash value with nonce. However, 

ECCPoW does not compare with target value but it checks result of decoding. When the code derived 

by (4) does not satisfy (1), node changes nonce and repeats all the steps. 

Our method ECCPoW is based on the high complexity of ASIC design in Chapter 3 for an ASIC-

resistant PoW. However, unlike previous researches, ECCPoW generate variable crypto puzzle by using 

continuously changing PCM and variable length code. It can be released ASIC of ECCPoW for specific 

length of code and PCM. However, it is possible to make ASIC obsolete by changing parameters. Fur-

thermore, in [20], [21], it has been proven that implementing an ASIC that can handle variable PCM is 

expensive and occupies a lot of space. If buying CPU or GPU is more efficient, there is no reason to 

make an ASIC. In other words, the ECCPoW algorithm is ASIC resistant as implementing an ASIC 
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that can handle various lengths of changing codes and PCMs is very inefficient. 

4.2.4 Difficulty Control of ECCPoW Ethereum 

In this subchapter, we give a comparison of difficulty implementation of Bitcoin and Ethereum. Also, 

we present the implementation of difficulty control of ECCPoW Ethereum. Bitcoin update difficulty 

every 2016 blocks. However, Ethereum update difficulty every block. Namely, in Bitcoin, even though 

a block is generated slower or faster than expected block generation time, the difficulty is not changed 

until a specific period. However, in Ethereum, the difficulty is changed without procrastination. Figure 

8 and Figure 10 present practical examples. Figure 8 presents the difficulty control mechanism of 

Ethereum. It shows that Ethereum changes difficult every block. If the network generates a block with 

unexpected time, then the network changes difficulty. Ethereum allows generating a block within [9, 

18) second. Thus, if the network generates a block with less than 9 seconds, then the network increases 

the difficulty. Figure 11 Difficulty control mechanism of Bitcoin unlike Ethereum, Bitcoin changes 

every 2016 blocks. The expected block generation time of Bitcoin is 10 minutes. When the network 

generates a block every 10 minutes, generating 2016 blocks take exactly two weeks. Thus, if generating 

the 2016 block takes more than two weeks, it means that the current difficulty is high for this network. 

Figure 13 Simulation of ECCPoW 
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On the contrary, generating the 2016 block takes less than two weeks means the current difficulty is 

low for network. 

Furthermore, in Pow base blockchain, blocks can be generated at the same time. Bitcoin and 

Ethereum consider it differently when network control difficulty. Bitcoin does not allow to generate a 

block at the same time. However, Ethereum allows three blocks to generate a block at the same time. 

Specifically, in Bitcoin, when blocks are generated at the same time, a block that is connected to the 

longest block is confirmed. Thus, the network rolls back transactions that are not included in the longest 

chain; it is called the longest chain rule. Figure 10오류! 참조 원본을 찾을 수 없습니다. shows an 

example of the longest chain rule. In the longest chain rule, only a block that is connected to the previous 

can affect the difficulty. However, in Ethereum, the network allows three blocks. In these three blocks, 

only one block can include transactions Blocks that cannot include transactions are called uncle block. 

Unlike Bitcoin that uses the longest chain rule, the Ethereum uses the heaviest chain rule. Figure 9 

presents an example of the heaviest chain rule. Even though there exists the longest chain, the network 

selects the heaviest chain which includes more blocks. In the heaviest chain rule, uncle block can affect 

the difficulty. Namely, the network considers the hash rate to generate uncle blocks to control difficulty. 

Bitcoin does not consider uncle blocks to control blocks. It means that the network does not include a 

hash rate to generate an uncle block. Thus, even though the network has a high hash rate, the network 

Figure 14 Example case of rollback 
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cannot fully utilize the hash rate for the security of the network. In PoW based blockchain, hash rate 

affects the security of blockchain. Because when the network has a low hash rate, a malicious miner 

can reverse blockchain using strong hash rate mining machine, such as ASIC or FPGA.  

ECCPoW Bitcoin is based on Bitcoin [9]; ECCPoW Ethereum is based on Ethereum. Thus, ECCPoW 

Ethereum needs its own difficulty control unlike ECCPoW Bitcoin. For difficulty of ECCPoW 

Ethereum, we present how to apply error correction code process to difficulty control methods of 

Ethereum. 

 In [5], difficulty of Ethereum is defined by probability of block generation. It is defined as 

 

256
2

Diff
n 

 (5) 

and indicates that 

 

2562

n
Diff   (6) 

Where n denotes the result of PoW, and Diff denotes the difficulty of Ethereum. Thus, (6) means 

that when the difficulty increase, the value of n that satisfies (6) decrease. Furthermore, we can consider 

that the reciprocal of difficulty is a probability of block generation. Namely, if we can calculate a prob-

ability of block generation, it is possible to control difficulty similar to the process in Ethereum. Thus, 

it is important to know the probability of a successful LDPC decoding according to the LDPC parameter. 

To test the difficulty change using the block generation time, we calculated the pseudo-probability of a 

successful LDCP decoding according to the parameters. The parameters can be found at our GitHub2. 

                                           
2 https://github.com/cryptoecc/ETH-ECC/blob/master/consensus/eccpow/LDPCDifficulty_utils.go#L65 
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In Figure 13 Simulation of ECCPoW, the difficulty of the ECCPoW algorithm is 32.49 KH, indicat-

ing that the probability of block generation is 1 of 32,490 hash cycles. Hash cycles denote the number 

of attempts to generate block. The difficulty of ECCPoW Ethereum is changed using a previous BGT, 

similar to that of Ethereum. If the last block is generated earlier than expected, the difficulty increases. 

Conversely, if the last block is generated later than expected, the difficulty decreases. Thus, if there are 

more hash cycles than expected, the difficulty increases, and when there are less hash cycles than ex-

pected, the difficulty decreases.  

Figure 15 Problem of the heavy-tailed distribution 

(a) Non heavy-tailed distribution 

(b) heavy-tailed distribution 
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Chapter 5 

5 Problem Formulation 

In PoW, there is a case where in transactions are included in an orphan block which is not linked to 

chain. Transactions in an orphan block are rolled back; Figure 13 shows a case of roll back. Therefore, 

in PoW, the participants must wait for the block confirmation time to prevent transactions from rolling 

back. That is to say, in blockchains utilizing PoW, the BGT must have a finite mean for the block con-

firmation time. For example, if the BGT has an infinite mean, we cannot determine how long we must 

wait for the confirmation of transactions. Therefore, to apply the ECCPoW algorithm in a real network, 

the BGT must have a finite mean.  

In [8], a theorem about the block generation of the ECCPoW algorithm using a hash cycle with a 

geometric distribution is presented. However, it has been assumed that the block must be generated 

within specific hash cycles. However, if the BGT has an infinite mean, there is no guarantee that the 

block will be generated within specific hash cycles. In [9], the practical experiment using the ECCPoW 

algorithm has been discussed. However, it was only mentioned that the ECCPoW algorithm has an 

unstable BGT, and no discussion on the mean of BGT was present. In this paper, the experimental result 

present moderate evidence that exponential distribution describes distribution of BGT of the ECCPoW 

algorithm with its implementation on Ethereum. Figure 14 presents problem of the heavy-tailed distri-

bution. (a) shows non heavy-tailed distribution case, in this case, network can guarantee block confir-

mation time. However, in (b), it has high difference of block generation between blocks. Thus, the 

network cannot guarantee block confirmation time. Namely, if BGT of ECCPoW follows heavy-tailed 

distribution, it will show BGT such as (b) of Figure 14. Thus, to use ECCPoW in the real world, it is 

important to show that BGT of ECCPoW follows non heavy-tailed distribution. 
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Chapter 6 

6 Experiment On ECCPoW Ethereum 

In this section, we conduct experiments using ECCPoW Ethereum. First, we simulate the difficulty 

change using multinode networks. Second, we conduct a goodness-of-fit experiment using the Ander-

son-darling (AD) test [23], [24], [25] to confirm the stability of the BGT with fixed difficulty. 

6.1 Experiment Set Up 

In this subchapter, we present how to set up experiment. This subchapter is organized as follow:  

 Present experiment set up ECCPoW Ethereum node on Linux. 

 Present experiment set up ECCPoW Ethereum node on Windows. 

 Present how to connect nodes. 

In first two subchapters, we present setting up ECCPoW Ethereum using only one node; in the last 

subchapter, we present a way to connect each node. In this subchapter, we use two fonts to distinguish 

command on terminal and terminal on ECCPoW Ethereum client: geth. 

Command on terminal 

Above font presents command on terminal. 

Command on geth 

Above font presents command on geth 

6.1.1 Experiment set up on Linux 

This Chapter is based on below environments 

 Linux mint 19.1 or Linux manjaro 19.0. 

 Golang (version 1.10 or later). 

Download and install geth 

In this subchapter we present how to download ECCPoW Ethereum client: geth. To download geth, 

1. Move to a directory which you want to locate ECCPoW Ethereum. 
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2. Open terminal using right-click of mouse. 

3. Paste below command. 

git clone https://github.com/cryptoecc/ETH-ECC 

Then geth will be downloaded. After downloading, 

1. Move to downloaded folder. 

2. Open terminal using right-click and paste below line. 

make all 

If build is successful, then you can find binary files in bin folder like Figure 16. 

Build 

Like we have mentioned, for this private network, we use only one node for private network. Con-

necting each node will be explained in the end of this subchapter 6.1. For building private network, we 

use puppeth. You can see puppeth in Figure 16. The puppeth is used to generate a genesis file. Before 

Figure 16 Binary files in bin folder 
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build network, not only private but also public, we must generate a genesis file. The genesis file includes 

information of network. Thus, it is used to identify network. To run puppeth: 

1. Move bin folder. 

2. Open terminal using right-click of mouse and paste below line. 

./puppeth 

3. After run the puppth, you can see a welcome message. Follow below steps.  

+-----------------------------------------------------------+ 

| Welcome to puppeth, your Ethereum private network manager | 

|                                                           | 

| This tool lets you create a new Ethereum network down to  | 

| the genesis block, bootnodes, miners and ethstats servers | 

| without the hassle that it would normally entail.         | 

|                                                           | 

| Puppeth uses SSH to dial in to remote servers, and builds | 

| its network components out of Docker containers using the | 

| docker-compose toolset.                                   | 

+-----------------------------------------------------------+ 

 

Please specify a network name to administer (no spaces, hyphens or capital let-

ters please) 

> eccpow1 

 

Sweet, you can set this via --network=eccpow1 next time! 

 

INFO [02-14|21:21:23.414] Administering Ethereum network           name=eccpow1 

WARN [02-14|21:21:23.414] No previous configurations found         

path=/home/hskim/.puppeth/eccpow1 

 

What would you like to do? (default = stats) 

 1. Show network stats 

 2. Configure new genesis 

 3. Track new remote server 

 4. Deploy network components 

> 2 

 

What would you like to do? (default = create) 

 1. Create new genesis from scratch 

 2. Import already existing genesis 

> 1 

 

Which consensus engine to use? (default = clique) 

 1. Ethash - proof-of-work 

 2. Clique - proof-of-authority 
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 3. EccPoW - proof-of-work with LDPC 

> 3 

 

Which accounts should be pre-funded? (advisable at least one) 

> 0x 

 

Should the precompile-addresses (0x1 .. 0xff) be pre-funded with 1 wei? (advisa-

ble yes) 

>  

 

Specify your chain/network ID if you want an explicit one (default = random) 

> 12345 

INFO [02-14|21:21:58.917] Configured new genesis block  

 

What would you like to do? (default = stats) 

 1. Show network stats 

 2. Manage existing genesis 

 3. Track new remote server 

 4. Deploy network components 

> 2 

 

 1. Modify existing configurations 

 2. Export genesis configurations 

 3. Remove genesis configuration 

> 2 

 

Which folder to save the genesis specs into? (default = current) 

  Will create eccpow1.json, eccpow1-aleth.json, eccpow1-harmony.json, eccpow1-

parity.json 

>  

INFO [02-14|21:22:02.800] Saved native genesis chain spec          path=ec-

cpow1.json 

ERROR[02-14|21:22:02.800] Failed to create Aleth chain spec        err="unsup-

ported consensus engine" 

ERROR[02-14|21:22:02.800] Failed to create Parity chain spec       err="unsup-

ported consensus engine" 

INFO [02-14|21:22:02.803] Saved genesis chain spec                 client=har-

mony path=eccpow1-harmony.json 

 

What would you like to do? (default = stats) 

 1. Show network stats 

 2. Manage existing genesis 

 3. Track new remote server 

 4. Deploy network components 

> ^C 

^C in the end of above step means ctrl + C. 

We set a name as eccpow1. In the end of below step, eccpow1.json will be located in directory. Also, 

we set a chain/network ID as 12345 for convenient. You can change chained to any 256-bit number 
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except already occupied chained such as 1 of Ethereum. Because geth recognize a network using 

chain/network ID. 

We finished set up to run geth. Additionally, we have to make a storage directory to store data such 

as blocks and states of ECCPoW Ethereum. You can generate a directory to any location. In our case, 

location of storage directory is: 

/home/hskim/Documents/geth-test 

And name of storage directory is geth-test. Blocks and states will be stored in storage directory. 

Set up geth 

We installed geth and set directory to store data. In this subchapter, we present how to run it. Before 

run geth, move bin folder which is shown in Figure 16, open terminal and paste below command with 

replacement to initialize storage directory. 

./geth --datadir {your_own_storage_directory} init {genesis_file_name.json}  

For example, 

./geth --datadir /home/hskim/Documents/geth-test init eccpow1.json  

Location of our storage directory is /home/hskim/Documents/geth-test and name of genesis file 

is eccpow1.json. Thus, we replaced using ours. If above command works well, then you will 

be able to check new folders on your storage directory like Figure 17. 

All of preparation to run private network is done. Now we show how to run private network. Open the 

terminal on bin folder which are described in Figure 15 and paste below command with replacement. 

./geth --datadir Your_own_storage --networkid network_id console 

Figure 17 Result of storage directory initialization 
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For example, 

./geth --datadir /home/hskim/Documents/geth-test --networkid 12345 console 

If you did not set chain/network ID as 12345, then you have to replace it to your own chain/network ID. 

After running above command, you can see below message. 

INFO [08-06|21:27:43.867] Maximum peer count                       ETH=50 LES=0 

total=50 

INFO [08-06|21:27:43.867] Smartcard socket not found, disabling    err="stat 

/run/pcscd/pcscd.comm: no such file or directory" 

INFO [08-06|21:27:43.870] Starting peer-to-peer node               in-

stance=Geth/v1.9.2-unstable-aa6005b4-20190805/linux-amd64/go1.12.7 

INFO [08-06|21:27:43.870] Allocated trie memory caches             

clean=256.00MiB dirty=256.00MiB 

INFO [08-06|21:27:43.870] Allocated cache and file handles         data-

base=/home/hskim/Documents/geth-test/geth/chaindata cache=512.00MiB han-

dles=524288 

INFO [08-06|21:27:43.904] Opened ancient database                  data-

base=/home/hskim/Documents/geth-test/geth/chaindata/ancient 

INFO [08-06|21:27:43.904] Initialised chain configuration          con-

fig="{ChainID: 12345 Homestead: 0 DAO: <nil> DAOSupport: false EIP150: <nil> 

EIP155: 0 EIP158: 0 Byzantium: <nil> Constantinople: <nil>  Petersburg: <nil> 

Engine: unknown}" 

INFO [08-06|21:27:43.904] Disk storage enabled for ethash caches   

dir=/home/hskim/Documents/geth-test/geth/ethash count=3 

INFO [08-06|21:27:43.904] Disk storage enabled for ethash DAGs     

dir=/home/hskim/.ethash count=2 

INFO [08-06|21:27:43.904] Initialising Ethereum protocol           versions=[63] 

network=12345 dbversion=7 

INFO [08-06|21:27:43.944] Loaded most recent local header          number=0 

hash=ab944c…55600c td=400 age=50y3mo3w 

INFO [08-06|21:27:43.944] Loaded most recent local full block      number=0 

hash=ab944c…55600c td=400 age=50y3mo3w 

INFO [08-06|21:27:43.944] Loaded most recent local fast block      number=0 

hash=ab944c…55600c td=400 age=50y3mo3w 

INFO [08-06|21:27:43.945] Loaded local transaction journal         transac-

tions=0 dropped=0 

INFO [08-06|21:27:43.945] Regenerated local transaction journal    transac-

tions=0 accounts=0 

INFO [08-06|21:27:43.951] Allocated fast sync bloom                

size=512.00MiB 

INFO [08-06|21:27:43.951] Initialized fast sync bloom              items=0 er-

rorrate=0.000 elapsed=37.353µs 

INFO [08-06|21:27:43.997] New local node record                    seq=3 

id=65c5b16ab4aa9e9f ip=127.0.0.1 udp=30303 tcp=30303 

INFO [08-06|21:27:43.998] Started P2P networking                   

self=enode://3e6e6cc9fd56954e02f3807813e086827ddf0576d0c969f67a915691ec3f8798673

32ba4911048fd513672856c63a2746063706005c6d777f670ae16c2c4a384@127.0.0.1:30303 
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INFO [08-06|21:27:43.999] IPC endpoint opened                      

url=/home/hskim/Documents/geth-test/geth.ipc 

WARN [08-06|21:27:44.088] Served eth_coinbase                      reqid=3 

t=16.874µs err="etherbase must be explicitly specified" 

Welcome to the Geth JavaScript console! 

 

instance: Geth/v1.9.2-unstable-aa6005b4-20190805/linux-amd64/go1.12.7 

at block: 0 (Thu, 01 Jan 1970 09:00:00 KST) 

 datadir: /home/hskim/Documents/geth-test 

 modules: admin:1.0 debug:1.0 eth:1.0 ethash:1.0 miner:1.0 net:1.0 personal:1.0 

rpc:1.0 txpool:1.0 web3:1.0 

> 
 

Now we are ready to run ECCPoW Ethereum. 

Run private network on Linux 

Now we can run our own network. In this Chapter, we show how to make account, start mining, and 

make a transaction. Before start, we can check current block length and accounts of this network.  

> eth.blockNumber 

0 

> eth.accounts 

[] 
 

On geth, type eth.blockNumber and eth.account separately. Then you can see above result. These results 

shows that currently, there is no block and account. We can generate an account using command on 

geth. 

> personal.newAccount("Alice") 

INFO [08-06|21:33:36.241] Your new key was generated               ad-

dress=0xb8C941069cC2B71B1a00dB15E6E00A200d387039 

WARN [08-06|21:33:36.241] Please backup your key file!             

path=/home/hskim/Documents/geth-test/keystore/UTC--2019-08-06T12-33-

34.442823142Z--b8c941069cc2b71b1a00db15e6e00a200d387039 

WARN [08-06|21:33:36.241] Please remember your password!  

"0xb8c941069cc2b71b1a00db15e6e00a200d387039" 
 

We generate an account of “Alice” by using command personal.newAccount(“Alice”). As a result of 

generation, we got the address of Alice: "0xb8c941069cc2b71b1a00db15e6e00a200d387039". If we 

check accounts of network again, 

> eth.accounts 

["0xb8c941069cc2b71b1a00db15e6e00a200d387039"] 
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The geth shows thet there is account of Alice. We will use Alice’s address as a miner’s address. If Al-

ice success to generate a block, then ether will be send to Alice’s account. Before mining, we need to 

check balance of Alice’s account. 

> eth.getBalance("0xb8c941069cc2b71b1a00db15e6e00a200d387039") 

0 

It shows there is no balance in Alice’s account. 

ECC-ETH mining 

Before mining, we have to set miner’s account for coinbase transaction. When miner success to generate 

a block, then reward will be sent to miner’s account. It is called as coinbase transition. Thus, we have 

to allocate an account to miner. For allocation, we use miner.setEtherbase(“account”) command. 

> miner.setEtherbase("0xb8c941069cc2b71b1a00db15e6e00a200d387039") 

True 

If account exists, then it shows True. After getting True, we can start mining. For mining, we use 

miner.start(“number of threads”). For test, we use one thread. Thus, “number of threads” is replaced to 

1. 

> miner.start(1) 

null 

INFO [08-06|21:42:38.198] Updated mining threads                   threads=1 

INFO [08-06|21:42:38.198] Transaction pool price threshold updated 

price=1000000000 

null 

> INFO [08-06|21:42:38.198] Commit new mining work                   number=1 

sealhash=4bb421…3f463a uncles=0 txs=0 gas=0 fees=0 elapsed=325.066µs 

INFO [08-06|21:42:40.752] Successfully sealed new block            number=1 

sealhash=4bb421…3f463a hash=4b2b78…4808f6 elapsed=2.554s 

INFO [08-06|21:42:40.752] 🔨 mined potential block                  number=1 

hash=4b2b78…4808f6 

. 

. 

. 

INFO [08-06|21:42:56.174] 🔨 mined potential block                  number=9 

hash=2faebb…8be693 

INFO [08-06|21:42:56.174] Commit new mining work                   number=10 

sealhash=384aa6…cb0596 uncles=0 txs=0 gas=0 fees=0 elapsed=179.463µs 

> miner.stop() 

null 

We mined 9 blocks and stopped using miner.stop() command. We can check the number of blocks in 
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network: 

> eth.blockNumber 

9 

It shows that we mined 9 block as we have known. Also, we can check result of coinbase transactions: 

> web3.fromWei(eth.getBalance("0xb8c941069cc2b71b1a00db15e6e00a200d387039"), 

"ether")  

45 

It shows that in account of Alice, there are 45 Ether. Because in source code, reward of coinbase trans-

action is defined as 5 Ether. 

Make a transaction 

In this subchapter, we show how to send a ether to other account. For this, we generate one more account. 

> personal.newAccout("Bob") 

"0xf39cf42cd233261cd2b45adf8fb1e5a1e61a6f90" 

We will show sending ether from Alice’s account to Bob’s account. To send ether from Alice, we must 

unlock account of Alice first: 

> web3.personal.unlockAccount("0xb8c941069cc2b71b1a00db15e6e00a200d387039")  

Unlock account 0xb8c941069cc2b71b1a00db15e6e00a200d387039 

Above command shows that Alice’s account is unlocked. Now we can send ether to Bob’s account. We 

will define two variables “Alice” and “Bob” for convenient. The “Alice” is defined as Alice’s account 

and the “Bob” is defined as Bob’s account. 

> Alice = "0xb8c941069cc2b71b1a00db15e6e00a200d387039" 

> Bob = "0xb8c941069cc2b71b1a00db15e6e00a200d387039" 

We use these two variable to make a transaction. 

> eth.sendTransaction({from: Alice, to: Bob, value: web3.toWei(5, "ether")}) 

Above command means Alice will send 5 ether to Bob’s account. For confirmation of this transaction, 

we must wait until block is generated. In other word, we can see pending transaction which is waiting 

for generating a block. 

> eth.pendingTransactions 

[{ 

    blockHash: null, 

    blockNumber: null, 
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    from: "0xb8c941069cc2b71b1a00db15e6e00a200d387039", 

    gas: 21000, 

    gasPrice: 1000000000, 

    hash: "0x926f1bb71d5b48a306e6cde2d45c01f8af2107febf94b166a7e5f8e025dc8adc", 

    input: "0x", 

    nonce: 0, 

    r: "0x70484271bdc85f7233e715423d8d0be5c669a323385b5ec0ff080a52cf3c654c", 

    s: "0x1b55a792995f61128c10a48ce1e0869893c863d38489f574d84ae3a96b031cef", 

    to: "0xf39cf42cd233261cd2b45adf8fb1e5a1e61a6f90", 

    transactionIndex: null, 

    v: "0x42", 

    value: 5000000000000000000 

}] 

Above lines show information of transaction. To confirm above transaction, we must generate a block. 

If we generate a one block, we can see the change of balance in accounts. 

> web3.fromWei(eth.getBalance("0xb8c941069cc2b71b1a00db15e6e00a200d387039"), 

"ether") 

45 

> web3.fromWei(eth.getBalance("0xf39cf42cd233261cd2b45adf8fb1e5a1e61a6f90"), 

"ether") 

5 

It shows that Alice sent 5 Ether to Bob but Alice get 5 Ether again from coinbase transaction. 

6.1.2 Experiment set up on Windows 

In this subchapter we present how to build ECC-ETH private network on Windows. Basically, ECC-

ETH is considered to run on Linux. Therefore, we use virtual machine on Windows. Thus, we present 

how to install virtual machine and Linux Ubuntu. 

Download VMware and Linux Ubuntu 

In this subchapter, we present how to install VMware and Linux Ubuntu. To install download VMware, 

go to VMware download page3 and for Linux Ubuntu, go to Ubuntu download page4 and get a LTS 

version. After finishing download, install VMware and run it. The VMware will show you Figure 17. 

You can install Ubuntu by using “Create a New Virtual Machine”. After clicking it, you can see “Browse” 

tab like Figure 13. After setting a location of Ubuntu, click next and follow instruction to install.  

                                           
3 https://www.vmware.com/kr/products/workstation-player/workstation-player-evaluation.html 
4 https://ubuntu.com/download/desktop 
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Figure 18 VMware 

Figure 19 Step to install Ubuntu 
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Setting environment on Linux 

After finishing install, we must install packages to run ECC-ETH: update package, install golang, and 

git. We must install golang to compile ETH-ECC. Figure 19 shows command to update packages, Fig-

ure 20 shows command to install golang, and Figure 21 shows command to install git. After finishing 

above step, then next steps are same with subchapter 6.1.1. 

6.1.3 How to connect nodes 

Before this subchapter we tested only using one node. In this subchapter, we present to connect nodes. 

To connect nodes, node must have a same genesis file. Thus in this subchapter, we consider each node 

has same genesis file.  

Run bootnode 

First we run bootnode that will be connected with other nodes; we initialized geth on Chapter 6.1.1. To 

connect with other node, we run geth with IP address. 

Figure 20 Update package 

Figure 21 Install golang 

Figure 22 Install git 
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./geth --datadir /home/hskim/Documents/geth-test --networkid 12345 --nat extip: 

172.**.**.*** console 

For this example, we use same storage directory and chain/network ID of Chapter 6.1.1. Replace 

“172.**.**.***” to node’s IP address. After running above command, we have to get a nodeinfo of this 

node using admin.nodeInfo.enode command. 

> admin.nodeInfo.enr 

{"bootstrap-node-record"} 

In our case: 

> admin.nodeInfo.enr 

"enr:-Je4QHb0h_OAfBhOgHG5Gqb6pc3hC1wpRvoNgh6yegYTAX-

PaShdjrE5dXqZZxG_xdi0_j3mYy9aqF0oiLzAyH1_tUcsBg2V0aMfGhHHG-

zwGAgmlkgnY0gmlwhKwaEHiJc2VjcDI1NmsxoQJlB1U_j59OzT5P2wfFX-9-

XV6GYgxO08AmXNUc62C5yoN0Y3CCdmGDdWRwgnZh" 

We use above information to connect with other node.  

Connect member node 

For member node, we must initialize it using genesis file which is same with bootnode’s. After initiali-

zation using genesis file, 

./geth --datadir {datadir} --networkid {12345} --bootnodes {bootstrap-node-rec-

ord} console  

Replace datadir to member node’s storage directory and replace bootstrap-node-record to admin.no-

deInfo.enode of bootnode. For example: 

./geth --datadir ~/data --networkid 12345 --port 30305 --bootnodes "enr:-

Je4QHb0h_OAfBhOgHG5Gqb6pc3hC1wpRvoNgh6yegYTAX-

PaShdjrE5dXqZZxG_xdi0_j3mYy9aqF0oiLzAyH1_tUcsBg2V0aMfGhHHG-

zwGAgmlkgnY0gmlwhKwaEHiJc2VjcDI1NmsxoQJlB1U_j59OzT5P2wfFX-9-

XV6GYgxO08AmXNUc62C5yoN0Y3CCdmGDdWRwgnZh"consol 

You can check result of connection by command on geth. 

> admin.peers 
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6.2 Simulation of The Difficulty Change  

We simulate the difficulty change employing Amazon Web Services (AWS) using 12 nodes. Two 

nodes are bootnodes that help connect the nodes, and the other 10 nodes are sealnodes that participate 

in both the block validation and generation. In the charts presented in Figure 8, BLOCK TIME shows 

the BGT of the last 40 blocks, and DIFFICULTY shows the difficulty of the last 40 generated block. 

BLOCK TIME and DIFFICULTY show that because of large standard deviation, the block is generated 

fast despite the high level of difficulty, as already mentioned in [9]. In the next subchapter, we discuss 

about the BGT and difficulty. In the charts presented in Figure 8, LAST BLOCK shows the BGT of the 

last block, and AVG BLOCK TIME shows the average of the BGT of all the blocks.  

Moreover, AVG NETWORK HASHRATE shows the average rate of the attempts of all miners. It can 

be calculated as follows: 

 HR

BT

Di
A

ff

A
G

VG
V   (7) 

where AVGHR denotes the AVG NETWORK HASHRATE; Diff, the DIFFICULTY, and AVGBT, the AVG 

BLOCK TIME, which are presented in Figure 12. 

BLOCK PROPAGATION shows the block propagation time from miner who generated block to other 

miners. We used two different regions: Seoul and US East. Specifically, 3 of the 10 sealnodes were in 

the US East region whereas the rest are in the Seoul region. BLOCK PROPAGATION also shows the 

percentage of blocks which are propagated corresponding times and indicates that it takes less than 2s 

Figure 23 Connected peer list 
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to propagate between the Seoul and US East regions. Block propagation follows the same method as 

that of Ethereum. 

6.3 Stability of The Block Generation Time 

Figure 8 demonstrates the need to check if varying puzzles might make the BGT “unstable” which is 

mentioned in [9]. In BLOCK TIME and DIFFICULTY of Figure 8, a slow block generation can be 

observed despite the low level of difficulty. In other word, the observation of BGTs shows outliers. If 

the outliers are not controllable, the mean of the block generation is divergent similar to the heavy-

tailed distribution. If the mean is none finite, the confirmation of transactions cannot be guaranteed. 

Thus, to achieve a stable BGT that can guarantee the confirmation of transactions, the BGT must have 

a finite mean. 

(a) n = 32 

(b) n = 36 

Figure 24 Histogram of observed frequency and expected frequency 
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We obtain the BGT of ECCPoW Ethereum with a fixed difficulty to observe BGT follows what kind 

of distribution. Specifically, if the distribution is exponential, the BGT is considered to have a finite 

mean. However, if the BGT follows a heavy-tailed distribution, it has an infinite mean [10]. Thus, 

through the simulation and goodness-of-fit, we aimed to determine what type of distribution the BGT 

follows. For the goodness-of-fit, we set a null hypothesis H0 and alternative hypothesis HA:  

0 : BGT has the exponential distribution

: BGT does not have the exponential distributionA

H

H
 

We reject one of these hypotheses through the goodness-of- fit. 

For the goodness-of-fit, we use the AD test [23], [24], [25]. However, the chi-squared test [26], Kol-

mogorov–Smirnov test [27], and AD test [23] can be considered for the goodness-of-fit. The chi-squared 

test has a restrictive assumption that all the expected frequencies should be 5 or more [28]. However, 

there is no guarantee that this can be achieved. If we collect more samples, the chi-squared test can be 

possibly used. However, the p-values used to validate the hypotheses are affected by the number of 

samples. When the number of samples is increased in the chi-squared test, the p-values tend to decrease. 

Therefore, the assumption of the chi-squared test is not appropriate for verifying our distributions. Un-

like the chi-squared test, the Kolmogorov–Smirnov test does not depend on an adequate sample size. 

However, it is sensitive more to the center of the distribution rather than the tails [28]. To cover all 

possibilities, we must consider verifying the tail of distribution. Therefore, we use the AD test [23], 

which gives more weight to the tails compared with the Kolmogorov–Smirnov test. 

6.3.1 Anderson-Darling test 

The AD test is used to verify if a sample follows a specific distribution. We discuss one-sample and 

two-sample AD tests. In our work, we use the two-sample AD test; but to present our contribution 

clearly, we briefly introduce the one-sample AD test first. The one-sample test is suitable to verify that 

a sample set comes from a population. The one-sample AD test is as follows. When the cumulative 
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distribution function (CDF) of the population distribution is F(x) and CDF of the empirical distribution 

is ( )mF x , the AD test [25] is used as follows: 

  
22 ( ) ( ) ( ) ( )m mA m F x F x w x dF x




   (8) 

and 

 
1

( ) [ ( )(1 ( ))]w x F x F x 
   (9) 

where m  denotes the number of samples, and 2

mA  denotes the results of the AD test. Intuitively, in 

(8), if ( ) ( )mF x F x is 0 for all x, 2

mA  is 0. This indicates that when 2

mA  is small, the empirical distri-

bution ( )mF x  is considered close to the population distribution ( )F x . As we have noted, we aim to 

focus on the tail of the distribution which can be accomplished by Eq. (9). The one-sample AD test 

result 2

mA  can be used to verify if the given sample comes from a population with a specific distribution.   

In our work, we want to verify that two sample sets come from the same unknown population. The 

two-sample AD test is suitable for this verification. The two-sample AD test [24], [25] is as follows. 

There are two sample empirical distributions ( )mF x  and ( )nG x . The ( )mF x  is an empirical distri-

bution made from the set  with cardinality of samples set m  . The ( )n xG  is also an empirical 

distribution made from the set  with cardinality of samples set n  . For example, ( )mF x  and 

( )n xG  are samples sets obtained independently from two different testing locations. It can be used to 

verify if the both sample distributions come from the same distribution. In [24], [25], the two-sample 

version is defined as follows: 

 

2
2 ( ( ) ( ))

( )
( )(1 ( ))

m n
mn K

K K

F x G xmn
A dH x

K H x H x








  (10) 
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where ( ) ( ( ) ( )) /mK nx mF x x KH nG   with K m n  . 
2

mnA is standardized to remove the depend-

encies derived by the number of samples. This standardized form is utilized to calculate the p-value [24], 

[25]. The p-value provides an evidence for hypotheses test. 

For the two-sample AD test, we set distributions ( )mF x  and ( )nG x . have same population as a null 

hypothesis 0H  . We set that the ( )nG x  is an exponential distribution. Thus, if ( )mF x   and ( )nG x

comes from same population, namely 0H  is true, we may consider that ( )mF x  is the exponential 

distribution. If the p-value is large enough, the result of AD test provides the evidence that 0H  is true. 

The p-value is, under the assumption that the null hypothesis is true, the false-positive probability. A 

small p-value indicates that a test result provides evidence against the null hypothesis; a large p-value 

Table 1 Example of the Anderson-Darling test results 
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does not. The p-value is determined from the observation of the sample data. Thus, before observing 

the data, we set the threshold significance level(TSL), [0,1]TSL , first. The TSL can be used to de-

termine the critical value. Given a TSL and the number of samples that are used in the AD test, the TSL 

table in [24] is used to read off a value corresponding to the TSL and the number of samples. This read 

off value is called the critical value. If the standardized 
2

mnA  is smaller than the critical value, this 

result indicates that the p-value is higher than the predefined TSL. When the p-value is large, the prob-

ability of false-positive is large. In the significance level table of [24], the maximum TSL is 0.25. Thus, 

when standardized 
2

mnA  is lower than the critical value corresponding to the 0.25 TSL, the p-value is 

capped at 0.25. 

In Table 1, we present three examples to give an insight of the p-value interpretation; in this example, 

we use true distributions for ( )mF x  and ( )nG x . In Table 3, Exp(θ) indicates the exponential distribu-

tion with mean θ and Normal(μ, σ) indicates the normal distribution with mean μ and standard deviation 

σ; m, n denotes the cardinality of sample sets that derived by true distributions. Namely, ~ Exp( )  

denotes that the sample set  has m samples; samples are derived from exponential distribution with 

mean  . In the (a) of Table 1, We use the exponential distribution for ( )mF x  and the normal distri-

bution for ( )nG x ; these distribution have same mean. This example presents, as the number of samples 

are increase, p-value tends to decrease if samples are drawn from different distributions, In the (b) of 

Table 1, we set the ( )mF x  and the ( )nG x  as the exponential distribution; but each distribution has 

different mean. This example presents, as the number of samples are increase, even though samples are 

drawn from the exponential distribution, the p-value tends to decrease if the means of distributions are 

different. In the (c) of Table, we set the ( )mF x   and ( )nG x   as the same exponential distribution. 
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Namely, ( )mF x  and ( )nG x  have the same population. This example shows, as the number of sam-

ples increase, the p-value tends to increase if two samples are drawn from same population. By these 

examples of Table 1, we may consider that  the closer the distribution of ( )mF x  and ( )nG x  are, the 

larger p-value is obtained.  

We aim to see whether the AD test result of our experiments indicates that ( )mF x  is close enough 

to ( )nG x . Namely, given there are two sets of samples, one derived by ( )mF x  and the other derived 

by, ( )nG x  we want to see if the  two sets of samples come, as a result of the AD test, from the same 

distribution. If the AD test result presents a significant p-value, i.e., 0.25p  , it gives an enough evi-

dence that ( )mF x  is close to ( )nG x  the exponential distribution. 

Table 2 The observed frequency and expected frequency over time 
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6.3.2 Experimental detail 

For this experiment, 90 threads were used to generate a block. We experimented using a fixed code 

length to observe the BGT without difficulty change. In the test, two kinds of code length n  are used: 

32 and 36. These are the two lowest types of code length n in our pseudo-difficulty table used in the 

simulation. We divided the BGT into 10 intervals between the minimum BGT and maximum BGT for 

histogram. For example, when the minimum BGT is 10 and the maximum BGT is 20, there are [10,11], 

[11,12], ,[19,20] intervals. Using these intervals, we classify the observed frequency of the BGT 

data in the histogram of blocks over interval. We set ( )mF x  using the observed frequency. For the 

expected frequency in Table 2, the mean in Figure 25 is utilized to make the ( )nG x  of Table 2. Namely, 

the mean in Figure 25 is used as 1/λ for the CDF of the exponential distribution: 

 ( ) 1n
xG x e 

   (11) 

Figure 25 Block generation time of 32 code length for 300 blocks 
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The expected frequency of the Table 1 is calculated using the integral in (11) corresponding to the 

interval. Because ( )nG x  is the exponential distribution, if ( )mF x  is close to ( )nG x , we may consider 

( )mF x  is the exponential distribution.  

6.3.3 Experimental result 

In Figure 24, we present a plot of the observed frequency and expected frequency. These frequencies 

are calculated in a manner mentioned in the Experiment detail. Figure 24 shows that the observed fre-

quency tends to follow the expected frequency of the ( )nG x . Also, in Table 3, the observed mean and 

standard deviation tend to converge as the number of blocks increase. Furthermore, in Table 3, we 

present the results of the AD test to discuss hypotheses H0 and Ha. These results show a similar result 

of (c) of Table 3. In (c) of Table 3, we sample from the same true distribution; the results present the 

Table 3 Anderson-Darling test results 
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high p-value. All the p-values in Table 3 have a higher than or equal to the 0.25 regardless of the number 

of blocks. In other words, if the null hypothesis is rejected, the probability of a false-positive is more 

than 25%. Therefore, we can conclude that result of the AD test presents moderate evidence; samples 

derived by ( )mF x  and samples derived by ( )nG x  come from close populations, so we may consider 

the distribution of ( )mF x  follows the exponential distribution of ( )nG x .  
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Chapter 7 

7 Conclusion 

In this paper, we present the implementation, simulation, and stability validation of ETH-ECC. In the 

implementation, we showed how Ethereum applies ECCPoW as a consensus algorithm with real im-

plementation. In simulation, we conducted a multinode experiment using AWS EC2. The results re-

vealed that the ECCPoW algorithm with varying difficulty is successfully implemented in the real world. 

In the stability validation, we showed the statistical results. These statistical results present moderate 

evidence that exponential distribution describes the distribution of block generation time of ECCPoW.  
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많은 도움과 조언을 아끼지 않았던 교수님과 연구실 선후배님들께 진심으로 감사드립니다. 

이분들의 앞날에 항상 행복한 일들만 있기를 기원하겠습니다. 정말 진심으로 감사합니다. 


