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Abstract 
   Healthcare providers and researchers are advancing their image-guided interventions and health 

management system to provide a flexible, efficient, and early diagnosis for patients. Imaging 

informatics aims to improve the efficiency, accuracy, usability, and reliability of medical imaging 

services within the healthcare enterprise. In particular, medical imaging is an essential tool used 

to create a visual representation of a human body for clinical analysis and medical interventions. 

Medical imaging includes many types of techniques and operations such as image gaining, analysis, 

artifact elimination, intelligent noise reduction, secure storage, and communication. Therefore, it 

is important to focus on research related to medical imaging technologies for routine clinical 

practice that helps doctors to access and interpret medical images accurately.  

   This dissertation focuses on solving three distinct issues related to medical imaging techniques: 

1) image analysis, 2) image reconstruction, and 3) image management. Our advanced solutions are 

based on computer-aided diagnosis, computational imaging, and blockchain. 

   In this thesis, we firstly categorize and review the computer-aided diagnostic (CAD) system 

according to the five primary stages including data pre-processing, segmentation, feature 

extraction, feature selection, and classification. The purpose of a CAD system is to process and 

provide adequate information that helps to analyze ultrasound images for early cancer diagnosis. 

Secondly, we focus on the image preprocessing stage for reducing multiplicative noise present on 



 
 

ultrasound image using a sparse representation over a learned dictionary. Thirdly, we proposed a 

POC design for a distributed framework called a patient-centric image management (PCIM) 

system. PCIM system is a blockchain-based architecture designed to facilitate secured patient-

centric access and storage of encrypted medical images within an open distributed network. 
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Chapter 1 

 
Introduction 

     There are many concepts and approaches for structuring the field of medical imaging [1] that 

aims to improve the efficiency, accuracy, usability, and reliability of medical imaging services 

within the healthcare enterprise. Key areas relevant to medical imaging include image processing, 

image enhancement, computer-aided diagnosis (CAD), and imaging facilities design, etc.  

Especially, the medical image processing application enables quantitative analysis and 

visualization of medical images for numerous modalities such as computerized tomography (CT), 

magnetic resonance imaging (MRI), ultrasound (US) imaging, X-ray and microscopy [2].  

 

Figure 1: Categorizing the topics in medical image processing 

   Figure 1 illustrates the core topics of medical image processing. The process of medical image 

formation is comprised of data acquisition and image reconstruction steps, which provides a 
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solution to a mathematical inverse problem. The purpose of image computing is to improve 

interpretability of the reconstructed image and extract clinically relevant information from it. 

Finally, image management deals with compression, storage, retrieval, and communication of the 

acquired images and derived information [3]. Overall, medical imaging is a relatively conservative 

field where the transition from research to clinical applications may often take more than a decade. 

However, the complex nature of medical imaging embraces multifaceted challenges on all fronts 

of constituent scientific disciplines, which steadily drives continuous developments of novel 

approaches. These developments represent major trends that can be identified across the core areas 

of medical image processing today. Recently, researchers focused on developing revolutionary 

technologies such as machine learning, artificial intelligence and blockchain for more efficient and 

effective medical image processing [4]–[6]. 

    In this dissertation, we aim to analyze and reconstruct the US medical images, and we propose 

a proof-of-concept design for managing medical images in a blockchain framework. Our solutions 

are based on the potential of three core technologies: Computer-aided diagnosis, computational 

imaging and blockchain. In the following subsections, we briefly discuss these core technologies, 

and we present contributions of this work to overcome the problems in medical image processing. 

1.1 Image analysis using computer-aided diagnosis 

  In chapter 2 we provide an in-depth overview of analyzing US liver images using CAD system 

for early diagnosis. CAD is an approach that has the potential to improve traditional histopathology 

image analysis. CAD system can be applied to numerous medical imaging modalities such as CT, 

MRI, US imaging, and nuclear medicine[4], [7]–[9]. CAD system includes multiple concepts like 

artificial intelligence, computer vision, and medical image processing [10], [11]. The main goal of 
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chapter 2 is to investigate various components and algorithms of CAD system. The investigations 

of CAD system used to identify abnormal lesions on a human body and to improve the capability 

of radiologists by analyzing the US images. US is an easily available inexpensive imaging tool, 

without accompanying the risk of radiation. However, analyzing US images manually is not an 

easy task. Therefore, to support the diagnosis of clinicians and reduce the work load on doctors, 

many US computerized systems are proposed for preoperative staging [10], [11], follow-up after 

cancer treatment, and interventional diagnosis.  

1.2 Image reconstruction using computational imaging 

    The goal of computational imaging is to extract additional information through advanced image 

processing algorithms. Using principles of computational imaging, one can design an instrument 

to make measurements from which images, and other scene information, can be derived with a 

capacity that far exceeds the physical limits of the signal processing [12]. Computational Imaging 

systems cover a broad range of applications such as computational microscopy, CT, MRI, US 

imaging, computational photography, synthetic aperture radar (SAR), etc [13]. In chapter 3, we 

proposed a speckle reduction algorithm for US liver images based on sparse representation. The 

goal is to remove speckle noise while preserving the texture and yielding a smoother image than 

conventional approaches. 

1.3 Image management using blockchain 

    Medical image sharing is the electronic exchange of medical images between hospitals, 

physicians and patients. Medical images are typically shared on CDs or DVDs shipped between 

hospitals, physicians, and patients during the course of clinical diagnosis and treatment. However, 



- 4 - 
 

applying these technologies might lead to damage or interception of medical images resulting from 

patient or physician errors [14]. To overcome the shortcomings of physical media transfer, a cloud-

based technology was introduced to share, archive, and store medical images across various 

healthcare enterprises, usually in a format called digital imaging and communications in medicine 

(DICOM) [15], [16]. Recently, several researchers focused on developing a framework that 

combine a cloud service and a blockchain [17], [18] for the purpose of secure medical health record 

sharing. In chapter 4, we provided a brief overview on the structure of the proposed patient-centric 

image management (PCIM) system and illustrated interactions among different components of the 

system using the access control protocol. 

1.4 Original contribution 

   There are several original contributions made in this thesis: 

 A systematic review on computer aided diagnostic system for early detection of liver 

cancer. 

 A multiplicative speckle suppression technique for US liver images has been proposed. 

 A patient-centric access control protocol using a smart contract (PCAC-SC) for a medical 

image exchange has been proposed. 

1.4.1 Thesis outline 

   This thesis is organized as follows: the medical image processing and its areas are introduced in 

Chapter 1. In Chapter 2, we present a brief overview of computer aided diagnostic system for US 

cancer images, which were published in [19]. We outline a number of challenges and highlights 

opportunities for further development. 
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[19] Mohamed Yaseen.J, Heung-No Lee, “Computer Aided Diagnostic System for Ultrasound 

Liver Images: A Systematic Review”, Optik - International Journal for Light and Electron Optics 

Optik., vol. 140, pp. 1114–1126, July 2017. 

   In Chapter 3, we evaluate and propose a speckle reduction algorithm based on sparse 

representation, some part of which were published in [20] and [21]. 

[20] Mohamed Yaseen.J, Heung-No Lee, “Speckle Reduction on Ultrasound Liver Images Based 

on Sparse Representation Over Learned Dictionary” Applied Sciences-MDPI. Vol. 8, no, 6, pp 

903, May. 2018. 

[21] Mohamed Yaseen.J, Heung-No Lee,” Evaluating the Effect of Various Speckle Reduction 

Filters on Ultrasound Liver Cancer Images”. ICEIC 2018, Hawaii, USA. 

   In chapter 4, we design a proof of concept for a distributed framework called a patient-centric 

image management (PCIM) system [22]. This is a blockchain based architecture designed to 

facilitate secure patient-centric access and storage of encrypted medical images within an open 

distributed network, and in chapter 5, we conclude the thesis.  

[22] Mohamed Yaseen.J, Heung-No Lee, “Blockchain-Based Distributed Patient-Centric Image 

Management System”, preprint arXiv:2003.08054, March 2020. 
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Chapter 2 

 

Computer aided diagnostic system for 

ultrasound liver images: A systematic 

review 
 

   In this chapter, we provide an in-depth overview on computer aided diagnostic (CAD) systems 

for liver cancer. Besides, in a broader sense highlighting the technical aspects developed for 

medical ultrasound images is also discussed. CAD system is a process that provides adequate 

information that helps to analyze the ultrasound images and helps to accurately detecting different 

types of liver cancer. However, the system performance is still not significantly improved.  

   In this chapter, firstly, we categorize the CAD system according to the four primary stages 

including data preprocessing, lesion segmentation, feature extraction, selection, and classification. 

In each stage, we review specific methods that are commonly used in most of the algorithms 

proposed for computerized tissue characterization and discuss their advantages and drawbacks. 

Then, recently proposed algorithms are presented in summarize form that have shown clinical 

value or specific possibility to the computerized analysis of setback for ultrasound liver images. 

These techniques or their combinations are the ones that are mostly used in the past few decades 

by the majority of work published in the computer aided diagnosis domain. 

2.1 Background and contributions of this work 

   Sonography is a widespread medical imaging method whose principle is based on the 

propagation of ultrasonic waves in biological tissues. It allows real-time visualization of body 
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structures by displaying their acoustic properties. Ultrasonography has the advantage of being non-

invasive, non-ionizing, and relatively cheap compared to other imaging methods such as X ray 

imaging. In practice, a probe emits an ultrasonic wave, which is then diffused, reflected and 

attenuated by different tissue structures. Part of the wave travels back in the direction of the probe, 

which performs its acquisition and conversion to an electrical signal. 

   For US liver image diagnosis CAD strongly depend by the quality of data. The comparatively 

substandard of clinical US images reduces the success of early liver ailment finding and analysis. 

The data generated by the automated computer processes while diagnosis is helpful to the 

radiologist to realize the US liver images. So, the precision of image diagnosis is better, and the 

time required by regular methods in peruse an image is reduced [23]. Henceforth, utilizing CAD 

the analysis of diseases has become a vibrant area of research [24]. There is greater requirement 

of precisely analyzing the therapeutic images and lessening the time requisite for proper analysis 

of liver cancer. 

   The key objective of this review is emphasizing on the potentiality of intelligent computer 

systems to be utilized in clinical application to support pathologists to analyze and classify US 

liver cancerous tissue images. On the basis of methodical analysis of various liver conditions, CAD 

methods and organized summary of algorithm, we categorize the computerized system according 

to the four primary stages of analyzing liver US image. Here the using of general procedures 

including data preprocessing, lesion segmentation, feature extraction and selection, and depicting 

of cancer by means of a classifier [25] better summarizing the performance of each category leads 

to find the ideal solution for automatic computerized system performance and the four stages are 

given in Figure 2. 
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 Data preprocessing: The preprocessing task is to restrain the noise and to increase the 

image without eliminating the important features of liver US images. 

 Image segmentation: Here image is divided into a number of small portions, and it forms 

the background the lesions detached. The edges of the lesions are outlined for feature 

withdrawal. 

 Feature extraction and selection: The stage identifies a feature set of liver cancer lesions 

that can precisely differentiate normal tissue or abnormal cancer tissue. The feature space 

could be vast and intricate, so withdrawal and choosing the finest features is decisive. 

 Classification: After the selected features, the apprehensive regions will be characterized 

into distinctive classifications, say normal tissue or cancerous tissue. 

 

Figure 2: Flow diagram of CAD for liver cancer. 

2.2 Classification of liver cancer 

   Globally liver cancer is much popular malignant disease, mainly in Southeast Asia and sub 

Saharan Africa. Worldwide, liver cancer has sixth position as the most familiar cancer with a half 
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a million people affected each year. The number of people who develop liver cancer is increasing 

around the globe [26]. 

   In human body liver is one of the indispensable organs. It’s extremely hard to live without a 

sound liver because of its impacts on every other body parts. Mainly focal liver diseases and 

diffused liver diseases influence the liver. Diffused liver diseases, for example cirrhotic and fatty, 

harm the total surface of liver. Focal liver diseases which affect the small area of the liver surface, 

such as hepatocellular carcinoma (HCC), hemangioma (Hem), and cyst. Fig. 3 presents three focal 

liver diseases in the US images. The hepatocellular carcinoma (HCC) and echo type in the liver 

based on US image representation, five types of primary carcinoma of liver tumor are there, they 

are correlative to low echo type, equal echo type, high echo type, mixed echo type and diffuse type 

correspondingly. 

   Complexity of the liver tumor in patients having chronic viral illnesses, can be classified from 

asymptomatic strong carriers to patients with liver cirrhosis [27], [28]. In general, the US 

appearance of Cyst, Hem, and HCC visible similar. Brightness mode (B-mode) ultrasound [29] 

diagnosis is the foremost choice in well-liked analyses because of its effectiveness, non-

invasiveness, and economy. All types of liver cancers are not correctly diagnosable in the US 

images, in case there is benign appearance of deadly tumors and observer’s diagnostic level is not 

good, careless mistakes and visual fatigue. Hence, utilizing traditional method it is extremely 

difficult in decision making between them. A fully efficient automatic computer system is required 

to be developed for disease detection and diagnose with high performance. 
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Figure 3: Normal liver and focal liver US images. 

2.3 Overview of the CAD system schemes 

   The most recent success in automatic diagnosing of liver US images is reviewed in this section. 

The four main steps in the CAD including data preprocessing, lesion segmentation, feature 

extraction and selection, and classifier of lesions are discussed in detail. 

2.3.1 Data preprocessing 

   Data preprocessing is aimed at filtering speckle noise, which impinge on the diagnostic value of 

the US image [30]. It makes image detail unclear and hazy drastically, demeans the image feature. 

Likewise, it decreased the pace and correctness of US image processing tasks say- division and 

classification. Hence, in US image processing tasks, speckle noise reduction is always an important 

prior requirement. Fig. 4 depicts an example for speckle noise image and enhanced image. 

   In this chapter, we categorized the speckle reduction techniques into two major classifications, 

namely a) spatial filtering methods and b) multiscale methods. Those methods are effective in 

eliminating the speckle noise and conserving the analytical information in US images. 
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Figure 4: (Left) Speckle noise image and (Right) Despeckled US image. 

Spatial filtering process 

    The basis of spatial filter is proportion of local statistics. It is helpful to improve smoothing in 

uniform regions of the US images where speckle is completely visible. This method lessens 

smoothing substantially in surrounding areas of the image to conserve the helpful particulars of 

the image [31]. Lee and Kuan Spatial filters use local statistics to perform straight on the intensity 

of the image [32]–[34]. 

   Various sorts of filters are utilized as a part of uses of speckle lessening in US imaging. The most 

usually utilized sorts of filters are: 

 Mean filter [35] is easy to apply, also its a plain filter . However, speckles are not eliminated 

by it, but in the data averaged by it. It is an attractive technique for speckle noise 

diminishing as it can make loss of resolution and accuracy Image can be obscured by it. It 

has amazing quality for added substance Gaussian noise, though the speckled image 

comply a multiplicative form with non-Gaussian noise since the mean filter is not an ideal 

selection. 

 Median filter [36] is very efficient against impulsive type noise and edge conserving 

characteristics. It generates least obscure images in comparison to mean filter. It requires 

listing of all near values into numerical order to figure out the median and here it is the 
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drawback. Moreover, it takes additional calculation time to list the intensity value of all 

set. 

 Wiener filter [37], [38] replace images in the existence of noise and blur. Decreasing the 

quantity of noise presence in a signal by comparing with an assessment of the preferred 

noiseless signal is the aim of algorithm here. The approach of filter towards image 

smoothing is on the basis of calculation of local image variation. The smoothing becomes 

less when the local variation of the image is immense. The filter does more smoothing 

when the difference is small. This calculation over linear filtering over linear filtering. It 

conserves edges and other high recurrence information of the images, however takes more 

time for calculation than linear filtering. 

 Enhanced Frost and Lee filter [39] is utilized to vary the capability in light of the limit 

value. The filter works out like a stern all pass filter when the local coefficient of variation 

is over a greater limit. On the other part as the local coefficient of variation goes under a 

poor limit then pure averaging is actuated. The stability amongst averaging and identity 

operation is processed when the coefficient of variation stands at middle of lower and 

higher thresholds.  

 Gamma Map filter [40] is like preceding filter aside from that the local coefficient of 

variation takes place amid the two limits; the filtered pixel value depends on the Gamma 

estimation of the contrast proportions inside the proper filter window. It is utilized to reduce 

the loss of texture information. The filter needs suppositions about the dispersion of the 

genuine procedure and the degradation model. 

 Frost filter [41] is an adaptive and exponentially weighted average making filter in light of 

the proportion of the local standard deviation to the local mean of the debase image.  Within 
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the n n  moving core it interchanges the region of interest with a weighted sum of the 

values. The weighting aspects lessen with difference from the region of interest. The 

weighting aspects increment in the mid region as difference inside the core grows. 

 Lee filter [32], [33] relies upon the multiplicative speckle model. It can utilize local 

statistics to conserve borders and attributes adequately. It also uses the process like when 

the variance over an area is poor, then the smoothing will be done. When the difference is 

much similar to near borders, no smoothing will be done. 

 Kaun filter [42] Relies upon an image’s Equivalent Number of Looks (ENL) to decide an 

unlike weighting function to do the noise reduction. The filter model is a local linear least 

square inaccurate filter relies on multiplicative model regarded as to be finer to Lee filter. 

It makes no estimation of the noise variance inside the filter window. 

 Diffusion filter is for smoothing images on a nonstop area, nonlinear partial differential 

equation was implemented by Perona and Malik [43],  which has since been extended and 

enhanced [44], [45]. Through many years, other denoising processes with extremely 

fascinating ability are developed for example: Bilateral filter along with derivatives [46]. 

In Speckle reducing anisotropic diffusion (SRAD) [47] dispersion of speckled images is 

edge-sensitive. Its preference is a rapid and a decent speckle lessening impact. In SRAD, 

the instantaneous coefficient of variation goes about as the border identifier. Here 

algorithm displays maximum gains at the borders and creates least gains in consistent areas. 

This way, it guarantees the mean-preserving conduct in the uniform areas, and conserves 

and improve the borders. The noted diffusion methods can save or even improve important 

edges when taking out speckles. Even so, the techniques have one basic constraint in 

holding unobtrusive features of minute cyst and lesion in US images. 
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Multiscale process 

     For US imaging numerous speckle reduction algorithms are proposed in light of contourlet, 

curvelet and wavelet. 

 Wavelet Transform: The key target of speckle diminishment is eliminating the speckle noise by 

not missing much data included in an image. To be successful this target Wavelet transform 

have set up since it gives an ideal representation for 1D (single dimensional) piecewise smooth 

signals, for example, an image’s scan lines [48].The complex wavelet transform (CWT) just 

requires O(N) computational to enhance directional selectivity. Yet, in the past intricate wavelet 

change not broadly utilized, as it is hard to devise intricate wavelets with impeccable recreation 

properties and good filter attributes [49], [50].  Kingsbury proposed the technique known as 

dual-tree CWT in articles [51], [52], which can add faultless reform to the other appealing 

properties of difficult wavelets, incorporating limited redundancy, estimated shift invariance, 

six directional selectivity’s, and proficient O(N) calculation. To build 2D complicated wavelets 

here Tensor-product 1D wavelets are utilized. The directional discerning dispensed by 

complicated wavelets (six directions) is vastly improved from what is acquired by the discrete 

wavelet transform (three directions), however is by now fewer. Such undesirable practices 

demonstrate that further potent representations are asked in upper dimensions. 

 Contourlet Transform: A contourlet transform utilizing 2D transform process for image 

delineation and study executed by Do and Vetterli [53]. It was implemented in the detached 

space. likewise, the researchers justify its union in the uninterrupted space. It was implemented 

in a detached space multiple direction and a multiple resolution extension utilizing non-

distinguishable filter banks. This brought about an adaptable multi-resolution, directional and 
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local image extension using contour segmented region, and hence it is known as contourlet 

transform. As specified before by utilizing a filter bank that decouples the multiscale 

decomposition contourlet was completed and finished by Laplacian pyramid and then 

directional decompositions, which are completed utilizing a directional filter bank. The 

advantages of contourlet alter are as follows. 1) The rectangular grids are utilized to portray 

contourlet expansions, and thus offer an impeccable interpretation to the distinct world, where 

based on a rectangular grid the image pixel’s sample is taken. The main disparity between the 

contourlet [53] and the curvelet framework [54] are to attain the rectangular grid attribute, the 

contourlet kernel roles have to be diverse courses and by just turning a lone function cannot be 

acquired. 2) As a consequence of rectangular grids, contourlet have 2D division on centric 

squares, besides centric circles for curvelets and polar coordinates to depict other systems. 3) 

Since usage of iterated filter banks for wavelets, contourlet transform utilizes quick bank 

calculations and adaptable tree structures. 4) This calculation gives a space multi-resolution 

action plan which gives lithe improvements of the spatial and angular resolution. The contourlet 

change characterizes a multiple scale and multiple directional delineation of an image. Likewise 

it is simply adaptable for identifying superior attributes in any placement at a variety of scale 

levels [55] ensuing in fine probable for efficient image examination. 

 Curvelet Transform: A new algorithm  is presented by Candes and Donoho in article [54] on the 

continuous 2D (two-dimensional) space 
2

R  utilizing curvelets. This calculation showed a 

fundamentally ideal estimation manner for 2D per piece plane functions that are curves. First 

generation curvelet transforms are deliniated in the uninterrupted domain [54] through 

multiscale filtering and after that on each bandpass image applied a block ridgelet transform 

[56]. The second generation curvelet transform [57] was produced utilizing no ridgelet 
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transform but using frequency partitioning. However, for implementing both curvelet generation 

want a turning maneuver and ought to match with a 2D frequency division on the basis of on 

the polar coordinate. It gives the curvelet creation easily in the uninterrupted sphere, yet makes 

it critical sampling appears to be troublesome in discretized structures. The curvelet change is 

extremely proficient in representing curve-like edges. In any case, this transforms have two key 

disadvantages: 1) the discrete curvelet transform is superfluous. 2) They are not ideal beyond 

2

c singularities for sparse approximation of curve features. On US images most standard speckle 

filters perform fine, yet a few limits exist with them, which lead to image resolution degradation. 

In this way, while developing an efficient and strong denoising algorithm for data preprocessing 

stage in CAD one needs to consider various factors. In the design of despeckling methods, 

choices of despeckling filter and speckle model have important part. In above most usually 

favored models and filters were reviewed with its pros and cons. 

2.3.2 Segmentation 

   Segmentation process is a mandatory step in CAD systems that frequently refers to the 

delineation of specific structures [58]. Segmentation’s key objective is to convert the image to 

provide more significant data that can be effortlessly examined. It is used to distinguish the various 

boundaries and objects in images. Due to poor contrasts, different types of noise and missing the 

boundaries in medical images make segmentation Harder. Depending on anyone between the two 

vital traits of intensity values that are similarity and discontinuity Medical image Segmentation 

approaches are mostly based [59]. In subsection, the different segmentation procedures of the 

medical images are reviewed and it is composed into four basic classifications as appeared in figure 

5. 
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   Region based method: On the basis of pixel alikeness in a region, these process is developed. It 

is used to approximate the region straight [60], [61]. This method classifies the pixels with 

comparable attributes (like intensity) into regions. Classification of Region based methods have 

two methodologies such as- a) region expanding approach and b) region combining/dividing 

approach.  In this approach, the procedure initiated by choosing a seed region (pixel). Adams and 

Bischof [62] proposed the first seeded region growing. The region develops by including the 

neighbor pixels having comparative established in advance standard with the seed, for example- 

texture, potency, difference, texture or gray level, etc. When no pixel is present for inclusion then 

the procedure stops. The issues with this approach are- the user has to choose the seed point and it 

will miss the efficacy when the region is inhomogeneous. Within the region, combining/splitting 

mode, the technique starts with the entire image as a seed. At that point, the seed is partitioned into 

various sub regions, most often into four sub regions. Thus, continuity of the process goes on till 

there are no regions of the partition by using each sub region as a seed. Lastly, based on same 

properties, for example intensity, variance or gray-level combine any adjacent regions. 

 

Fig. 5. Image segmentation methods. 

   Edge based methods: Edge based methodology [60], [63] utilized for distinguishing the 

discontinuities in an intensity value for image segmentation. It is the sudden changes in potency 
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level at the region borders of US images. The image border can be described as the perimeter 

isolated by different areas that vary in the level of potency [64]. Utilization of the borders are to 

identify the items’ measurement and differentiate items from the background.  Usage of edge 

detectors are needed to trace the distinctive points in the image where the potency actually changes. 

Border detection is a vital tool for the success of segmentation and interpreting the US image 

content, mainly when dealing with feature extraction and feature detection. There are two main 

techniques in order to detect an edge in US images such as searching and zero crossing techniques. 

Figuring the gradient magnitude by making use of first order derivative expressions takes place at 

first place in search-based technique. Subsequently, with the utilization of gradient direction local 

directional maxima of the gradient enormity is searched. In zero crossing technique, looking for a 

zero crossings in the second imitative of the image takes place. Finding zeros in the second 

imitative of image orders are detected, at this time the value of first imitative is high and zero is 

the value of second imitative. It is named Laplacian approach on the basis of edge detection. The 

edge based division method’s disadvantage is, when there is presence of lots of edges in the image 

it does not work well. 

   Threshold based methods: For image segmentation, Thresholding [65] is one of the imperative 

techniques used. It is helpful in a separate frontal region from the background region of the image. 

The gray level image can be changed to binary image by choosing a sufficient limit value T, All 

necessary data regarding the shape and position of the objects of interest (foreground) and the 

image’s (background) other areas ought to be contained in the binary image. To acquire data easily 

gray image conversation to binary image is done, that result in the generalization of the 

categorization phase. Pixels having unique concentration less than the threshold rate is named 

“black pixels” (0) and belongs to the background. On the other hand, pixels over the threshold rate 
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is called “white pixels” (1) and becomes object’s part. There are two sorts of thresholding systems: 

a) global thresholding and b) local thresholding. There is fixed value of threshold T in global 

thresholding. Such threshold’s difficulty is, if the background of the image holds unlike 

enlightenment, failure of segmentation procedure may occur. In local limiting, the threshold value 

T is not fixed, as such the problem of particular enlightenment can be sorted out by using numerous 

thresholds. Automatic threshold scheme utilizing different routines for example Mean, Edge 

maximization technique (EMT), Histogram dependent technique (HDT) is a system where  [60] 

threshold value T for every image is automatically selected by the system exclusive of human 

intrusion. 

   The histogram-based techniques are dependent on achieving the estimated threshold value T. 

This threshold value T divides the two uniform backgrounds and area of the item in the image. 

The image having a uniform area of the item and background and separated by heterogeneous 

region between them, the HDT is appropriate for it.  In mean based framework, the threshold value 

T utilizes pixel’s mean value and work fine in stringent cases of the images that have generally 

partly of the pixels connected with the objects and the rest half associated with the background.  

    The EMT segmentation system relies on finding the most border limit in the image to begin 

segmenting with the guide of border recognition process works. It is applied when the image holds 

excess of one uniform area or where there is an alteration in lighting between its background and 

item. As it occurs, the object sections may be united with the backdrop or a portion of the backdrop 

may be united with the item.   

    The inconvenience of thresholding method is barely two categories are created, and it cannot be 

tried on multichannel pictures. Thresholding does not judge the spatial distinctiveness of an image 

so it is irritable to noise. This distorts the histogram of the image, making the separation more 
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troublesome. In general, thresholding procedures are reasonable for images that hold more and 

clear separation between the homogenous regions. It has resulted to enhance the effectiveness of 

the threshold technique. 

   Clustering based method: It is an unattended learning undertaking, where it perceives a limited 

set of classes known as clusters to categorize pixels [66]. Clustering performs by either grouping 

pixels or partitioning pixels. In the grouping type, it starts with every component as a distinct 

bunch and combines all the distinct clusters in forming bigger clusters. While, in partitioning type, 

it begins to split into successively smaller clusters from the entire image. 

   The clustering techniques are divided to attended clustering and unattended clustering. In 

attended clustering to decide the clustering properties, Human interactions required. Whereas in 

unsupervised clustering technique, by own help the clustering properties are defined. There are 

two popular algorithms for unsupervised clustering that are, K-mean clustering and fuzzy 

clustering.  

1) K-mean clustering: It is an unattended clustering calculation. It categorizes the input data points 

into numerous categories based on natural space from one another. Here data vectors are organized 

into predefined number of clusters. At first, the centroids of the predefined clusters are initialized 

arbitrarily. The centroid and data vector dimensions are same. Every pixel is consigned to the 

cluster on the basis of nearness, estimated by the Euclidian distance measure. Following every one 

of the pixels are clustered, the average of every cluster is recalculated. Repetition of this procedure 

goes on until no noteworthy vary outcome for some fixed number of iterations or for each cluster 

mean [67]. 

2) Fuzzy clustering/Fuzzy c-means (FCM): it is an unsupervised clustering algorithm. Here a 

dataset is grouped into n clusters with all data point in the dataset staying with all bunches to an 
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exact degree [68]. The Fuzzy clustering technique can be thought to be better than those of their 

harder counterparts, since they can represent the affiliation between the input pattern data and 

clusters more actually. Fuzzy c-means is a most prominent soft clustering technique; its viability 

to a great extent is limited spherical clusters. It has extra advantage as it is extra lithe than the 

corresponding stiff clustering algorithm. 

 

2.3.3 Feature extraction and selection 

   In the detection and classification of liver cancer feature drawing out and choice [69] are 

significant course of action. However, in computer-aided system only texture features are used as 

inputs. Texture feature extraction is the basic and traditional techniques. Different examination 

techniques are used to extract helpful attributes for US liver cancer image classifications. A few 

general utilization systems are: 

Laws Texture Energy Measure (TEM): In order to find various texture types of TEM [70] using 

convolution masks of 5x5. It works to produce 25 2D masks by convolving based on 5 basic 1D 

masks. Afterwards texture picture is filtered with produced masks by extracting helpful attributes. 

Gray Level Difference Statistics (GLDS): It is the Probability Density Function of pair pixels lying 

at a particular difference and holding a discrete potency value variation. Least variation of coarse 

texture and large variation of fine texture in Inter pixel gray level values. 

Spatial Gray level Dependence Matrices (SGLDM) [71]: It counts how often pixels with a potency 

i and j happen at a particular offset to calculate matrix. It makes use of spatial relationships amid 

gray levels of a picture furnishes to total texture properties of the picture 
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Gray level Run length Statistics (GLRLM) [72]: Its  rough texture consists of comparatively long 

runs than short runs. It utilizes fact that containing similar gray level along a particular course of 

the successive points in the image. 

Gray Level Histogram: Texture parameters are obtained by using the intensity distribution of the 

image. 

Fourier Power Spectrum (FPS): FPS used for normal wave like forms with a fixed interval. Fourier 

conversion gives the frequency of form and direction.  

Edge Frequency on the basis of Texture Features: It is opposite to the autocorrelation role and 

depending on difference concerned gradient little and big distance operator is detected using 

Micro-edges and macro-edges. 

Wavelet Features: It is derived from Region of Interest (ROI) or wavelet transform of the image. 

Foremost types are quincunx, Gabor and dyadic. 

First Order Parameters (FOP): It defines only diffuse variation and echogenicity characteristics 

and these are sovereign of spatial concern amid pixels. 

     Successive texture analysis methods depend on selecting appropriate features. Some important 

textural features include- contrast (CO), Short Run Emphasis (SRE), Local Homogeneity (LH), 

Energy (E), Gray Level Distribution (GLD), Variance (VAR), Homogeneity (H), Uniformity (U), 

Sum Entropy (SENT), Dissimilarity (D), Angular Second Moment (ASM), Run Length 

Distribution (RLD), Mean (M), Inverse Difference Moment (IDM) and Standard Deviation (SD). 

2.3.4 Classification 
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   After extraction of feature and selection process, we have to classify the images into lesion/non-

lesion or normal/abnormal classes. Classifiers are divided into two types - statistical and neural 

network, which can be classified using unattended as well as attended procedure. An example for 

numerical unattained classifiers such as K means clustering [73] and for statistical attained 

classifier e.g. Support Vector Machine (SVM) [74], [75]. In the meantime for unattended neural 

grid like Self Organizing Map (SOM) [76] and for attended neural grid such as Multi-Layer 

Perceptron (MLP) [77], [78] are utilized to classify liver images. We summarize the different US 

liver detection and classification techniques are listed below 

Fuzzy neural network (FNN):  Diverse stochastic associations are find out by it, which represent 

the attributes of a picture. The diverse sorts of stochastic are grouped (set of attributes) in which 

the elements of this set of attributes are blurry. It gives the scope to define various classes of 

stochastic attributes in the comparable type [79]. Accomplishment and correctness depend on the 

limit choice and unclear integral. The drawback of fuzzy neural network is exclusive of previous 

information output is not fine and accurate result depends on the route of decision. 

Support vector machine (SVM): SVM targets to reduce the superior bound of generalization fault 

by increasing the periphery amid the parting hyperplane and the data [80]. Fine division is gained 

by the hyper plane that has the biggest difference to the closest training data point of any class 

(operating margin), usually bigger the margin lowers the generalization mistake of the categorizer. 

SVM utilized Nonparametric with binary classifier approach. It can manage additional input data 

extremely proficiently. Accomplishment and accurateness depend on the hyperplane choice and 

core limit. SVM reduces the calculating difficulty, easy to administer decision rule intricacy and 

fault occurrence. The drawbacks of SVM are low result transparency, training is time consuming 
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and finding out of finest limits is not trouble-free in presence of nonlinearly separable training 

data. 

Artificial neural network (ANN): It is the combination of arithmetic techniques inspired by the 

characteristics of biological nervous system and the tasks of versatile biological learning models. 

Its plain formations are neurons that can be interrelated in distinctive arrangements. It utilizes a 

nonparametric method. Accomplishment and accuracy depends on the grid formation and the 

quantity of inputs. There are many types of ANN classifier, but only few algorithm proven 

efficiency in neural network learning like multi-layer back propagation [81], [82]. The advantages 

of ANN are a data driven self-adaptive process, competently controls noisy inputs, calculation rate 

is good and its major problem is taking more time for training data and complexity in selecting the 

type grid architecture. 

Probabilistic neural network (PNN): There are input, output and hidden (summation) layer in Feed 

Forward Neural Network. Pattern layer formed by the input data set with the product of the weights 

tracked by the summing up layer that gets results related to the given class. The output layer 

contains the classification results. The main advantage of PNN classifier is its maximum training 

speed [83]. The scale factor of the exponential activation functions used to control the smoothing 

parameter (σ) of this classifier. 

Decision tree: In medical image study it is used as a attended categorizer. This process is comprised 

of 3 parts- Dividing the nodes, locate the terminal nodes and sharing of class labels to terminal 

nodes. A node in a tree represents a test for a exact attribute, and each part of that node represents 

the likely result of the test [84]. A pathway in the tree, from the root of the tree to an end leaf, 

details the categorization, with the ending leaf representing an object class. The Decision tree is 

based on the hierarchical statute based method and utilizes the nonparametric process. It is simple 
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and computational efficiency is good, but becomes a difficult computation when diverse values 

are undecided or when variety of results are correlated. 

K-nearest neighbor (K-NN): It is a process to analyze image feature on basis of closest training 

illustrations in the feature space. It utilizes a separate calculate to make guess the class of the new 

test sample. This technique is one of the least complex of all machine learning calculation: a feature 

is arranged by a maximum vote of its neighbors, with the item being allocated to the class most 

ordinary amongst its k adjacent neighbors when k is small and the item  is merely assigned to the 

class of its adjacent neighbor when K=1 [85]. 

Bayesian neural network (BNN): It used in many areas of medicine. In US features prophetic of 

malignancy have been widely analyzed and the reactivity and specificity of these attributes for 

malignancy are easily obtainable [86]. The scheme of BNN is to cast the work of training a grid 

as a difficult of inference, which is sorted out utilizing Bayes theory [87]. A Bayesian neural 

network is extra optimized and strong in comparison to traditional neural grids, particularly when 

the training data set is not big. 

2.4 Performance estimation 

   Quantitative measurement of system correctness is measured in term of true positive (TP), true 

negative (TN), false positive (FP), false negative (FN) with relation to positive predictive value 

(PPV), negative predictive value (NPV), sensitivity, specificity and accurateness [88]. It is given 

by: 
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 TP represents number of diseased lesions that is rightly classify as diseased. 

 TN represents number of non-diseased lesions that is properly classify as non-diseased. 

 FP represents number of non-diseased lesions that is incorrectly categorized as diseased. 

 FN represents number of diseased lesions that is incorrectly categorized as non-diseased. 

 The accuracy used to diagnose diseased and benign cases, the sensitivity calculated for the 

classification model to categorize diseased cases and the specificity used to evaluate benign 

cases. 

 PPV represents percentage of predictive positives that is always positive. 

 NPV represents percentage of predictive negatives that is always negative.  

     Some authors have evaluated their proposed system just by manual inspection performed by 

radiologist Specialists while others have exploited area under receiver operating characteristic 

(ROC) curve analysis. ROC applied to demonstrate the competence of the trade-off between the 

TP and the FP [89]. 
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2.5 Related Work 

   In recent years, the liver cancer analysis using CAD system has turned into a dynamic area of 

research. There are different approaches that are proposed for liver ailment analysis on the basis 

of medical picture analysis. In this section, we elaborate various techniques. 

   In article [78], a CAD system is proposed by Mittal et al. by which doctors can be guided in 

diagnosis of focal liver ailment from 2D mode US images. The suggested technique has been 

utilized for detecting and analysis of four types of focal liver ailment and compared them with 

normal liver. At the first image noise are reduced, then they divided the areas of interest to 800 

segmented areas. Next, on the basis of the texture 208 features are extracted from each segmented 

region. Finally, they proposed use of Artificial Neural Networks (ANN) in reducing the training 

errors with two phases to diagnose the ailment. The general precision achieved by the CAD system 

was86.4%. 

   Authors on paper [79] proposed an algorithm using Fuzzy Neural Network (FNN) to 

automatically characterize diffused liver diseases. For classification utilizing RUNL, GLDS, FOP, 

SGLDM and FDTA 12 texture features were taken out. Then again, the features were reduced to 

six utilizing multiple feature combinations. After that to produce blurry sets and create class edges 

in a statistical way voronoi diagram of training patterns was built which was utilized by FNN. The 

Authors showed 82.67% classification accuracy for verification using 150 liver images. 

   Design made from M-mode motion curve of liver and B-mode US liver picture on the basis of 

feature extraction by Guohui et.al. [90]. They took out 25 features utilizing M-mode movement 

curve through GLDS, FOP, RUNL, and a couple of additional extraordinary attributes. After 

taking out attribute, they used Fisher linear decision rule for choosing 20 helpful features 
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depending on the minimum classification error. Experiment’s outcome divulged that features 

gained utilizing movement curve were further reasonable for discerning ordinary or cirrhosis, liver 

in expressions of reactivity and specificity. 

   For US liver images categorization, Cao et al. suggested different process [91]. For taking out 

feature SGLDM and FDTA on 64x64 pixels sub-image were utilized by them. In this way the joint 

feature vector was gained, which was utilized to differentiate 273 sound and 99 fibrosis liver 

pictures. Fisher linear classifier and SVM (leave-one-out calculation) were utilized. It was found 

effective in expression of categorization rate. Yet it is proved that the joint feature vector is a bit 

better. 

    The authors of paper [92], used an algorithm to recognize diffused liver ailment utilizing Gabor 

wavelet and categorized ultrasonic liver picture into usual, hepatitis and cirrhosis categories. 

Familiar three advantages of Gabor wavelets were used by them, which is invariance to swing of 

picture contents, maximum joint space frequency resolution, and littler feature vector. Attributes 

were extricated and pictures were categorized into various classes utilizing Gabor wavelet change, 

dyadic wavelet change, statistical moments and attributes. 

   Researchers under lead of Bala subramanian suggested a method [93] for automatically 

categorized benign, malignant, cyst and regular liver pictures utilizing texture attributes via TEM, 

SGLDM, RUNL, and Gabor wavelets. By manual selection and on the basis of Principle 

Component Analysis (PCA) on the basis of idea attributes, eight attributes were selected. K-means 

clustering calculation used by PCA based features whereas physically chosen attributes were 

categorized by BPN. Finally, it is proved that categorization outcome of BPN were improved than 

K-means. Poonguzhali et.al., [94] authors classified same liver diseases. The attribute taking out 

from the ROI of US pictures through Autocorrelation, TEM, Edge Frequency method and SGLDM. 
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Optimal attribute sets selected from extracted features using PCA. For K-means categorization 

afterwards optimal features were utilized. 

   Jeon et al. presented a technique to classify focal liver lesion based on multiple ROI, to obtain 

more reliable and better classification performance [95]. This technique can be utilized to classify 

focal liver ailment, for example Hem, Cyst, and Malignancies. From the complete US image the 

ROI features are extricated at first. Lastly, the categorization of cysts and hemangiomas, 

categorization of cysts and malignancies, and categorization of hemangiomas and malignancies 

are classified using the SVM classifier. The preprocessing stage is complicated since it affects the 

subsequent stages and improves the quality of the images. Their method has shown the overall 

accuracy of 80%. 

    Ribeiro et.al., [96] implemented an algorithm using three dissimilar classifiers to classify the 

different chronic liver ailment. The classifiers utilized are SVM, KNN, and decision tree. The 

outcome showed that the SVM gained superior performance than the KNN and decision tree 

classifier. The classification’s precision was 73.20%utilizing SVM with a radial basis kernel. Yet, 

the general accurateness of this process is not high. In another paper [97], the authors given a partly 

automatic method to categorizing unceasing liver ailment from US liver pictures. For this approach 

the data, which is collected from laboratories and clinic, are generated by utilized SVM classifier 

with a polynomial core of the fourth degree. The data achieved 91.67% of sensitivity better than 

previous approaches. In the coming works, they will extend their method of merging more textural 

features. 

   A few more compact summaries of different author’s algorithms and accuracy of their proposed 

technique up to recent years presented in table 1. 
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Table 1: Summary of various researches on CAD for liver diagnosis 

Authors/Year Number of 

samples 

Features Classifier Performan

ce 

Fayazul et al ., /2012 [98] 88 Wavelet packet transform SVM ~95% 

Acharya et al., /2012 [99] 100 Wavelet and Higher order spectra feature DT 93.3% 

Jitender et al., /2012 [100] 56 Wavelet packet transform SVM 88.8% 

Jitender et al., /2013 [101] 31 Wavelet packet transform and Gabor 

Wavelet transform 

SVM 98.3% 

Jitender et al., /2013 [102] 108 FOS, GLCM, GLRLM, FPS, GWT, TEM BPNN 87.7% 

Jitender et al., /2013 [103] 108 FOS, GLCM, GLRLM, FPS, TEM, Gabor SVM 87.2% 

Nivedita et al., /2014 [104] 42 GLCM SOM and MLP 81.5% 

Jitender et al., /2014 [105] 108 FOS, GLCM, GLRLM, FPS, TEM, Gabor Neural network ensemble 88.7-95% 

Rivas et al., /2015 [106] 7 GLCM Binary logistic regression 95.45% 

Wu et al., /2015 [10] 288 Mean, SD, Kurtosis, Skew SVM and Random forest 72.81% 

Hwang et al., /2015 [107] 115 FOS, GLCM, TEM, Ecogenecity Baysian regularity learning 96% 

Acharya et al., /2016 [11] 100 GIST descriptor PNN 98% 

 

2.6 Discussion 

    This chapter proposed in a new way of categorizing and summarizing the different stages of the 

computerized system scheme applied to ultrasound (US) with focus on liver cancer diagnosis. The 

up to date review of existing approaches in the literature has been reviewed. To the best of our 

knowledge, there has been no unique consensus on computer aided diagnosis (CAD) system. Many 

different algorithms mentioned in the state of art used to find and design optimal solution for 

automatic liver cancer diagnosis scheme. In our opinion, there should be a trade-off, strengths and 

weaknesses associated with the choice of the algorithm used for image analysis.  

   In the future, researchers must pay attention to data pre-processing stage meanwhile minimizing 

motion artifacts, image noise and tolerable classification time using optimized neural network. It 

might be possible that integrating multiple effective techniques, potentially improve the general 

correctness, exactness and techniques concerned to speed of segmentation, also lessening the 
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quantity of manual interactions of user. Moreover, greater part of the work in the literature 

concentrated on detection and classification of B-Mode US imaging.   
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Chapter 3 
 

Speckle Reduction on Ultrasound Liver 

Images Based on a Sparse Representation 

over a Learned Dictionary 

 
3.1 Introduction and Contributions of this work 

  As we discussed in chapter 2 a CAD system carries out the diagnosis in four stages: data 

preprocessing, image segmentation, feature extraction, and classification [19]. Data preprocessing 

is the first and most vital step in the CAD system process because it reconstructs an image without 

eliminating the important features by reducing signal-dependent multiplicative noise called 

speckle [108]. 

   The development of a precise speckle reduction model is an important step to achieve efficient 

denoising filter design. Recent review articles [19], [31], reported that speckle reduction filters are 

categorized into two broad approaches: spatial filtering and multiscale methods. Techniques under 

spatial domain filtering include enhanced Frost filtering [39], Lee filtering [32], mean filtering 

[37], Wiener filtering [109], Kuan filtering [42], and median filtering [110]. Spatial filters utilize 

local statistical properties to reduce speckle noise. However, small details may not be preserved 

[31]. Several methods [111]–[114] use multiscale filtering, which uses the wavelet transform to 

preserve the image signal regardless of its frequency content. 
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   This chapter proposes a multiplicative speckle suppression technique for ultrasound liver images, 

based on a new signal reconstruction model known as sparse representation (SR) over dictionary 

learning. 

   Sparse representation provides superior estimation even in an ill-conditioned system  [115], and 

has been found to be very useful in medical imaging applications. However, one challenge of 

designing this system is the presence of a multiplicative speckle signal because dictionary learning 

methods are not effective on multiplicative and correlated noise. We overcome this by using two 

different methods.  

   Firstly, the speckle noise is transformed into additive noise using an enhanced homomorphic 

filter that can also capture high and low frequency signal of the image. Secondly, we introduced 

(TV) regularization of the image and sparse prior over learned dictionaries. Total variation 

regularization is efficient for noisy image, while the patch-based dictionaries are well adapted to 

texture features [116], and reduces the artifacts in smooth pixel regions [117].  

   The advantage of the sparse prior is that it utilizes fewer dictionary columns to reconstruct a 

noiseless ultrasound image without losing many important features of the signal. Therefore, in our 

proposed model we combined the two approaches, the patch-based SR over learned dictionaries 

and the pixel-based TV regularization method, for efficient speckle reduction.  

   The K-singular value decomposition (KSVD) algorithm [118] is used to learn two modified 

dictionaries from reference ultrasound image datasets and the corrupted images; these are referred 

to as dictionaries 1 and 2, respectively. The results are evaluated on both dictionaries and compared 

with conventional algorithms to show that the speckle noise is suppressed effectively in the 

ultrasound image using SR. 
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3.2 Background 

3.2.1 Ultrasound noise model 
   Ultrasound imaging system are often affected by multiplicative speckle [119]. Scattering time 

differences lead to constructive and destructive interference of the ultrasound pulses that are 

reflected from biological tissues. Speckle patterns can be classified depending on the spatial 

distribution, number of scatters per resolution cell, and properties of the imaging system [31]. 

Speckle noise affects the detectability of the target and reduces the contrast and resolution of the 

images, making it difficult for a clinician to provide a diagnosis. 

   In ultrasound, the multiplicative noise models are based on the product of the original signal and 

noise. Thus, the intensity of a noisy signal depends on the original image intensity. The 

mathematical expression for a multiplicative speckle model is given by 

( , ) ( , ) ( , ),y i j x i j h i j  (1) 

where ( , )y i j  is the speckled image, ( , )x i j  is the original image, and ( , )h i j  is the speckle noise. 

The spatial location of an image is represented using indexes i and j, where index i ranges from 1 

to N, and index j from 1 to M. 

3.2.2 Related work on multiplicative noise reduction 

   Several algorithms have been proposed to deal with more complex multiplicative and additive 

speckle noise models [120]. For instance, the Kuan, Frost, Lee filters, and speckle reducing 

anisotropic diffusion (SRAD) filter [121] are effective on the multiplicative noise model. Other 

filters, specifically the median, Wiener, and wavelet filters [122], are designed for the additive noise 
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model [19]. However, each filter has certain advantages and limitations [120]. In a few filter models, 

the quality of the processed image is affected by the window size: large window sizes cause image 

blurring, degrading the fine details of an image. Conversely, small window sizes do not denoise the 

image sufficiently. Other widely used multiplicative noise reduction algorithms are based on the TV 

regularization term [123], [124], nonlocal methods [125], [126], and wavelet-based approaches 

[111]. Total variation-based methods effectively remove flat-region-based noise and preserve the 

edges of images. However, fine details are lost because of over-smoothed textures. Nonlocal 

algorithms depend on similarities of image patches. Their performance is limited by dissimilar image 

patches. However, wavelet-based approaches preserve texture information better than TV-based 

methods. This approach assumes that images in the SRs are based on a fixed dictionary [118], [127]. 

However, certain characteristics of the processed image might not be captured because the dictionary 

does not contain any similar image content. 

   To overcome the above disadvantages, over the past few years, researchers have sought to 

develop an algorithm based on SR in the field of image and signal processing [128]. This is because 

the pattern similarities of image signals such as textures and flat regions, mean that the signal can 

be efficiently approximated as a linear combination using a dictionary of only a few functions 

called atoms [116], [118], [127]. Elad and Aharon [118] proposed an image denoising algorithm 

using an adaptive dictionary called KSVD that is based on sparse and redundant representations. 

It includes sparse coding and dictionary atoms that are updated to better fit the data. The advantage 

of KSVD compared to fixed dictionaries is that it is effective at removing additive Gaussian noise 

using the linear combinations of a few atoms, by learning a dictionary from noisy image patches 

and then reconstructing each patch. 
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   A dictionary r cN N
A


 , composed of Nc columns of Nr elements, is called a sparse-land model 

[118]. K-singular value decomposition seeks the best signal representation of image signal y from 

the sparsest representation  : 

0 2
argmin  subject to y A       ,  

where the vectorization of ( , )y i j  is denoted by vector 
1My   and   is the few number of non-

zero entries in  . K-singular value decomposition replaces the dictionary update and sparse 

coding stages with a simple singular value decomposition. The orthogonal matching pursuit 

(OMP) method [129] is an effective method to find the sparse approximation. In the OMP, if the 

noise level is below the approximation, the image patches are rejected. The singular value 

decomposition constructs better atoms by combining patches to reduce noise for ultrasound 

speckle reduction. K-singular value decomposition has also proved to effectively reduce the 

speckle produced by additive white Gaussian noise on corrupted images [118], [127]. 

   The filtering algorithm comprises two steps. First, the dictionary is trained from a set of image 

data patches or from noisy image patches based on KSVD. The next step uses   to compute SR 

using dictionary A and denoises the image [127]. 

   The method proposed in [130] also uses a dictionary learning approach for denoising ultrasound 

images. A homomorphic filter is used to convert multiplicative noise into additive white Gaussian 

noise and then the noiseless signal is reconstructed over image patches (atoms) to create the SR 

from a learned dictionary. However, noise in flat regions still exists and poor edges make the 

reconstructed images difficult to analyze. In [116], the authors proposed an image denoising 

technique that operates directly on multiplicative noise and is based on three terms: SR over an 

adaptive dictionary, a TV regularization term, and a data-fidelity term. However, the proposed 

model is nonconvex because of the product between the unknown dictionary and sparse 
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coefficients and the data-fidelity term is a log function. Therefore, solving the squared 2l  norm is 

difficult. This optimization problem is overcome by the split Bregman technique. However, these 

methods do not contain high- and low-frequency components of the image. We obtain this 

information using an enhanced homomorphic filter designed to improve the final image. 

Furthermore, we utilize the advantages of combining a TV regularization term and SR learned 

over two modified dictionaries. 

3.3 Sparse Representation Framework for Speckle 

Reduction 

   As discussed above, we define our proposed scheme for ultrasound speckle reduction by 

considering the multiplicative noise model [119] obtained by an ultrasound transducer. Equation 

(1) can thus rewritten as 

( , ) ( , ) ( , )y i j x i j n i j   , (2) 

where ( , )y i j  is the degraded B-mode image signal [131], ( , )x i j  represents the ideal image 

that must be recovered, and ( , )n i j  represents the speckle noise, generally modelled as a Rayleigh 

probability density function with random variables [32], [132]. Each term includes coordinates 

( , )i j  defined according to the acquisition geometry. 

   In general, a homomorphic filter [133] is a well-proven technique for converting multiplicative 

noise. In this study, we modified it by taking the log of the multiplicative noisy signal and filtering 

the image using a Butterworth high-pass (BW-HP) filter to attenuate low frequencies in the 

transmitted signal while preserving the high frequencies in the reflected component. The equation 

of the BW-HP filter is 
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2 2

0
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( , )

1 /
B f

H u v

D u v


  
 

, 
(3) 

where, D0 is the cut-off frequency and f is the order of the filter. We varied the frequency values u 

and v of the i and j spatial coordinates. We used the BW-HP filter because it generates fewer 

ringing artifacts on the image signal. 

   We also used a Gaussian low pass (GLP) filter to smooth the low-frequency signal component 

in the log domain. The equation of the GLP filter is 

2 2
0( , )/2

( , ) ,
D u v D

GH u v e


  (4) 

where D(u,v) is the distance from the origin in the frequency plane. Finally, the additive noise 

signals were estimated by applying inverse transform. 

   Figure 6 shows the steps used to convert an original noisy image into an image with additive 

noise using the enhanced homomorphic transform. This technique consists of five steps. We first 

take the log on both sides of Equation (2) and use a two-dimensional fast Fourier transform (FFT) 

to represent the image in the frequency domain. Then, the Fourier image is filtered with two filter 

functions, those are the BW-HP and GLP filters [37]. The BW-HP filter increases the contrast of 

the image signal corresponding to the high-frequency component. The GLP filter smooths the 

noise signal without eliminating the entire low-frequency component. Both filtered signals are 

applied to the two-dimensional inverse fast Fourier transform (IFFT). Finally, taking the exponent 

of the image, we obtain the transformed image. This process is discussed in detail below. 
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Figure 6. Flow diagram of the enhanced homomorphic filter. FFT: fast Fourier transform; IFFT inverse 

fast Fourier transform. 

Step 1: Take the log on both sides of the ( , )x i j  and the ( , )n i j  signal; now the 

multiplicative noise can written as 

log( ( , )) log( ( , )) log( ( , )),y i j x i j n i j     (5) 

After being transformed logarithmically, the signal now contains Gaussian additive noise 

[134]. We remove log( ( , ))x i j  from the speckled ultrasound image by applying an additive noise 

suppression algorithm. Thus, the problem is now to estimate log( ( , ))x i j  from noisy data. 

Step 2: Apply FFT to convert the image into the frequency domain. Equation (5), thus 

becomes, 

( , ) ( , ) ( , )x ny u v F u v F u v
    , (6) 

where, ( , )xF u v


 and ( , )nF u v


 are the FFT of log( ( , ))x i j  and log( ( , ))n i j , respectively. 

Step 3: Apply BW-HP and GLP to the ( , )y u v  by means of two filter function ( , )BH u v  and 

( , )GH u v  from Equations (3) and (4) respectively in the frequency domain. The filtered version of 

( , )S u v  is written as 
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( , ) ( , ) ( , ) ( , ) ( , )B GS u v H u v y u v H u v y u v   . (7) 

Step 4: Take the inverse Fourier transform of Equation (7) to get the converted signal in the 

spatial domain 

 1( , ) ( , )S i j S u v .  

Step 5: Finally, we obtain the transformed image ( , )t i j  by taking the exponent of the image 

using the following equation 

 ( , ) exp ( , )t i j S i j .  

In this paper, we model the transformed image as additive noise degradation ( , )W i j  of the 

original image ( , )i jx , i.e., 

:( , ) ( , ) ( , )Wi j i j i jt x  . (8) 

   This completes how we have used the homomorphic filter to transform the speckle noise into 

additive noise. The two filter functions are utilized to improve edge information by enhancing 

contrast and smooths the additive noise of the transformed image. 

   Figure 7 shows the output of the enhanced homomorphic filter at the BW-HP and GLP filter 

stages. It is clear that the image in Figure 7b has an increased intensity because the low frequency 

signal is attenuated and the image in Figure 7c is smoothed by the GLP filter. The sum of these 

two signals is the final transformed noisy image. 
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Figure 7. (a) Noisy ultrasound image; (b) Butterworth high-pass (BW-HP) filtered image; (c) Gaussian 

low pass (GLP) filtered image; and (d) transformed output of ultrasound noisy image. 

    An ultrasound image ( , )x i j  can be represented as sparse in the gradient domain. We thus 

define here a difference signal. A pixel-based TV regularization can be performed on the 

transformed image for more effective denoising. The horizontal and vertical difference matrices 

are defined below [135]. 
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Further, the difference signal of ( , )x i j  is defined as 

,

( , )
( , )

( , )

i

i j

j

V x i j
V x i j

V x i j







 
  
 

.  

    We can show that there exists a dictionary r cN N
A


  with which the original image can be 

sparsely represented as 

x A   ,  

where x  is the vectorization of the recovered signal ( , )x i j  such that rN
x . If a signal x  

is K-sparse in the dictionary r cN N
A


  for c rN N , we imply that the signal can be represented 
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with K columns of the dictionary. The column vector 
1cN 

  is the vector of the coefficients. 

Then, by optimizing the following convex problem, the signal x  can be recovered: 

0

2

2

min ,

subject to .t A



   
 (9) 

    In Equation (9), a 1NM   column vector t  is the vectorization of the transformed image ( , )t i j

, note that rNM N . Also note that   is a utility parameter selectable according to the noise 

strength. This convex constrained problem can be transformed into an unconstrained optimization 

problem using the Lagrange multiplier method [136]: 

2

2 0
min .t A      (10) 

    Using the unconstrained problem, we are able to combine a regularization term, which is 

weighted by parameter 0   and a quadratic data-fidelity term. Equation (10) is not ready for use 

yet since we do not know the sparsity dictionary A . Therefore, we use the following approach 

where the dictionary, the sparse representation coefficient vector  , and the image vector x  are 

estimated altogether. The overall optimized discrete sparse model proposed in this paper, for 

denoising the ultrasound image, can be written as 

 
2

1 2 0, ,
ˆ , , min

ij
ij R ij ij ij

x A
ij ij

x A Vx R t A





           , (11) 

where 
ijR  is an operation that extracts a square image patch from the transformed image t  located 

at the ,i j  pixels of the image. The notation 
1

.  is used to imply the 1l  norm, which is the sum of 

the absolute values of the argument signal, which in this case is the difference signal RVx . There 

are two positive parameters   and   used to balance the contribution of different terms. In 
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Equation (11), the first and second terms are the TV regularization norm and the sparse 

representation prior. Optimization in Equation (11) seeks to find a solution with which each patch 

of the recovered image can be represented by a dictionary matrix with sparse coefficient   in the 

sense of a bounded error. The 0l  norm gives the sparsity constraint which controls the sparsity 

coefficients of any small image patch. 

    As mentioned in Related Work Section 2.2, there is a sparse coding stage that utilizes the KSVD 

iterative process. In the first stage, sparse coding is performed assuming fixed x  and A . In the 

second stage, dictionary A  is updated to minimize using known sparse coefficients   and x . 

The sparse coefficients 
ij  are computed using the OMP method [137] because of its efficiency 

and simplicity. Elad et al. [127] showed that learning a dictionary trained from good quality image 

patches and noisy images results in better performance. 

    In this paper, we use two approaches to train the dictionary. The first approach is to use a group 

of image patches taken from many ultrasound reference images. We call the dictionary obtained 

from this approach Dictionary 1. The second approach is to use the corrupted images and call them 

Dictionary 2. We aim to compare the performance difference based on these two approaches. The 

comparison is made in the Results section. 

    It should be noted that Equation (11) is non-convex because of the non-differentiable TV 

regularization term and the product of the unknowns A  and 
ij . We overcome this by using the 

split Bregman iterative approach [138]. 

    Overall, the proposed algorithm can be summarized as follows: 

1. Convert the multiplicative noise into additive noise using an enhanced homomorphic filter 

and capture the high- and low-frequency components to retain detailed information. 
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2. Apply pixel-based TV regularization to smooth the filtered image signal. 

3. Apply patch-based sparse representation over a dictionary trained using the KSVD algorithm. 

We employed two modified dictionaries—one trained with a set of reference ultrasound image 

patches and another trained using the speckled image patches. 

4. Iterate between the TV regularization and sparse representation procedure to improve the 

reconstructed image. 

Figure 8 summarizes the proposed algorithm. 

    The reconstructed denoised image using the proposed algorithm were compared with the 

original image. Two image quality metrics were used for quantitative performance measurements: 

peak signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM) [139]. Peak signal-to-

noise ratio is defined as: 

max
10 2

1 1

10log
1

( , ) ( , )
MN

n m

N
PSNR

x n m x n m
MN

 



 
, 

(12) 

where Nmax represents the maximum fluctuations in the input image. Here, Nmax = (2n − 1), Nmax = 

255, when the components of a pixel are encoded using eight bits. N denotes the number of pixels 

processed, ( , )x n m  is the original signal, and ( , )x n m  is the recovered image signal. In MSSIM, 

the structures of the two images are compared after normalizing the variance and subtracting the 

luminance as follows: 

     
1

1
, . , . ,

N

i

MSSIM l x x c x x s x x
N

  



            , (13) 
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where  ,l x x  denotes luminance,  ,c x x  denotes contrast, and  ,s x x  denotes structure 

comparison functions. Further, , ,   and r are weighted parameters that are used to adjust 

the relative importance of the three components. 

 

Figure 8. Proposed despeckle model for an ultrasound image. KSVD: K-singular value decomposition. 

3.4 Experimental Results and Discussion 

3.4.1 Simulations on Synthetic Images 

    In this section, we analyze the performance of the proposed approach on the synthetic Shepp–

Logan phantom test image [140] (Figure 9a) with a speckle noise variance of  = 10 (Figure 9b) 

of a 256 × 256 pixel size. This result helps us to understand the effectiveness of the simulated 

image, clearly determine the distinctive features of the image, and optimize the algorithm before 

testing on the clinical datasets. We compared the proposed algorithm with some standard speckle 

reduction filters for ultrasound liver images [19]. The compared algorithms were local statistical 

filters such as the Frost filter [39], Lee filter [32], 3 × 3 Weiner filter [109], Kuan filter [42], 3 × 3 

median filter [110], and speckle reducing anisotropic diffusion (SRAD) filter [121]. In addition, 
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multiscale filters such as wavelets [122] were evaluated. The despeckled images in Figure 9e–g 

show that the Frost, wavelet, and Kuan filters do not effectively reduce noise. In contrast, Figure 

9h–j show that the median, Weiner, and SRAD filters, reduce most noise; however, the edges are 

not preserved and artificial noises can be introduced to a certain extent. This result verifies that the 

proposed SR technique reduces noise and preserves the edges better than the conventional methods 

on synthetic images. Table 2 shows the PSNR value and MSSIM value. The proposed algorithm 

reconstructs the original image with a PSNR value of 36.86 dB with Dictionary 1 and 37.04 dB 

with Dictionary 2. 

 

Figure 9. (a) Original image; (b) noisy image. Results of the proposed method with (c) Dictionary 1 and (d) 

Dictionary 2; Results of the (e) Frost; (f) wavelet; (g) Kuan; (h) median; (i) Weiner; and (j) speckle reducing 

anisotropic diffusion (SRAD) filters. 
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Table 2: Peak signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM) for the synthetic 

images for   = 10. 

Models PSNR (dB) MSSIM 

Noise image 32.113 0.727 

Frost 32.466 0.768 

Wavelet 33.214 0.801 

Kuan 32.895 0.794 

Median 34.597 0.839 

SRAD 33.434 0.827 

Weiner 33.782 0.834 

Proposed: Dictionary 1 36.862 0.953 

Proposed: Dictionary 2 37.044 0.967 

 

3.4.2 Clinical Liver Ultrasound Images 

The proposed algorithm efficiency was estimated using a set of B-mode greyscale ultrasound 

liver images. The images were obtained using the ECUBE 12R ultrasound research system from 

Alpinion medical systems, Seoul, Korea. The components used to generate the ultrasound images 

include a 128-element linear transducer at a center frequency of 5 MHz, a lateral beam width of 

1.5 mm, and a pulse length of 1 mm. In our experiment, sparse coding was performed using two 

dictionaries with a 64 × 256 size, designed to handle patches of 8 × 8 size pixels (N = 64 and K = 

256)—one trained from a noisy image and the other trained from a set of reference images. 

   The training data were constructed from a dataset comprising 3245 reference ultrasound images.       

The random collection of 16 × 16 dictionary atoms (K = 256) is presented in Figure 10a and the 

dictionary trained on the noisy image itself by overlapping patches is represented in Figure 10b. 

Where, every dictionary atom occupies a cell of 8 × 8 pixel (N = 64). We performed the tests on 

the three ultrasound reference images shown in Figures 11a, 12a and 14a. The KSVD algorithm 

was initialized with a trained dictionary and executed 180 iterations, as recommended in [127]. 
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Figure 10. The random collections of 16 × 16 atoms (K = 256) of trained dictionary from (a) a reference set of 3245 

ultrasound images and (b) a noisy image. 

The numerical evaluation was performed using PSNR and MSSIM (as discussed in subsection 

3.1) on the proposed algorithm and compared with the denoising methods Frost filter [39], Lee 

filter [32], 3 × 3 Weiner filter [109], Kuan filter [42], 3 × 3 median filter [110], SRAD filter [121], 

and wavelet filter [122]. Figure 11a, shows a right lobe liver image with size 256 × 256 pixels, 

where the lateral size is given by the x-axis, and the axial size is given by the y-axis. In this original 

image, we included a speckle noise parameter   = 10 and the PSNR was calculated using Equation 

(12). It is clear that detailed information of the image is highly distorted, as shown in Figure 11b 

with a PSNR value of 28.148 dB. Figure 11c,d show the denoising results obtained by the proposed 

method using Dictionary 1 with a PSNR value of 35.033 dB and Dictionary 2 with a PSNR value 

of 35.537 dB. It is clear that the SR over learned dictionaries improves both edges and smooth 

features by eliminating the noise and reconstructs the image as much closer to the original image, 

as shown in Figure 11a. 



- 49 - 
 

 

Figure 11. Reconstruction of liver right lobe images. (a) Original ultrasound image; (b) Speckled ultrasound image 

(PSNR = 28.148 dB); Images reconstructed using (c) Dictionary 1 (PSNR = 35.033 dB) and (d) Dictionary 2 (PSNR 

= 35.537 dB). 

   Figure 12 shows the comparative experimental results obtained on real-time ultrasound images. 

For this experiment, we obtained a 256 × 256-pixel liver image of a healthy person with a PSNR 

value of 24.6271 dB. The radio frequency (RF) frames were obtained using a linear transducer 

with a frequency range of 8 MHz. This frequency range was selected because of its suitability for 

liver imaging, and we considered natural speckle noise for these experiments. The original 

speckled image was then denoised using the proposed algorithm with both dictionaries and also 

using conventional algorithms. To assess the speckle reduction, we selected two regions in of the 

speckled image. The two regions in the case of Figure 12a are displayed as a red square and a 

green square. The red one indicates the diaphragm of a liver and the green square shows the 

presence of an excessive noisy region observed from deeper tissue. The differences can be noticed 
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from the filtered images in dashed red and the green square. Figure 12d–f show that detailed 

information lost by the blurring effect on the results obtained with Frost filter, median filter, and 

Kuan filter. In particular, the wavelet filter, Weiner filter, and the SRAD filter are not very effective 

in reducing speckle and perform poorly in retrieving sharp edge information, as can be seen in 

Figure 12g–i. Figure 12b shows the results for the proposed method using Dictionary 1 (PSNR = 

30.3345 dB) and Figure 12c shows the results for the proposed method using Dictionary 2 (PSNR 

= 30.8073). It is clear that the image denoised using the proposed SR method reconstructed image 

very close to the original image. It can also be seen that the dictionary trained on the noisy image 

gives better results than using a set of multiple references images. The results of this comparative 

experiment show that the proposed algorithm not only reduces the speckle noise but also preserves 

the edge information. Table 3 shows the PSNR and MSSIM values to quantify the results 

numerically for noise parameter   = 15. 

    Speckle is an arbitrary granular texture noise that degrades ultrasound image quality. This 

experiment was performed to evaluate different noise variances by comparing the PSNR obtained 

using the proposed algorithm and other despeckling algorithms. The simulated result using the 

noise levels 10, 15, 20, 25, and 30 are illustrated in Figure 8. The results clearly depict that, for 

different noise variances, the proposed algorithm gives the best PSNR value of all the algorithms 

on speckle reduction. 
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Figure 12: Despeckled results obtained for the ultrasound liver dataset using a linear transducer with a frequency of 8 

MHz. The red and the green boxes highlight the differences observed from the noisy and filtered images. (a) Speckled 

image and results yielded by the proposed method using (b) Dictionary 1 and (c) Dictionary 2 as well as results using 

the (d) Frost; (e) median; (f) Kuan; (g) wavelet; (h) Weiner; and (i) SRAD filters. 

Table 3. PSNR and MSSIM for the ultrasound liver image for  = 15. 

Models PSNR (dB) MSSIM 

Frost 28.966 0.822 

Median 25.497 0.659 

Wavelet 27.772 0.782 

SRAD 28.766 0.813 

Kuan 28.279 0.801 

Weiner 29.218 0.834 

Proposed: Dictionary 1 30.334 0.901 

Proposed: Dictionary 2 30.807 0.926 
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Figure 13: Comparison of PSNRs obtained by different methods. SRAD: speckle reducing anisotropic 

diffusion. 

    The experiments presented above were performed on ultrasound liver images, and the 

performance compared with conventional methods. However, our algorithm can also be 

utilized for a wide range of ultrasound images. To prove this, we conducted experiments on a 

real thrombus (blood clot) image with a left ventricular mass [141]. The visual assessment 

was performed using the proposed technique and the results compared to those obtained by 

various other algorithms. The reference image size was 256 × 256 pixels in order to fit our 

proposed model. The data were obtained from an open medical imaging dataset on GitHub 

[55]. The ultrasound image along with a marked note are shown in Figure 9a. The dashed 

white box in Figure 14b–j indicates regions of the ventricular mass. The thrombus data-set 

results presented in Figure 14h–j show that the wavelet, Weiner, and SRAD filters performed 

very poorly in noise reduction. The difference can be seen from the white note marked on the 

right atrium of the reference ultrasound image in Figure 14a. Figure 14e–g shows that Frost, 

median, and Kuan reduces speckle but tends to over-smooth the image, which leads to the loss 
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of a distinctive feature of the unclear mass. Among all the methods, Figure 14c,d show good 

results for the SR-based on learned dictionaries 1 and 2. Several details are well preserved and 

the speckle noise is reduced efficiently. Figure 15 shows the zoomed sub-images of Figure 9 

to observe a clear visualization of the despeckled images. The red box highlights the texture 

details in the noisy image and the filtered image for a comparative visual assessment. It can 

be noted that from the Frost, Median, and Kuan filtered data displayed in Figure 15d–f, an 

unclear mass (blood clot) and texture feature are blurred and over smoothed. Figure 15h,i 

show that the Weiner and SRAD filters are not much more effective on speckle reduction. 

These filters also greatly reduce the contrast, making images more indistinguishable from the 

background. This effect is especially noticeable in the case of the Wavelet filter as shown in 

Figure 15g. It was found that the anatomical structure was more clearly visible in Figure 15b,c 

obtained using the SR framework, where the speckle is reduced around the unclear mass 

without removing its features such as edges and texture. These results were comparatively 

better than those of Figure 15d–i of the standard despeckling methods. Thus, the proposed 

algorithm has various advantages for use in CAD systems based on image analysis, such as 

segmentation and edge detection. Future work will include extensive laboratory and clinical 

testing on diseased and healthy subjects for a more rigorous validation of the system. In 

conclusion, our approach reconstructs the detailed information in real ultrasound images, not 

only by preserving edge information but also by eliminating artifacts and reducing speckle 

noise. 
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Figure 14: (a) Ultrasound image of the thrombus in the left ventricle. LV: left ventricle, RA: right atrium and 

RV: right ventricle and (b) noisy image. Despeckled ultrasound images of proposed method using (c) Dictionary 

1 and (d) Dictionary 2. Results using the (e) Frost, (f) median, (g) Kuan, (h) wavelet, (i) Weiner, and (j) SRAD 

filters. The dashed white box indicates the region of image showing visual enhancement owing to despeckling. 

 

Figure 15: (a) Zoomed sub-image of noisy thrombus ultrasound images. The red boxes highlight texture details 

of images for visual assessment. Results of proposed method using (b) Dictionary 1 and (c) Dictionary 2. Results 

using the (d) Frost; (e) median; (f) Kuan; (g) wavelet; (h) Weiner; and (i) SRAD filters. 
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3.5 Conclusion 

In this chapter, we presented a method that reconstructed ultrasound images by suppressing 

multiplicative speckle noise using the SR framework. The proposed method utilizes an enhanced 

homomorphic filter, TV regularization, and sparse prior over two learned dictionaries. In addition, 

the KSVD algorithm is used to train the two dictionaries—one trained with a set of reference 

ultrasound image patches and another trained with the speckled image patches. Both training 

options were tested with the synthetic images and various clinical ultrasound images. The 

experimental results obtained for different noise levels proved superior to those of other standard 

denoising methods. The results also show that the two modified dictionaries performed well with 

sparse and TV regularization terms. Overall, the proposed SR framework reconstructs the image 

signals by removing speckle noise while preserving the texture and yielding a smoother image 

than conventional methods without eliminating edges. 
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Chapter 4 

 

Blockchain-Based Distributed Patient-

Centric Image Management System 
 

4.1 Introduction and Contributions of this work 

   Transition to electronic management of health records has necessitated practitioners and their 

patients to make use of several new acronyms such as electronic medical records (EMRs), 

electronic health records (EHRs), and personal health records (PHRs) [142]. These health records 

usually contain medical images and patient information, such as physician name, personal statistics 

(e.g., age and weight), home monitoring device data, and other data processed by practitioners in 

a text format. According to the HIPAA privacy rule [143], providers are allowed to respond up to 

30 days after a patient request to perform an update or removal of medical records added 

erroneously. Medical images and patient information are stored and maintained by different 

hospitals, even when being related to the same patient. This increases the volume of data and leads 

to a phenomenon of big data. A digital watermarking technique is employed to reduce the storage 

and transmission overhead by interleaving patient information with medical images [144]. 

However, this method provides only a basic framework and does not consider introducing security 

measures to address concerns about data manipulation over cross-domain networks. Current 

technologies for transferring medical images and patient information are deployed on centralized 

data centers that are deemed inappropriate due to privacy, accessibility, storage, and security 

concerns [145]. Over recent decades, medical record data breaches within large medical data 

centers create additional difficulties for all companies seeking to develop medical image 
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processing applications [146].  

Recently, the blockchain technology (e.g., Bitcoin [147] and Ethereum [148]) has become one 

of the most important research topics, not only in the finance industry but broadly across the field 

of information technologies due to its decentralized nature. Healthcare-based blockchain 

applications have been gaining particular attention in terms of applying them to enable 

interoperable sharing the real-time data between providers, payers, and patients [17], [149].  

Public blockchain technology is an open distributed ledger that stores all transaction details in 

blocks [6]. A typical blockchain consists of a directed acyclic graph (DAG) structure, where each 

block is linked with the previous block by a hash. Information stored in each block is public and 

cannot be easily deleted or modified. Therefore, a blockchain is considered to be a decentralized 

method to facilitate verifiable exchanges of transactions between any two entities efficiently and 

permanently. Timely verification and recording of transactions are possible without the necessity 

in a centralized intermediary. A blockchain has such advantages as being tamper-proof and capable 

of protecting information against integrity-based attacks.  

A significant problem with regard to storing medical images and records in a blockchain is the 

size of the content. For example, as of October 2019, the size of the Bitcoin blockchain reached 

286.23 GB1. This is the result of data accumulation over the past ten years at a growth rate of 1 

MB every 10 minutes since Bitcoin was launched in 2009. There are approximately 1000 

transactions in a block. Thereby, a single transaction has the order of 1 KB. The size of medical 

images corresponds to the orders of magnitude larger than those a public blockchain can offer [18]. 

To solve the problem of decentralized storage, the Protocol Labs [150] created a distributed web 

called Inter Planetary File System (IPFS). IPFS was designed to enable a content-addressable, 

                                                           
1 [online]. Available: https://bitinfocharts.com/bitcoin/ 
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peer-to-peer (P2P) technology to share and store hypermedia in a distributed file system. Several 

other decentralized storage systems were developed, such as storj, swarm, and sia [151]. IPFS has 

an advantage of being compatible with other blockchain networks by offering an off-chain storage 

solution. IPFS provides permanent, smarter, and faster web services to distributed data access 

systems.  

However, several obstacles exist in terms of storing sensitive medical images over these 

distributed storage solutions, such as unauthorized access and privacy concerns with regard to 

patient images. Namely, the ability to manage big data across general practitioners, hospitals, 

patients, and medical institutes without significant exposure to the risk of privacy breaches is 

essential. Another important aspect of a confidential and secure storage system is the ability to 

reduce the cost and restrictions of medical image acquisition by eliminating the need in centralized 

parties [152].  

Therefore, the following research question is formulated: 

“How can we design a patient-centric distributed architecture for the purpose of medical image 

storage and sharing, while simultaneously addressing the concerns about privacy, security, access 

flexibility, and costs?” 

To answer this question, we propose a proof-of-concept (POC) design for a distributed 

framework called a patient-centric image management (PCIM) system that is a blockchain-based 

architecture designed to facilitate secured patient-centric access and storage of encrypted medical 

images within an open distributed network.  

The contributions of this paper are as follows: 

(1) We provide a brief overview on the structure of the proposed PCIM system and illustrate 

interactions among different components of the system.  
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(2) We propose a patient-centric access control protocol using a smart contract (PCAC-SC). 

Specific functions are considered to transmit information in and out of the Ethereum blockchain 

and give access privileges between entities. 

(3) We implement a framework to test feasibility of the concept. To this end, we have developed 

a PCAC-SC prototype on an Ethereum test network. We have published the related source codes 

online. 

(4) We verify the functionality using test cases and analyzed the capabilities of the proposed 

framework. 

4.2 Related work 

The practice of medical health record registering and sharing has changed considerably in the 

past 20 years, largely because of strict practice standards, the use of complex technologies, and 

accurate diagnosis and treatment. Medical images are typically shared on CDs or DVDs shipped 

between hospitals, physicians, and patients to conclude on diagnosis, however, applying this 

technology might lead to damage or interception of medical images resulting from patient or 

physician errors [14]. To overcome the shortcomings of physical media transfer, a cloud-based 

technology was introduced to share, archive, and store medical images across various healthcare 

enterprises, usually in an format called digital imaging and communications in medicine (DICOM) 

[15],[16]. The electronic transmission of medical images was developed by the Radiological 

Society of North America (RSNA) based on the image-sharing network (ISN) [153]. However, the 

ISN architecture employs centralized image storage, where images are indexed by a cryptographic 

hash managed by a third-party clearing house implemented in the cloud. Patients can authorize 

health care providers to access their images using a PHR. Physicians can view unencrypted images 

and conclude on a diagnosis using an edge server at each local radiology site. The edge server uses 
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a key technology called a picture archiving and communication system (PACS) [154], which is 

aimed to provide economical storage and convenient access to images obtained from different 

medical imaging modalities, such as ultrasound (US), mammograms, X-ray, magnetic resonance 

imaging (MRI), and computerized tomography (CT) [155]. 

In 2006, the publicly funded National Health Service (NHS) in England employed a national 

broadband network service called N3 (the National network) to connect all NHS National 

programs in IT (NPfIT), such as the NHS care records service, electronic medical prescriptions, 

and NHS-PACS [156], [157]. A high-speed IP-based virtual private network (VPN) was used by 

N3 to communicate between hospitals and general practitioners. However, N3 was preceded by 

the Health and Social Care Network2 that went live in April 2017 to provide a reliable, efficient, 

and flexible method for health care organizations to access, process, and exchange electronic 

information. Although the current state-of-the-art with regard to medical image sharing does not 

require physical media transfer, the infrastructure robustness relies on third-party intermediaries 

and centralization of the network. 

Several hospitals and research facilities use PACS to store and access medical images obtained 

from various modalities to provide patient care from different locations [158], [159]. Researchers 

from the leading cybersecurity company McAfee have found that poor security may lead to 

exposure of the medical data to cybercriminals [160]. The researchers determined that more than 

1,100 PACSs were directly connected to the Internet without the recommended layer of network 

security or VPNs. After the investigation, it was found that default accounts, cross-site scripting, 

and vulnerabilities in the web server could lead to breaches in PACS access and permanent 

modifications of medical images. The existing infrastructure design raises concerns regarding the 

                                                           
 
2[Online]. Available: https://digital.nhs.uk/services/health-and-social-care-network 
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use of third-parties and a centralized network. Consequently, it is important to design a proper 

network that considers a decentralized architecture seeking to implement a widespread secured 

image-sharing system. 

Recently, several researchers focused on developing a framework that combine a cloud service 

and a blockchain for the purpose of medical health record sharing. In [161], the authors designed 

a breadcrumb mechanism for a medical record search known as MedBlock. Breadcrumbs were 

aimed to record addresses of blocks containing the patient-related data. Unfortunately, these 

solutions are not applicable to the process of searching the data over the blockchain due to an 

increase in the fragmented data. The authors in [5] proposed MedShare, a hybrid cloud-based 

sharing solution for EHRs that is based on a centralized cloud server provider. Then, this external 

server was replaced by two decentralized networks called MedChain [162]. In the concept of 

MedChain, the authors proposed a session-based data sharing scheme and a digest chain structure 

implemented using an immutable blockchain and the mutable P2P storage architecture. However, 

the possibilities of tampering and manipulating stored patient health records are at high risk due to 

the mutable P2P storage architecture. In [163], a blockchain-based cross-domain image-sharing 

framework was proposed. However, no attempt to address privacy concerns has taken to facilitate 

sharing images through a blockchain. 

4.3 System Components 

In this section, we present the description of main components represented in the proposed PCIM 

system. 

4.3.1 Ethereum blockchain 

Ethereum [7, 28] was developed based on the Bitcoin system and incorporated a programmable 

smart contract (SC) platform. In other words, SC is a computer program that stores rules for 
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negotiating the terms of a contract. Programs can autonomously verify and execute contract-related 

agreements, thereby, reducing the cost of constructing and managing a centralized database. SC 

employs the Ethereum virtual machine that allows users to run SC within the blockchain network. 

In general, the fee mechanism of the Ethereum system depends on the value of gas [148]. A certain 

amount of gas is required to execute a SC and perform a transaction. A digital currency can be 

used to purchase gas. The actual transaction cost is defined as follows:  

ether  gas used  gas price.   

The Ethereum platform consists of two types of accounts: external owned accounts (EOAs) 

controlled by private keys and contract ones controlled by the contract code. EOAs are used to 

execute a transaction sending ether or to trigger execution of SC. An Ethereum transaction includes 

such parameters as the recipient address, gas price, gas limit, ether values transferred, account 

nonce, sender signature, location of the medical image, and other additional image characteristics. 

The Ethereum blockchain has an associated state database based on a Merkle-Patricia tree structure 

that can be emulated using IPFS objects. Therefore, we can model a blockchain using IPFS for 

off-chain and on-chain storage of medical images. In the proposed scheme, we implemented the 

PCAC-SC protocol using an Ethereum blockchain to enable transparent controlled access, so that 

malicious entities could not access the medical images without patient authorization.  

4.3.2 IPFS storage 

IPFS is a content-based peer-to-peer (P2P) protocol in which each medical image file is assigned 

with a unique fingerprint denoted as a cryptographic hash. Addressing the hash is applied to make 

the contents immutable [150]. The IPFS file storage structure consists of a Merkle DAG that 

combines Merkle trees with a DAG. The key feature of IPFS in terms of the proposed system is to 

access medical images through the content addressing approach, rather than location-based 
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addressing one. Therefore, IPFS allows reducing the bandwidth cost, increasing the image 

download speed, and distributing a large volume of data with no duplication, in which allows 

achieving storage savings. The data structure for storing a file is an IPFS object, which consists of 

data and links. A single IPFS object can store up to 256 Kb of the unstructured binary data. If a 

file is larger than 256 Kb, it is split into and stored as multiple IPFS objects with an empty object 

containing links to all other objects of the image. Therefore, IPFS is an immutable storage 

mechanism; modifying a file will change the hash value. To update a file, IPFS uses a version 

control system called Git3, which creates a commit object, when a file is added to the IPFS 

network; this approach allows tracking all file versions. When an update is made to a file, a new 

commit object is created as a link to a new object to interconnect with an older commit object 

version of that file.  

The default installation of IPFS connects the local machine to the global distributed network. 

Whereas in this case any peers can retrieve images using a cryptographic hash value, in the 

proposed framework, we overcome this problem by encrypting sensitive medical images before 

uploading them. 

4.3.3 Securing medical images 

At present, the storage of medical records is fragmented [165]. The private information of a 

patient such as age, name, and diagnostic summary description of an image is separated from the 

medical image itself. This is done to protect the privacy. However, such separation causes 

problems as well. First one is an increase in the storage space. Second, the two separated storage 

spaces shall be linked somehow, and this leads to an overhead.  

We aim to resolve these problems using the steganography method. Steganography can be used 

                                                           
 
3 [Online]. Available: https://www.git-scm.com/ 
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to hide the patient private information within a medical image itself. Namely, the private 

information part and the image do not need to be separated using this method. As a result, applying 

steganography to medical images allows reducing medical record fragmentation: the personal 

information of patients is stored together with the medical image itself.  

Furthermore, we encrypt sensitive medical images before uploading them into the global IPFS 

network to prevent unauthorized access. Participants can view sensitive medical images securely 

by swapping encryption keys. This approach ensures data originality and security, and allows 

preventing the data from being leaked by unauthorized and irrelevant users and being exposed to 

malicious attacks, such as eavesdropping, phishing, and brute force attacks [166].  

Steganography and encryption methods are discussed in detail below. 

Steganography: the least significant bit (LSB)-based steganography technique [167] is used to 

embed the patient private information, such as name, age, date, diagnostic summary, and physician 

name into an image without showing the trace of existence of such information. This is performed 

in such a way that only the sender and recipient are aware of existence of the concealed 

information.  

The resulting image object obtained after embedding the information into the image is called a 

stego image. The LSB-based encoding method is applied to convert the information into the ASCII 

code and a binary string. The text is not noticeable, as it is encoded with ASCII and mixed with 

gray-level bits. 

An example of the single-character encoding process is provided below. The similar procedure 

is applicable to all types of characters: 

(1) Convert the patient data into ASCII numbers; each character of the text is converted to its 

equivalent ASCII number (e.g., “A” = 65).  
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(2) An ASCII number is converted to an 8-bit binary number. 

(3) The binary data are embedded in the original image by sequentially altering the LSB of the 

image data (LSB of each pixel) by satisfying the following conditions: 

 If LSB  ,L i j of the original image  ,O i j  is equal to any individual binary bit (IBB) of 

the letter “A,” then  ,O i j  remains unchanged; otherwise, LSB is set to the individual 

binary bit. 

The binary number embedding procedure is given below: 

      
      
      

,  ,   1,   ,   1    0

,  ,   1,   ,   0    1

,  , ,   ,   

S i j O i j if LSB L i j and IBB

S i j O i j if LSB L i j and IBB

S i j O i j if LSB L i j IBB

   

   

 

 

Here,  ,L i j is the LSB of cover image  ,O i j , and IBB denotes the individual message bit to 

be embedded.  ,S i j  is the stego image. 

Encryption: The stego image is further encrypted using the OpenPGP (Pretty Good Privacy) 

protocol [168]. OpenPGP is a specific implementation of asymmetric encryption that is used to 

define standard formats for encrypted messages, signatures, and certificates with the purpose of 

exchanging public keys. Therefore, a pair of asymmetric keys, a public and private one, is 

generated. The public key is shared openly without compromising the security, while the private 

key must be kept private. It is owned by the patient secretly and is used to decrypt the image. The 

advantage of applying this encryption technique is that using the private key, a digital signature of 

an image is created to verify its authenticity in the event of a malicious attack. 

4.4. Overview of the PCIM system 

In the proposed PCIM system, medical images are not stored in the blockchain to avoid scaling 
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to the unmanageable size and thereby, a resulting blockchain bloat. Therefore, in the present study, 

we modified the Ethereum blockchain for the proposed POC framework to efficiently manage the 

identity database and access control across participants. This action allows reducing the fees 

associated with storing images and managing the related database state. The main purpose of this 

blockchain is to provide distributed immutable on-chain storage for patient’s medical image data 

within a ledger (database). Figure 16 illustrates the blockchain ledger data structure with a PCIM 

data field added, as it is designed to store the data that patients want to include in a transaction. 

 
Figure 16: Blockchain ledger data structure. 

 

    In the proposed scheme, the PCIM data field contents include such information as an image 

hash value (endpoint of an encrypted medical image), patient addresses, timestamp, encryption 

public key, image description, and a block hash to form an unchangeable record, as each block is 

linked with the hash of its previous blocks to connect and verify transactions. Every block is 

updated in the ledger after transactions are approved and recorded by a patient in the network. A 

transaction consists of a part corresponding to the ledger content signed and sent by a patient to 

execute SC by paying ether. Then, transaction validation is performed by the selected and 

approved consortium. As the blockchain is implemented in the healthcare ecosystem, participants 

seek to achieve decentralizing the process of medical data management. 

    The overall architecture of the PCIM system framework is illustrated in Figure 17. As it can be 

seen, it consists of Ethereum and IPFS networks. The Ethereum network is comprised of PCAC-

SC and of a blockchain ledger to manage identity and access control within the network. The 
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resulting encrypted medical images are stored in the IPFS network. 

 
Figure 17: Architecture of patient-centric image management (PCIM) system 

 

4.4.1 System Model 

The participants of the proposed PCIM system are defined below: 

Patient: Patients are the owners of their medical images. A patient is required to create PCAC-

SC and store this SC in the Ethereum blockchain. The patient is responsible for defining the access 

right to the images in the IPFS network. This definition is done within his/her own PCAC-SC.  

Radiologist: A radiologist is able to generate medical images for a patient. The main 

responsibility of the radiologist is to upload the patient encrypted stego medical images to the IPFS 

network. 

Image Requestors (IRs): Doctors, medical institutes, research groups, insurance companies, and 

general practitioners interested in accessing patient medical images are all considered as image 

requestors IRs. The patient can grant access privileges to any IRs based on the authorization policy 

defined in PCAC-SC.  

4.4.2 Ethereum Network: PCAC-SC Protocol 

The PCAC-SC protocol uses special functions to provide information about the blockchain and 
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assign access privileges for IRs. The functions of SC are triggered by a patient and IRs  

entity using their own Ethereum addresses. All triggered functions are stored within the blockchain 

ledger as events to allow the entity keeping track of the transaction details. This enables 

transparency in the triggered functions and maintains the anonymity of patients by displaying only 

events stored in the blockchain. In this framework, we used a single variable and the following 

functions: 

msg.sender: the address variable of the owner who interacts with SC. 

create_contract(): this function is created and executed only by a patient to issue 

corresponding roles for IRs and related information for accessing medical images. This function 

takes as input a patient’s encrypted medical image hash value ( )ph I , blockchain address P , image 

description P  and the timestamp when the function was executed by SC. 

requesting_access(): this function is executed by IRs to obtain access permission from 

the patient. IRs includes as input the patient blockchain address P  and IRs public key 
IRK   to 

encrypt medical images and additional information, such as usage notes. 

approve_IRs(): this function can only be executed by the patient. It grants/denies access 

permission by using as input the IRs blockchain address IR  and notes from IRs. The input notes 

contain relevant information such as the expiration date and personalization.  

trace_authorization(): this function is executed by IRs and the patient. Authenticity 

of digital medical images can be verified by using this authorization function. SC contains the list 

of the authorized IRs that can access the patient medical image in question.  

remove_IRs(): this function takes the approved IRs blockchain address IR  as input and 

removes IRs from SC upon successful execution of a function by the patient. Consequently, SC is 
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updated. Therefore, the removed IRs has no privilege to access the medical image in question. 

Algorithm 1: create_contract() 

    Input: ( )ph I , P  , P  

    Output: bool 

1: if msg.sender is not P  then 

2: throw; 

3: end 

4: mapping ( )ph I to ( P ) and add it to ledger 

5: return true; 

 

Algorithm 2: requesting_access() 

  Input: P  , 
IRK  , Notes  

  Output: bool 

1: if msg.sender is not IR  then 

2: throw; 

3: end 

4: call PCAC-SC (); 

5: if new_IRs_address ⇐ approved then 

6: return true; 

7: else 

8: if new_IRs_address ⇐ not approved then 

9: return false; 

10: end 

 

Algorithm 3: approve_IRs() 

   Input: IR , Notes 

   Output: bool 

1: if msg.sender is not P  then 

2: throw; 

3: end 

4: if IR  exist then 

5: return false; 

6: else 

7: authorize_User[ IR ] ⇐ true; 

8: mapping ( )ph I to ( IR ), and add it to ledger 

9: return true; 

10: end 
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Algorithm 4: trace_authorization()  

   Input: P , IR  

   Output: bool 

1: if msg.sender is not IR  then 

2: throw; 

3: end 

4: if IR exist then 

5: return true; 

6: else 

7: return false; 

8: end 

 

Algorithm 5: remove_IRs 

   Input: IR  

   Output: bool 

1: if msg.sender is not P  then 

2: throw; 

3: end 

4: if IR  is not exist then 

5: return false; 

6: else 

7: authorize_User[ IR ] ⇐ false; 

8: return true; 

9: end 

4.4.3 IPFS Network 

IPFS is used to store encrypted medical images that contain the encrypted patient 

information in an open distributed storage system, in which images can be exchanged using a 

hash string path. The paths work similarly to the traditional uniform resource locator used in 

the web. Therefore, all patient images are always accessible through their hash.   

The radiologist uploads medical images of the patient to the system and uses a patient public 

key to encrypt the images: thereafter, only the patient can decrypt them. Medical image contents 

are signed by Ethereum private keys of the patient and then, are stored in the blockchain. 

Therefore, other entities can check the authenticity and integrity of the image ownership using the 
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content hash and digital signature in the blockchain. In IPFS, files can be accessed even if the host 

node is offline, as they are located in multiple locations for redundancy. Similarly, when uploading 

and accessing files on IPFS, it is possible to grant access privileges only to certain users by adding 

the address of a recipient to PCAC-SC. Therefore, we integrated SC with IPFS to enable 

authentication of IRs. Combining IPFS and the blockchain allows building a permanently 

addressable on-chain and off-chain data storage that can be linked securely to other significant 

systems or databases in the world, thereby, forming a global healthcare network. 

4.4.4. System Interaction 

Fig. 3 illustrates the process of how a patient and a radiologist interact between each other in the 

part of the proposed PCIM system, where medical image storage and sharing are performed. First, 

the patient undergoes the medical image examination performed by the radiologist. A medical 

image PI  of the patient is produced. The patient seeks to have it protected and to maintain the 

ownership of this image. Consequently, to address this issue, the radiologist encrypts the initial 

medical image and obtains encrypted image PI . Thereafter, the radiologist obtains the hash of the 

encrypted image ( )ph I from the IPFS network and provides the patient with ( )ph I  for the reference 

purpose. ( )ph I  is stored in the blockchain, while the encrypted medical image PI  is stored in 

IPFS. Owing to the fact that the image was encrypted, the patient medical image PI is accessible 

only to those who have the decryption key and thereby, it is protected from unauthorized access. 

 
Figure 18: Interaction model of the PCIM system 
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As presented in Fig.18, the exact protocol for this interaction is explained in detail as follows: 

1) Offline interaction between the patient and the radiologist 

 a) The patient requests the radiologist to store his/her medical image. 

 b) The radiologist asks the patient to provide its encryption key. 

c) The patient generates a pair of encryption keys: public
PK and private . 

d) The patient sends to the radiologist 
PK  through a secure communication medium. 

e) 
PK is protected and kept safe by the patient.  

2) The radiologist encrypts with 
PK  while concealing the patient private information on a medical 

image. Encrypted image PI  is uploaded to the IPFS network, which returns a hash ( )ph I to the 

radiologist. 

3) The radiologist shares ( )ph I through a secure communication medium with the patient. 

4) The patient creates a contract using the PCAC-SC protocol and executes it. 

5) The created contract function signs a transaction on the Ethereum blockchain along with 

patient public key (
P

 ), ( )ph I , time, image description ( P ) such as patient blockchain 

address ( P ), and an imaging modality from which the data are obtained (e.g., CT, US, MRI, 

etc). 

6) The patient owns the medical images within the PCIM system. The patient can access, audit, 

prove the ownership, and authorize any other IRs (e.g., doctors, medical institutes, research groups 

and general practitioners) to use their medical images based on PCAC-SC. We discuss the PCAC-

SC interaction sequence in Section V-B. 

In summary, a blockchain transaction consists of the following contents signed by a patient to 

represent the ownership of the transaction contents: 

PK 
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1{ , ( ), }
P

pP Ph I 
   

where the part given inside the parenthesis, { }, is the content signed under the Ethereum 

blockchain private key 1

P

 of the patient. 

4.5 Evaluation 

4.5.1 Experiment Setup 

A POC design of the PCIM system was developed to test and evaluate its performance. The 

experiment was conducted using a Windows 10 desktop with an Intel® Core ™ i5-6600 processor 

at 3.30 GHz. PCAC-SC was implemented in the remix IDE 4  using Solidity 5  programming 

language. We deployed the program within the private Rinkeby test network using MetaMask6. 

These test network allows obtaining more accurate test results comparing with those to a public 

blockchain. We initialized IPFS using go-ipfs7 and uploaded an encrypted stego medical image to 

the IPFS network from a local computer. This operation returned a unique hash value linked to the 

uploaded medical image. Thereafter, we updated transactions on the blockchain using 

create_contract()function by defining the IPFS hash, patient Ethereum public key, and the basic 

medical image description. Once the block was approved, transactions were stored in the 

blockchain.  

The complete prototype code of PCAC-SC is published in our GitHub repository8. The contract 

deployed on the test network has the following address: 

0x5575805E19b4807974Be0B77Fd9d385D4A0e6d1E 

                                                           
4 [Online]. Available: https://remix.ethereum.org/ 
5 [Online]. Available: https://solidity.readthedocs.io/en/latest/units-and-global-variables.html 
6 [Online]. Available: https://metamask.io/ 
7 [Online]. Available: https://github.com/ipfs/go-ipfs 
8 [Online]. Available: https://github.com/infonetGIST/PCAC-SC 

https://github.com/infonetGIST/PCAC-SC
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Transactions on each function can be seen using the above address at the Rinkeby Etherscan 

website9. 

Fig. 19 illustrates such parameters as the block/timeline, functions, and event sequence defined 

in the PCAC-SC protocol for granting and revoking permissions between a patient and image 

requestor IRs entities. To allow for better understanding of this access sharing sequence, we 

consider an example of two IRs: a doctor ( 1IR ) and a general practitioner ( 2IR ) who is interested 

in accessing a patient medical image. 

The patient executes create_contract() function by signing the blockchain contents (see 

Section IV-D). This function allows 1IR and 2IR  to participate by calling the request function in 

the PCAC-SC protocol defined by the patient. Each of the entities has its own Ethereum address 

to perform the operations.  

In Figure 19, blocks from 2 to 7 illustrate the access privilege scenario. 1IR and 2IR  send a 

request to access medical images using request_access()function that is represented by 

block 2 and block 3. Block 4 and block 5 show that the patient is able to grant and deny the access 

by using the approve_IRs() function. The patient and 1IR  are able to prove the ownership and 

access privileges by calling trace_authorization()function. In Fig.4, block 7 illustrates 

revoking the permission of 1IR  by calling remove_IRs()function, which can be executed only 

by the patient. The details on execution of each function are stored in the blockchain as an event 

to help the participants to keep track of their transaction details. 

                                                           
9 [Online]. Available: https://rinkeby.etherscan.io/ 
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Figure 19: Access sharing sequence. The blockchain/timeline is shown on the left, pointing with dotted arrows for 

reference. The purple, and red arrows represent interactions between entities. 

 

4.5.2 PCAC-SC Verification 

   We verify the access sequence and interaction between entities by testing two main functions for 

brevity. We choose approve_IRs() for the accept/deny permission to access a medical image 

and traceauthorization()to verify access privileges for a given Ethereum address. Figure 

20 shows that the approved IRs and trace authorization functions provide the following test cases: 

request accepted, request denied, authorization success, and authorization failed. 

Figure 20: PCAC-SC validating functions and testing cases. 

To test the prototype, we consider the following Ethereum address and IPFS hash of the medical 

image:  

Patient Ethereum address:  
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0x5575805E19b4807974Be0B77Fd9d385D4A0e6d1E 

1IR  Ethereum address: 

0xdD870fA1b7C4700F2BD7f44238821C26f7392148 

2IR  Ethereum address: 

0x583031D1113aD414F02576BD6afaBfb302140225 

IPFS hash: QmNaS5gQzoPxr3S2n6T6BsFuVRmMFwpohLVFfAFrU8gyTq 

Testing an approved IRs function 

In this testing, we consider the first case, where a patient approves the 1IR  address to access 

medical images by mapping with the IPFS hash value. Events requestaccepted and 

approved were triggered by approved_IRs() function, and 1IR  gained access privileges 

to a patient medical image. The event is stored in the blockchain as shown in Figure 21. 

[ 

 { 

  “from”: “0xac9d443f875536ce1346e38550857061c019094b”, 

  “topic”: 

“0x8848ffe7bacf0d3c19a311adb625e883f370b9dcbac34384bc6240fa4b1461b4”, 

  “event”: “Requestaccepted”, 

  “args”: { 

 “patient”:”0x5575805E19b4807974Be0B77Fd9d385D4A0e6d1E”, 

   “info”: “approved by patient.”, 

   “length”: 2 

  } 

 }, 

 { 

  “from”: “0xac9d443f875536ce1346e38550857061c019094b”, 

  “topic”: 

“0xe3053523a3a35835db28369b20a103b8fe2f7d12c0a6b61b8c23dfe4d5baed65”, 

  “event”: “Approved”, 

  “args”: { 

   “requester”: 

“0xdD870fA1b7C4700F2BD7f44238821C26f7392148”, 

   “info”: “Authorized to access image”, 

   “length”: 2 

  } 

 } 

]  
Figure 21: Case 1: event log for approving 1IR  address to access a patient medical image. 

Figure 22 shows the second test case, where a patient denies 2IR  request to access medical 

images. This function triggers two events requestdenied and reason for rejecting by the patient. 
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[ 

 { 

  "from": "0xac9d443f875536ce1346e38550857061c019094b", 

 "topic":"0x75fd1545fc54d42c1c105027968847e19149f69adb83be50d44a109a72c2fb1b", 

  "event": "Requestdenied", 

  "args": { 

 "patient":"0x5575805E19b4807974Be0B77Fd9d385D4A0e6d1E", 

   "info": "Failed to be approved by patient", 

   "length": 2 

  } 

 }, 

 { 

  "from": "0xac9d443f875536ce1346e38550857061c019094b", 

 "topic":"0x560ccc9eee914fbea6dc97d101c07c4c563f85a3000c838161a83f8fe0405a43", 

  "event": "Reason", 

  "args": { 

   "requester": "0x583031D1113aD414F02576BD6afaBfb302140225", 

   "info": " Need more detailed information to access my image", 

   "length": 2 

  } 

 } 

] 

Figure 22: Case 2: event log stored in the blockchain for denying access to
2IR address. 

Testing trace authorization function 

Here, we test the trace_authorization() function. This function is used to prove the 

ownership and trace history of the approved IR’s in the blockchain. To verify authorization, let us 

consider that the 1IR  address is already approved. Patient and 1IR  Ethereum address are given as 

input to execute trace_authorization() function, and this triggers authorizationSuccess 

event. Figure 23 shows the event log of the third test case where 1IR  address is authorized to access 

an image by the patient. 

[ 

 { 

  “from”: “0xac9d443f875536ce1346e38550857061c019094b”, 

  “topic”: 

“0x59b56ffb470a9c0f006904d6c1037d2eeec29ab337e2690fcdef7e62cf52b1ce”, 

  “event”: “AuthorizationSuccess”, 

  “args”: { 

   “requester”: 

“0xdD870fA1b7C4700F2BD7f44238821C26f7392148”, 

   “info”: “Authorized to access image by:”, 

   “patient”: 

“0x5575805E19b4807974Be0B77Fd9d385D4A0e6d1E”, 

   “length”: 3 

  } 

 } 

] 

Figure 23: Case 3: event log stored in the blockchain. Information shows that the 1IR address was authorized to 
access a patient medical image. 
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Figure 24 shows the log of authorizationfailed event invoked from SC. This event occurs 

due to the fact that the 1IR  address has been removed or has not been approved by the patient. 

[ 

 { 

  "from": "0xac9d443f875536ce1346e38550857061c019094b", 

  "topic": 

"0x56d9b42fee56a07a830b34605f693fa0593126978262abc43bcf0f0d62f3b861", 

  "event": "AuthorizationFailed", 

  "args": { 

   "requester": 

"0x583031D1113aD414F02576BD6afaBfb302140225", 

   "info": "Liver image is not authorized to access 

by:", 

   "patient": 

"0x5575805E19b4807974Be0B77Fd9d385D4A0e6d1E", 

   "length": 3 

  } 

 } 

] 

Figure 24: Case 4: event log where the address is not authorized to access a patient medical image. 

4.5.3 PCIM System Analysis 
In the previous sections, we have demonstrated how a medical image can be stored and shared 

in a decentralized network using the PCIM system. In this section, we analyze the advantages, 

cost, and feasibility of the proposed framework. 

Security and Privacy  

Encryption provides a capability of preventing unauthorized users from accessing medical 

images without private keys. The steganography technique provides users with the ability to verify 

the originality of an image by extracting the protected patient private information. Furthermore, 

an IPFS hash value is mapped with the approved IRs blockchain address. Therefore, approved 

users have access privileges and can decrypt medical images using their asymmetric private keys. 

Costs and Practicality 

 

In the implemented PCAC-SC prototype, we set a gas limit of 30,000, where each unit of gas is 

set equal to 2 Gwei. The total transaction fee ( gas used  gas price ether and USD  ) in this 

scenario is 0.11 USD. Table 4 summarizes the cost of the executed operations in SC. The 

create_contract() function is implemented once with a cost of 0.025 USD. The 
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request_access() function cost is 0.093 USD, which is higher than that of other functions 

due to the additional input bytes included during the function execution, such as those 

corresponding to the patient blockchain address and notes for the usage agreement. The overall 

costs can be decreased further if the size of the input data is minimal.  

However, these costs are still lower than those associated with buying a storage space from a 

third-party service or maintaining a database using a centralized system. 

Table 4: PCAC-SC cost analysis (gasprice = 2 Gwei,1 ether = 187 USD) 

Function Gas Used  Actual Cost(ether) USD 

create_contract() 67394 0.000134788 0.025 

requesting_access() 246908 0.000493816 0.093 

approve_IRs() 170412 0.000340824 0.064 

trace_authorization() 34266 0.000068532 0.013 

remove_IRs() 59358 0.000118716 0.022 

 

Efficient storage of medical images 

 

The use of IPFS allows constructing a high-throughput content-based storage model with 

content-addressed hyperlinks. The benefits of this storage model include the following ones: 

a) Content addressing: medical images have a unique identifier (cryptographic hash of an 

image).  

b) Original content: medical images with the same content cannot be duplicated and are stored 

only once. 

c) Tamper proof: an image is verified based on its checksum; if the hash changes, IPFS 

recognizes that an image was tampered with. 

d) Archiving: offline data access and immutable data storage are useful to get immediate local 

access to medical images even in the cases with a weak healthcare infrastructure. 
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e) Reduced data scattering: the patient private information is encrypted in medical images 

themselves. Therefore, the data are stored in a single node occupying less volume and 

reducing the burden of data management. 

Interoperability 

 

Blockchain technology cryptographically protects the state of transactions of medical images. It 

also protects transaction integrity using a digital signature. Image file management is transparent, 

and network peers can verify authenticity of the image ownership. 

Full Control Over Medical Images  

 

A patient owns a medical image and can monitor it online. Patients have the complete 

transparency over their medical images and can provide permission to access or revoke an image 

from being used in clinical trials or for research purposes. Consequently, the frauds related to 

health records can be limited. PCAC-SC provides the patients with complete flexibility to add or 

revoke IRs within the system. 

Prevent Fraudulent Claims 

 

Let us suppose a case when a patient discovers that his or her decrypted image has been misused 

by a requester who was already granted with access to medical images. A patient can then 

immediately claim the ownership of the image. This is performed by the blockchain signature 

tool10 that compares a signature hash and the original image contents that were signed by patient. 

Therefore, fraudulent claims can be prevented in various applications, such as insurance and 

unauthorized monetization of medical images.  

 

 

                                                           
 
10 [Online]. Available: https://etherscan.io/verifySig 
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Table 5: Compare between the existing and proposed PCIM system 

 

Comparison with Existing and Proposed Framework  

 

Table 5 provides the comparison between the proposed framework using an ISN [153] and 

alternative blockchain-based medical health record management frameworks [24–26]. From this 

table, it can be seen that the proposed PCIM system has greater advantages comparing with the 

existing alternatives. Among them, studies [5], [153], [161] are based on centralized frameworks 

in which one central node failure causes a fail of the whole system. In contrast, in the framework 

proposed in this paper, every node is independent of each other, which ensures robust and efficient 

data access. The MedChain [162] uses a mutable P2P storage network, which has a high risk of 

data attacks and content duplication. The proposed PCIM system overcomes these disadvantages 

by using an IPFS-based storage in which medical images corresponding to the same content are 

not allowed being duplicated. This allows users to have full control of their medical images by 

ensuring guaranteed security, transparency, and data integrity. However, if the contents in a file 

stored within the IPFS network are not peered or active for a period of time, it is recycled by the 

garbage collector. Therefore, at least one peer within the network needs to monitor user files and 

user interest in storing the content. 

Schemes ISN [153] MedBlock [161] MeDShare [5] MedChain [162] PCIM system 

Source data storage PACS Dedicated servers Cloud server Mutable P2P 

Storage 

Immutable IPFS Storage 

Source data encryption 

/ Scheme 

Yes / Not 

mentioned 

Yes / Symmetric 

encryption 

Yes / Not mentioned Yes / Asymmetric 

encryption 

Yes / Asymmetric 

encryption 

Type of data Medical Images EMR EMR EHR Medical images + Health 

records 

Server attack resistance No No No No Yes 

Tamper-proof database No Yes Yes Yes Yes 

Database sharing 

mechanism 

PACS Blockchain Blockchain Blockchain Blockchain 

Database management Centralized Centralized Centralized Semi-centralized Decentralized 

Offline data access No No No No Yes 
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4.6 Discussion 
    In this chapter, we presented the POC design of the proposed PCIM system: An Ethereum 

blockchain and IPFS-based decentralized framework for storing and sharing medical images. 

Moreover, we introduced a new access management system called PCAC-SC that enables 

authorized entities to access the relevant blockchain data. The PCIM system facilitates a new way 

to improve the right of patients to perform self-determination regarding their medical images. The 

proposed architecture allows protecting the basic health record information of patients including 

medical images and guarantees privacy by using the combination of steganography and encryption. 

Moreover, the proposed approach allows reducing fragmentation of the medical health records and 

ensuring that only authorized persons can get access to the original medical images within an open 

network. We performed the experimental implementation to analyze and evaluate rationality and 

feasibility of the proposed scheme. The proposed system facilitates patient access to an immutable 

medical database providing higher efficiency, data provenance, and effective audit while sharing 

medical images. The data storage and exchange model is also decentralized; therefore, necessity 

to involve third-party intermediaries and administrative structures is eliminated.    
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Chapter 5 

Summary 

5.1 Thesis summary 

   The aim of this thesis were focused on improving medical image analysis, reconstruction, and 

management using advanced technologies.  The summary of contributions is as follows: 

 We investigated the methods for early detection of liver cancer using a computer-aided 

diagnostic system. 

 We proposed a multiplicative speckle suppression technique for ultrasound liver images, 

based on a new signal reconstruction model known as sparse representation over dictionary 

learning. 

 We presented the POC design of the proposed PCIM system: An Ethereum blockchain and 

IPFS-based decentralized framework for storing and sharing medical images. 

 We introduced a new access management system called PCAC-SC that enables authorized 

entities to access the relevant blockchain data.  

5.2 Conclusion and future research directions 

     This dissertation focuses on solving three distinct issues related to medical imaging techniques: 

1) image analysis, 2) image reconstruction, and 3) image management. 
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   The application of the CAD system to imaging informatics demonstrated their importance in 

image analysis. This study proposed in a new way of categorizing and summarizing the different 

stages of the computerized system scheme applied to the US liver images with a focus on cancer 

diagnosis. The systematic review helps to highlight the strengths and weaknesses associated with 

the choice of the algorithm used for US image analysis.  

   In particular, data preprocessing is the first and most vital step in the CAD system process 

because it reconstructs an image without eliminating the important features by reducing signal-

dependent multiplicative noise called speckle. Therefore, we presented a multiplicative speckle 

suppression technique for US liver images, based on a new signal reconstruction model known as 

sparse representation over dictionary learning. In the proposed technique, the non-uniform 

multiplicative signal is first converted into additive noise using an enhanced homomorphic filter. 

This is followed by pixel-based total variation regularization and patch-based SR over a dictionary 

trained using K-singular value decomposition. Finally, the split Bregman algorithm is used to solve 

the optimization problem and estimate the de-speckled image. Simulations on both, synthetic and 

clinical ultrasound images for speckle reduction, have been performed. The proposed technique 

achieved peak signal-to-noise ratios of 35.537 dB for the dictionary trained on noisy image patches 

and 35.033 dB for the dictionary trained using a set of reference ultrasound image patches. Further, 

the evaluation results show that the proposed method performs better than other state-of-the-art 

denoising algorithms in terms of both peak signal-to-noise ratio and subjective visual quality 

assessment. 

   Finally, for a decentralized image management system, we proposed a novel proof-of-concept 

design for a distributed patient-centric image management system that is aimed to ensure safety 

and control of patient private data without using any centralized infrastructure. In this system, we 
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employed an Ethereum blockchain and a distributed file system technology called InterPlanetary 

file system. Then, we implemented an Ethereum smart contract called the patient-centric access 

control protocol to enable a distributed and trustworthy access control policy. IPFS provides the 

means for decentralized storage of medical images with global accessibility. The PCIM system 

ensures a high level of data security and reduces the fragmentation of patient health records by 

applying the steganography and asymmetric cryptographic technique.                                     

    We described how the PCIM system architecture facilitates the distributed and secured patient-

centric data access across multiple entities such as hospitals, patients, and image requestors. 

Finally, we conducted an experiment to test the framework within the Windows environment and 

deployed a smart contract prototype on an Ethereum testnet blockchain. The experimental results 

demonstrated that the proposed scheme is feasible. 

    However, in the implemented prototype model, medical images are manually uploaded by an 

image provider into the IPFS network. This process can be enhanced by developing an application 

programming interface to facilitate a user-friendly access to the system. Furthermore, our future 

research goal is to deploy the proposed POC design in the public blockchain using real-time 

scenarios to form a global PCIM system and to validate the proposed approach across a broader 

set of scenarios. 

     Our future research will be introducing a novel CAD algorithm for multimodal imaging systems 

that accurately characterize and detect lesions by including more features and classification 

techniques such as deep learning, and dictionary learning. Explorations on these new frontiers are 

likely to bring us more successful applications in medical image processing. 
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