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Abstract 

Brain-Computer Interface systems provide an alternative communication channel between the human 

brain and surrounding devices, such as computers, home appliances, and prosthetic devices. The technology 

was originally developed to assist people with disabilities, but recently it has attracted public attention due 

to its potential to improve the quality of life with new communication experiences. However, current BCI 

technology still has faced several challenges, such as a limited number of adjustable functional-brain signals, 

the need for recalibration of the signal processing algorithms, and uncontrollability for a non-negligible 

proportion of the users, that is well known as “BCI-illiteracy”. One feasible approach beyond these chal-

lenges is a multimodal analysis of brain activities, called a hybrid BCI. Among the various hybrid BCI 

schemes, an EEG and fNIRS-mixed scheme is one of the preferred combinations because it is electrome-

chanically simple and capable of designing inexpensive portable instruments. 

In the first part of this dissertation, a portable hybrid brain monitoring system is proposed to perform 

simultaneous 16-channel electroencephalogram (EEG) and 8-channel functional near-infrared spectroscopy 

(fNIRS) measurements. Architecture-optimized analog frontend integrated circuits (Texas Instruments 

ADS1299 and ADS8688A) are used to simultaneously achieve 24-bit EEG resolution and reliable latency-

less (< 0.85 μs) bio-optical measurements. Linear regulator-based fully isolated circuit design effectively 

suppresses noise and crosstalk caused by digital circuit components and flashing NIR light sources. Spring-
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loaded dry electrodes are also used to allow easy and convenient EEG measurements without conductive 

gel. 

EEG phantom tests and arterial occlusion experiments confirm that the proposed system is sufficiently 

capable of detecting microvolt-ranged EEG signals and clear hemodynamic responses. Human subject stud-

ies, including alpha rhythm detection tests and mental arithmetic experiments, enable us to identify task-

related EEG features, such as eye-closed event-related synchronization and mental-arithmetic event-related 

desynchronization in the alpha and beta rhythm ranges. An analysis of the fNIRS measurements for the 

arithmetic tasks also shows a clear decreasing trend in oxy-hemoglobin concentration. 

In the design of the hybrid brain monitoring system, passive dry electrodes are used. However, the high 

contact impedance that easily appears when using this type of electrodes still remains a critical issue. 

In the second part, as an extension of the main work, a two-wired active dry electrode system is proposed 

by combining finger-shaped spring-loaded probes and an active buffer circuit. The shrinkable probes and 

bootstrap topology-based buffer circuitry provide reliable electrical coupling with an uneven and hairy scalp, 

and effective input impedance conversion with low input capacitance. Through analysis of the equivalent 

circuit model, the proposed electrode is carefully designed by employing off-the-shelf discrete components 

and a low-noise zero-drift amplifier. 

Several electrical evaluations, such as noise spectral density measurements and input capacitance esti-

mation, are performed together with simple alpha rhythm detection experiments. The experimental results 

show that the proposed electrode is capable of clear detection for alpha rhythm, along with excellent elec-

trical characteristics, such as a low-noise voltage of 1.131 μVRMS and a 32.3% reduction in the input capac-

itance. 
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국문요약 

뇌-컴퓨터 인터페이스(BCI) 시스템은 사람의 뇌와 컴퓨터, 가전기기 및 보철장치와 같은 

주변 기기들 간에 대안적인 통신 채널을 제공한다. 이 기술은 장애인들을 돕기 위해 처음 

개발되었으나 최근에는 새로운 통신 경험을 통한 삶의 질 향상을 제공할 수 있는 

잠재력으로 인해 대중의 관심을 받고 있다. 그렇지만 현재의 뇌-컴퓨터 인터페이스 기술은 

사람이 조절 가능한 기능적 뇌 신호의 한정적인 개수, 신호처리 알고리즘의 재교정 필요성, 

그리고 BCI 문맹이라고 불리는 적지않은 사용자의 제어 불능과 같은 다양한 문제에 직면해 

있다. 이런 문제를 뛰어넘기 위해 실현가능한 접근법 중 하나는 하이브리드 BCI 라고 

불리는 뇌활동에 대한 다중 모드 분석법이 있다. 다양한 하이브리드 BCI 방식 중, EEG 및 

fNIRS 혼합 방식은 전자기계적으로 단순하고 저렴하면서 휴대가 간편한 기기를 설계하기 

용이하기 때문에 선호되는 조합 중 하나이다. 

본 학위논문의 첫 번째 부분으로, 16 채널의 EEG 및 8 채널의 fNIRS 측정이 동시에 가능한 

휴대용 하이브리드 뇌 모니터링 시스템을 제안하였다. 최적화된 아키텍쳐로 설계된 

아날로그 프론트엔드 칩셋들(Texas Instruments ADS1299 및 ADS8688A)을 사용하여 24 비트 

해상도의 EEG 와 지연시간이 거의 없는 안정적인 생체 광학 측정을 동시에 달성하였다. 

선형 레귤레이터 기반, 완전 절연 방식의 회로 설계는 디지털회로 소자 및 깜빡이는 

근적외선 광원으로 인해 발생하는 잡음과 누화를 효과적으로 억제하였다. 또한, 스프링이 

장착 된 건식 전극을 사용하여 전도성 젤없이 쉽고 편리한 EEG 측정이 가능하게 하였다. 
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EEG 팬텀 테스트 및 동맥 폐색 실험을 통하여 제안한 시스템이 마이크로 볼트 범위의 

EEG 신호 및 분명한 혈역학적 반응을 충분히 감지 할 수 있음을 확인하였다. 알파 리듬 

감지 테스트 및 정신 산술 실험을 포함한 인간 대상 실험을 통해 알파 및 베타 리듬 

범위에서 눈을 감은 상태에서 나타나는 이벤트 관련 동기화 및 산술 연산과 같은 높은 정신 

작업 부하 상태에서 나타나는 이벤트 관련 비동기화와 같이 피실험자에게 주어진 과제와 

관련하여 발현되는 EEG 특징들을 식별 할 수 있었다. 또한, 산술 연산 과제에 대한 fNIRS 

측정의 분석 결과에서는 산화헤모글로빈 농도의 뚜렷한 감소 추세를 보여주었다. 

본 하이브리드 뇌모니터링 시스템의 설계에는 수동 건식 전극이 사용되었다. 그러나 

이러한 유형의 전극을 사용할 때 쉽게 나타나는 높은 접촉 임피던스는 여전히 중요한 

문제로 남아 있다. 

본 학위논문의 두번째 부분으로, 주요 연구에 대한 확장으로서 손가락 모양의 스프링 

장착 프로브와 능동 버퍼 회로를 결합하여 2 선식 능동 건식 전극 시스템을 제안하였다. 

수축 가능한 프로브와 부트스트랩 방식의 버퍼 회로는 표면이 고르지 않고 머리카락이 많은 

두피에서 신뢰할 수 있는 전기결합과 낮은 입력 커패시턴스에 의한 효과적인 입력 임피던스 

변환 기능을 제공한다. 등가 회로 모델의 분석을 통해 제안한 전극은 기성품의 이산 부품들 

및 측정값에 변동이 최대로 억제된 저잡음 증폭기를 사용하여 신중하게 설계되었다. 

잡음 스펙트럼 밀도 측정 및 입력 커패시턴스 추정과 같은 여러 전기적 평가가 알파 리듬 

감지 실험과 함께 수행되었습니다. 실험결과에서 1.131μVRMS 의 저잡음 전압 및 입력 

커패시턴스의 32.3 % 감소와 같은 우수한 전기적 특성이 관찰되었으며, 제안한 전극을 통해 

알파 리듬을 명확하게 감지 할 수 있음을 보여주었다. 
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 Chapter 1 

Introduction 

1.1. Research Background 

1.1.1. Brain-Computer Interface 

Brain-computer interface (BCI) [1]–[3] is a system that provides a non-muscular communication channel 

between the human brain and external world. The BCI systems are designed to decode the intention or thought 

of the human user and generate commands to control external devices or computer applications. Because of 

this design purpose, it can also be called a “Thought decoder”. It was originally developed to assist severely 

disabled people who cannot control their peripheral nerves and muscles, due to neurological and neuromuscular 

disorders such as amyotrophic lateral sclerosis, brainstem strokes, and spinal cord injuries [4], [5]. Since these 

people cannot control their hands or limbs voluntarily, this technology allows them to experience direct com-

munication between humans and external devices such as computers, home appliances and prosthetic devices. 

 

Figure 1.1 Diagram of brain-computer interface 
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This technology is now advancing further to facilitate human-machine interaction and has recently attracted 

public attention due to its potential to improve the quality of life with new communication experiences. Cur-

rently, Internet of Things (IoT) technology has been applied to the BCI applications for healthcare, telemedicine, 

and clinical treatments [6]. Commercial wireless BCI systems provided with entertainment applications such 

as brain games and mind monitoring are also becoming popular [7]. 

Figure 1.1 shows an basic structure of the BCI system that consists of three stages: signal acquisition, signal 

processing, and control interfaces. The signal acquisition stage acquires neurophysiological signals using 

neuro-imaging techniques. In the signal processing stage, the obtained signal is decoded into machine-readable 

commands by performing neural signal processing techniques, such as feature extraction and classification. 

The feature extraction process discriminates meaningful information from the recorded brain signals and the 

extracted discriminative information is mapped onto a low-dimensional feature space. The classification pro-

cess categorizes the feature vectors by analyzing the user's intention. The control interface finally maps the 

classified feature vectors into control instructions in accordance with the connected devices or applications. 

When the device or application responds to the commands, the user can observe the control status directly. 

Through an iterative training process, the user can learn how to increase the control accuracy for the target 

applications. This real-time and bidirectional feedbacks allow establishing a complete closed-loop system, 

which is also called a neurofeedback system. 

1.1.2. Neuroimaging Modalities 

In the neural signal processing chain of the BCI system, the starting point of all processes departs at the 

signal acquisition stage. Therefore, the performance of the BCI system is highly dependent on this stage. The 

purpose of this stage is to collect meaningful signals that reflect the user's intention by maximally rejecting 

noise and interferences. To this end, two types of neuro-imaging modalities have been used: i) invasive vs. ii) 

non-invasive. 
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Invasive modalities need to implant needle-type microelectrode arrays onto the cortical surface inside the 

skull for direct neural recordings. There are two types of invasive modalities: electrocorticography (ECog), 

which places an array of surface electrodes over the dura, and intracortical neural recording, which implants 

microelectrode arrays onto the cortex. This modality is the most ideal for the BCI systems because it is a direct 

measurement of neural signals, thus the most accurate neural information can be obtained without loss of in-

formation. On the other hand, it is not suitable for BCI systems for the general public because it unavoidably 

requires surgical procedures associated with health risks. This is why noninvasive neuroimaging modalities are 

currently gaining momentum in the BCI research field. 

In the non-invasive modalities, two types of brain activities can be monitored: i) electrophysiological and ii) 

hemodynamic. Specifically, there are totally four kinds of non-invasive modalities: Electroencephalogram 

(EEG), Magnetoencephalogram (MEG), functional Magnetic Resonance Imaging (fMRI), and functional Near-

Infrared Spectroscopy (fNIRS). The modalities are listed in Table 1.1 and their detection mechanisms are also 

illustrated in Figure 1.2 [3], [8]. 

 

Table 1.1 Comparison of the non-invasive neuroimaging modalities. 

Modali-

ties 
Signal Source Type 

Temporal 

Resolution 

Spatial  

Resolution 
Portability Price 

EEG 
Electrical potential produced 

by cortical activity 

Electrophys-

iological 

High 

(~ 0.05 s) 

~ 10 mm Portable 
~$200 

–$50 000 

MEG 
Magnetic field associated 

with neuronal activity 

Electrophys-

iological 

High 

(~ 0.05 s) 

~ 5 mm 
Non-port-

able 

$2–3 mil-

lion 

fMRI 

Neuronal metabolism  

(BOLD changes in suscepti-

bility-weighted MR signals) 

Hemody-

namic 

Low 

(1 ~ 2 s) 

~ 1 mm 
Non-port-

able 

> $1 mil-

lion 

fNIRS 

Neuronal metabolism  

(BOLD changes in absorption 

spectrum of NIR light) 

Hemody-

namic 

Medium 

(~ 0.1 s) 

~ 5 mm Portable > $20 000 
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EEG measures differences in electrical potentials on the scalp [9]. These potentials generated from the cor-

tical neural activities, that are typically the sum of excitatory and inhibitory postsynaptic potentials of thou-

sands or millions of neurons. When the group of neurons transmitting neurological signals across their synapses, 

the flow of electrical currents is generated, resulting in electric dipoles. These dipoles generate microvolt level 

potentials at the scalp surface. These EEG potentials can be easily recorded by attaching electrodes to the scalp. 

This easy measurement makes it easy to design inexpensive instruments. However, due to their very small 

amplitude, they are very susceptible to various noise sources such as power line noise and radio frequency 

interference. 

MEG measures magnetic activities generated from the electrical neural activities by using a superconducting 

quantum interference device (SQUID) [10]. The generation process of the MEG is identical to the neurophys-

iological process of EEG. However, magnetic disturbances are measured in a non-contact manner, hence they 

can be measured outside the head. The MEG can provide signals with higher spatiotemporal resolution than 

EEG, but the most expensive price with huge size hinders the commercialization of instruments. 

 

Figure 1.2 Diagram for illustration of a generation of neural information and their detection mechanisms 

in non-invasive manners.  
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fMRI detects changes in local cerebral blood volume, cerebral blood flow, and oxygenation levels during 

neural activation by measuring electromagnetic fields [11]. fMRI modality is typically based on the contrast 

detection of the Blood Oxygen Level Dependent (BOLD) levels. This modality has attracted the attention of 

many researchers because it can provide superior resolution, but its use is still limited due to its high cost and 

huge size. In addition, its limited temporal resolution caused by the physiological delay of the hemodynamic 

responses is also pointed out as the main disadvantage of this modality. 

fNIRS investigates cerebral metabolism by using optical spectroscopy with near-infrared spectrum (700–

1000 nm) [12]. with a light source, Infrared light injected from the scalp penetrates the skull to a depth of 

approximately 1–3 cm below the scalp, where the changes of light intensity allow alterations in oxy-hemoglo-

bin and de-oxyhemoglobin concentrations to be measured. Similar to fMRI, this modality has the advantage of 

directly observing the metabolism of neural activity, but the spatiotemporal resolution is still limited due to the 

scattering of the light source and the delay of metabolic processes. 

1.1.3. Hybrid Brain-Computer Interface 

Current BCI technology faces several challenges, such as its limited number of controllable functional-brain 

signals [13], the need for recalibration of the signal processing algorithms, and uncontrollability for a non-

negligible proportion of the users, referred to as “BCI-illiteracy” [14]. 

Multimodal analysis of brain activities—the so-called hybrid BCI [15]–[17], which can be implemented by 

simultaneously acquiring and analyzing two or more brain signals, has been proposed as an alternative BCI 

technique capable of overcoming the above challenges. Two or more complementary neurological signals can 

be combined and shared to maximize the amount of exploitable information, thereby enhancing the robustness 

of control accuracy in real-world applications. Among the various hybrid BCI schemes, an EEG and fNIRS-

mixed scheme is one of the preferred combinations because it is electromechanically simple and capable of 

designing inexpensive portable instruments. 
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1.2. Outline of this Dissertation 

This dissertation includes two research topics. In Chapter 2, as a main work of this dissertation, we propose 

a dry electrode-based fully isolated EEG/fNIRS hybrid brain-monitoring system, which was published in [18]–

[20] as follows: 

[10] S. Lee, Y. Shin, A. Kumar, M. Kim, and H. Lee, “Dry Electrode-Based Fully Isolated EEG/fNIRS Hybrid 

Brain-Monitoring System,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 4, pp. 1055–

1068, Apr. 2019. 

[11] S. Lee, A. Kumar, and H.-N. Lee, “Development of a 16bit 8-channel functional near-infrared spectros-

copy based neuroimaging system,” in The 40th Annual International Conference of the IEEE Engineer-

ing in Medicine and Biology Society (EMBC), 2018. 

[12] S. Lee, A. Kumar, Y. S. Shin, and H.-N. Lee, “An Improved Design of EEG Monitoring System with 

Dry Electrodes,” in The 39th Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society (EMBC), 2017. 
 

In Chapter 3, we propose a spring-loaded probe-based two-wired active dry electrodes for EEG measure-

ments. This work is an extension of the previous work for the design optimization of the proposed EEG / fNIRS 

hybrid brain monitoring system. The development process and results included in this chapter were published 

in [21]–[23] as follows: 

[13] S. Lee, Y. Shin, A. Kumar, K. Kim, and H.-N. Lee, “Two-Wired Active Spring-Loaded Dry Electrodes 

for EEG Measurements,” Sensors, vol. 19, no. 20, p. 4572, Jan. 2019. 

[14] S. Lee, Y. Shin, and H.-N. Lee, “Design of active dry electrodes and its evaluation for EEG acquisition,” 

in 2015 International Conference on Information and Communication Technology Convergence (ICTC), 

2015, pp. 560–562. 

[15] S. Lee, Y. Shin, S. Woo, K. Kim, and H.-N. Lee, “Dry electrode design and performance evaluation for 

EEG based BCI systems,” in 2013 International Winter Workshop on Brain-Computer Interface (BCI), 

2013, pp. 52–53. 

 

In Chapter 4, we give conclusions of this dissertation. 
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 Chapter 2 

Dry Electrode-based Fully Isolated EEG/fNIRS Hybrid Brain-

Monitoring System 

2.1. Introduction to EEG / fNIRS Hybrid BCI Systems 

Hybrid BCI systems could be established by the fusion of two or more modalities amongst various brain 

imaging techniques, such as EEG, MEG, fMRI and fNIRS. Among these modalities, the disadvantages of 

MEG- and fMRI-based techniques is the need to install the machines in confined areas and the fact that they 

can only be used for short runtimes because of their high cost, large size, and the need for expert operators [24]. 

Contrary to this, EEG- and fNIRS-based brain-monitoring systems are electromechanically simple, making 

them easy to design for lightweight, compact and low-cost systems. EEG/fNIRS-combined hybrid systems 

could easily be built as portable or wearable devices and utilized in more dynamic applications, such as driver 

drowsiness detection [25] and seizure monitoring in epileptic patients [26]. 

An EEG is the electrical potential produced by the sum of the synchronous activation from the dendritic 

branches of a large number of neurons. Because EEG recording can be achieved noninvasively through the 

electrodes placed on the scalp and its time resolution is relatively high in the millisecond range, it is widely 

used as an electrophysiological recording modality [3]. On the other hand, fNIRS measures the changes in the 

local concentration of oxygenated and deoxygenated hemoglobin in the cerebral cortex region by utilizing low-

energy optical radiation from light sources of two different wavelengths in the near-infrared range (700–1000 

nm). Although this technique demonstrates a slower response compared to EEG, it enables an investigation of 

metabolic and microcirculatory neuronal activation regardless of the electrically synchronized activation of 

neurons [27]. The simultaneous acquisition of EEG and fNIRS measurements could provide more comprehen-

sive neurodynamic information regarding the accessible neuronal metabolism and neuroelectric activities. 
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2.1.1. Motivation and Related Works 

Several researchers have recently developed EEG–fNIRS hybrid systems for use in various applications [16]. 

But, a review of the available literature related to hybrid BCI systems indicates that a combination of individual 

EEG and fNIRS systems has been used in various experimental accomplishments regarding motor imageries 

[28]–[32], visual and auditory stimulations [33] and mental workloads [34], [35]. In such a setup, fully syn-

chronized operation of the entire system is difficult, because each individual system contains its own controller 

that is operated at a predefined clock speed. Therefore, the measurements acquired from two systems may not 

be completely synchronized in the absence of a precise simultaneous control mechanism. Attempts to address 

this concern have resulted in the design of customized EEG–fNIRS hybrid acquisition instruments. 

One of the first attempts to this end has been started with the design of a probe for simultaneous measure-

ments of EEG and fNIRS data [36]. Lareau et al. [37] and Sawan et al. [38] have proposed a similar hybrid 

system that was capable of acquiring multi-channel EEG and fNIRS measurements. However, it was difficult 

to use it as an out-of-lab device because of its large size (16 × 13 × 8.2 cm3). In 2013, a field-programmable 

gate array (FPGA) and an EEG application-specific integrated circuit (ASIC) based compact, and advanced 

bimodal acquisition system was developed by Safaie et al. [39]. Recently, Luhmann et al. [40] developed a 

miniaturized modular hybrid system, wherein one module was capable of simultaneously monitoring four 

channels of bio-electrical and bio-optical measurements. However, these reported studies still have several 

limitations related to practical usability in daily-life monitoring. The conductive gel of conventional wet elec-

trodes leads to user irritation and easily degrades the signal quality as it becomes dry, making long-term mon-

itoring difficult. Efficient suppression of the crosstalk and noise characteristics in a mixed signal system is 

another key challenge in designing a hybrid instrument.  
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2.1.2. Contributions of Chapter 2 

This Chapter proposes a dry electrode-based portable hybrid brain monitoring (HBM) system that provides 

simultaneous monitoring of fully synchronized 16-channel EEG and 8-channel fNIRS. Aiming at a use of out-

of-lab and clinical applications, the performance and availability of the instrument have been improved by 

integrating the following advanced features with the proposed system: 

1) Dry electrode-based gel-less EEG acquisition [23], [41], [42] for easy to put on, non-degraded EEG 

quality, and significant reduction in wearing time to less than 10 minutes (refer to Section 2.2.3); 

2) Architecture-optimized frontend design for sufficient resolution EEG and timing-secured errorless bio-

optical measurement, i.e., delta-sigma (Δ-Σ) architecture ADC-based 24-bit EEG resolution and successive 

approximation register (SAR) architecture ADC-based latency-less (<0.85 μs) bio-optical measurements (refer 

to Section 2.2.1); 

3) Linear regulator-based fully-isolated circuit design for maximization of noise and crosstalk suppres-

sion (refer to Section 2.2.2); 

4) Customizable EEG electrode-positioning structure (named as EEGCAP) to meet various experimental 

scenarios (refer to Section 2.3.2-1))). 

Figure 2.1 shows comparison between the conventional setup for the hybrid BCI and the proposed HBM 

system. In the previous studies mentioned, conventional hybrid BCI setups typically use a combination of 

individual EEG and fNIRS acquisition devices. In this case, after collecting the data, an additional synchroni-

zation process is required to match the timing of the two separate data. On the other hand, the proposed system 

is designed to fully integrate two separate systems controlled using a single microcontroller. Therefore, the 

proposed system output one fully synchronized data stream and no synchronization process is required. More-

over, various advanced circuit design methods, such as low noise power supply design and interface isolation 

techniques, have also been applied to maximize the integrity of the measurements. 
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The overall system consists of stackable system PCBs, dry-type EEG electrodes, fNIRS emitter and detector 

units, and EEGCAP. All circuits, PCBs, and mechanical components are entirely designed and fabricated. Sev-

eral evaluation tests were performed to verify the hybrid data acquisition performance of the proposed systems. 

The acquisition of EEG measurements using the dry electrodes was evaluated by performing an EEG phantom 

test. An arterial occlusion experiment was performed to verify the hemodynamic responses of the fNIRS meas-

urements. Finally, human subject studies including an alpha rhythm detection test and an experiment to assess 

mental arithmetic operation were performed to verify the practical capabilities for EEG and fNIRS feature 

measurements. 

The remainder of the section is organized as follows: Section 2.2 and 2.3 provide detailed descriptions of 

the design methods and the implementation of the proposed system, respectively. The evaluation of the 

EEG/fNIRS measurements and human subject studies, including an alpha rhythm detection test and a mental 

arithmetic operation experiment, are presented in Section 2.4. Section 2.5 summarizes several results, including 

system implementation, acquisition capability evaluation, and offline analysis of human subject studies. The 

 

Figure 2.1 Differences between the conventional setup for the hybrid BCI and the proposed HBM system. 
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contributions of this study are discussed in Section 2.6 in comparison with previous studies. Finally, summary 

of this section for the system design and experimental results are given in Section 2.7. 

2.2. System Design 

This section describes the key design methods for implementing the proposed HBM system, namely archi-

tecture-optimized frontend design, linear regulator-based fully-isolated circuit design, and dry electrode-based 

gel-less EEG acquisition. 

2.2.1. Architecture-Optimized Frontend Design 

Physiological signals, such as EEG and fNIRS, possess small amplitudes and are highly susceptible to var-

ious types of noise. For this reason, the use of complicated signal-conditioning circuits becomes necessary to 

achieve high-precision measurements. State-of-the-art integrated analog frontend (AFE) integrated circuits 

(ICs) combined with high-resolution analog-to-digital converters (ADCs), signal-conditioning circuits, and as-

sociated built-in circuits and their design benefits were reported [43]. The integrated functions of these ICs 

assist to reduce the number of discrete components required in the design of a data acquisition system, enabling 

miniaturized and low-cost designs with reliable performance. 

The proposed design employs the ADS1299 AFE IC (Texas Instruments, USA) [44] for EEG measurements. 

It was integrated with 8-channel, 24-bit resolution Δ-Σ ADCs, programmable gain amplifiers (PGAs), and 

other built-in peripherals. A sufficiently small step size of the least significant bit (LSB) (0.022 μV at a 24 PGA 

gain) and low peak-to-peak noise performance (0.98 μV at a 250-SPS sampling rate and a 24 PGA gain) enables 

precise detection of EEG signals in the μV range. The integrated 8-channel ADCs allow simultaneous sampling 

of multiple input measurements, thus no sampling skew and glitch noise exist in the converted data without the 

need for sample-and-hold circuits. Although the ADS1299 was used for EEG measurements in previous studies 

[40], this is the first time the ADS8688A (Texas Instruments, USA) [45] was used for the acquisition of bio-
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optical measurements. This device is a 16-bit successive SAR ADC-based AFE integrated with numerous built-

in functions such as 8-channel input multiplexer, PGAs, and second-order low-pass filters. 

Compared to the delta-sigma architecture employed in ADS1299, the SAR ADC architecture [46] can pro-

vide the precise delayless measurement required for bio-optical acquisition. The delta sigma architecture is 

advantageous for acquiring high-resolution measurements exceeding 20 bits; however, its operating mecha-

nism requires the use of a digital decimation filter for noise-shaped representation of oversampled data, thereby 

resulting in conversion latency known as the settling time [47]. This latency represents the delay between the 

beginning of the input signal conversion and the end time at which fully settled output data are available. In 

the case of the ADS1299, this latency reaches 16 ms at a sampling rate of 250 SPS. Unlike delta-sigma ADCs, 

the SAR ADC architecture does not require the conversion latency because it repeatedly performs a zero-la-

tency task, which compares the reference voltage and input measurements through a sample-and-hold circuit, 

a comparator, and a DAC. This zero-latency feature, which produces digitized data within 0.85 μs in case of 

the ADS8688A, leads to reliable delay-less measurement. Because the bio-optical measurement requires on-

time acquisition within predefined timing bins (4 ms) when the NIR light source is in an active state, this delay-

less characteristic is essential for accurate acquisition of bio-optical measurements. Therefore, the ADS8688A, 

instead of the ADS1299, which is delta-sigma architecture ADC-based AFE IC, is employed for the bio-optical 

measurement. 

Table 2.1 and Figure 2.2 shows specifications and internal architecture for ADS1299 and ADS8688A. The 

main differences between the two AFE ICs are the architecture, the number of ADCs and the presence of a 

multiplexer on the frontend stage. Since the ADS1299 integrates multiple high-resolution delta-sigma ADCs 

to simultaneously encode eight-channels of the analog signal in parallel, a multiplexer does not need it. This is 

related to the conversion latencies of the delta-sigma ADCs mentioned earlier. For delta-sigma ADCs, the use 

of multiplexers can make it difficult to synchronize data across multiple channels. Considering this, 
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Table 2.1 Specification comparisons for ADS1299 versus ADS8688A 

Specifications ADS1299 ADS8688A 

Architecture, 

Resolutions (Bit) 
Δ-Σ, 24 SAR, 16 

Min. LSB Size 0.26 μV 19.53 μV (±0.64V Input Range) 

# of Channels, 

# of ADCs 
8, 8 (Simultaneous sampling) 8, 1 (Multiplexed) 

Sampling Rates 250SPS ~ 16k SPS Max 500k SPS 

Conversion Time ~ 4 samples (16.38 ms at 250 SPS) Max 0.85us 

Embedded 

Functions 

1–24 PGA Gain, Built-In Oscillator, 

Built-In Bias Drive Amplifier, 4.5-V 

Reference 

4.096-V Reference, PGAs, 2nd-order 

LPF 

Performances 

CMRR: –110 dB 

Input-Referred Noise: 1 μ VPP 

DNL: ±0.5 LSB; INL: ±0.75 LSB; 

SNR: 92 dB; THD: –102 dB 

Cost, Size 

$49.11 per 10 units, 

10mm x 10mm 

$17.58 per 10 units, 

9.7mm x 4.4mm 

 

 

Figure 2.2 Internal architecture comparison for (a) ADS1299 and (b) ADS8688A. The represented dia-

grams show for one of the analog input channels. 
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simultaneous and parallel sampling of analog signals with multiple channels of ADCs is suitable for delta-

sigma architecture. In comparison, the ADS8688A exhibits near-delay-free operation, hence multiplexing with 

a single ADC for multiple channels of analog signals is not a problem. For these reasons, the ADS1299 with 

delta-sigma ADCs is suitable for acquiring EEG signals that require high resolution and continuous sampling, 

while the ADS8688A with a SAR ADC is optimal for acquiring bio-optical signals that require high precision 

timing management.  

2.2.2. Linear Regulator-Based Fully-Isolated Circuit Design 

In mixed-signal systems in which analog and digital components are integrated into a single circuit, the 

crosstalk noise generated in digital circuits could be coupled to neighboring analog circuits via stray capaci-

tances [48]. In the proposed HBM system, a periodical switching operation of the NIR light source is necessary 

to acquire bio-optical measurements. The oscillating noise in the digital circuits is unavoidable because of the 

instantaneously high current flow in the driving circuit of the light source. Without careful consideration of the 

crosstalk, this noise may appear on the analog circuits associated with the AFE ICs and can easily distort the 

small EEG and bio-optical amplitudes. 

The crosstalk rejection capability was maximized by implementing a fully isolated circuit design technique, 

such as a circuit design with separate ground planes and an isolated digital interface, in the power and control 

circuits of the proposed system. The design of the power supply circuit included the use of a dedicated lithium-

polymer battery and an isolated DC–DC converter DCP020509 (Texas Instruments, USA) to separate the 

ground for the data acquisition circuits and the digital control circuit. This design results in a total of three 

completely separated ground planes. Since independent return current paths are created on each ground plane 

and these paths are completely isolated from each other, the switching noise generated in the control circuit 

cannot reach the data acquisition areas. Therefore, the EEG and fNIRS acquisition circuits are able to maintain 

flat and stable ground potentials. Two digital isolators Si8662 (Silicon Labs, USA) are also used for the isolated 
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interface of the EEG and fNIRS acquisition circuits. Many advanced features, such as high data throughput, 

low propagation delay, and noise robustness of the isolator IC serve to provide a reliable and uncoupled data 

path in the digital interface. 

The linear regulator-based power supply circuits were carefully designed by using a number of decoupling 

capacitors and ferrite beads to provide low-noise DC power to the data acquisition circuits. The linear regula-

tors provide several advantages compared to DC-DC converters, such as highly regulated output voltage, low 

noise spectral density, and a high power supply rejection ratio (PSRR), thereby making them ideally suited for 

noise-sensitive applications. In addition to these low-noise power supply circuits, an optimized printed-circuit-

board (PCB) layout and advanced circuit-design techniques, such as grounding, signal routing, and decoupling 

[49], were applied to maintain stable and regulated DC voltages and build a low-impedance return current path. 

2.2.3. Dry Electrode-Based Gel-Less EEG Acquisition 

Conventionally, disc-shaped Ag/AgCl electrodes have been employed in EEG measurements. These elec-

trodes require the use of conductive gels and hair preparation during installation in order to reduce the electrical 

impedance to an acceptable level. These procedures are time consuming and cause irritation in most subjects, 

because conductive gels are sticky. Moreover, these electrodes are not suitable for long-term and ambulatory 

applications, because conductive gels dry over time and their adhesion is easily lost during motional vibrations. 

Therefore, the signal quality of the wet electrodes may be continuously degraded in ongoing experiments, thus 

the use of wet electrodes is to be limited in experiments requiring more than 30 minutes. To overcome these 

problems, dry electrodes, which do not require conductive gels, are used in the proposed system. These elec-

trodes comprise spring-loaded probes that maintain a constant pressure on the surface of the uneven scalp 

regardless of its movement. Consequently, these electrodes are capable of more stable EEG measurements even 

in out-of-lab environments. The dry-electrode structure is described in detail in Section 2.3.2-1). 
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2.3. Implementation 

2.3.1. Instrumentation 

1) Data Acquisition Circuit: Figure 2.3 depicts a schematic of the proposed system excluding the power 

supply circuits. The system comprises two boards—the main board and slave board. The main board is capable 

of performing 8-channel bio-optical measurements, and 4-channel dual-wavelength LED emissions. The slave 

board was designed to perform 16-channel EEG measurements. The two boards were connected using the 

Molex board-to-board connector, and all components were controlled by the STM32L475 low-power micro-

controller (STMicroelectronics, USA) installed on the main board. 

 

Figure 2.3 Simplified schematic of the proposed HBM system. Solid and dotted arrows indicate the flow 

of digital logic signals and analog measurements, respectively. Likewise, the shaded and transparent re-

gions indicate the digital and analog circuits, respectively. The boundary between the analog and digital 

circuits is isolated by a digital isolator and DC–DC converter. The dedicated EEG acquisition circuits is 

also isolated from the main board circuits. 
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The following procedure was used to perform bio-optical measurements on the main board. Common-mode 

electromagnetic and radio-frequency interference noise is first filtered out from raw bio-optical measurements 

using a simple RC lowpass filter in the input stage. Inside the embedded ADS8688A AFE IC, the acquired bio-

optical signal is amplified by the integrated PGA to pre-programmed input ranges (±0.64 V) and subsequently 

filtered by an anti-aliasing low-pass filter with a 15-kHz cutoff frequency. Because the actual sampling rate of 

the bio-optical measurement reaches 20 kHz to obtain an averaged measurement from quick repeated samples, 

the built-in anti-aliasing filter is required for aliasing rejection. The filtered signal is then fed to the ADC driver 

and multiplexer circuits, and is finally sampled by a 16-bit SAR ADC. According to this procedure, 8-channel 

bio-optical data can be finally obtained at a 5-SPS sampling rate. 

The following procedure was also used to perform EEG measurements on the slave board. The EEG meas-

urements acquired by the dry electrodes are filtered by the onboard input filter stage. X2Y type capacitors [50] 

were employed in this filter stage to facilitate higher attenuation of electromagnetic and radiofrequency noise, 

while reducing onboard space requirements. Inside the ADS1299 AFE IC, the filtered EEG measurements are 

amplified by a built-in low noise PGA with a 24 gain setting and digitized by a dedicated ADC for each channel 

over every sampling period (4 ms). The sampled EEG data are then transmitted to the microcontroller (MCU) 

via an SPI bus. With two ADS1299s in a daisy-chained configuration that allows multiple ICs to be controlled 

simultaneously using a single shared bus, 16-channel EEG measurements can be obtained at a 250-SPS sam-

pling rate. 

2) Power Supply Circuit: Figure 2.4 depicts a schematic of the power-supply circuits of the proposed HBM 

system. The proposed system is powered by two lithium-polymer batteries—one each for the main and slave 

boards—which can be charged via the onboard battery management IC (Texas Instruments BQ24073) through 

a USB port. As the battery voltage decreases over time, boost and dual-output DC–DC converters (Texas In-

struments TPS61232, TPS65133) are used to stabilize these output voltages. An isolated DC–DC converter 
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(Texas Instruments DCP020507) is employed to supply fully isolated power for the fNIRS acquisition circuits 

on the main board. In the final stage of the power-supply circuits, low-noise DC voltage is lastly delivered to 

the AFE ICs, MCU, and other peripherals through six low-noise linear regulators (Analog Devices—

ADM7154, ADP7182, ADP 7142, and ADM7171; Texas Instruments—TPS7A4701 and LP5907).  

3) MOSFET-Based LED Driving Circuit: Figure 2.5 illustrates the schematic of the MOSFET-based LED 

driving circuit. Because the number of NIR light sources required may vary depending on the configuration of 

 

Figure 2.4 Schematics of power-supply circuit for (a) main board, and (b) slave board. Two lithium-poly-

mer batteries supply power to the main board and the slave board, respectively. In the main board, the 

isolated DC–DC converter separates the ground planes for the main control circuit (shaded digital power 

supply section) and the isolated NIRS acquisition circuit (fNIRS analog power supply section). 
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the probe set layout and the experimental paradigm, a programmable control function for multi-channel emis-

sion is required for the LED driving circuitry. A calibration function for radiant intensity is also necessary 

because the NIR LED may exhibit radiant power mismatch even for the same current consumption. Thus, a 

programmable LED driving circuit was designed to flexibly control the radiant intensity of multi-channel NIR 

LEDs by combining a digital-to-analog converter (DAC), an analog multiplexer and MOSFET drivers. In op-

eration, the MCU regulates the gate voltage of the MOSFET driver by controlling the output voltage of the 

built-in digital-to-analog converter (DAC) of the MCU. The regulated gate voltage is buffered with an OPAMP 

and then fed to the analog multiplexer (Analog Device ADG729) for controlling multi-LED emissions. The 

multiplexed gate voltage is lastly supplied to the N-channel MOSFET driver to modulate the LED current flow. 

This design provides flexibility to control as many as eight NIR LED emissions with fine-tuned radiant inten-

sity in the proposed system. In the human subject studies described in this paper, the radiant intensity for all 

NIR LEDs was manually adjusted to 10 mW using an optical power meter and DAC output voltage control. 

4) PCB implementation process: Figure 2.6 shows a series of implementation procedures, including circuit 

design, PCB design, and fabrication. The entire implementation process was carried out using PCB design 

software named as Altium Designer (Altium, Australia). Through this process, two four-layered 70 × 70 mm 

 

Figure 2.5 Schematic of the MOSFET-based NIR LED driving circuit employed in the proposed HBM 

system. This circuit was combined with a DAC, analog multiplexer, and OPAMP-based buffering circuit 

to flexibly control the emission intensity of the four LEDs. By implementing two copies of this circuit, the 

proposed system can control up to eight LED emissions. 
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Figure 2.6 Design and fabrication process for the proposed HBM system boards. The boards are designed 

using Altium Designer software. 

 

1. Schematic Design

2. PCB Design

3. PCB Fabrication and Assembled by SMT
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PCBs have fabricated for 16-channel EEG and 8-channel fNIRS acquisition. These boards can be connected 

to each other via board-to-board connectors and are powered by two 2,000 mAh lithium polymer batteries. 

2.3.2. Sensors 

Customized sensor units were designed for the EEG and bio-optical measurements to enhance the usability 

and reconfigurability of the proposed system. The sensor units comprise 16-channel dry electrodes, 2-channel 

NIR LEDs, and 6-channel photodiodes. 

1) Spring-Loaded Dry Electrode and Customizable EEGCAP: The Figure 2.7 depicts a prototype of the 

dry electrode for the EEG measurements, which comprises spring-loaded probes, a PCB, and a housing. The 

electrode unit, which is designed to remain in contact with the subject’s scalp, acquires EEG potentials via the 

18 spring-loaded probes (Leeno Industrial Inc., SK100R). 

Each probe comprises four components—the (1) plunger, (2) barrel, (3) spring, and (4) probe receptacles. 

The plunger is a cylindrical, coated with beryllium copper and gold plated over nickel. The plating material is 

biocompatible and does not cause allergic reactions. The tip of the plunger in contact with the scalp is a round 

shape to minimize stabbing pain. The spring-loaded structure is made by combining the plunger, barrel and 

spring. The embedded spring can shrink up to a maximum of 1.5 mm along the barrel, and the shrinkage of the 

spring can shorten the probe. The initial tension of the spring is only 10 g in the preloaded state of the probe. 

When the probe shrinks to its minimum length, the spring delivers up to 54 g of pressure to the scalp. Therefore, 

this linearly increasing tension allows each probe to continuously apply the appropriate contact pressure to the 

uneven surface of the scalp. The shrinkable structure of the probes also relieve pain by absorbing the excess 

pressure in the vertical direction. In terms of electrical specifications, the resistance of each probe is less than 

50 mΩ, which is sufficiently low for conducting bioelectrical measurements. All probes are electrically con-

nected to each other via the PCB embedded in the electrode housing and are thereby linked to a single electrode 

wire. The entire electrode assembly is enclosed by the 3D-printed plastic housing. 
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Figure 2.8 shows 3D rendering image of a EEGCAP and its fabricated results. The helmet-type EEGCAP 

was designed using 3D CAD software named as Rhino 3D (Robert McNeel & Associates, USA) and fabricated 

with flexible rubber materials to hold the dry electrodes in position in accordance with 10–20 systems. The 

mesh-type EEGCAP structure was equipped with as many as 58 holes to allow electrodes to be positioned on 

the scalp. Each electrode was firmly engaged in the hole via an interlocking frame structure, and able to con-

tinuously push against the subject’s scalp to maintain a constant pressure. This customizable structure allows 

us to choose a variety of configurations in terms of electrode-positioning layout, depending on the experimental 

paradigm. 

 

Figure 2.7 Component and assembled prototype images of a dry electrode for EEG measurements 
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Figure 2.8 (a) 3D rendering image of the EEGCAP in Rhino 3D CAD software (b) Inner view of the fab-
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2) NIR Light Source and Detector Units: Dual wavelength (730 and 850 nm) AlGaAs LEDs (OptoENG 

OE-MV7385-P) were used for the NIR light source unit depicted in Figure 2.9 (a). Two LEDs packaged in a 

miniaturized plastic leaded chip carrier (PLCC) were soldered onto a light source PCB and covered by 3D 

printed materials. The spectral spread of the emitted radiation (Δλ = 30–40 nm) was broader compared to that 

of monochromatic laser diodes (Δλ ≈ 1 nm). However, the incoherent and un-collimated characteristics of the 

LED light source achieve sufficient tissue penetration to enable the investigation of local hemodynamic 

changes. Owing to its suppressed heating and low risk of retinal damage, it can be used in direct contact with 

the human scalp [51]. 

The NIR detector unit depicted in Figure 2.9 (b) was based on a silicon photodiode device (Texas Instruments 

OPT101) integrated with an on-chip trans-impedance amplifier. Because the device exhibits high spectral sen-

sitivity in the infrared spectrum (>0.5 A/W in the 730–850 nm wavelength), it is optimal choice for use in NIR 

detection applications. Owing to the built-in trans-impedance amplifier circuitry composed of an operational 

amplifier and an internal feedback network, the photodiodes provide direct voltage output with a sufficiently 

 

Figure 2.9 (a) Dual wavelength LED (OptoENG OE-MV7385)-based NIR light source unit, and (b) silicon 

photodiode (Texas Instruments OPT101)-based NIR detector unit for bio-optical measurement. 
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wide bandwidth (14 kHz) which is linearly proportional to the detected light intensity. The photodiode is 

soldered onto a detector PCB along with decoupling capacitors, and housed inside a 3D-printed-casing. 

Figure 2.10 illustrates the positioning layout for NIR LEDs and photodiodes for placement on the subject’s 

forehead. The layout configuration occupies a 9 cm × 3 cm area with two NIR LEDs and six photodiodes, and 

the distance between the light source and the detector unit was set at 2.7 cm. In operations using this layout, 

the NIR LEDs flicker alternately in accordance with the pre-programmed LED switching sequence and only 

the photodiodes surrounding the turned-on LED are instantaneously activated. Each hemodynamic response is 

measured in the area between the pair of light sources and the detector unit and this area is defined as a bio-

optical channel. To achieve the maximum number of bio-optical channels in the restricted forehead space, 

measurements for bio-optical channels 3 through 6 located between NIR LEDs L1 and L2 are all required. By 

exploiting a Time Division Multiplexing (TDM)-based channel-sharing scheme where one photodiode can 

provide multiple independent measurements in non-overlapped timing periods, the four independent measure-

ments for these centrally located bio-optical channels can be provided from photodiodes PD3 and PD4; i.e., 

photodiode PD3 can provide measurements for the 3rd and 5th bio-optical channels and photodiode PD4 can 

provide measurements for the 4th and 6th optical channels in the same manner. Therefore, this channel sharing 

 

Figure 2.10 Installation layout of NIR LEDs (L1 and L2) and photodiodes (PD1–PD6) for acquisition of 

the bio-optical measurements. To investigate hemodynamic changes at the frontal lobes, the light source 

and detector units are attached using a transparent double-sided tape. This layout produces 8-channel he-

modynamic responses from the 1-to-8 biooptical channels marked in blue color. 
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operation enables the proposed sensor layout to acquire 8-channel bio-optical measurements with only six 

photodiodes. 

2.3.3. System Operation and Hybrid Data Acquisition 

The ADC basically converts analog input signals into digitized signals with consistent intervals based on an 

internal or external reference clock. However, the clock may have its own tolerance and frequency drift char-

acteristics. In heterogeneous data-acquisition systems employing two or more ADCs to produce a fully syn-

chronized data stream, the clock tolerance of individual ADCs makes accurate synchronization difficult to 

achieve. This problem can be solved by using a reference system clock to which all ADCs could be universally 

referred. 

Complete synchronization is achieved between the EEG and bio-optical measurements by using the data-

ready signals (referred to as DRDY in the datasheet) generated by the ADS1299 AFE IC as the reference system 

clock. The DRDY signal represents the transition of a falling edge when the digitized EEG data stream becomes 

valid. It, therefore, generates a pulse signal of the same period as the sampling rate of EEG acquisition. By 

synchronizing the emission control of NIR LEDs and data acquisition of ADS8688A with the DRDY pulse 

cycle, the complete synchronization between EEG and bio-optical measurements can be preserved regardless 

of the occurrence of small timing errors in the reference clock of each AFE. 

Figure 2.11 depicts a single period of simultaneous EEG and bio-optical acquisition captured from the logic 

analyzer screen. Once ADS1299 begins to acquire EEG measurements at a preprogrammed sampling rate (250 

SPS), the DRDY pulses begin to be generated with the same sampling period (4 ms) as EEG data generation. 

In accordance with the generation of the DRDY pulse, NIR radiation of dual wavelengths (730 and 850 nm) is 

alternately switched in the order—L1 (730 nm)–L2 (730 nm)–L1 (850 nm)–L2 (850 nm)—over the course of 

50 EEG acquisition cycles (200 ms). Each time the NIR LED is turned on by the multiplexer switching, the  
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radiation lasts for 4 ms, during which time the ADS8688A acquires NIR light intensities from the set of acti-

vated photodiodes surrounding the turned-on LED; i.e., when the L1–730 nm or L1–850 nm states are active, 

measurements from the photodiodes PD1–PD4 are sampled. This also applies to the two L2 states and sampling 

of photodiodes PD3–PD6. To obtain stable measurements with minimized background noise, the light intensity 

measurement of each bio-optical channel is repeatedly acquired 14 times with a 50–μs interval and subse-

quently averaged. During the 4-ms period of LED radiation, a total of 56 optical measurements are then se-

quentially obtained within 2.8 ms from the four photodiodes surrounding the turned-on LED. While the four 

LEDs are flashing sequentially within a 200-ms period, a total of 16 bio-optical measurements can be obtained 

through a time-division multiplexing operation. 

The aforementioned sequence allows fully synchronized 16-channel EEG and 16-channel bio-optical meas-

urements to be acquired every 4 ms (= 250 SPS) and 200 ms (= 5 SPS), respectively. The acquired measure-

ments are then packetized and successively transmitted to the host device via the SPBT3.0 DP2 Bluetooth 

module (STMicroelectronics, USA) with a header and timing information. The host device decodes the packets 

of EEG and bio-optical data using MATLAB 2014a (MathWorks, USA). The MCU system was programmed 

to perform the following operations: 

1. Peripheral initialization—establishment of peripheral interfaces (SPI interface, general pur-

pose input/output ports, and interrupt routine) and setting up registers of all AFE ICs; 

2. Launching the data-retrieval loop upon detection of the start trigger; 

3. Acquisition of EEG data from ADS1299, when a DRDY pulse is generated; 

4. Control of NIR LED emission in accordance with the LED switching schedule and DRDY 

trigger; 

5. Acquisition of bio-optical data of the predefined photodiode sets from ADS8688A in accord-

ance with the LED control sequence; 

6. Packetization of acquired EEG and bio-optical data along with header and timing indication 

and subsequent transmission of data packets to the host device via the Bluetooth module; 

7. Repeating steps 3 through 6 until the stop trigger is detected. 
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2.3.4. Calculations of Concentration Change of Oxy-, Deoxy-, and Total Hemoglobin 

The changes in the concentration of oxy-, deoxy-, and total hemoglobin were calculated with reference to 

the previous studies [52], [53]. Within the range of NIR wavelengths utilized in this system, it is reasonable to 

assume that the background absorbance of biological tissues is negligible and that the main contribution of 

chromophores in human tissue is limited to oxy- and deoxy-hemoglobin (HbO and HbR), respectively. In view 

of the above assumptions, the change in optical density (ΔOD) at the two wavelengths (730 and 850 nm) could 

be related to the concentration changes in oxy- and deoxy-hemoglobin (ΔHbO and ΔHbR) given by the fol-

lowing relation. 
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where    
OHb OHb RHb RHb

730 850 730 850, , ,  represent the extinction coefficients of HbO and HbR at 730 and 850 nm, re-

spectively, L is the optical path length between the light source and detector and may be approximated as L = 

d × DPF, where d is the source–detector distance and DPF is the differential path length factor introduced in 

Beer–Lambert’s law by accounting for light scattering effects [54]. As ΔOD can be estimated from the photo-

diode measurements using the relation given as 
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In Eq. (2), ΔHbO and ΔHbR could be estimated by using the following inverse formulation. 
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The change in concentration of the total hemoglobin (ΔHbT) can be estimated as the sum of ΔHbO and 

ΔHbR; i.e., 

     HbT HbO HbR   (4) 

  Following this decoding process, the 8-channel fNIRS data, including concentration changes in the ΔHbO, 

ΔHbR, and ΔHbT, are converted from the 16-channel bio-optical data. 

2.4. Evaluation and Experiment 

2.4.1. Evaluation of EEG and fNIRS Acquisition 

1) EEG Phantom Experiment using Dry Electrodes: The proposed HBM system employs dry electrodes 

for EEG acquisition instead of the conventional wet electrodes for wide applicability and enhanced usability. 

Therefore, it is necessary to verify the acquisition capability of the dry electrodes at the level of micro-voltage 

amplitudes. In the proposed system, the fNIRS and EEG acquisition circuits operate simultaneously. Thus, 

EEG signal acquisition is subjected to interference from the electrical switching noise generated by the NIR 

LEDs and this effect must be examined. To do this, we devised an EEG phantom experiment and the experi-

mental setup for the EEG phantom is depicted in Figure 2.12. 

First, EEG-like voltage signals were generated. Raw EEG data samples of 60-s duration were taken from 

the C3 channel of a BCI competition 3-IVa dataset (motor imagery task, downsampled to 250 Hz) [55]. These 

EEG data samples were then inputted to an arbitrary waveform generator (Keysight 33220A) for reproduction 

of a EEG voltage waveform. The reproduced voltage waveform was then passed through a voltage divider 

circuit (of 10000:1 ratio) to create a microvolt-level EEG signal. This voltage waveform was finally fed to the 

EEG phantom. 

Second, an EEG phantom was created using a conductive rubber pad (10 cm × 12 cm × 5 mm, 100 Ω/cm) 

to simulate a real human scalp. An NIR LED unit is placed at the center of the rubber pad. Then, one dry and 
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one wet electrode (with conductive gel) were attached around the LED unit on the rubber pad to emulate the 

NIR interference during EEG signal measurement. The two electrodes and the NIR LED unit were connected 

the EEG input port and NIR LED driving port of the HBM, respectively. The EEG reference input of the HBM 

system was connected to the ground potential of the waveform generator. 

Third, the voltage waveform of 60-s duration prepared in the first step was reproduced in the EEG phantom. 

Measurement samples were recorded at a sampling speed of 250 SPS from the two electrodes during the 60-s 

period. The two acquired signals were compared with the prepared voltage waveform in terms of correlation 

coefficients. 

In offline analysis, three correlation coefficients were calculated and analyzed depending on the NIR LED 

ON/OFF state. The correlation coefficient between the acquired signal using a dry electrode and the prepared 

waveform is ρD ; the correlation coefficient between the acquired signal using a wet electrode and the prepared 

waveform is ρW ; and the correlation coefficient between two acquired signals obtained using a wet electrode 

 

Figure 2.12 Experimental setup for the EEG phantom to evaluate the proposed dry electrode. 
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and a dry electrode is ρDW . To ensure reliability of the analysis, this test was repeated thrice, and the averaged 

correlation coefficients were compared. 

2) Arterial Occlusion Experiment: The hemodynamic response of the proposed system was verified by 

evaluating the fNIRS responsivity using an arterial occlusion experiment [38], [39]. The experiment was per-

formed using an inflatable arm cuff and a sphygmomanometer. The arm cuff could be shrunk to block arterial 

blood flow to artificially change the concentration of oxy- and deoxy-hemoglobin in the bloodstream on the 

arm. This would enable us to verify the hemodynamic behavior of the proposed system by observing this 

occlusion through NIRS data acquisition and offline analysis. 

For the experiment, NIR LEDs and photodiodes were attached to a subject’s arm in the layout shown in 

Figure 2.10. The experiment was carried out for 5 min. The first minute of the experiment was used as the 

baseline observation before constriction of the cuff. After 1 min, the pressure was increased to 200 mmHg for 

6 s and maintained at this level for 2 min, and then, the contraction was released. Through offline analysis, 

recorded hemodynamic responses were filtered with a 4th order zero-phase Butterworth 0.2-Hz low-pass filter 

and normalized responsivities for all channel measurements were derived. 

2.4.2. Human Subject Studies-Alpha Rhythm Detection Test and Mental Arithmetic 

Experiment 

Although the evaluation and verification of the EEG and fNIRS acquisition system were conducted through 

the EEG phantom and fNIRS responsivity tests, an experiment involving a human subject also needed to be 

carried out to evaluate the practical applicability in hybrid EEG/fNIRS monitoring. To this end, an alpha rhythm 

detection test and a mental arithmetic experiment were carried out. The first is a basic level test to determine 

whether the proposed system is effective for EEG acquisition. The second is a more challenging experiment to 

establish whether the system can be used to discern the subtle difference in the EEG and fNIRS signal patterns 

when the brain engages in non-trivial mental activity, i.e., a mathematical subtraction operation. 
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The alpha rhythm is the most well-known EEG feature that can be easily detected when the user closes his 

or her eyes. When the eyes are closed, the spectral power of the alpha rhythm band (8–15 Hz) is amplified 

relative to the other spectral ranges. By comparing the spectral power when the eyes are closed and when they 

are not, the detection capability of real EEG features can be verified. One subject participated in this test. Ten 

trials were performed and one trial consisted of maintaining the eye-open state for 12.5 ± 2.5 seconds and the 

eye-closed state for 10 seconds. In every transition of the command, a beep sound was used to alert the subject 

to the change of instruction. The timeline procedure of the one trial for the alpha rhythm detection test is 

depicted in Figure 2.13 (a). 

The mental arithmetic experiment is designed to examine the functional brain activation that occurs when 

subjects are required to carry out non-trivial mathematical operations. During a subtraction operation, the brain 

activation can be observed in both EEG and fNIRS signals. In the EEG signals, the activation appears in the

 

 

Figure 2.13 Experimental timeline procedure for (a) alpha rhythm detection test and (b) mental arithmetic 

experiments. 
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form of an event-related desynchronization (ERD) or event-related synchronization (ERS) [56], known as 

spectral and suppression and enhancement of the measured EEG signals. The activation in the fNIRS signals 

is also shown as a hemodynamic difference in oxy- and deoxy-hemoglobin concentration changes (ΔHbO, 

ΔHbR) [57]. We can investigate these distinctive responses through offline analysis, such as time-frequency 

analysis of the EEG measurements and time-course analysis of the fNIRS measurements. 

Including the subject who participated in the alpha rhythm detection experiment, a total of three subjects 

voluntarily participated in the mental arithmetic experiment. All subjects (three males, average age: 26.3 ± 1.7 

years old) were healthy and had no record of neurological and psychiatric disorders. Each subject was given a 

summary of the experiment and signed a consent form before their participation started. 

The subjects were seated on a chair in front of a 24-inch LCD monitor. Prior to the experiment, pilot signal 

monitoring was performed to check the adhesion state of the probe set and baseline noise characteristics of the 

acquired EEG signals. 

The experiment consisted of two sessions, and each session consisted of 10 trials. The timeline procedure 

for one trial of the experiment is depicted in Figure 2.13 (b). In a trial, a white fixation cross was displayed 

while waiting for the next task period in the first 22.5 ± 2.5 s. In this resting state, the subjects were instructed 

to gaze at the center cross sign and to refrain from any thinking to maintain a low mental load. During the next 

task period, the subjects were instructed to cumulatively subtract a two-digit random prime number (ranging 

from 10 to 30) from a three-digit random number in the range 500 to 999 for 20 s. For example, the problem 

of subtracting 13 from 700 is presented to the subject via a computer screen, i.e., “700 – 13.” The subject had 

to solve this problem by subtraction inside his/her head. Once he/she arrived at the answer to the problem, 687 

= 700 – 13, they were required to memorize it and to continue to subtract another 13 from the answer, i.e., “687 

– 13.” This instruction continued until the end of the task period. Similar to the Alpha Rhythm Detection Test, 

a beep was also used to alert the subject to command changes. 
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Figure 2.14 (a) Electrode positioning layout in accordance with the international 10–20 system, and (b) full 

installation image for fNIRS probe set and EEGCAP with dry electrodes. 
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EEG measurements were conducted by attaching 16 dry electrodes to the scalp with the fabricated EEGCAP. 

To observe the task-related activation in the overall brain areas, 16 electrode positions covering the frontal (Fz, 

F3, F4, Fc1, Fc2, Fc5, and Fc6), motor/temporal (C3 and C4), and parietal (Pz, P3, P4, Cp1, Cp2, Cp5, and 

Cp6) regions were carefully chosen in accordance with the international 10–20 system and the entire position-

ing layout is depicted in Figure 2.14 (a). Reference and bias electrodes were also attached to the skin behind 

the left and right earlobes, respectively, using disposable wet electrodes. The EEGCAP equipped with dry 

electrodes was fastened to a strap on the subject’s chest. Two NIR LEDs and six photodiodes were also installed 

on the forehead using double-sided adhesive tape according to the probe layout in Figure 2.10. Full installation 

image for the EEGCAP with sixteen-channel dry electrodes and fNIRS probe set, comprising of six-channel 

NIR photodiodes and 2-channel NIR LEDs, is shown in Figure 2.14 (b). In the experiment involving human 

subjects, installation of the dry electrodes and the fNIRS probe set was easily accomplished by attaching the 

set of NIR photodiodes and LED units to the subject’s forehead and by requesting the subject to wear the 

EEGCAP equipped with dry electrodes. 

These installation procedures may take less than 10 minutes, as there is no need for a series of additional 

preparation processes, such as hair arrangement and scalp abrasion. The EEG and fNIRS measurements ac-

quired by the installed electrodes and photodiodes were simultaneously recorded with an event trigger in real 

time using MATLAB 2014a. A photograph during the mental arithmetic experiments is shown in Figure 2.15. 

Offline analysis for the acquired EEG and fNIRS datasets was performed using MATLAB 2014a and EE-

GLAB toolbox [58]. The EEG datasets were obtained from both the alpha rhythm detection test (one subject 

participated) and mental arithmetic experiments (three subjects participated). Each EEG dataset was bandpass 

filtered with a 4th order zero-phase 0.5–40 Hz Butterworth filter. From the filtered dataset, each epoch before 

and after task onset (−10 to +10 s for the alpha rhythm detection dataset and −15 to +15 s for the mental 

arithmetic experiment dataset) was extracted based on the recorded event trigger. An EEGLAB built-in 
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function is utilized to investigate ERD/ERS patterns for the time-frequency analysis of the EEG dataset. To 

visualize the grand-averaged ERD/ERS patterns for each experiment, we averaged the time-frequency decom-

position outcomes for all sessions and all subjects who participated. The fNIRS datasets, which comprise the 

relative concentration changes of oxy-, deoxy- and total hemoglobin (ΔHbO, ΔHbR, and ΔHbT), were only 

obtained from the mental arithmetic experiments (three subjects participated). A 4th order zero-phase 0.01–0.2 

Hz Butterworth bandpass filter was applied to the fNIRS datasets and each epoch was extracted similarly to 

the EEG pre-processing procedure. Baseline correction of the extracted epoch was performed by subtracting 

 

Figure 2.15 Photograph of a subject carrying out the mental arithmetic experiments. The experiments were 

conducted under a low illumination environment because the bio-optical measurements sensitively respond 

to the intensity of ambient light. 
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the averaged fNIRS data measured in the resting state between −5 s and 0 s. Identification of the grand-averaged 

hemodynamic trends during arithmetic operations was also obtained by averaging each of the hemodynamic 

time courses in the same manner the grand-averaged ERD/ERS patterns were derived. 

2.5. Results 

2.5.1. Dry-Electrode Evaluation 

The correlation coefficients for each electrode comparison set (dry electrode vs. raw signal, wet electrode 

vs. raw signal, and dry electrode vs. wet electrode) evaluated with the EEG phantom are summarized in Table 

2.2. A ρDW value close to one indicates that the dry and wet electrodes detect almost the same waveform re-

gardless of the activation of the NIR LEDs. This confirms that the dry electrode is capable of obtaining EEG 

signals without the use of conductive gels and provides almost the same EEG measurement as the wet electrode. 

Values of ρD and ρW above 0.9 indicate that the phantom measurements through the dry and wet electrodes are 

not significantly different from the raw signal data. The slight decrease in the correlation coefficient, compared 

to ρDW, is considered to be caused by the error that occurred in the waveform-reduction process using the 

voltage-divider circuit during artificial EEG generation.  

The waveforms recorded by the wet and dry electrodes on the EEG phantom, and the raw EEG signal are 

shown in Figure 2.16. The signal recorded at the dry electrode looks like amplified version of the original 

signal; however, the overall trend of the waveform is not significantly different according to the correlation 

coefficient greater than 0.9. 

Table 2.2 Correlation comparison for artificially generated EEG recording 

NIR LED states 
D

  W
  DW

  

On 0.9422 0.9423 0.9995 

Off 0.9433 0.9437 0.9996 
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2.5.2. fNIRS Response Evaluation 

The 8-channel normalized ΔHbO, ΔHbR, and ΔHbT levels were obtained from the offline analysis of the 

data captured during the arterial occlusion experiment and these results are plotted in Figure 2.17. All hemo-

dynamic responses converge towards the baseline within ±0.02 mM / DPF during the first 60 s before contrac-

tion of the cuff and increase rapidly over 6 s when the cuff is inflated. When the contraction is complete, the 

inflowing arterial blood is almost blocked and therefore, the ΔHbO and ΔHbR are linearly diverged until the 

moment the cuff is released. The slope of the ΔHbO and ΔHbR are −0.7 μM/DPF·s and +1.4 μM/DPF·s, re-

spectively. When the pressure on the cuff is released to allow the arterial blood flow to return, the ΔHbO and 

ΔHbR dramatically converge and overshooting occurs. After peaking to the opposite overshoot, all hemody-

namic responses gradually converge to the steady state. Compared with previous studies [38], [39], in which 

 

Figure 2.16 Comparison of the raw EEG signal and waveforms recorded by the wet and dry electrodes on 

the EEG phantom. 
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the same experiment was conducted, the results of this experiment demonstrate that the proposed HBM system 

is sufficiently responsive to analyze the changes in the hemoglobin concentration. 

2.5.3. Analysis of Human Subject Studies 

1) Analysis results for the alpha rhythm detection test : The results of the grand-averaged time-frequency 

analysis results and a comparison of the normalized spectra of the alpha rhythm detection test are depicted in 

Figure 2.18 (a) and (b). The vertical dashed lines on the time-frequency analysis plot at zero seconds denote 

the onset of the eye-closing task period. 

In the test, the event-related synchronization (ERS) pattern evoked by the instruction to close the eyes is 

clearly indicated with higher spectral power (red zones at Figure 2.18 (a)) in the alpha rhythm placed in the 

8−13 Hz bands compared to the baseline spectral power of −7.5 to −2.5 s. The high spectral power of the beta 

rhythm in the range of 20–24-Hz at the beginning of the task is considered to be a harmonics related to the high 

spectral power of the alpha rhythm. The first and second maximum ERS intensities, i.e., 3.74 dB at 11.46 Hz 

and 2.13 dB at 21.16 Hz, were observed from the dB scale comparison of the normalized spectral graphs at 

 

Figure 2.17 Normalized hemodynamic responses over the eight bio-optical channels with an arterial occlu-

sion experiment. 
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Figure 2.18 (b). Based on these results, which show that the alpha rhythm associated with closure of the eyes 

can be detected by using spectral analysis, it is evident that the proposed system can appropriately acquire the 

general EEG feature signals. 

 

 

Figure 2.18 Results of grand averaged time-frequency analysis (dB scale) for the alpha rhythm detection 

test (a) and its spectral comparison (b). Vertical dashed lines in the (a) indicate task onset. Red and blue 

zones mean the time and frequency ranges associated with high event-related synchronization (ERS) and 

desynchronization (ERD). Spectral comparisons (b) show normalized spectra for each task states (eye open 

states vs. eye closed states). 

(a)

(b)



 - 41 -  

2) Analysis results for the mental arithmetic experiments: The results of the grand-averaged time-fre-

quency analysis and comparison of the normalized spectra recorded during the mental arithmetic experiments 

are depicted in Figure 2.19 (a) and (b). The spectral pattern of the time-frequency analysis was calculated based 

on the spectral power during the resting state (−15 to −5 s). Compared to the spectral pattern during the task

 

 

Figure 2.19 Results of grand averaged time-frequency analysis (dB scale) for mental arithmetic experi-

ments (a) and its spectral comparison (b). Vertical dashed in the (a) lines indicate task onset. Red and blue 

zones mean the time and frequency ranges associated with high event-related synchronization (ERS) and 

desynchronization (ERD). Spectral comparisons (b) show normalized spectra for each task states (arithme-

tic operating states vs. resting states). 

(a)

(b)
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period with those of the alpha rhythm detection test, it is evident that reversed patterns of the spectral pertur-

bation are observed. First and second major event-related desynchronization (ERD) patterns are observed in 

the alpha rhythm at approximately 10 Hz and in the wide beta rhythm range 18–25 Hz, during the cumulative 

subtraction task period. The maximum ERD intensity of −2.62 dB at 10.79 Hz in the alpha rhythm range was 

observed from the dB scale comparison of the normalized spectral graphs in Figure 2.19 (b). The second highest 

ERD intensity is −2.10 dB at 19.49 Hz in the beta rhythm range. 

The grand-averaged time courses of the concentration changes in oxy-, deoxy- and total hemoglobin (ΔHbO, 

ΔHbR, and ΔHbT) in the mental arithmetic experiments are plotted in Figure 2.20. During the cumulative 

subtraction task, which is given to the subject to increase the workload level of the brain, we found a clear 

decreasing trend of ΔHbO. The diminished ΔHbO level is then rapidly restored again to the resting state after 

the task periods. In contrast, ΔHbR shows a weaker inverse pattern and more delayed response compared to 

the ΔHbO trend. The lowest ΔHbO is recorded just before the end of the task, whereas the ΔHbR trend con-

tinues to increase slightly after the task period. This ΔHbR trend begins to decrease belatedly at 8 s after the 

end of the task. These analysis results show that the ΔHbO pattern much more closely reflects the mental 

 

 

Figure 2.20 Grand-averaged time courses of concentration changes in oxy-, deoxy- and total hemoglobin 

(ΔHbO, ΔHbR, and ΔHbT) for mental arithmetic experiments. 
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workload level than the weaker ΔHbR response and the ΔHbT pattern also follows the more dominant ΔHbO 

trend. 

The EEG and fNIRS responses in the mental arithmetic experiments provided the brain activation responses 

such as the ERD pattern on the alpha and beta rhythm bands and the decreasing trend of the ΔHbO response. 

These results were compared with those obtained in the previous study [59], in which similar experiments were 

conducted using commercial equipment. Based on our studies with human subjects, we can conclude that the 

proposed HBM system has sufficient capabilities to simultaneously monitor EEG and fNIRS signals. 

2.6. Discussion 

2.6.1. Comparison with The Previous Studies 

The system specifications and key differences compared with the previous studies are summarized in Table 

2.3. 

1) Electrodes: Compared to all previous studies, the proposed system is the first to apply the spring-loaded 

dry electrodes. More than one hour of continuous EEG monitoring using the conventional wet electrodes is 

difficult because the conductive gel needs to be replenished every time it becomes dry. Because the dry elec-

trodes enable gel-less EEG acquisition, the quality of the measurement is not degraded and longer experimen-

tation is possible for daily-life monitoring. In addition, it is easy to install without irritation, a shortened system 

setup time, and reduced complexity of the experiment. 

2) Isolated and low-noise circuit design: The implementation of an isolated circuit design is also a first 

attempt compared to previous studies. Owing to the complete separation of the EEG, fNIRS, and control cir-

cuitries with a linear regulator-based low-noise power supply, the proposed system is able to achieve excellent 

low-noise characteristics for EEG acquisition. During the EEG phantom test, the input-referred noise of the 

EEG acquisition circuit can be evaluated using the built-in input-shorted function of an ADS1299. The actual 
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noise measurements using the proposed systems and its reference measurements captured in the ADS1299 

datasheet are shown in Figure 2.21 (a) and (b). Although there is a slight difference in DC potential, no signif-

icant difference was found between the two noise measurements in view of comparison for the amplitude 

ranges. Even with the LED flashing condition, an input-referred noise of 0.141 μVRMS and 1.066 μVPP was 

measured and this result verified that the proposed system closely achieves the low-noise characteristics of 

0.14 μVRMS and 0.98 μVPP (at a sampling rate of 250 SPS and a 24 PGA gain) as specified in the ADS1299 

datasheet [29]. 

3) Frontend design: Compared to previous studies on system specifications, the proposed system employs 

two different kinds of architecture-optimized AFE ICs to simultaneously provide superior EEG resolution and 

Table 2.3 Comparison of system specifications and contributions with previous studies. 

Comparison category [37], [38] [39] [40] Proposed 

System 

Specification 

# of EEG electrodes 8 16 4 16 

# of LED/PD 8/8 32/4 2/2 8/8 

EEG resolution, 

ADC architecture 

16 bit,  

Undefined 
16 bit, SAR 24 bit, Δ-Σ 24 bit, Δ-Σ 

fNIRS resolution, 

ADC architecture, 

16 bit,  

Undefined 
16 bit, Δ-Σ 24 bit, Δ-Σ 16 bit, SAR 

Volume efficiency 106.6 cm3/ch 1.4 cm3/ch 1.7 cm3/ch 2.0 cm3/ch 

Power efficiency,  

operation hour with 

3.7 V 1 Ah battery 

150 mW/ch 

1.5 h 

20 mW/ch 

9.25 h 

61.6 mW/ch 

10 h 

18.8 mW/ch 

8.2 h 

Dry electrode-based EEG acquisition No No Not yet Yes 

Fully isolated circuit design No No No Yes 

Linear regulator-based 

low-noise power supply 

No No Yes Yes 

Customizable EEG  

electrode-positioning structure 
Undefined No No Yes 
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delay-less bio-optical measurement. Because high resolution and continuous sampling are required for EEG 

measurement, the conversion delay can be considered negligible and the 24-bit Δ-Σ ADC is ideal for use. 

However, in the case of bio-optical measurements, on-time data acquisition is more important than resolution   

 

Figure 2.21 (a) EEG baseline noise measurements of the proposed systems under the NIR LED activation 

condition and (b) noise measurements captured in the ADS1299 datasheet for the comparison reference. 

(a)

(b)
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performance because the sampling is required only for specific predefined time periods along the prepro-

grammed LED emission schedule. The Δ-Σ ADC-based ADS1299 has a conversion latency of 16 ms at a 250-

SPS sampling rate, whereas the SAR ADC-based ADS8688A always maintains a data conversion time of up 

to 0.85 μs, regardless of the sampling rate setting. Therefore, this instantaneous sampling characteristic pre-

vents sampling errors in the bio-optical measurements caused by the phase transition of LED activation and 

ensures system reliability. 

4) System specifications: The positioning-customizable 16-channel EEG electrodes and 8-channel photo-

diode detectors indicate that the proposed system is ready for clinical applications for which sufficient spatial 

resolution is required. However, the estimated volume efficiency (system volume per number of EEG and PD 

channels) has been slightly reduced due to the implementation of advanced design techniques, such as isolation 

design and low-noise power supply. Nevertheless, the system size is such that it is still portable (7 × 7 × 1 cm3) 

and the power efficiency (power consumption per number of EEG and PD channels) is considerably improved, 

thus the operation time can be extended to more than 8 hours with a 1-Ah lithium polymer battery. This ex-

tended operation time adds the benefit of a spring-loaded dry electrode that maintains good scalp contact with-

out a conductive gel, facilitating hybrid brain monitoring in out-of-lab situations. 

2.6.2. Limitations and Future Developments 

One of the limitations is that it is difficult to obtain fNIRS measurements in various brain areas because the 

NIRS probes can only be attached to the hairless scalp. Overcoming this challenge necessitates the design of a 

probe structure that can be adhered to the scalp by applying pressure with a stretchable structure such as the 

spring-loaded structure of a dry electrode. 

The achievement of stable EEG quality in an actual out-of-lab situation requires motion artifacts to be re-

moved from EEG measurements. Therefore, a movement monitoring function is required, and it can be imple-

mented by integrating a MEMS-based inertial sensor. A continuous impedance check function is also required 
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to monitor the adhesion of the electrode in real time, because the adhesion pressure of the electrode has a 

significant effect on the quality of the acquired EEG signal. This function can be implemented by utilizing the 

built-in lead-off detection function with the ADS1299. 

2.7. Summary 

In this study, a hybrid brain monitoring system for simultaneous acquisition of 16-channel EEG and 8-chan-

nel fNIRS has been proposed, and a summary of the proposed HBM system is presented in Table 2.4. A single 

low-power microcontroller unit (STM32L475) synchronously controls two kinds of architecture-optimized 

AFE ICs (ADS1299 and ADS8688A) to achieve fully synchronized data acquisition. Employing Δ-Σ ADC-

based ADS1299 and SAR ADC-based ADS8688A simultaneously, the proposed system achieves 24-bit EEG 

resolution and delay-less (<0.85 μs) reliable fNIRS measurements. A fully isolated design, which completely 

separates the ground plane of each circuit section by using digital isolators and an isolated DC-DC converter, 

physically blocks inter-circuit interference. The isolated design applied with a linear regulator-based low-noise 

power supply improves system reliability and noise immunity for EEG/fNIRS measurements. Moreover, the 

use of spring-loaded dry electrodes and EEGCAP shortens system-wearing time and continuously provides 

stable EEG quality. It will allow longer experiments for out-of-lab applications. The acquisition of EEG and 

fNIRS measurements was evaluated by conducting an EEG phantom test using artificially generated EEG 

signals and an arterial occlusion experiment. Additionally, an alpha rhythm detection test and mental arithmetic 

experiments were performed to assess the practical capabilities of the proposed system for human subject stud-

ies. The grand-averaged results of the time-frequency analysis for EEG measurements and time courses for 

NIRS measurements verified that the proposed HBM systems are suitable for use in real BCI applications. 
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Table 2.4 Specification summary of the proposed HBM system. 

Specifications EEG fNIRS 

# of Channels and 

sensing divices 

16 channels of spring-loaded 

passive dry electrodes 

8 channels with TDM topology  

(using 2 channels of 730/850nm 

dual-wavelength NIR LEDs and 6 

channels of photodiodes) 

Resolution 24 Bit 16 Bit 

Sampling Rate 250 SPS 5 SPS 

Input Range ± 187.5 mV ± 640 mV 

LSB Size 22.352 nV 19.53 µV 

Performance 

metrics 

Input referred noise 1.066uVPP, 

–110dB CMRR 

±0.5 LSB DSL, ±0.75 LSB INL, 92 

dB SNR, –102 dB THD 
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 Chapter 3 

Spring-Loaded Probe-Based Two-wired Active Dry Electrodes 

3.1. Introduction to Dry Electrodes-based EEG Monitoring 

During the last few decades, dry contact electrode-based electroencephalogram (EEG) acquisition [60] is 

one of the easiest ways to obtain neural information from the human brain in real time. This type of electrode 

is rapidly replacing conventional wet electrodes, which have been used in a variety of applications such as 

brain–computer interfaces [3], neurological rehabilitation [4], [5] and neurofeedback [6]. Nowadays, dry elec-

trodes are integrated into portable commercial devices with wearable technologies to provide personal services 

such as healthcare and home diagnostics to improve the quality of life. These electrodes are designed to elim-

inate the need for electrolytic gels, which makes the installation process simple with a short setup time and also 

prevents an increase in impedance due to drying of gels. However, the absence of conductive gels means that 

controlling the contact impedance at the electrode–scalp interface is more difficult than using the conventional 

wet electrodes. Therefore, the impedance characteristics and the physical contact capability of the electrode 

device have become crucial design considerations for practical electrolyte-free EEG measurements. 

3.1.1. Motivation and Related Works 

To improve the impedance characteristics and contact capabilities of dry electrodes, many researchers have 

tried to apply various innovative ideas to the dry electrodes. These innovative design ideas can be classified 

into three different categories: microelectromechanical systems (MEMS)-based, capacitive-based, and finger-

shaped mechanical probe-based design approaches. 

In the MEMS-based dry electrodes [61], [62], an array of microneedles are employed to penetrate the 10–

40 μm thickness outer skin layer of the scalp. Spiky microneedles, which have lengths of 100–210 μm [63], 

around 150 μm [64], and 300 μm [65], are typically fabricated on a silicon wafer using special etching processes. 
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In addition to silicon-based materials, a brush-type carbon nanotube-based [66], chitosan/Au-TiO2 nanotube-

based [67], and polydimethylsiloxane (PDMS) substrate-based MEMS electrodes [68] have been developed 

for electrophysiological sensing applications. Although the tip of microneedles can pass directly through into 

the inner skin layer to create a direct DC-coupled interface with the scalp surface, their complicated and costly 

fabrication process and infection risks still remain as practical constraints. In addition, EEG measurements on 

a hairy scalp are still difficult due to the fragile and micro-size needles that cannot effectively penetrate the hair 

layer. 

Capacitive electrodes are generally designed by building AC-coupled non-contact interfaces between the 

scalp surface and electrodes, utilizing insulation materials such as a hair layer, cotton fabric or printed circuit 

board (PCB) [42]. This AC-coupled interface can be functioned as a capacitor at the electrode frontend, hence 

the acquired biopotentials pass across the electrically insulated layer. With regard to this, Sullivan et al. [69] 

and Chi et al. [70], [71] have proposed PCB plate-based capacitive electrodes equipped with discrete off-the-

shelf components or a customized application-specific integrated circuit (ASIC). Capacitive electrodes based 

on soft insulating materials such as polymer foam [72], PDMS [73] and carbon nanotube [74] have also been 

introduced. However, there are still many design issues related to measurement distortion such as gain attenu-

ation and phase drift due to the AC-coupled interface [75]. 

Finger-shaped probe-based dry electrodes have also been developed for direct-contact biopotential measure-

ments. In these electrodes, the shape of the probe part was designed to penetrate the hair layer directly. This 

direct contact structure allows making DC-coupled interfaces easy by touching the probes to the scalp surface. 

From this idea, a shrinkable spring-loaded probe-based passive dry electrode [41], a brush-type flexible dry 

electrode [76], [77], a pin-shaped conductive polymer-based dry electrode [78], [79] and a 3D-printed dry-

fingered electrode [80] have also been proposed. However, high and unstable contact impedance due to the 

electrolyte-free interface remains a major challenge in this type of dry electrode. 
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One possible approach to solve this issue is that the electrode device itself supplies conductive liquid to 

lower the contact impedance. This method has been presented in the literature [81]–[83], but the semi-dry 

approach still has some of the same problems as the wet types. Another approach is to embed auxiliary active 

circuitry in the electrode device to electronically maximize the input impedance characteristics of the dry elec-

trodes. Following this approach, active electrodes [84] with various circuit topologies designed using off-the-

shelf discrete components [85], [86] and ASICs [70], [87], [88] have been proposed. This research trend sug-

gests that both reliable contact ability with the scalp surface and high input impedance characteristics are re-

quired for practical electrolyte-free EEG monitoring. 

3.1.2. Contributions of Chapter 3 

As an extended work for the previous study, this chapter proposes a two-wired active spring-loaded dry 

electrode to simultaneously achieve high-precision and electrolyte-free EEG monitoring. In the previous chap-

ter, we designed and implemented passive dry electrodes for EEG measurements in the hybrid brain monitoring 

system. Compared to previous implementation, the proposed electrode has been added to an active buffer cir-

cuit, resulting in active dry electrodes. 

In the mechanical design view, the spring-loaded finger-shaped probes are able to penetrate the hairs on the 

scalp without prior preparation, and their shrinkable spring-loaded structures provide mechanical flexibility to 

each probe for adjustable contact intensity along the curvature of the uneven scalp surface. These structural 

advantages effectively improve the contact efficiencies of the electrodes with the scalp surface. In the circuit 

design view, a zero-drift amplifier-based active buffer circuit provides low-noise impedance conversion to sta-

bilize the intractable impedance characteristics of the dry electrodes caused by the absence of the conductive 

paste. The 2-wired bootstrap topology in the amplifier circuit design reduces the number of wire connections 

and provides further enhancement of the input impedance by reducing the input capacitance. 
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Combining those contributions in the mechanical and circuit design of the proposed electrodes, this study 

presents an optimized design of active dry electrodes for EEG measurements by combining the electronically 

maximized impedance characteristic and the physically maximized contact capability of the electrode device. 

To achieve low-noise and attenuation-free EEG measurements, an equivalent circuit model and specification 

requirements of the amplifier for active circuits were theoretically analyzed in the design process. Evaluations 

of the electrical characteristics such as spectral noise power density and input capacitance were also performed 

along with a simple alpha rhythm detection test to verify the EEG feature detection capability. 

The remainder of the section is organized as follows: Section 3.2 and 오류! 참조 원본을 찾을 수 

없습니다. provides detailed descriptions of the design and implementation methods along with an electrical 

analysis of the equivalent circuit model. The evaluation of the electrical characteristics as well as the experi-

mental methodology for alpha rhythm detection test is presented in Section 3.4. Several results, including the 

evaluation of the electrical characteristics and alpha rhythm detection capability are summarized in Section 3.5. 

Finally, a brief discussion of this study and a summary of the proposed electrode development are given in 

Section 3.6 and 3.7. 

3.2. Design of Active Dry Electrodes 

3.2.1. Two-Wired Active Electrode Design 

Active electrodes require an active power supply. At least three wired connections are needed, instead of a 

single wire, for both the power supply and signal transmission. Compared to conventional passive electrodes 

that do not require a power supply, the additional wires make it difficult to treat many wires at once and increase 

the design complexity of the biopotential acquisition system. To reduce the number of wires for the active 

electrodes, a bootstrap technique [89], [90] was employed for the proposed active dry electrodes. This tech-

nique reduces the number of electrode wires by replacing the conventional voltage-based power supply with a 
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current source-based power supply. The power supply rails and signal transmission lines can be shared over a 

single wire, resulting in an active electrode design that requires only two wire connections. 

Figure 3.1 shows the simplified schematic of the bootstrap technique-based active electrode system using 

an operational amplifier buffer. The half-power supply bootstrap scheme is implemented by connecting the 

amplifier’s positive power supply rail with its signal output node to a current source. At this point, the current 

source   feeds current to the positive power rail of the amplifier, while the signal output node of the amplifier 

consumes the surplus current. The signal output voltage is therefore determined as follows: 
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where Aol, Ro, and Iq+ are the amplifier’s open-loop gain, output impedance, and quiescent current of the 

positive power supply rail, respectively. 

Generally, the open-loop gain of an amplifier is very large, thus the current biasing effects on the output 

node are negligible. Therefore, the output node voltage will be followed to the input node voltage, and the 

bootstrapped wire connected with output node can then be used as a signal output link for the active electrode

 

system. However, this circuit design lowers the voltage delivered to the amplifier's positive power supply rail 

unintentionally, making it difficult to meet the minimum operating voltage for normal amplifier operation in 

 

Figure 3.1 Simplified schematic of bipolar two-wired active electrode with bootstrapping topology. 
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some special cases. To avoid these cases, the operating voltage range of the amplifier needs to be checked. This 

requirement is discussed further in Section 3.3.2. 

The unity-gain buffer configuration allows transformation from the low impedance of the biopotential source 

to the possible highest impedance [91]. Because the input impedance of the buffer circuit is determined as the 

differential input impedance multiplied by the open-loop gain, this configuration enables maximizing the elec-

trode impedance. The extremely high input impedance of the dry electrode enables virtually perfected isolation 

between the source and load, and thus eliminates the loading effects. This property helps to provide a robust 

signal, which is hardly affected by motion artifacts and power line interferences. 

3.2.2. Electrical Model Analysis and Design Considerations 

To investigate the electrical characteristics such as source-to-output gain and input-referred noise of the 

active circuits, we analyzed the electrical coupling model of the skin–electrode interface for the proposed active 

circuit. A general electrical model of the active electrode circuit was analytically studied by Chi [42]. Figure 

3.2 shows an equivalent electrical model of the proposed active dry electrode reinterpreted from the general 

active electrode model. In this circuit model, Vs and Vo denote the biopotential source generated from the human 

brain and output node of the active circuit, respectively. Rs and Cs represent the resistive and capacitive prop-

erties of the scalp-electrode interface established by dry contact of the spring-loaded probes, respectively. Ra 

and Ca indicate the input resistance and capacitance of the amplifier, respectively. Cp represents the parasitic 

capacitance [92] originated from the voltage difference between the signal input and output by an active shield-

ing. Av is the gain of the circuit and is set to unity because the proposed active circuit is designed to operate 

under a buffer configuration. In order to easily calculate the gain and input-referred noise of the circuit model, 

the resistances and capacitances were substituted in parallel at the interface layer (
s sR C ) and input node of 

the amplifier (
a aR C  ) for impedance Zs and Za, respectively. Using nodal analysis, the formulation for 

source-to-output gain of the equivalent circuit model can be derived as:  
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With a low-frequency biopotential source, the contributions of the resistive components are relatively high 

because of the reduction of the w  factor. In the extreme DC case, where w  is down to zero, this gain formula 

simply changes to Ra / (Rs + Ra). As the value of Ra increases, Rs becomes negligible, which means that the 

input impedance specification of the amplifier directly affects the gain attenuation of the low-frequency biopo-

tential source. 

Conversely, with a high-frequency biopotential source, the contribution of the capacitive components in-

creases. Hence, Cs needs to be maximized, while Ca and Cp need to be minimized in order to avoid gain atten-

uation of the biopotential source. Cp can be minimized by suppressing the leakage current between the input 

and output nodes. This can be achieved by shielding the input node with the output node of the same potential 

as the input node. Ca is the amplifier’s internal parasitic capacitance that originates from between the input 

node and both of the power supply rails [93]. Thus, this parasitic capacitance can be considered as a combina-

tion of the capacitance built up between the input node and the positive rail (Ca+) and between the input node 

and negative rail (Ca-). Applying the bootstrap topology to the proposed active circuit, the voltage difference 

 

Figure 3.2 Equivalent circuit model of the proposed active spring-loaded electrodes. 
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between the signal output node, which has the same potential as the signal input node, and the positive voltage 

supply rail of the amplifier can be minimized. Therefore, Ca+ can be effectively eliminated, and the total ca-

pacitance of Ca can also be minimized. Cs is involved in the electrode contact efficiency with the scalp surface. 

When using non-flexible rigid probes, it is difficult to achieve tight contact with the scalp, resulting in an air 

gap between the probes and scalp surface. This air gap is equivalent to another extra capacitor, which is con-

nected with Cs in series. Consequently, the total capacitance of Cs will be reduced because of the series con-

nection of two individual capacitors. The flexible spring-loaded probes, on the other hand, can easily adjust 

their contact intensities in accordance with the curvature of the scalp surface, thus preventing to the building 

of air gaps. Therefore, the maximization of Cs can be achieved by employing spring-loaded probes. 

To quantitatively analyze the noise performance of the active circuit, the noise voltage with respect to the 

biopotential source input can be expressed as: 
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and the power density, which is equal to the root-mean-squared (RMS) power of the input-referred noise volt-

age, can also be derived as: 
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where 
2

,n rmsV  and 
2

,n rmsI  denote the RMS-squared power of the voltage and current noise sources Vn and In, 

respectively. These noise sources are derived from the noise model of the amplifier [94], and these parameters 

depend on the electrical characteristics specified in the amplifier datasheet. Therefore, amplifier selection is a 

key optimization factor for low-noise biopotential acquisition, and it will be discussed in Section 3.3.2. 

For low input-referred noise, it is obvious that the operand terms multiplied with the voltage and current 

noise sources need to be minimized. To lower the voltage noise Vn, Za firstly needs to be maximized. The 
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bootstrapping topology provides low input capacitance characteristics by reducing the parasitic capacitance of 

the amplifier, resulting in high input impedance of the amplifiers. Cp should also be minimized for further 

reduction of the voltage noise term, which can be achieved by preventing leakage current with robust shielding 

of the input node. The current noise is typically dominated by the scalp–electrode coupling impedance Zs, 

which is inversely proportional to the electrode contact efficiency. To lower the current noise In, high contact 

efficiency is required, meaning that low coupling impedance with low resistance and high capacitance must be 

achieved. These requirements can be achieved by equipping multiple spring-loaded probes in the design of the 

proposed electrode. Installation of the twelve parallelly connected probes lowers the resistive impedance, 

which in turn prevents poor electrical coupling caused by loose installation of the electrode unit. In addition, 

the probe's shrinkable structure fills the air gaps caused by micro-contact failures at the scalp–electrode inter-

face, thereby continuously keeping high capacitance characteristics. 

3.3. Implementation 

3.3.1. Spring-Loaded Probes 

The EEG signals are acquired using a spring-loaded probe (Leeno Industrial Inc., SK100R), which is the 

same as mentioned in the previous Section 2.3.2. 

Compared to previous implementations designed using 18 probes, the active dry electrode proposed in this 

chapter is designed using 12 probes. This is because the active circuitry is additionally embedded in the passive 

dry electrode proposed in the previous chapter, resulting in a relatively tight footprint for probe placement. 

Although the number of probes is reduced, and therefore the contact efficiency of the electrodes is relatively 

reduced, the input impedance maximization of the active circuit allows the measurements obtained from the 

probes to be transmitted to the acquisition system intactly. 
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Similar to the previous implementation, a total of 12 probes were soldered to the active circuit PCB, and the 

complete prototype of the proposed electrode is fabricated by covering this assembly with a 3D printed housing. 

3.3.2. Amplifier Specifications 

Referring to the electrical model analyses for the proposed active circuits in Section 3.2.2, it can be observed 

that the input-referred noise is primarily affected by the electrical specifications of the amplifier. In addition to 

this, the applied bootstrap design lowers the voltage on the positive power supply rail following the input 

biopotential voltage, which may not meet the minimum voltage requirement for normal amplifier operation. 

The other amplifier specifications, including offset voltage, input bias current, and quiescent current, should 

also be checked for the measurement noise and longer operation times. 

To fulfill these particular requirements, an OPA378 operational amplifier (Texas Instruments, USA) [95] 

was employed for the proposed electrodes. This amplifier provides outstanding characteristics such as low-

noise, minimal input offset, a wide acceptable range of power supply voltages, and low power consumption 

optimized for battery-powered medical instruments. These key parameters are summarized in Table 3.1. 

Because of the microvolt range amplitude of the EEG, the noise characteristics are the most important pa-

rameters in the design of biopotential sensors, which are represented in the datasheet as noise voltages and its 

spectral densities. According to the IEC standard [84], input-referred noise below 6 μVPP is acceptable for EEG 

acquisition systems, and the OPA378 fulfills this condition. 

For low-noise EEG measurements in the frequency range near DC, the offset voltage and its drift need to be 

checked because they implicitly represent the precision of low-frequency measurements. In low-frequency 

range close to DC, 1/f noise, called flicker noise [96], is more dominate than other type noises. This type of 

noise is amplified when the signal frequency is approaching to the DC region, hence the spectral density of the 
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noise power is inversely proportional to the square root of the frequency. Consequently, this type noise becomes 

a major noise contributor to the signals in the very-low-frequency range. 

When a large DC offset is coupled directly with the input of the EEG acquisition system, it can saturate the 

high-gain preamplifiers and diminish their dynamic range. To mitigate the DC offset, operational amplifiers 

equipped with advanced circuit design techniques such as auto-calibration and chopping have been introduced 

and are known as zero-drift amplifiers [84], [97]. Utilizing the auto-calibration technique, a signal pathway of 

the OPA378 continuously corrects the incoming offset voltage every 3 μs with a 350 kHz sample-and-hold 

circuit. Therefore, this auto-calibration technique maintains a noise voltage density of 20 nV down to 1 Hz and 

achieves a noise voltage of 0.4 μVPP in the bandwidth of 0.1–10 Hz. 

Figure 3.3 shows the characteristic comparison of voltage noise spectral densities for a conventional ampli-

fier and the zero-drift amplifier, which used in the proposed electrodes. In the low-frequency range below 

100Hz, it is clearly observed that the noise voltage of conventional amplifiers gradually increases as the fre-

quency decreases. On the other hand, the noise voltage of the OPA378 amplifier used for the proposed electrode 

does not increase and remains flat down to the frequency of 1 Hz. This noise suppression capability allows the 

extension of the acceptable low-frequency measurement range without the need of an AC-coupled highpass 

Table 3.1 Electrical characteristics of the OPA378 operational amplifier. 

Electrical Parameters Characteristics 

Voltage noise 0.4 μVPP at 0.1–10 Hz 

Noise power spectral density 20 nV/√Hz at 1 kHz 

Offset voltage and offset drift 20 μV and 0.1 μV/℃ 

Input capacitance 5 pF with common mode 

Input bias current ± 150 pA, max. 550 pA 

Power supply voltage range 2.2–5.5 V (rail-to-rail) 

Quiescent current 125 μA, max. 150 μV 
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filter. 

As mentioned in Section 3.2.1, the bootstrap topology lowers the input capacitance of the amplifier by con-

necting its positive power supply rail to the signal output node, while also lowering the range of voltages 

supplied to the amplifier. Normal operation cannot be guaranteed, when the supply voltage range does not meet 

the minimum voltage requirements. The OPA378 is capable of driving at the voltages as low as 2.2V. Using a 

−2.5 V voltage as the negative power supply of the amplifier, the operating voltage margin remains at least 0.3 

 

Figure 3.3 Comparison of the voltage noise spectral densities for (a) non-zerodrift amplifier (Texas Instru-

ments OPA376) and (b) zero-drift amplifer (Texas Instruments OPA378) 

(a)

(b)
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V even if the measurements voltage drops to 0 V due to the bootstrap topology. Under this voltage margin 

condition, the operation of the proposed electrode is not restricted by the supply voltage range of the amplifier. 

Moreover, an on-chip electromagnetic interference (EMI) filter with 25 MHz cutoff frequency provides out-

standing EMI suppression. This feature prevents offset shifts in the amplifier output caused by EMI and allows 

more precise measurements. The low current consumption of up to 150 μA makes it easier to design multi-

channel and battery-powered instrumentation. 

3.3.3. Circuit Design and Implementation 

The designed schematic of the proposed active dry electrode and the fabricated prototype images for the 

proposed active dry electrode is shown in Figure 3.4 and Figure 3.5, respectively. The proposed system com-

prises two individual parts—the electrode unit and auxiliary board. 

The cylindrical electrode unit is with a diameter of 11 mm and a height of 17 mm. The electrode is composed 

of the 12 spring-loaded probes, OPA378 amplifier, and CMOD6001 low-leakage diode (Central Semiconductor, 

USA), and these are installed in the electrode PCB embedded in the 3D-printed electrode housing. All probes 

are electrically connected to each other, and the measured biopotentials are delivered to the input node of the 

amplifier. The buffered biopotentials are then finally transferred to the auxiliary board through the bootstrapped 

wire, which is connected to the current-sourcing device. Concurrently, this current-sourcing device in the aux-

iliary board supplies a bias current for the amplifier operation through the same bootstrapped wire. The diode 

is inserted between the amplifier output and positive rail to keep the output voltage swing lower than that of 

the positive rail by the forward voltage drop of the diode [98]. Even though the amplifier supports rail-to-rail 

output that allows maximizing the output swing over the entire range of the supply voltage, this diode is nec-

essary to keep an extra margin for low-distortion voltage output and low power consumption. 

The auxiliary board is designed to provide a constant current source and bipolar voltage power using linear 

regulators, current source devices, and numerous decoupling capacitors. To supply low-noise voltage for the 
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+2.5 V and −2.5 V rails, ADM7154 and ADP7183 linear regulators (Analog Devices, USA) were used. These 

regulators provide extremely low-noise voltage sources of 1.6 μVRMS and 4 μVRMS along with high power 

supply rejection ratios, which are optimized for noise-sensitive applications. A REF200 (Texas Instruments, 

USA) [99], which is embedded with two 100 μA current sources, was used as the current-sourcing device. By 

connecting the regulated 2.5 V rail to the current sources, the device is capable of simultaneously powering 

two channels of the proposed electrodes. Although the current-sourcing capability is limited to 100 μA per 

 

Figure 3.4 Designed schematic of the proposed active dry electrode. The proposed electrode system com-

prises the electrode unit itself and an auxiliary circuit board for the voltage and current power supplies. In 

the electrical schematic, decoupling capacitors for stabilized voltage supplies are omitted for simplicity. 

Active Electrode Circuit

Spring 

loaded 

Probes

Auxiliary Power Supply Circuit

 

Figure 3.5 Prototype images of the proposed active dry electrode. 
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channel, the current requirement for the positive rail of the amplifier is only 75 μA, which is half of the maxi-

mum current consumption of 150 μA, thus ensuring sufficient current supply. All electrical components are 

small size and surface mounted type, thereby making it easy to design portable size instruments. 

3.4. Evaluation and Experiment 

3.4.1. Noise Characteristics 

In the design of electronic circuit-based sensors, the noise floor of the sensing signals is a key parameter that 

determines the integrity of the measured data. To evaluate the noise characteristics of the proposed active elec-

trode circuit, noise power spectral densities were analyzed using an FFT-based spectrum analyzer (Keysight 

35670A, USA), which can quickly capture the spectral information of analog signals utilizing Fourier analysis 

and digital signal processing techniques. This instrument allows measuring the total noise output of a circuit 

by shorting the circuit's input node to ground potential and evaluating the power spectral densities at the output 

node of the circuit. To compare the noise measurements of the proposed 2-wired bootstrap buffered circuit, a 

bipolar-powered 3-wired conventional buffered circuit was implemented as a target for comparison. For the 

two types of active circuits, 1600-point power spectral densities were measured over the 0.1–200 Hz bandwidth. 

These measurements were repeated 50 times and averaged for a smoother representation. The measured noise 

spectra were transmitted to a laptop using a USB-type GPIB interface and instrument control software 

(Keysight VEE Pro 9.2, USA). To reject noise interference, this evaluation was performed within an aluminum 

enclosure. 

In the analysis stage, Pearson correlation coefficients and Wilcoxon signed-rank test was used to measure 

orientational and statistical similarities between the two pairs of noise spectral densities. To compare actual 

noise voltages in the EEG bandwidth precisely, RMS voltages were also calculated from the measured noise 
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spectral densities by taking the squared values of the given voltage spectral density, integrating within the 

specified frequency range, and computing the square root. 

3.4.2. Input Capacitance 

In the electrode design for EEG measurements, high input impedance is an essential characteristic for further 

signal conditioning processes. High input impedance also implies low input capacitance within the AC fre-

quency range. To investigate the impedance characteristics of the proposed electrode circuit, the input capaci-

tances for the proposed circuit (2-wired bootstrap buffered circuit) and its counterpart (3-wired conventional 

buffered circuit) were analyzed. Since the input capacitance of the operational amplifier is typically lower than 

a few picofarads, direct measurements for observing input capacitance using a multimeter are not practical 

because of its poor error tolerance. In order to measure the input capacitance of the operational amplifier-based 

circuit, a large resistor was inserted into the input node of the amplifier in series. This configuration set up a 

first-order RC lowpass filter in combination with the internal capacitance of the amplifier. Through the fre-

quency response analysis for the circuits, the input capacitances can be inversely estimated by evaluating the -

3 dB cutoff frequencies. Detailed information on this methodology is described in [100]. 

The same spectrum analyzer was used to investigate the input-to-output frequency responses for the test 

circuits. After inserting a 2 MΩ resistor as a large source resistor RS, a 100 mVPP sinusoidal sweep was applied 

to the input node of the target circuit in accordance with 800 log-scaled bins arranged over the 1–51.2 kHz 

bandwidth. The swept source was routed to the input probe of the spectrum analyzer using a signal splitter, 

while the output probe was connected to the output node of the target circuit, unlike the test setup in [100]. 

This is because a unity-gain buffer configuration allows the input signal of the amplifier to be identically meas-

ured at the output node of the circuit without the need for a high-impedance FET probe. From this setup, dB-

scaled Bode plots can be obtained from the frequency analyses, and we can estimate the input capacitance of 
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the test circuit using the following equation: 
31 (2 )in s dBC R f  . All tests were carried out using customized 

test PCBs that were carefully designed with active shielding to avoid other parasitic capacitances. 

3.4.3. Alpha Rhythm Detection Experiment 

Alpha rhythm, the most prominent feature of an EEG, can be easily utilized as a benchmark tool for testing 

the detection capabilities of real EEG features. When users close their eyes, the spectral power of the alpha 

rhythm band (8–15 Hz) is amplified compared to other spectral ranges, and vice versa when the users open 

their eyes. By comparing the spectral activation for the alpha rhythm when the eyes are closed or open, we can 

evaluate the practical applicability of the proposed electrode for real EEG monitoring. 

Similar to the alpha rhythm detection test in the previous Section 2.4.2, ten trials of the same experiment 

were performed for a subject. A single trial consisted of maintaining the eye-open state for 12.5 ± 2.5 s and the 

eye-closed state for 10 s. For every transition of instruction, a beep sound was also used to inform the subject 

of the command changes. 

Alternative electrodes such as a 3-wired active buffered electrode and a passive dry electrode, as well as the 

proposed electrode, were used for the comparison of EEG measurements. All electrode implementations were 

equipped with the same spring-loaded probe for dry contact with the scalp surface. These three electrodes were 

installed as close as possible to the Fz position according to the international 10-20 system. Disposable wet 

electrodes were also attached to the skin behind the left and right earlobes as a reference and a bias electrode, 

respectively. Experiments were conducted using MATLAB 2014a (Mathworks, USA) and the Cogent 2000 

toolbox, and EEG measurements were recorded using the ADS1299-based EEG acquisition system which is 

described in Chapter 2. 

Offline analyses for the EEG measurements were also performed using MATLAB 2014a. The raw EEG 

dataset was filtered with a 4th order zero-phase 0.5–40 Hz bandpass Butterworth filter. From the filtered EEG 

dataset, the epochs for 5 s corresponding to each condition were extracted based on the recorded event triggers. 
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The spectral power values were also calculated to precisely compare the spectral activation for the alpha rhythm. 

For time-series waveform comparisons, 10-s EEG measurements were also visualized before and after the fifth 

eye-close instruction. In addition, the similarity of the bandpass-filtered waveforms was evaluated in terms of 

Pearson correlation coefficients. 

3.5. Results 

3.5.1. Noise Power Spectral Density 

The comparison of the noise power spectral densities for the proposed active electrode circuit and its con-

ventional counterpart are depicted in Figure 3.6. Compared to the noise power spectral densities of the con-

ventional 3-wired buffer circuit, the proposed 2-wired bootstrap topology shows a similar trend along with a 

correlation coefficient of 0.953 within the EEG bandwidth of 0.5–50 Hz. However, in the Wilcoxon signed-

rank test, a nonparametric statistical method for testing a hypothesis of paired data, the two paired noise spectral 

 

Figure 3.6 Measurements of the noise power spectral densities for the proposed active electrode circuit and 

its alternative implementation (2-wired bootstrapped buffered topology vs. 3-wired conventional buffered 

topology). 
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densities do not show statistical similarities with a low significant level (p < 0.0001) within the same EEG 

bandwidth. In a complementary analysis for the sum of the differences between the paired noise spectral den-

sities, we found that the proposed design produces more noise by 2.0433 nV√Hz on average than the 3-wired 

counterpart. Consequently, this extra noise leads to a small difference between the estimated RMS noise volt-

ages (i.e., 1.131 μVRMS with the proposed 2-wired topology vs. 1.017 μVRMS with the 3-wired counterpart). 

The slightly increased RMS noise in the proposed topology is due to an increase in noise power at lower 

frequency bands below 1 Hz. The reason is presumably due to the positive rail voltage of the proposed topology. 

Because the rail voltage is continuously changed in accordance with the input signal voltages, instead of being 

supplied from a low-noise constant voltage source, this voltage variation seems to result in extra noise in the 

low-frequency region. 

3.5.2. Input Capacitance Estimation  

The spectral analysis results for investigation of the −3 dB cutoff frequencies and the estimated input 

 

Figure 3.7 Measurements of the input capacitance estimation results for the proposed active electrode cir-

cuit and its alternative implementation (2-wired bootstrapped buffered topology vs. 3-wired conventional 

buffered topology). 
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capacitance from the results are depicted in Figure 3.7. For the two types of circuit configuration, the differ-

ences in the cutoff frequencies is about 7 kHz, resulting in a 1.74 pF reduction in the input capacitance for the 

proposed bootstrap configuration compared to the conventional buffer design approach. The impedance of the 

amplifier is represented as 1)R RC (jw , because it is simplified as a parallel combination of resistance and 

capacitance. Therefore, an approximately 32.2% reduction in the input capacitance leads to roughly 147.5% 

impedance boosting within the EEG bandwidth. This impedance boosting effect makes the measurement more 

robust against artifacts and EMI interferences. 

3.5.3. Experimental Results of Alpha Rhythm Detection 

Figure 3.8 shows the experimental results for the alpha rhythm detection test measured by three types (2-

wired active, 3-wired active, and passive) of dry electrodes. The captured time-series waveforms on the left 

 

Figure 3.8 EEG measurements and their spectral comparisons for (a) proposed 2-wired active dry electrode, 

(b) alternative 3-wired active dry electrode, and (c) passive dry electrode. On the left, the red vertical line 

on the EEGs indicate the task onset timing for the eye-close instructions. During the eye-close session, 

activated alpha waves are commonly observed in the time-series and spectral visualization results for all 

types of electrodes. 
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side of figures were extracted from the EEG measurements near the onset time of the fifth task from among 

the 10 trials. In these waveforms, a red vertical line indicates the start time for the eye-close instruction. Slightly 

large voltage fluctuations were observed in all measurements because the eyelids closed within one second 

after the task onset. After the fluctuations, clear alpha waves of distinct oscillation patterns were observed for 

all electrode measurements. These evoked alpha waves are easily noticeable in the spectral analysis. The fig-

ures on the right side show the results of the event-related spectral analysis for each electrode measurements. 

These spectral comparisons clearly visualize the maximized spectral differences evoked near the 10 Hz, which 

belong to the alpha rhythm. Specifically, the maximum spectral differences for two different tasks were ob-

served at 12.4 dB at 10.1 Hz for the proposed 2-wired active electrode, 11.28 dB at 10.06 Hz for the 3-wired 

active electrode, and 13.83 dB at 9.98 Hz for the passive electrode. These spectral analysis results confirmed 

the EEG feature detection capability for the proposed electrode. 

The comparison of the correlation coefficients for each paired EEG waveforms is summarized in Table 3.2. 

The correlation coefficient of the EEG measurement between the passive dry electrode and the proposed two-

wired active dry electrode is ρ2; between the passive dry electrode and the 3-wired active dry electrode is ρ3; 

between the proposed 2-wired topology and the 3-wired topology is ρ23. A minor difference between ρ2 and ρ3 

indicates that the proposed 2-wired electrode is sufficient to achieve measurements nearly equivalent to the 

conventional 3-wired design approach. A slight decrease in the value ρ23, compared to ρ2 and ρ3, is supposed 

to be caused by the difference in common-mode voltages in accordance with a difference in the design topology.

 

  

Table 3.2 Comparison of correlation coefficients for each paired EEG datasets. 

2-wired Active  

vs. Passive (ρ2) 

3-wired Active  

vs. Passive (ρ3) 

2-wired Active vs. 

3-wired Active (ρ23) 

0.8536 0.8657 0.7854 
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3.6. Discussion 

3.6.1. Noise Characteristics 

Theoretical analysis of the equivalent circuit model for the proposed electrode indicated that the electrical 

specifications of the amplifier have a significant effect on measurement characteristics such as input-referred 

noise and gain attenuation. As standard specifications in the datasheet, the offset voltage and the 0.1–10 Hz 

peak-to-peak noise voltage are involved with not only the precision of the common-mode voltages, but also 

noise characteristics within the low-frequency range near DC, associated with 1 / f noise. Since even EEG 

waves with very low-frequency bands (0.1–4 Hz), including delta waves and slow oscillations, are often used 

for sleep studies [101], the examination of these specifications is required to verify the 1 / f noise characteristics. 

The OPA378, a zero-drift amplifier with 0.1–10 Hz RMS noise of 0.4 μV and offset voltage of 20 μV, provides 

excellent low-noise characteristics, but noise boosting is still observed at lower frequencies below 1Hz in the 

actual noise measurements. This is because the 1 / f noise is generated internally from the quantum mechanical 

random process inherent in all semiconductor devices, including the amplifier to be measured and the meas-

urement instrument itself. This means it is difficult to eliminate 1 / f noise completely. Nevertheless, the pro-

posed electrode still presented excellent low noise characteristics of 1.131 μVRMS within an EEG bandwidth of 

0.5–50 Hz along with noise power spectral densities of 139 nV/√Hz at 1 Hz and 49 nV/√Hz at 10 Hz. These 

measurements are comparable with previous studies (7.4 μVRMS within a bandwidth of 1–1000 Hz in the [98], 

and 200 nV/√Hz at 1 Hz in the [70]). 

The estimated noise voltage of 1.131 μVRMS can be converted to a peak-to-peak value by multiplying a 6.6 

factor, then we can get a converted peak-to-peak noise voltage of 7.465 μVPP. This value is comparable with 

noise characteristics in previous studies but is slightly higher than the input-referred noise of 6 μVPP specified 

in IEC standard [84]. This is due to the inevitable limitation of noise characteristic for the off-the-shelf discrete 

components, and this could be solved by developing a dedicated ASIC for EEG measurements. 
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3.6.2. Extra Design Considerations for The Active Electrodes 

The ratio of the noise characteristics versus power consumption also needs to be checked to consider the 

entire power consumption of the EEG acquisition system. There is a trade-off relationship between power 

consumption and noise performance [102], which means that increased power consumption of the amplifier 

results in better low-noise characteristics in general. Amplifiers that require higher power can be used in the 

active electrodes for better noise performance, but this results in an increase in the total power requirement of 

the instrument with numerous channels. For example, the state-of-the-art operational amplifier OPA188 (Texas 

Instruments, USA) exhibits a better noise voltage of 250 nVPP over the 0.1–10 Hz bandwidth, which is a 37.5% 

lower noise voltage compared to that of the OPA378. However, its typical current consumption is 450μA, 

which is increased 3.6 times more. The proposed electrode is designed to consume up to 150uA of current per 

channel, resulting in the total current consumption of only 2.4mA for 16 channels, thus it can be continuously 

operated for about 40 hours even with a 100mAh small lithium polymer battery. This low-power operation is 

especially advantageous for battery-powered mobile instruments. 

Compared with previous studies [73], [75], [85], another difference in the frontend circuit design is the 

exclusion of a bias current path. In those previous studies, a large value resistor in the TΩ range or parallel 

connection of two reverse diodes is generally used as the bias current path. This is necessary to prevent voltage 

saturation at the input node of the amplifier caused by incoming bias currents, but it also generates a lot of 

thermal noise due to the high physical resistance. The problem here is that irrespective of the resistance value, 

degradation of the amplifier's input impedance cannot be avoided. The proposed electrode omits the design of 

the bias current path, but the built-in protection circuitries embedded in the amplifier can fulfill this role to 

effectively prevent electrical overstress at the input node and degradation of the high input impedance. 
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3.7. Summary 

In this study, we have proposed a two-wired active spring-loaded dry electrode to conduct electrolyte-free 

EEG monitoring. By combining spring-loaded probes with the active buffer circuit, the proposed electrode 

design simultaneously enables electronically maximized input impedance, and physically maximized contact 

capability. In the design process, the equivalent circuit model for the electrode circuit and its associated elec-

trical parameters such as noise and gain attenuation were analyzed to obtain low-noise and attenuation-free 

EEG measurements. Based on the analysis, the active circuit was designed based on low-cost discrete compo-

nents and the low-noise and low-offset zero-drift amplifier. The complete electrode device was implemented 

by combining the active buffer circuit with spring-loaded probes and a 3D-printed housing. Through several 

evaluations included the alpha rhythm detection test, the proposed electrodes were found to have a low-noise 

characteristic of 1.131 μVRMS within the EEG bandwidth of 0.5–50Hz and the capability to clearly detect an 

alpha rhythm near 10 Hz. In addition, by applying the bootstrap topology to the proposed electrode design, the 

proposed electrode only requires a two-wired connection with an approximate 32.2% reduction in the input 

capacitance. This leads to an impedance boosting of roughly 147.5% within the EEG bandwidth. In our future 

work, we plan to design a portable instrument for mobile EEG monitoring based on the proposed electrode 

system. 
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 Chapter 4 

Conclusions Remarks of this Dissertation 

In this dissertation, we have proposed two types of instruments for neurophysiological measurements: 

EEG/fNIRS multimodal hybrid brain monitoring system and two-wired active dry electrode system. 

The multimodal hybrid brain monitoring system proposed in Chapter 2 is capable of simultaneous 16-chan-

nel electroencephalogram (EEG) and 8-channel functional near-infrared spectroscopy (fNIRS) measurements. 

For the fully synchronized hybrid acquisition of neurophysiological signals, the proposed instruments have 

been integrated several features, such as employment of the architecture-optimized analog frontend integrated 

circuits (Texas Instruments ADS1299 and ADS8688A), design of linear regulator-based fully isolated circuits, 

and use of spring-loaded passive dry electrodes. This integration ensures the integrity of acquired neurophysi-

ological data with excellent performance, such as 24-bit EEG resolution and stable delay-free (<0.85μs) bio-

optical measurements. 

Applicability of the proposed system to the real BCI experiments has been verified through several evalua-

tions and human subject studies, such as EEG phantom tests, arterial occlusion experiments, alpha rhythm 

detection tests, and mental arithmetic experiments. 

The two-wired active dry electrode system proposed in Chapter 3 is upgraded version of the passive dry 

electrodes used in the hybrid brain monitoring system. Combining shrinkable probes and bootstrap topology-

based buffer circuitry, we have developed an optimized design of active dry electrodes for EEG measurements. 

Through this integration, the proposed electrode provides electronically maximized impedance characteristics 

and physically maximized contact capability of the electrode device. 

Applicability of the proposed electrode in real BCI experiments has also been confirmed through electrical 

evaluations and human subject studies, such as noise spectral density measurements, input capacitance estima-

tion, and alpha rhythm detection tests. 

The design and implementation of EEG / fNIRS hybrid brain monitoring systems and active dry electrodes 

will be expected to contribute to the BCI research society by improving the accuracy and usability of the current 

BCI technology. 
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