
Preparation for Blockchain Programming

Heung-No Lee
2021/03/22

Purpose of this lecture:

1. Introduction to GIST LV Testnet
A. Download BIT-ECC (DeSecure Blockchain)

2. Installation of Virtual Machine and LINUX into Windows
A. Anaconda/Python/C++ Installation
B. Installation of BIT-ECC Core into your local machine
C. Testing of BIT-ECC APIs
D. BIT-ECC Programming
E. Learning the LVnet

We will use this LVnet throughout the whole course to learn the Bitcoin protocol and APIs
via homeworks and projects.

I. DECENTRALIZED SECURE (DESECURE) BLOCKCHAIN

DeSecure Blockchain is made by INFONET(Director Heung-No Lee). It is a blockchain
aiming to achieve decentralization and security. See its intro here.

Decentralization is sought by anti-ASIC consensus algorithm. ASIC-chips are the culprit of
centralization of the mining market. A few mining corporations dominate the mining market.
Anti-ASIC property is achieved by utilization of error-correction codes in proof-of-work. We
have used an error-correction code, called low-density parity-check codes, to augment the
Secure Hash Function, and have made a new PoW called ECCPoW. The key new property is
to make the ever changing crypto-puzzles; as a result, an ASIC chips cannot be made.

Using ECCPoW, security is maintained. It is to be noted that the proof-of-work system is the
most secure consensus mechanism, compared to recently proposed attempts in which proof-
of-work is given up for seeking scalability and transaction speeds. Proof-of-stakes and
Byzantine fault tolerance based consensus systems are wrong approaches as global
cryptocurrencies. They are not only less secure but run into other problems.

Currently, there are two DeSecure blockchain projects:

1. BIT-ECC: It is a new Bitcoin whose consensus part is replaced with ECCPoW.
2. ETH-ECC: It is a new Ethereum whose consensus part is replaced with ECCPoW.

These two packages, BIT-ECC and ETH-ECC, are downloadable from our github repository:
https://github.com/cryptoecc/. For papers, you can visit our Publications page in
https://infonet.gist.ac.kr.

The DeSecure Blockchain github below shows several other supporting directories such as

1. BIT-ECC: https://github.com/cryptoecc/bitcoin_ECC This is an official Bitcoin C++
implementation of BIT-ECC protocol. One can use this protocol to start a new BIT-
ECC blockchain network.

2. Bitcoin_ECC_BlockGenerationProgram: This is for a BIT-ECC block generation
algorithm (mining algorithm). One can run this BlockGen algorithm to join our
current GIST LV Testnet project.

https://github.com/cryptoecc/introduction
https://github.com/cryptoecc/
https://infonet.gist.ac.kr/
https://github.com/cryptoecc/bitcoin_ECC
https://github.com/cryptoecc/Bitcoin_ECC_BlockGenerationProgram

3. Explorer Program: btc-rpc-explorer This is an explorer algorithm for BIT-ECC made
from a Bitcoin explorer. Using this program, one can browse blocks and view block
details.

4. ECCPoW: cryptoecc/ECCPOW-LDPC This one discusses the details of ECCPoW.
5. Wallets: https://github.com/cryptoecc/wallet In order to generate a transaction, one

needs to have a wallet. This repository shows a bitpay wallet. To make this wallet
working for BIT-ECC and ETH-ECC networks, one need to modify the source codes.
Thus, a wallet application for Android or ios phones is not ready yet. A PC version is
available for the GIST LV BIT-ECC network.

6. ETH-ECC: https://github.com/cryptoecc/ETH-ECC This is an official GO
implementation of the ECCPoW Ethereum protocol of INFONET. One can start a
new ETH-ECC blockchain using this protocol. See our paper titled as Ethereum
ECCPoW, at https://arxiv.org/abs/2101.10729.

https://github.com/cryptoecc/btc-rpc-explorer
https://github.com/cryptoecc
https://github.com/cryptoecc/ECCPOW-LDPC
https://github.com/cryptoecc/wallet
https://github.com/cryptoecc/ETH-ECC
https://arxiv.org/abs/2101.10729

II. GIST LV TESTNET (LVNET)
LiberVance is a tech venture launched by Prof. Heung-No Lee in January 2020. The name
of the venture comes from two words, Liberty and adVance. The aim of LiberVance is to
introduce the lab technologies developed by my research team.

LV has started testing the BIT-ECC protocol extensively. The explorer for the TESTNET
http://explorer.libervance.com:8080/ shows that the block height is 34,890 on 2021/03/21,
17:48:50, the universal time.

The TESTNET is for the BIT-ECC protocol which can be downloaded from
https://github.com/cryptoecc/bitcoin_ECC. There are many different versions. The most
recent one we are working on is ecc-0.1.2 version.

We will use the LVnet to learn Bitcoin protocols and Bitcoin blockchains.

1. BIT-ECC is different from Bitcoin only in the consensus part. Thus, there are some
changes in the block header, including Network ID, Difficulty, Port number, and the
format of hash values. The rest, the networking part and the wallet part, are exactly
the same. All the APIs from Bitcoin are the same for BIT-ECC; thus we can use this
testnet to learn Bitcoin APIs.

2. We can modify the Bitcoin APIs aiming to further improve the BIT-ECC.

There you can find 9 documents one can use to start learning the LVnet. We can use them to
learn the BIT-ECC protocol and the LVnet. The LVnet currently up at running is based on
the BIT-ECC protocol version ecc-0.1.2.

1. BIT-ECC: Environment Set Up, Installation, and Testing: The aim of this document
is to instruct the readers how to set up the virtual environment, run and test the BIT-
ECC [Bitcoin Error Correction Code PoW Blockchain] on local machine.
A. Installation of VMware Workstation: We will install LINUX operating system

on top of the Windows OS which is the main OS of your local machine. LINUX
is very convenient for developers.

B. You need to download BIT-ECC protocol and install it into your local LINUX
machine.

C. In your local machine, you can test your private network. You can run a BIT-
ECC and run a BIT-ECC server.

D. You can use this BIT-ECC server to see basic functions of BIT-ECC server such
as sending transactions, generating blocks, and verifying the inclusion of sent
transaction in a published block.

E. To start your own new BIT-ECC blockchain, you need to make up a genesis
block, set up network ID, port number, etc.

F. We can utilize the currently running GIST LV TESTNET (LVnet) for learning
the Bitcoin protocols in this class.

2. Generate the Genesis Block of the BIT-ECC: The aim of this document is to instruct
the readers how to make the BIT-ECC genesis block. A genesis block is needed to
start your own blockchain. We will have to modify some parameters values that are
related to genesis block. 'chainparams.cpp' file is used to modify values at the
'~/bitcoin_ECC/src' folder. The current version ecc-0.1.2 version contains this
modification (need to check). After the modification is made, the blockchain core
needs to be compiled and executed again. You can leave a comment on the genesis

http://libervance.com/
http://explorer.libervance.com:8080/
http://explorer.libervance.com:8080/block-height/34890
https://github.com/cryptoecc/bitcoin_ECC
https://github.com/cryptoecc/bitcoin_ECC/tree/ecc-0.1.2/doc/bitcoin_ecc_doc
https://github.com/cryptoecc/bitcoin_ECC/tree/ecc-0.1.2/doc/bitcoin_ecc_doc
https://github.com/cryptoecc/bitcoin_ECC/blob/ecc-0.1.2/doc/bitcoin_ecc_doc/BIT-ECC%20Installation%20and%20Testing.pdf
https://github.com/cryptoecc/bitcoin_ECC/blob/ecc-0.1.2/doc/bitcoin_ecc_doc/BIT-ECC%20Generate%20Genesis%20Block.pdf
https://github.com/cryptoecc/bitcoin_ECC/tree/ecc-0.1.2/doc/bitcoin_ecc_doc

block. For example, Huisoo one of the programmers at INFONET left a message on
the genesis block; see if you can spot it.

3. BIT-ECC: Block Generation Program. This is an instruction to run a block generation
program (mining) into your local machine. It requires the correct version of the BIT-
ECC installed into your local machine. Coins will be given as reward for each block
generation. You need to a BIT-ECC address and get the minted coins to this address.
You can create a new BIT-ECC address using the standard procedure of Bitcoin
address creation.

4. BIT-ECC: Check transactions using Bitcoin-core wallet. You can use this to create
your new BIT-ECC address (the same as the Bitcoin address mechanism), you’re
your address to receive coins, and send coins via a new transaction.

5. BIT-ECC: Explorer. This file shows how the BIT-ECC Explorer was set up. You can
use this file to set up a new BIT-ECC explorer. See this link as well.

6. How to add fixed seed nodes: This file discusses how to add IP addresses to
contrib/seeds/nodes.main.txt file located in bitcoin-ECC directory. Fixed seed
nodes are useful providing continuous full node service to the entire BIT-ECC
network. Other nodes can come and go while these nodes are always there.

https://github.com/cryptoecc/bitcoin_ECC/blob/ecc-0.1.2/doc/bitcoin_ecc_doc/BIT-ECC%20Block%20Generation%20Program.pdf
https://github.com/cryptoecc/bitcoin_ECC/blob/ecc-0.1.2/doc/bitcoin_ecc_doc/BIT-ECC%20Check%20transactions%20using%20Bitcoin-core%20wallet.pdf
https://github.com/cryptoecc/bitcoin_ECC/tree/ecc-0.1.2/doc/bitcoin_ecc_doc
https://github.com/cryptoecc/bitcoin_ECC/blob/ecc-0.1.2/doc/bitcoin_ecc_doc/How_to_run_bitcoin_ecc_rpc_explorer.md
https://github.com/cryptoecc/bitcoin_ECC/blob/ecc-0.1.2/doc/bitcoin_ecc_doc/How-to-add-fixed-seeds_Eng.md

BIT-ECC: Environment Setup,
Installation and Testing

Wahidur Rahman
28th December 2020

INFONET (Prof. Heung-No Lee), GIST
https://github.com/infonetGIST

https://infonet.gist.ac.kr/

Purpose: The aim of this document is to instruct the readers how to set up the virtual
environment, run and test the BIT-ECC [Bitcoin Error Correction Code PoW Blockchain] on
local machine.

This document has the following contents.

https://github.com/infonetGIST
https://infonet.gist.ac.kr/

Contents:

1. Environmental setup
2. Installation of BIT-ECC
3. Test Private Network

1. Environment Setup

In this chapter, we will explain how to install VMware Workstation and how-to setup Ubuntu
operating system on the virtual machine. The setup has been prepared for The Windows 10
environment.

1.1 Installation of VMware Workstation:

Download the latest version of a VMware Workstation [The current version is 16.0,
downloaded on December 20th, 2020] from the below link and follow the step-by-step
instruction to install it on your local machine.

VMware Workstation is available both for Windows and Linux operating systems.
https://www.vmware.com/kr/products/workstation-player/workstation-player-evaluation.html

1.2 Download Ubuntu ISO Image file:

Download the Ubuntu 18.04 LTS iso image file from the below link:
https://releases.ubuntu.com/18.04/

1.3 Setup the Linux operating system on VMware Workstation

Select the ‘Create a New Virtual Machine’ tab, then go next. Put a check mark on the bud ‘I
will install the operating system later.’ This will create a virtual machine with a blank hard
disk.

https://www.vmware.com/kr/products/workstation-player/workstation-player-evaluation.html
https://releases.ubuntu.com/18.04/

On the next wizard, select the Linux as a guest operating system and keep the version Ubuntu
64-bit.

If not required, then keep the installation location as default. Select the disk space as per your
requirement. Now select the ‘Edit virtual machine settings.’

Change the memory and processors as per your requirements. On the CD/DVD (SATA) tab
go for the connection tab and use ISO image file as a source of the operating system

To start the installation process, click on the tab ‘Play virtual machine’ and follow the
instructions.

For Ubuntu Setup on virtual machine first select your desire language and select ‘Install
Ubuntu’ to start the process

Select your preferable keyboard layout.

For update and other software check the ‘install third party software’ and keep other options
as default

Select ‘Erase disk and install Ubuntu’ and click ‘Install Now’.

Next select your desire time zone and click on the ‘Continue’ tab.

Select the machine name and password.

Now installation process will start, and it will take few minutes to complete the whole
installation process.

Click ‘Restart Now’ to restart the machine for initiating the new process.

1.4 Two basic commands to fix the screen size.

Open a new terminal and run the below commands.

1. $ sudo apt-get install open-vm-tools.
2. $ sudo apt-get install open-vm-tools-desktop.

1.5 Enable Copy and Paste Feature in VMware Workstation

Player > File > Performances > Software update > Download all components now.

2. Installation of BIT-ECC

In this chapter, we will describe how to download, install, and run the BIT-ECC on your local
machine. Beside that we will install some necessary packages that are prerequisite for this set
up.

2.1 Installation of build tool:

1. $ sudo apt-get install build-essential libtool autotools-
dev automake pkg-config bsdmainutils

2. $ sudo apt-get install libqrencode-dev autoconf openssl
libssl-dev libevent-dev libminiupnpc-dev

2.2 Installation of boost library:

1. $ sudo apt-get install libboost-all-dev

2.3 Installation of Berkeley DB:

1. $ sudo apt-get install software-properties-common

2. $ sudo add-apt-repository ppa:bitcoin/bitcoin
3. $ sudo apt-get update
4. $ sudo apt-get install libdb4.8-dev libdb4.8++-dev

2.4 Installation of qt-wallet:

1. $ sudo apt-get install libqt5gui5 libqt5core5a libqt5dbus5
qttools5-dev qttools5-dev-tools libprotobuf-dev protobuf-
compiler libqrencode-dev

2.5 Installation of git:

1. $ sudo apt install git

2.6 Download the most recent version of BIT-ECC blockchain core:

1. $ git clone https://github.com/cryptoecc/bitcoin_ECC.git
2. $ cd bitcoin_ECC
3. $ git checkout ecc-0.1.2

2.7 Build the source code:

1. $ cd bitcoin_ECC
2. $./autogen.sh
3. $./configure
4. $ make
5. $ sudo make install

2.8 Execute the BIT-ECC core:

1. $ bitcoind -txindex –daemon

Please see the next chapter.

3. Test Private Network

Open a new terminal under /bitcoin_ECC directory and do the following process to test the
private network.

3.1 Execute BIT-ECC/ Run Bitcoin server:

1. $ bitcoind -txindex –daemon

3.2 Get Block count:

1. $ bitcoin-cli getblockcount

Note: This block count will vary time to time. It is always an increasing number.

3.3 Generate an account/ Generate public address:

1. $ bitcoin-cli getnewaddress

3.4 Generate 10 new blocks:

1. $ bitcoin-cli generatetoaddress 10
3NPFmaRf6ELy2AaTvVGSC1qreDBWg87pnw

3.5 Check blockchain information:

1. $ bitcoin-cli getblockchaininfo
2. $ bitcoin-cli getbalance

3.6 Send Transaction:

Executing a transaction activity is the combination of the below four activities.

1. listunspent
2. createrawtransaction
3. signrawtransaction
4. sendrawtransaction

Here,
Alice public address [Payer]: 3NPFmaRf6ELy2AaTvVGSC1qreDBWg87pnw
Bob public address [Payee]: 3GZ3dAMprHiEk9DUF6m8U8BCaupqiMhNDL
Transfer amount: 0.025 BTC-BTC

3.6.1 Listunspent: Show confirmed outputs (unspent) in Alice address:

1. $ bitcoin-cli listunspent 0 99999
'["3NPFmaRf6ELy2AaTvVGSC1qreDBWg87pnw"]'

3.7 Create Raw Transaction:

The input field includes:

1. Txid:
01cef597444039c160c4559aa5876064a9a6c65327ada706ffa1dcfcb86a2e19

2. Recipient pub address: 3GZ3dAMprHiEk9DUF6m8U8BCaupqiMhNDL
3. Transfer amount: 0.025
4. Sender pub address: 3NPFmaRf6ELy2AaTvVGSC1qreDBWg87pnw
5. Amount change: 49.9745

1. $ bitcoin-cli createrawtransaction

'[{"txid":"01cef597444039c160c4559aa5876064a9a6c65327ada7
06ffa1dcfcb86a2e19","vout":0}]'

'{"3GZ3dAMprHiEk9DUF6m8U8BCaupqiMhNDL":0.025,
"3NPFmaRf6ELy2AaTvVGSC1qreDBWg87pnw":49.9745}'

3.8 Sign Raw Transaction:

3.8.1 Check the private key:

1. $ bitcoin-cli dumpprivkey
3NPFmaRf6ELy2AaTvVGSC1qreDBWg87pnw

3.8.2 Sign the transaction in the serialized transaction format using private key:

1. $ bitcoin-cli signrawtransactionwithkey
"0200000001192e6ab8fcdca1ff06a7ad2753c6a6a9646087a59a55c4
60c139404497f5ce010000000000ffffffff02a02526000000000017a
914a307fa7979dbb9611079b9a0d18fbde250f3d12d871009df290100
000017a914e2feb63272cd4432c6b6b37d039e42e7ff9b1b028700000
000"
'["L3VUeRCzU6iRDgF92pkv5p27VBCgsqPuq5fY1JtNe6u1nbBpAFSR"]
'

3.9 Send Raw Transaction:

1. $ bitcoin-cli sendrawtransaction

02000000000101192e6ab8fcdca1ff06a7ad2753c6a6a9646087a59a5
5c460c139404497f5ce010000000017160014d23d5a22c91b1cc25c0d

cc1b7e4fd578d5dd6ae6ffffffff02a02526000000000017a914a307f
a7979dbb9611079b9a0d18fbde250f3d12d871009df290100000017a9
14e2feb63272cd4432c6b6b37d039e42e7ff9b1b02870247304402205
43c05d66ad4570aa187127989544912214a76b0b65bbbbe546c5d8ec7
2d24470220157b63e6fec7c7e6e13ff0a3ce37462c925aa54baafaa5c
fc92f2a420420b123012103c198665acc31856d9553e593fc3272822a
b2138857ba8812f653a38cd600582900000000

3.9.1 Verification of the issued transaction in a block.

1. Generate one block
2. Get block information
3. Get transaction information

3.9.1.1 Generate one block: Generate a new block with sender public address.

1. $ bitcoin-cli generatetoaddress 1

3NPFmaRf6ELy2AaTvVGSC1qreDBWg87pnw

3.9.1.2 Generate block information: For the block information run the below command.

1. $ bitcoin-cli getblock
3f105a645ce5084ad86b1e09315275e3b6f5ad05a23791a4d7c1d64eb
67ad2cc

3.9.1.3 Get transaction information: For the transaction detail run the below command.

1. $ bitcoin-cli gettransaction
f01791cd253e1bef474498905d4f40f127a28e1cf94dee8239ce0e04c
fb91dff

BIT-ECC:
Generate Genesis Block

Ha-young Park, Wahidur, Huisu Kim

8th January 2021

INFONET (Prof. Heung-No Lee), GIST
https://github.com/infonetGIST

https://infonet.gist.ac.kr/

https://github.com/infonetGIST
https://infonet.gist.ac.kr/

Purpose: The aim of this document is to instruct the readers how to generate BIT-ECC
genesis block of at local machine.

Contents:

1. Change values of genesis block
2. Get hash values of a genesis block and Merkle-root
3. Execute blockchain core

1. Change values of genesis block

We will modify some parameters values that are related to genesis block. 'chainparams.cpp'
file is used to modify values at '~/bitcoin_ECC/src' folder. In the 'chainparams.cpp', there are
two override functions and three classes for each network. The override function is
'CreateGenesisBlock' and the classes of networks are mainnet, testnet(v3) and regression test.

1.1 Modify the 'CreateGenesisBlock' function:

Modify the value of ‘txNew.vout[0].nValue’ parameter as 50. It means that the
reward point for generating a new block will be 50 BTC.

Modify the value of 'pszTimestamp' parameter. Write any sentence you want or just
modify the date as current date.

1.2 Modify the parameters of 'CreateGenesisBlock' function:

Each class has 5 parameters- ‘nTime’, ‘nNonce’, ‘nBits’, ‘nVersion’ and
‘genesisReward’. Change the first and the second one [‘nTime’, ‘nNonce’]. For
UNIX time please follow the mentioned link [https://www.unixtimestamp.com/] and
put any random integer number for the ‘nNonce’ value.

Repeat this process for other networks. If 'init_level' is different with mainnet,
change it same as mainnet.

[testnet(v3)]

[regression test]

2. Get hash values of a genesis block and Merkle-root

We will enter the 'bitcoin core' to get new hash values of a genesis block and Merkle-
root.

2.1 Modify hash values to pass assert () function:

Replace the source code for each class with the new code as written inside the box
below.

consensus.hashGenesisBlock = genesis.GetHash();
assert(consensus.hashGenesisBlock == genesis.GetHash();

https://www.unixtimestamp.com/

assert(genesis.hashMerkleRoot ==
BlockMerkleRoot(genesis));

Save 'chainparams.cpp' file, compile it and execute the bitcoin core using the
following commands.

1) $ cd bitcoin_ECC
2) $./autogen.sh
3) $./configure
4) $ make
5) $ sudo make install
6) $ bitcoind -txindex -daemon

2.2 Get hash values:

Get hash value of the genesis block which block height would be 0.

1) $ bitcoin-cli getblockhash 0

Use the hash value of the genesis block to get Merkle-root hash value.

1) $ bitcoin-cli getblock
b71a7c0e8cfb0e11b14c8625ed65e4a60f270009a6114530fb9edb571
8782458

Save both the hash values [genesis block and Merkle-root].

2.3 Replace parts with hash values:

Replace the source code for each class with the new hash values as written inside the
box.

consensus.hashGenesisBlock = genesis.GetHash();
assert(consensus.hashGenesisBlock ==
uint256S(‘‘b71a7c0e8cfb0e11b14c8625ed65e4a60f270009a61145
30fb9edb5718782458’’);
assert(genesis.hashMerkleRoot ==
uint256S(‘‘2bb12aa4c91367fabe71acfe5b763b7c2070944953d7c7
b228a0ce541867a098’’));

3. Execute blockchain core

3.1 Compile and execute bitcoin server:

Compile the code again using same procedures as mentioned in 2.1

3.2 Check the number of blocks in the blockchain:

First command line returns the number of blocks and Second one returns the
information of the blockchain we accessed.

1) $ bitcoin-cli getblockcount
2) $ bitcoin-cli getblockchaininfo

BIT-ECC:
Block Generation Program

Ha-young Park
4th March 2021

INFONET(Prof. Heung-No Lee), GIST

https://github.com/infonetGIST

https://infonet.gist.ac.kr/

https://github.com/infonetGIST
https://infonet.gist.ac.kr/

Purpose: The aim of this document is to illustrate the block generation algorithms
(mining algorithm) for BIT-ECC core, download and run them in local machine.

Contents

1. Prerequisites
2. Installation
3. To run block generation program

1. Prerequisites

1.1 ‘BIT-ECC’ must be installed.
1.2 ‘tmux’ must be installed. ‘tmux’ is a tool for managing pseudoterminals by

unit of session and window.
$ sudo apt install tmux

2. Installation

2.1 Download source code files using the below command but you don’t need to

compile the files.
$ git clone
https://github.com/cryptoecc/Bitcoin_ECC_BlockGenera
tionProgram

3. To run block generation program

3.1 Before starting mining, Check network is synchronized.
3.2 Use this command to check the number of blocks.

$ bitcoin-cli getblockcount

3.3 When the network is synchronized, Go to
‘Bitcoin_ECC_BlockGenerationProgram’ directory and Run tmux.

3.4 Run ./block_generation_program.
Enter your BIT-ECC public address to get reward coins.

3.5 After that, simply turn off the terminal window.

	Preparation for Blockchain Programming
	I. Decentralized Secure (DeSecure) Blockchain
	II. GIST LV TESTNET (LVnet)

