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Abstract 

Compressed Sensing (CS) is a new signal acquisition and reconstruction framework which has attract-

ed lots of interests in both the signal processing and the information theory communities. This framework 

promises to compressively sample a sparse signal via random linear projections at a rate below the Shan-

non-Nyquist rate, and also indicates this sparse signal can be reliably reconstructed from its compressed 

samples. 

The signal acquisition can be easily done by only conducting matrix-vector multiplications. In contrast, 

the signal reconstruction can be complicated because the model of the acquisition is an under-determined 

linear system. However, if the support set of an original sparse vector, i.e., a set of indices corresponding 

to the nonzero elements in this sparse vector, is given, this under-determined linear system becomes an 

over-determined system, implying that the signal reconstruction can be easily done using traditional least 

square methods. Thus, there have been not only several information-theoretic works regarding necessary 

and sufficient conditions to reliably reconstruct this support set but also several algorithms to reconstruct 

the support set in practice. 

As CS has been applied into various applications such as wireless sensor network (WSN) and magnetic 

resonance imaging (MRI), the signals of interests are modeled to be jointly sparse vectors, implying that 

the signals share a single support set. There are two different approaches for sampling these signals. The 
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first model is called multiple measurement vectors (MMV) with the same sensing matrix in which all of 

sparse signals are measured via the same sensing matrix. The second model is called MMV with different 

sensing matrices where different sensing matrices are used to sample each sparse signal. There have been 

information-theoretic works for MMV with the same sensing matrix in the presence of noise. In contrast, 

for MMV with different sensing matrices, the information-theoretic work has been only conducted in the 

absence of noise. 

This dissertation mainly focuses on not only an information-theoretic study for a reliable support set 

reconstruction but also a derivation of a practical algorithm which can reconstruct support set with large 

variables. In the first part, we aim to provide information-theoretic results regarding the reliable support 

set reconstruction under noisy MMV with different sensing matrices. We begin to define a decoder, ex-

tended from a joint typical decoder proposed in the work of Akcakaya and Tarokh, and define a failure 

probability that the defined decoder fails to reconstruct the support set. Using mathematical tools such as 

the Fano’s inequality and the Chernoff bound, we develop upper and lower bounds of this failure proba-

bility in terms of the sparsity, the ambient dimension, the minimum signal-to-noise ratio, the number of 

measurement vectors and the number of measurements. These bounds can be used to provide guidelines 

for determining the system parameters for various applications in CS under noisy MMV with different 

sensing matrices. We develop asymptotic necessary and sufficient conditions for the reliable support set 

reconstruction based on these bounds. Using these conditions, we not only show how the usage of the 

joint sparsity structure can result in benefits on the support set reconstruction but also provide theoretical 

explanations regarding results which have been only empirically reported in the works of Caione et al. 

and Wu et al.. We then compare our sufficient conditions with the other existing sufficient conditions 

which are obtained for noisy MMV with the same sensing matrix. In a sublinear sparsity regime under 

some reasonable assumptions, we show that noisy MMV with different sensing matrices may require 
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fewer measurements for the reliable support set reconstruction, which is an advantage of the usage of 

different sensing matrices for sampling sparse vectors which have the joint sparsity structure. 

In the second part, we aim to propose a fast first-order-type algorithm for support set reconstruction 

with cheap per-iteration cost. We begin to reformulate the l0-norm minimization problem into a mixed 

integer quadratic programming (MIQP) problem by following the works of Bourguigon et al., where a 

solution to this MIQP problem is shown to be a support set. We then use an alternating direction method 

(ADM), recently becoming a popular and powerful method for solving various integer programming (IP) 

problems studied in the works of Souto and Dinis, Yadav et al., and Takapoui et al., to derive the pro-

posed algorithm. We define two metrics such as a mean square error (MSE) and a support set error (SSE) 

to evaluate how this proposed algorithm can reconstruct support set properly. We conduct extensive simu-

lations to provide phase transition results, indicating that i) our algorithm significantly surpasses other 

algorithms based on ADM in terms of both MSE and SSE, and ii) our algorithm exhibits good MSE and 

SSE close to those of an optimal decoder that knows support set a prior. Then, we empirically confirm 

that the computational costs of our algorithm is roughly  1.3n , where n is the ambient dimension. 
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Notational Conventions 

Notation Definitions 

 Real numbers 

N
 Space of real valued N dimensional Vectors 

M N
 Space of real valued M N  dimensional matrices 

  Probability of a given event 

   Expectation of a given random variable 

   Variance of a given random variable 

 Euclidean math letters denotes sets 

 Cardinality of a given set 

f  Small bold letters denote vectors 

F  Capital bold letters denote matrices 

 if  The i
th

 element of a given vector 

 :i lf  
Column vector constructed by collecting elements of a given vector from the i

th
 element 

to the l
th

 element 

f  Sub-vector formed by the elements of a given vector indexed by a given set 

F  Sub-matrix formed by the columns of a given matrix indexed by a given set 

T
F  Transpose of a given matrix 

1
F  Inverse of a given matrix 

†
F  Pseudo inverse of a given matrix 

 tr F  Trace of a given matrix 

 i F  The i
th

 eigenvalue of a given matrix 

 nf x  The n
th

 derivation of a function f  with respect to x 

0
x  l0-norm of a given vector 

1
x  l1-norm of a given vector 

N1  N-dimensional vector of ones 

N0  N-dimensional vector of zeros 

NI  The N N  identity matrix 

NO  The N N  matrix of zeros 
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Chapter 1: Introduction to Compressed Sensing and Support 

Set Reconstruction 

 

1.1. Compressed Sensing 

A conventional signal acquisition and reconstruction framework has been processed under the Shan-

non-Nyquist sampling theory [1] which was introduced by Shannon at 1940’s. This theory suggests that 

we have to uniformly sample a signal at the Nyquist sampling rate, which is higher than twice the maxi-

mum frequency, to reconstruct this signal from the samples. However, the number of samples decided by 

this theory can be often large; we have to compress the samples before they are stored. As Donoho has 

stated in his work [2], the most of samples we take have to be discarded to reduce the number of samples 

before being stored, which is inefficient in the conventional framework. 

As a new signal acquisition and reconstruction framework, compressed sensing (CS) was introduced in 

2000’s by the seminal works of Donoho, Candes, Tao, Romberg, and Baraniuk [2]–[8]. CS aims to re-

move the inefficiency of the conventional framework by conducting both “sampling” and “compression” 

simultaneously. This implies that CS allows for the acquisition of signal samples at a rate lower than the 

Shannon-Nyquist sampling rate. As a result, the signal acquisition time can be reduced and the develop-

ment of small sensors with good resolution or fast analog-to-digital converters can be possible. 

The fundamental reason to directly acquire samples at a rate lower than the Shannon-Nyquist sampling 

rate is that any signals can be sparsely represented using only a few nonzero elements in some domains 

[2], [7], [8]. As an example, let consider an image. Definitely, all the elements in this image are almost 

nonzero. However, a result obtained by applying the wavelet transform to it has a lot of zeros. This is to 

say that this image can be sparsely represented in the wavelet domain.  

We give the definition of a k-sparse vector given by Baranuk [8], which is “The signal x is K-sparse if 

it is a linear combination of only K basis vector; that is, only K of the coefficients in a vector 

T
Ψ x  are 

nonzero and N – K are zero, where Ψ  is an orthonormal transform of size N ×  N.” For simplicity, in this 

dissertation, we assume that this orthonormal transform is the identity matrix of size N ×  N. That is, the 
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interest of signal is K-sparse itself. 

CS aims to directly acquire compressed samples of such K-sparse signals without going through the 

unnecessary stage of getting N samples. Mathematically, a K-sparse vector x can be sampled to yield an 

M-dimensional measurement vector y via a linear system model called noisy single measurement vector 

(SMV) as follows: 

  y Fx n  (1) 

where n is a noise vector of size M × 1 and F is a sensing matrix of size M × N whose rank is assumed to 

be full. Typically, all the elements of this noise vector are independently and identically distributed (i.i.d) 

Gaussian with a zero mean and a 

2  variance, and those of this sensing matrix are also i.i.d. Gaussian 

with a zero mean and a unit variance. 

We investigate how the signal acquisition in CS can be different to the conventional signal acquisition. 

In the conventional signal acquisition, a signal is uniformly sampled at the Nyquist sampling rate. This 

can be interpreted that F in (1) is the identity matrix of size N × N. Thus, each element in y contains the 

information regarding the corresponding element in x. In contrast, in CS, the i
th

 element in y is obtained 

by multiplying x with the i
th

 row vector of F which is randomly constructed. Thus, each element in y can 

include pieces of the whole information on x. This process is repeated M times where M is smaller than N, 

implying that both the sampling and the compression are conducted jointly. 

 

1.2. Information-Theoretic Problem of Support Set Reconstruction 

The linear system (1) is under-determined, making the signal reconstruction in CS difficult. However, 

the number of nonzero elements in x is K. If we know the positions of them in advance, the number of 

unknowns is reduced to K. For more details, for a given x, we begin to define its support set as follows: 

   : 0i x i   (2) 

which collects indices corresponding to the nonzero elements in x. If this set is given in advance, we have 

  y F x n  (3) 

where F is a sub-matrix of size M × K constructed by taking columns of F corresponding to the support 

set and x is a sub-vector of size K × 1 constructed by taking elements of x corresponding to the support 
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set. Since the linear system (3) is over-determined, then we can easily get a solution to (3) as follows: 

 
†

LS : .k x F y  (4) 

Once we get this solution, the original K-sparse vector can be finally estimated as follows: 

 
 

LS

0 if 
ˆ .

. .

i i

o w

 
 



x
x

x x
 (5) 

Thus, it is interesting to investigate necessary and sufficient conditions for a reliable support set recon-

struction. There have been several information-theoretic works [9]–[14] where optimal or sub-optimal 

decoders for this reliable support set reconstruction are analyzed to examine their necessary and sufficient 

conditions in both the linear and sublinear sparsity regimes. In [9], Wainwright got the necessary and suf-

ficient conditions for F in which each row vector is a multivariate Gaussian vector with a zero mean and a 

covariance matrix. In [10]–[14], the authors obtained these conditions for F in which all the elements are 

i.i.d. Gaussian with a zero mean and a unit variance as well. All these works indicate that for the reliable 

support set reconstruction, we at least take 

  log N

K
M K  (6) 

in the sublinear sparsity regime, and  

  M K  (7) 

in the linear sparsity regime, respectively. These results are to say that the reconstruction can be possible 

even we obtain the compressed samples (1) at a rate lower than the Shannon-Nyquist sampling rate. 

In some applications such as wireless sensor networks (WSNs) and magnetic resonance imaging (MRI), 

sensors can be distributed to jointly monitor a phenomenon to improve resolutions in their acquired sig-

nals. In these applications, the signals of interest can be often assumed to be correlated. There are needs to 

mathematically describe this correlation because this correlation has to be used during the signal recon-

struction for obtaining benefits. For example, we consider a WSN where there are S sensors in a restricted 

area measuring a phenomenon. Each sensor acquires its own signal, compresses the acquired signal and 

transmits the compressed signal to a fusion center. After taking all these compressed signals, this fusion 

center runs an algorithm to jointly decompress them for understanding the phenomenon at the sensor po-

sitions. Since the sensors are intentionally distributed in the restricted area, there exist correlations among 

the acquired signals. During the compression stage, the sensors can exploit the correlation to improve the 
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compression capability, making they less consume their battery power for transmission operations. The 

fusion center has to use the correlation to decompress them which are being compressed using the corre-

lation. This example is to indicate that correlations among acquired signals should be not only used in the 

compression stage but also used in the decompression stage. 

In CS, there exists a joint sparsity structure [15]–[21] that is useful to mathematically define the corre-

lation in the above applications. This structure is to indicate that all of signals to be acquired share a 

common support set, as we will mathematically define in Section 2.1.2.  

There are two different models for sampling sparse signals under this joint sparsity structure. The first 

model is called multiple measurement vectors (MMV) with the same sensing matrix [21]. In this model, 

all the sparse signals are sampled by the same sensing matrix. In the second model called as MMV with 

different sensing matrices [17][18], each sparse signal is sampled by its own sensing matrix.  

It is interesting to examine how this structure can make impacts on a reliable support set reconstruction. 

In [22], [23], the authors have obtained the necessary and sufficient conditions in the first model in the 

presence of noise. In [22], Tang and Nehorai proved that a success probability for this reliable support set 

reconstruction can grow with the number of sparse vectors whenever each sparse vector is sampled at the 

rate provided in (6). In [23], when the noise variance is sufficiently small, Jin and Rao showed that for 

the reliable support set reconstruction, each sparse vector has to be sampled at the following rate: 

 
 

log

min ,

K N
M

K S

 
   

 
 (8) 

where S is the number of sparse vectors to be sampled. As comparing (6) with (8), we see that the usage 

of the joint sparsity structure can result in yielding the better sufficient condition (8). In the second model 

without the presence of noise, Durate et al. [24] got necessary and sufficient conditions on the number of 

measurements, and interpreted that 1M K   is enough for a reliable support set reconstruction. This 

interpretation is obvious because a decoder analyzed by them is akin to the l0-norm minimization problem 

which requires a combinatorial search. 

 

1.3. Practical Algorithms for Support Set Reconstruction 

The results obtained by conducting information-theoretic studies [9]–[14], [22]–[24] are to say that a 
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reliable support set reconstruction can be theoretically possible even we take a small number of measure-

ments. It now should be considered how to reconstruct a support set. The most naïve approach is to solve 

the l0-norm minimization problem [6], [7] as follows: 

 
21

0 2
min 2  

x
x y Fx  (9) 

where τ is a positive regularization parameter. It is immediately seen that this problem is equal to 

 
2

0 2
min subject to  

x
x y Fx  (10) 

where ε is a positive parameter. 

Intuitively, solving either (9) and (10) can be interpreted in finding a support set which jointly meets 

i) the number of elements included in this set has to be minimized and ii) the data fidelity, i.e., the l2-norm 

part, has to be also sufficiently small. However, this l0-norm function in them is non-convex, and discon-

tinues. Moreover, these problems are known to be NP-hard because we have to exhaustively consider all 

possible support sets, requiring a non-polynomial computational complexity. Thus, for a small value of N, 

one can solve either (9) and (10). But, for a large value of N, no one can solve them because its compu-

tational complexity exponentially grows with N. 

Greedy algorithms such iterative hard thresholding (IHT) [25], variants of IHT [26]–[28] are in popular 

to solve (9). Some of these algorithms have been analyzed. Their sufficient conditions for a reliable sup-

port set reconstruction have been provided. Convex algorithms such as smoothed l0-norm (SL0) and its 

variant [29], [30] have been proposed to solve an approximated problem of (9) in which the l0-norm 

function is approximated as a series of convex functions. These algorithms are also proved that they can 

find a local solution to (9) under some reasonable conditions. Last, mean doubly augmented Lagrangian 

(MDAL) [31] as a non-convex algorithm has been proposed to solve (9). Although this non-convex algo-

rithm has no theoretical foundation regarding their convergence, it has been empirically shown to yield 

the better reconstruction performance rather than both the greedy algorithms and the convex algorithms 

do. 

Last, there are other approaches to solve (9). These approaches aim to solve an l1-norm minimization 

problem which is relaxed from (9) by replacing the l0-norm function with the l1-norm function. The l1-

norm function is convex and continuous; that is, the l1-norm minimization problem is convex. As we will 

state in Section 3.1, many algorithms have been proposed to solve this problem. Some of them have been 
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analyzed to prove their global convergence. There have been a lot of theoretical works to link the l1-norm 

minimization problem to (9). But, the aim to solve the l1-norm minimization problem is to estimate x 

itself, not to reconstruct its support set. Thus, this dissertation does not mainly consider the l1-norm mini-

mization problem and related algorithms. 

 

1.4. Motivations 

CS with noisy MMV with different sensing matrices has been successfully applied in applications such 

as WSNs [15] and MRI [16]. Empirical results in these applications show benefits facilitated by the joint 

sparsity structure. However, no theoretic-tool is available to explain fundamental reasons which cause 

these results. We are motivated to develop a theoretic-tool by conducting an information-theoretic study 

in which we aim to analyze a sub-optimal decoder for a reliable support set reconstruction under noisy 

MMV with different sensing matrices. 

Next, consider both of the models regarding MMV without the presence of noises. In noiseless MMV 

with the same sensing matrices, all measurement vectors are obtained through the same sensing matrix, 

implying that that all the elements of them can be correlated. In contrast, in noiseless MMV with different 

sensing matrices, each measurement vector is taken using its own sensing matrix. Thus, all the elements 

of these measurement vectors are uncorrelated because each sensing matrix is randomly and independent-

ly constructed. Consider an extreme example in which all sparse vectors to be sampled are the same. In 

noiseless MMV with the same sensing matrix, all the measurement vectors are also identical. In contrast, 

those are different in noiseless MMV with different sensing matrices. As we have considered this example, 

we have an intuition that the usage of different sensing matrices provides more degree of freedoms in all 

of the measurement vectors rather than the usage of the same sensing matrix does. Is this intuition still 

valid in the presence of noise? This question motivates us to conduct the study on noisy MMV with dif-

ferent sensing matrices as well. 

Last, recently, Bourguignon et al. [32] have showed that (9) is reformulated into a mixed integer 

quadratic programming (MIQP) problem when the interest of signals is bounded. Then, Bertsimas et al. 

[33] have solved this problem using CPLEX [34], a typical solver for integer programming (IP) problems, 

and shown that a solution obtained by CPLEX is better than that obtained by IHT [25]. However, for a 
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large value of N, CPLEX cannot be useful because it requires exhaustive approaches [35] to search a fea-

sible space to IP problems, implying that its computational complexity grows exponentially with N. Now-

adays, an alternating direction method (ADM) [36], [37], [62] becomes very popular because ADM has 

been empirically shown to be powerful for finding solutions to IP problems [38]–[40]. Moreover, in [40], 

it was reported ADM could be greatly faster than a commercial IP method. We hence are motivated to 

propose a support set reconstruction algorithm based on ADM to solve the reformulated problem of (9). 

 

1.5. Contributions and Outline of this Dissertation 

This dissertation is organized as follows. In Chapter 2, we give necessary and sufficient conditions for 

noisy MMV with different sensing matrices, and give various interpretations on these conditions, which 

were published in [41]–[45] as follows: 

[41] Sangjun Park, Nam Yul Yu, Heung-No Lee, “An Information-Theoretic Study for Joint Sparsity 

Pat-tern Recovery with Different Sensing Matrices,” IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 

5559-5571, May. 2017. 

[42] Heung-No Lee, Junho Lee, Sangjun Park, “Signal Acquisition and Method for Distributed Com-

pressive Sensing and Joint Signal Recovery,” application number:  13/250,082, application date: 

Sep., 30th, 2011, registration number: 8391800, registered date: Mar. 5th, 2013. 

[43] Sangjun Park and Heung-No Lee, “Number of Compressed Measurements Needed for Noisy Dis-

tribute Compressed Sensing,” 2012 IEEE International Symposium on Information Theory Proceed-

ings, Cambridge, MA, 2012, pp. 1648-1651 

[44] Sangjun Park, Hwanchol Jang and Heung-No Lee, “Study on performance behavior of the com-

pressive sensing measurements for multiple sensor system,” 2011 Conference Record of the Forty 

Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, 

2011, pp. 1980-1983. 

[45] Sangjun Park, Junho Lee and Heung-No Lee, “Per-sensor measurements behavior of compressive 

sensing system for multiple measurements,” 2010 Conference Record of the Forty Fourth Asilomar 

Conference on Signals, Systems and Computers, Pacific Grove, CA, 2010, pp. 240-242. 
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In Chapter 3, we propose an algorithm to solve a problem reformulated from the l0-norm minimization 

problem, and provide simulations results to show the superiority of the proposed algorithm compared to 

other algorithms. All these results included in this chapter were published in [46] as follows: 

[46] Sangjun Park and Heung-No Lee, “Fast mixed integer quadratic programming for sparse signal 

estimation,” IEEE Access, vol. 6, pp. 58439-58449, Oct., 2018. 

 

In Chapter 4, we give conclusions of this dissertation. 

 

 

  



 - 9 -  

Chapter 2: An Information-Theoretic Study for Joint Sparsity 

Pattern Recovery with Different Sensing Matrices 

 

2.1. Introduction 

Conventionally, signals sensed from sensors such as microphones and imaging devices are sampled fol-

lowing the Shannon and Nyquist sampling theory [1] at a rate higher than twice the maximum frequency 

for signal reconstruction. As the number of samples decided by this theory is often large, the samples go 

through a compression stage before being stored. Therefore, taking numerous samples, where most of 

them will be discarded in this stage, is inefficient. Because compressed sensing (CS) [2]–[7] removes the 

inefficiency, CS has been applied in various areas such as wireless communications [15], [55], [17]–[19], 

spectrometers [47], multiple input multiple output (MIMO) radars [20], magnetic resonance imaging 

(MRI) [16], and imaging/signal processing [48]–[65]. 

The CS theory states that signals that are sparsely representable in a certain basis are compressively 

sampled and reconstructed from what we thought is incomplete in information. Let 

Nx  be a K-sparse 

vector with a support set as follows: 

   : 0i x i    

whose indices indicate the positions of the nonzero coefficients of x. It is compressively sampled by a 

model called single measurement vector (SMV) as follows: 

  y Fx n  (11) 

where 

My  is a (noisy) measurement vector, 

M NF  is a sensing matrix, and 

Mn  is a noise 

vector, whose elements are independent and identically distributed (i.i.d) Gaussian with a zero mean and a  

2  variance. Once the support set is correctly reconstructed, then (11) can be well-posed, which allows 

us to obtain an accurate estimate of x using the least square approach. Thus, we consider a support set 

reconstruction problem. 
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2.1.1. Information-Theoretic Works for CS with SMV 

Works [9]–[14] have studied the support set reconstruction problem from an information-theoretic per-

spective. For reliable support set reconstruction, sufficient and necessary conditions were established in 

the linear and sublinear sparsity regimes. 

For a support set reconstruction, Wainwright [9] used the union bound to establish a sufficient condi-

tion on the number of measurements M for a maximum likelihood (ML) decoder and used Fano’s inequal-

ity [51] to obtain a necessary condition on M. This ML decoder was analyzed by Fletcher et al. [10] to 

establish a necessary condition on M. Aeron et al. [11] used Fano’s inequality to form necessary condi-

tions on both M and 

2 .  Then, they used the union bound to obtain sufficient conditions on both M and 

2  for their sub-optimal decoder. Akcakaya and Tarokh [12] used the union and the large deviation 

bounds based on empirical entropies to get sufficient conditions on M for their joint typical decoder. They 

used the converse of the channel coding theorem to get necessary conditions on M. Scarlett et al. [13] 

extended this decoder [12] with the assumption that the distribution of the support set is provided. For a 

uniform distribution case, their necessary and sufficient conditions are equivalent to those of [12]. How-

ever, they are better for a non-uniform distribution case. Scarlett and Cevher [14] liked the support set 

reconstruction with the problem of coding over a mixed channel, where information spectrum methods 

were used to obtain necessary and sufficient conditions on M. 

 

2.1.2. Information-Theoretic Works for CS with MMV 

CS has many applications in wireless sensor networks (WSNs) [15], [55], [17]–[19] and MIMO radars 

[20]. In these applications, the signals of interest 

 , 1, 2, ,s N s S x  

are often modeled as jointly K-sparse vectors, implying that 

 
1 2 S    

where 

s
 is the support set of 

s
x  and ,K  which is referred to as a joint sparsity structure. 

There are two models for sampling jointly K-sparse vectors. The first model is called multiple meas-

urement vectors (MMV) with the same sensing matrix [21], in which they are sampled by the same sens-
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ing matrix. The second model is named as MMV with different sensing matrices [17][18], in which each 

one is sampled by its own sensing matrix. 

The authors of [22]–[24] have conducted information-theoretic research to obtain conditions under 

which the support set of both the models was reconstructed with a high probability. In noisy MMV with 

the same sensing matrix, Tang and Nehorai [22] used the hypothesis theory to obtain necessary and suffi-

cient conditions on both the number of measurements M and the number of measurement vectors S, and 

proved that the success probability of the support set reconstruction increases with S, if  log .N

K
M K  

Jin and Rao [23] exploited the communication theory to establish necessary and sufficient conditions on 

M and demonstrated the benefits of the joint sparsity structure based on their conditions. A detailed com-

parison between the results of our work and [12] will be presented in 2.4. Finally, Duarte et al. [24] stud-

ied noiseless MMV with different sensing matrices, and formed necessary and sufficient conditions on M. 

However, it is difficult to apply the conditions to noisy MMV with different sensing matrices. 

Meanwhile, works [17][52][53] have presented conditions of practical algorithms for a reliable support 

set reconstruction. In noiseless MMV with the same sensing matrix, Blanchard and Davies [53] obtained 

conditions for a reliable reconstruction from rank aware orthogonal matching pursuit (OMP). In noisy 

MMV with the same sensing matrix, Kim et al. [52] created compressive MUSIC, and presented its suffi-

cient condition. In noiseless MMV with different sensing matrices, Baron et al. [17] produced trivial pur-

suit (TP) and distributed compressed sensing-simultaneous OMP (DCS-SOMP). By analyzing TP with 

the assumption that each sensing matrix contains i.i.d. Gaussian elements and that the nonzero values of 

each sparse vector are i.i.d. Gaussian variables, they demonstrated that with 1,M   TP reconstructs the 

support set as S is sufficiently large. They conjectured that  1M K   suffice for DCS-SOMP to recon-

struct the support set as S is sufficiently large, based on its empirical results. 

To the best of our knowledge, no information-theoretic study has been published to get necessary and 

sufficient conditions for a reliable support set reconstruction in noisy MMV with different sensing matri-

ces. Besides, these conditions have not been provided from the practical recovery algorithms for CS with 

noisy MMV with different sensing matrices. 
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2.1.3. Motivations 

CS with noisy MMV with different sensing matrices has been applied in many applications and the 

benefits facilitated by the joint sparsity structure have been empirically reported in [15][16]. In WSNs, 

Caione et al. [15] used the joint sparsity structure to reduce the number of transmitted bits per sensor and 

reported that each sensor can reduce its transmission cost. In MRI, Wu et al. [16] modeled multiple diffu-

sion tensor images (DTIs) as jointly sparse vectors. They exploited the joint sparsity structure to reduce 

the number of samples per DTI, while retaining the reconstruction quality. Using the joint sparsity struc-

ture, they also empirically reported that the reconstruction quality of each DTI can be improved for a 

fixed number of samples per DTI. 

To theoretically explain the above empirical benefits facilitated by the joint sparsity structure, theoreti-

cal tools are required to measure the performance of CS with noisy MMV with different sensing matrices. 

Such tools can be useful as guidelines for determining the system parameters in various CS applications 

with noisy MMV with different sensing matrices. For example, if the number of samples per DTI is fixed 

in the MRI [16], the theoretical tools may enable us to determine the number of DTIs required for achiev-

ing a given reconstruction quality. Thus, the first motivation of this paper is to provide the theoretical 

tools by establishing sufficient and necessary conditions for a reliable support set reconstruction. 

Next, for noiseless MMV with the same sensing matrix, let  

 1 2

A .S M S    Y F x x x  

Also, for noiseless MMV with different sensing matrices, let  

 1 1 2 2

B .S S M S   Y F x F x F x  

Then, all the elements of BY  are uncorrelated because all the sensing matrices are independent. In con-

trast, those of AY  are correlated because they are taken from the same sensing matrix. Now, we consider a 

case where we set S K  and .M K  Then, it is clear that 

    Brank min ,S MY  

with a high probability and the rank of BY  is at most K. Therefore, for this case, we conclude that 

    B Arank rankY Y  

which implies that a more reliable support set reconstruction can be expected in noiseless MMV with 
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different sensing matrices for this case. Thus, the second motivation is to verify this perception in the 

presence of noise, by comparing our results with the existing ones in noisy MMV with the same sensing 

matrix [23]. 

 

2.1.4. Contributions of Chapter 2 

The contributions of Chapter 2 are as follows: First, we derive upper and lower bounds of a failure 

probability of the support set reconstruction from Lemmas 1 and 2, by exploiting Fano’s inequality [51] 

and the Chernoff bound [54]. We believe that these bounds are used for measuring the performance of CS 

with noisy MMV with different sensing matrices. 

Next, we develop necessary and sufficient conditions for a reliable support set reconstruction. Theorem 

1 states that  

 
 min

1
1

SNR
M K

Sf

 
   

 
 

suffices to achieve a reliable support set reconstruction in the linear sparsity regime, i.e.,  

  lim 0,1 2 ,K

N
N




   

and it also states that 

 
 min

1
1 log

SNR

N
M K

Sf K

 
   

 
 

suffices to achieve a reliable support set reconstruction in the sublinear sparsity regime, i.e.,  

 lim 0K

N
N

  

where  minSNRf  is an increasing function with respect to the minimum signal-to-noise ratio minSNR  

defined in (14). Next, for a finite S, N, K, and minSNR ,  Theorem 3 states that 

 
 min

2 log 2log 2

log 1 SNR

N
K

KM
S K




 

 

is necessary for a reliable support set reconstruction. The necessary and sufficient conditions can be use-

ful as guidelines to determine the system parameters of CS applications with noisy MMV with different 

sensing matrices. Corollaries 1 and 2 indicate that a reliable support set reconstruction is possible by tak-
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ing sufficiently many measurement vectors S for a fixed M with a low minSNR  value. For a fixed N and K, 

Theorem 2 shows that 1M K   measurements suffice for reconstructing the support set, as S is suffi-

ciently large. Then, for a fixed N, K, and 1,M K   Corollary 3 provides a sufficient condition on S for a 

reliable support set reconstruction. We then provide theoretical explanations of the benefits of the joint 

sparsity structure, which confirm the empirical results of CS applications with noisy MMV with different 

sensing matrices [15][16]. Finally, we compare the sufficient condition (21) with the known one (36) 

for noisy MMV with the same sensing matrix [23]. Therefore, we demonstrate that if ,S K  noisy MMV 

with different sensing matrices may require fewer measurements M for a reliable support set reconstruc-

tion than noisy MMV with the same sensing matrix under a low noise-level scenario. It confirms the su-

periority of MMV with different sensing matrices. 

 

2.2. Notations, System Model & Problem Formulation 

2.2.1. Notations 

The following notations will be used in this chapter. 

1. An orthogonal projection matrix which maps an arbitrary vector to the space orthogonal onto 

the space spanned by the columns of a given matrix F is defined by 

    
1

: .T T

M



 Q F I F F F F  (12) 

2. For given sets  and ,  the relative complements of  in  is denoted as .  

3. The linear sparsity regime is defined by 

  lim 0,1 2 .K

N
N




   

4. The sublinear sparsity regime is defined by 

 lim 0.K

N
N

  

 

2.2.2. System Model 

Let 

1 2, , , S
x x x  be jointly K-sparse vectors with a support set  which belongs to 

   : 1,2, , , .N K    
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Thus, the number of nonzero coefficients of each sparse vector is K, the indices of the nonzero coeffi-

cients of all the sparse vectors are the same and the indices belong to the support set. In noisy MMV with 

different sensing matrices, each sparse vector is sampled by its own sensing matrix, i.e., 

 1,2,s s s s s S  y F x n  (13) 

where all the sensing matrices have i.i.d. Gaussian elements with a zero mean and a unit variance, and all 

the noise vectors have i.i.d. Gaussian elements with a zero mean and a 

2  variance. We assume that all 

the noise vectors and all the sensing matrices are mutually independent. Then, we let  minx  be the smallest 

nonzero magnitude of all the sparse vectors and minSNR  be the minimum signal-to-noise ratio given by 

 
2 2

min minSNR : .x   (14) 

 

2.2.3. Problem Formulation 

We extend Akcakaya and Tarokh [12]’s decoder for noisy MMV with different sensing matrices. It 

takes all the measurement vectors as its input and yields a support set decision as its output 

    ˆ: , , 1,2, , .s s

sd s S  y F  

Its decision rules are given in Definition 1. 

Definition 1: All the measurement vectors  1 2, , , S
y y y  and a set   are  jointly typical if the 

rank of each 

s
F  is K and 

     
2

2

1 2
< .

S s s

s
S M K SM 


  Q F y  (15) 

As each sensing matrix contains i.i.d. Gaussian elements, the rank of each  

s
F  is K with a high proba-

bility. The decision rule is to find sets that satisfy (15) for all the given measurement vectors and 0.   

In the entire paper, the support set is denoted by  and any incorrect support set is denoted by ,  where 

their cardinalities are K. 

We define the failure events, wherein the joint typical decoder fails to reconstruct the correct support 

set. First, 

     
2

2

1 2
:

Sc s s

s
S M K SM 



 
    
 
 Q F y  (16) 
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implies that the correct support set is not  jointly typical with all the measurement vectors. For any 

,  

     
2

2

1 2
:

S s s

s
S M K SM 



 
    
 
 Q F y  (17) 

implies that an incorrect support set is  jointly typical with all the measurement vectors. Based on these 

failure events, we define a failure probability and give its upper bound as follows:  

 

 

   

1ˆ: , , S

err

c

c

p





 

  
  

  

  

x x

 (18) 

where  c
 is taken with respect to all the noise vectors and     is taken with respect to all the 

noise vectors and all the sensing matrices. We establish Lemmas 1 and 2 given in 2.6.1 to give upper 

bounds of the probabilities of the failure events. Combining these lemmas with (18) yields 

 

   

     1 2,
2 1

c

err

N

K

p

p d p d




 

  


 

where p is defined in (41), 

 

 

 

 

1 2

2

2,

2 2

min

,

,

M
d

M K

M K M
d

M K

x







 



 

 






 




 

 

which are defined in (43), (51) and (52), respectively. 

It is of interest to examine why  c
 depends only on the noise vectors. As shown in Lemma 3, the 

random variable to define the event 

c
 in (16) is  

2
2

1 2
,

S s s

s


 Q F y  where the measurement vector 

in (13) consists of the two parts: the noise part  

s
n  and the signal part .s s

F x  The signal part belongs to 

the space spanned by the columns of .s
F  Then, as specified in (12), the orthogonal projection matrix 

 s
Q F  maps the measurement vector to the space orthogonal onto the space spanned by the columns of  
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.s
F  Thus, the random variable is a function of the noise vectors only. 

 

2.3. Main Results 

As the main contribution of this paper, this section presents sufficient and necessary conditions on M 

for a reliable support set reconstruction in noisy MMV with different sensing matrices. We interpret the 

conditions to demonstrate the benefits facilitated by the joint sparsity structure. 

 

2.3.1. Sufficient Conditions on M 

In [9][12], the authors have shown that fewer measurements M for a reliable support set reconstruction 

are required for noisy SMV in the linear sparsity regime, compared to the sublinear sparsity regime. 

Based on the results of [9][12], we are motivated to examine, if the same result can be observed in noisy 

MMV with different sensing matrices. 

Theorem 1: For any 1,   we let  1 2

min1 .K M x    If the number of measurements satisfies 

 1

K
M K

S
   (19) 

then the failure probability errp  defined in (18) converges to zero in the linear sparsity regime where 

 
 

1 1 1

1 1

min min

2 1 log
0.

1 1
log 1

1 SNR 1 SNR




  

 


  

  
  

  

 (20) 

Also, under the same conditions on   and ,  if the number of measurements satisfies 

 2 log
K N

M K
S K

   (21) 

then the failure probability errp  defined in (18) converges to zero in the sublinear sparsity regime where 

 
2 1 1

1 1

min min

2
0.

1 1
log 1

1 SNR 1 SNR


  

 

  
  
  

  

 (22) 

Proof: The proof is given in Section 2.6.3. 

In terms of N, K, and S, the asymptotic order of the sufficient condition on M for the linear sparsity 
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regime is  ,K

S
K   whereas the order for the sublinear sparsity regime is   log .NK

S K
  It can confirm 

that fewer measurements are required in the linear sparsity regime, compared to the sublinear sparsity 

regime. Next, from the sufficient conditions, we observe an inverse relationship between M and S, owing 

to the joint sparsity structure. This relationship implies that taking more measurement vectors S reduces 

the number of required measurements M for a reliable support set reconstruction. Then, the relationship 

can be used for explaining the empirical results of Caione et al. [15] and Wu et al. [16]. In [16], the 

authors have reported that the number of transmitted bits per sensor could be inversely reduced by the 

number of sensors, which implies that the transmission cost of each sensor could be saved. The result can 

be confirmed by our inverse relationship by considering S and M as the number of sensors and the 

number of transmitted bits per sensor, respectively. In [15], S and M are considered as the number of DTIs 

and the number of samples of each DTI, respectively. Again, it has been observed from [15] that the joint 

sparsity structure enabled the number of samples of each DTI to be inversely reduced by the number of 

DTIs, reducing the acquisition time for each DTI. These results can be confirmed by our inverse 

relationship. 

Theorem 2: For any 1,   we let  1 2

min1 ,K M x    N and K be fixed. If the number of 

measurements can satisfy 1,M K   the failure probability errp  defined in (18) converges to zero as 

taking infinitely many measurement vectors. 

Proof: The proof is given in Section 2.6.3. 

Theorem 2 suggests that with 1,M K   a reliable support set reconstruction for noisy MMV with 

different sensing matrices is possible by taking an infinite number of measurement vectors. As the impact 

of noise can disappear in our sufficient condition, we believe that the support set reconstruction becomes 

robust against noise by taking sufficiently many measurement vectors. 

 

2.3.2. Discussions on the Sufficient Conditions 

We now examine the effect of minSNR  on the sufficient conditions of Theorem 1. The aim is to 

determine the relationship amongst S, M and minSNR  for a reliable support set reconstruction. 

Corollary 1: For any 1,   we let  1 2

min1 .K M x    The sufficient conditions of Theorem 1 are 
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rewritten as 

 
 

2
1

1

min

1

SNR
4 log

1

S S N
M K K

K






  
 

 
  
 

 (23) 

in the sublinear sparsity regime and 

 
 

 

2
1

1

min

1

SNR
4 1 log

1

S S
M K K 








  
 

  
  
 

 (24) 

in the linear sparsity regime. 

Proof: The proof is given in Section 2.6.4 

Corollary 1 suggests that for a fixed M, a reliable support set reconstruction is possible by taking more 

measurement vectors S, although minSNR  is low. Namely, we observe a noise reduction effect, which 

shows that using the joint sparsity structure leads to an increase in  minSNR  or a decrease in 
2  by the 

square root of S. This effect can explain the improvement in the reconstruction quality of the DTIs, as 

empirically reported in [16]. 

We then improve our noise reduction effect by considering that  minSNR  is larger than a certain value. 

Corollary 2: For any 3,   we let  1 2

min1 K M x    and 2 3.   If 

 min 1

2
SNR ,

31

 

 
 

 
 (25) 

the sufficient conditions of Theorem 1 are rewritten as 

 
 

11

min

1

SNR
4 log

1

S S N
M K K

K





 
 


 (26) 

in the sublinear sparsity regime, and 

 
 

 
11

min

1

SNR
4 1 log

1

S S
M K K 







 
  


 (27) 

in the linear sparsity regime. 

Proof: The proof is given in Section 2.6.4. 

Corollary 2 requires 3   to ensure that the lower bound in (25) is positive. A simple computation 

shows that Corollary 2 requires fewer measurements in both the regimes compared to Corollary 1 because 
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2
1

21
1

min
1 min

1 1

1

1 min

1

11

min

1

SNR 1 SNR

1 1

1 SNR

1

SNR

1

S S
S

S

S S

 












 











     
      

 

 
  

 

 




 

where the second inequality is owing to  

 
1

min

1

1 SNR 1
1

1 t






 


 

for any 3   and t defined in (71). Then, Corollary 2 improves the noise reduction effect observed in 

Corollary 1 by showing that minSNR  is increased by S for the region of minSNR  in (25). 

Theorem 2 suggests, it is to be noted, that 1M K   is sufficient for a reliable support set 

reconstruction if S is sufficiently large with a fixed N and K. Then, it would be interesting to determine 

how large S should be required for achieving the minimum number of measurements at each sensor, i.e.,  

1.M K   In wireless sensor networks [55], energy sources used in sensors are very limited due to 

limitation of sensor sizes. Thus, minimizing the energy used for transmission of data at each sensor which 

often leads to extending the lifetime of the sensor battery is a value of importance. This point is noted in 

Caione et. al. [15] as an advantage of using distributed compressed sensing on joint sparse model-2 signal 

ensembles (see Section V there). Corollary 3 which aims to provide a sufficient condition on S for 

achieving 1M K   thus is motivated. 

Corollary 3: Let N and K be fixed and finite. For any 1,   we let  
11 2

min1K x 
   and 1.M K   

If the number of measurement vectors satisfies 

    

:

1 1
log 2 log max , ,

log log

N

K

S

S 
 



 
     

  

 (28) 

a reliable support set reconstruction is possible in the sense that errp   for sufficiently small  0,1 , 

where log   and log   are defined in (73) and (75), respectively. Then, the sufficient condition on S 

is decreasing with respect to minSNR .  

Proof: The proof is given in Section 2.6.4. 
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To the best of our knowledge, the sufficient conditions on S for a reliable support set reconstruction 

have not yet been developed. A similar result has been reported by Tang and Nehorai [22], in which they 

reported that  log N

K
M K  and 

log

log log

N

N
S   suffice for a reliable support set reconstruction in noisy 

MMV with the same sensing matrix, as N is sufficiently large. 

It is of interest to examine whether the sufficient condition S 
 in (28) is good. For this, we implement 

the joint typical decoder in (15) and conduct experiments for different values of minSNR  and K, for a 

fixed 50.N   We count the number of failure occurrences, wherein the joint typical decoder fails to 

reconstruct the support set. We obtain the smallest S
emp

 such that the ratio of the failure occurrences is 

smaller than 0.01.   By comparing 
empS  with S 

 in (28), we see that S 
 approaches ,empS  as 

minSNR  is sufficiently large. As an example, we see that 8empS   and 12S   at  minSNR 20 dB ,

2.K   Then, at  minSNR 30 dB  and 2,K   we obtain that 5empS  and 6.S   A similar trend is 

observed at 5.K   As an example, we see that 12empS   and 19S   at  minSNR 20 dB  and 5.K   

Then, we see that 7empS   and 10S   at  minSNR 30 dB  and 5.K   

Fletcher et al. [10] have reported that the ML decoder requires 1M K   measurements for a reliable 

support set reconstruction in noisy SMV, when the signal-to-noise ratio is sufficiently large. This result 

can be observed from Corollary 3. Specifically, we assume that  minSNR  is sufficiently large for a fixed N 

and K. Then, from (73) and (75), it is easy to see that 

 
 

min

min

SNR

1 1

SNR

lim log ,

lim log 2 1 log .



  



 



 

  
 

Hence, (28) is simplified to 

      
1

1log 2 log 2 1 log .N

KS   


       (29) 

Note that N, K, and  are fixed. Thus, for a large ,  we have 

    11 log 2 log 2 log ,N

K       (30) 

which leads to 1.S   This result suggests that the joint typical decoder requires 1M K   measure-

ments for a reliable support set reconstruction in noisy SMV, whenever  minSNR  is sufficiently large and 
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  satisfies (30). 

 

2.3.3. Necessary Condition on M 

We specify a necessary condition that must be satisifed by a decoder for a reliable support set 

reconstruction in noisy MMV with different sensing matrices. Unlike the sufficient conditions of 

Theorem 1, the necessary condition is presented for a finite N and K. 

We begin by transforming (13) into 

 

1 1 1 1

: : ::
SM SN SMSM SN

S S S S

      

       
       

        
       
       

y x nF

y F x n

y F x n

 (31) 

where x is an SK-sparse vector belonging to an infinite set 

   
min min: , ,SN

x x i x i SK     x  

where  x i  is the ith element of x and  is the support set of x. Owing to the joint sparsity structure, the 

number of possible support sets is  .N

K
Then, we define a failure probability as: 

  
min

ˆ: sup ,
x

errp


 
F

x

x F  (32) 

where 
ˆ

 is an estimate of the support set based on y and F in (31). Then, Lemma III-3 of [11] yields 

  
   

 
min minmin

ˆ

ˆ ˆsup , min max ,
x xx

 

  
x xx

x F x x x F  (33) 

where x̂  is an estimate for x based on y and F in (31) and  

     
min

min: , ,SN

x
x i x i SK     x  

which is a finite set. Assume that x is uniformly distributed over this finite set. Applying Fano’s inequality 

[51] to (33) yields 

 

 

   

 

  

min

min

ˆ ˆmax ,

; log 2
1

log 1

x

x


  


 



x
x x x F x x F

x y F  (34) 

where x and x̂  belong to the finite set  minx
 and  ;x y  is the mutual information between x and y. We 
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get a necessary condition on M to ensure that the lower bound in (34) is bounded away from zero, as 

follows: 

Theorem 3: Let N and K are fixed and finite. In (31), if the number of measurements satisfies 

 
 min

2 log 2log 2

log 1 SNR

N
K

KM
S K




 

 (35) 

then the failure probability errp  defined in (32) is bounded away from zero. 

Proof: The proof is given in Section 2.6.3. 

 

2.4. Relations to the Existing Information-Theoretic Results 

2.4.1. Relations to Noisy MMV with the Same Sensing Matrix [23] 

Jin and Rao [23] have exploited the Chernoff bound to obtain a tight sufficient condition on M for a re-

liable support set reconstruction for noisy MMV with the same sensing matrix in the sublinear sparsity 

regime. Owing to the complicated form of their sufficient condition, they could not clearly show the ben-

efits facilitated by the joint sparsity structure. Thus, they simplified their condition under scenarios such 

as: i) a low noise-level scenario and ii) a scenario with S identical sparse vectors. In Table 2.4.1, we sum-

marize our sufficient conditions on M, and compare them to that of [23] under the low noise-level scenar-

io in the sublinear sparsity regime. 

First, in a low noise-level scenario, as shown in Table 2.4.1, the sufficient condition [23] for noisy 

MMV with the same sensing matrix is 

 Our results Yuzhe and Rao [23] 

Linear sparsity regime 

 lim 0,1 2
N

K

N



   

K
M K

S

 
   

 
 Not presented 

Sublinear sparsity regime 

lim 0
N

K

N
  

log
K N

M
S K

 
  

 
 

 

log

min ,

K N
M

K S

 
   

 
 

N and K are finite 

( minSNR  or S  ) 
1M K   Not presented 

Table 2.4.1: Sufficient conditions on M for support set reconstruction 
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log
.

min ,

K N
M

K S

 
   

 
 (36) 

If ,S K  the sufficient conditions (21) and (36) have the same order, implying that there is no sig-

nificant performance gap in the support set reconstruction between the models. If ,S K  (36) becomes 

 log ,M N  whereas (21) becomes  log .K

S
M N   

It implies that noisy MMV with different sensing matrices is superior to noisy MMV with the same 

sensing matrix or ,S K  with respect to M for a reliable support set reconstruction. This comparison re-

sults support the perception presented in Section 2.1.3, wherein a more reliable support set reconstruction 

could be expected in a noiseless MMV with different sensing matrices owing to the linear independency 

of the measurement vectors. Moreover, it validates the perception, even in the presence of noise. 

Second, we consider a scenario with S identical sparse vectors. Then, the sufficient condition of [23] is 

 

 2 2

2

log
.

log 1

K N
M

S 

 
  
  
 

x
 (37) 

From (37), we observe that  

2  is reduced by a factor of S. However, the noise reduction effect for 

noisy MMV with the same sensing matrix requires a restriction, where all the sparse vectors should be 

identical, which can be hardly achieved in practice. In contrast, the noise reduction effect for noisy MMV 

with different sensing matrices does not require this restriction, as shown in Corollaries 1 and 2. 

 

2.4.2. Relations to Noisy SMV [12] 

Akcakaya and Tarokh [12] have used the joint typical decoder to establish the sufficient conditions on 

M for a reliable support set reconstruction in noisy SMV. They exploited the exponential inequalities [56] 

to obtain the upper bounds on the sum of the weighted chi-square random variables. In this subsection, we 

demonstrate that the approaches developed in this paper are superior to the use of the exponential 

inequalities. Thus, we use the exponential inequalities to generalize their bounds for noisy MMV with 

different sensing matrices. We give Propositions 1 and 2 to prove that the generalized bounds are worse 

than the bounds of Lemmas 1 and 2. 

Proposition 1: For any positive , we have 
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    1 1,exp2 2c p d p   

where both  1p d  and 1d  are given in Lemma 1, and 

 
2 2

1,exp 4 2
: exp .

4 2

S M
p

M K M



  

 
  

  
 (38) 

Proof: The proof is given in Section 2.6.5. 

Proposition 2: For any   and any 0   such that 

   2

min,0 1 ,K M x    (39) 

we have 

     
min

2, ,exp2,
1p d p


  

R
 

where both 
  

min2,
1p d




R
 and 

 min2,
d

 R
 are given in Lemma 2 and  
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2

2, ,exp min,2

,1

: exp
4

S

ss

S M K M
p x

M K






       
  
 

 (40) 

and ,s  is defined in (49) and 

2

min,x  is defined in (53). 

Proof: The proof is given in Section 2.6.5. 

If 1,S   we see that 1,expp  and 2, ,expp  are equal to the bounds of Akcakaya and Tarokh [12]. Proposi-

tions 1 and 2 state that the bounds on the failure probability of Lemmas 1 and 2 are tighter than the 

bounds of [12] for noisy SMV. 

 

2.5. Conclusions 

We have studied a support set reconstruction problem for CS with noisy MMV with different sensing 

matrices. The union and Chernoff bounds have been used to obtain the upper bound of the failure 

probability of the support set reconstruction, and Fano’s inequality has been used to obtain the lower 

bound of this failure probability. As we have obtained the upper bound by analyzing an exhaustive search 

decoder, the bound is used to measure the performance of CS with noisy MMV with different sensing 

matrices. We have then developed the necessary and sufficient conditions in terms of the sparsity K, the 

ambient dimension N, the number of measurements M, the number of measurement vectors S, and the 
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minimum signal-to-noise ratio minSNR .  They can be useful as guidelines to determine the system 

parameters in various CS applications with noisy MMV with different sensing matrices. 

The conditions are interpreted to provide theoretical explanations for the benefits facilitated by the joint 

sparsity structure in noisy MMV with different sensing matrices: 

i. From the sufficient conditions of Theorem 1, we have observed the inverse relationship 

between M and S. Owing to the inverse relation, we can take fewer measurements M per each 

measurement vector for a reliable support set reconstruction by taking more measurement 

vectors S. 

ii. From the sufficient conditions of Corollaries 1 and 2, we have observed the noise reduction ef-

fect, which shows that the usage of the joint sparsity structure results in an increase in  minSNR  

or a decrease in 

2  by a factor of S. Therefore, the support set reconstruction can be robust 

against noise by taking sufficiently many measurement vectors. 

iii. From Theorem 2, we have shown that 1M K   is achieved for a fixed N and K, as S is 

sufficiently large. From Corollary 3, we have provided the sufficient condition on S to 

reconstruct the support set for a fixed N, K, and 1.M K   

The above theoretical explanations confirm the empirical benefits of the joint sparsity structure, as 

shown in CS applications with noisy MMV with different sensing matrices [15][16]. 

We have compared our sufficient conditions for noisy MMV with different sensing matrices with the 

other existing results [23] for noisy MMV with the same sensing matrix. For a low-level noise scenario 

with ,S K  we have shown that the number of measurements for a reliable support set reconstruction for 

noisy MMV with different sensing matrices is lesser than that for noisy MMV with the same sensing ma-

trix. Also, we have observed that noisy MMV with different sensing matrices enjoys the noise reduction 

effect for arbitrary jointly sparse vectors, whereas, this noise reduction exists in noisy MMV with the 

same sensing matrix, only if all the sparse vectors are identical. 

 

2.6. Appendices 

2.6.1. Appendix A: Lemmas 1 and 2 
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This section presents Lemmas 1 and 2, which give upper bounds of the probabilities of the failure 

events defined in (16) and (17), respectively. Also, for simplicity, we define 

  
 

 
 

2exp 1 .
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S M KS M K
p x x x

 
   

 
 (41) 

Lemma 1: For any positive ,  we have 
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where the function p is defined in (41), and 

 
 

1 2
: 0.

M
d
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 (43) 

Proof: From (16), we have 

      1 2Z Zc W W     (44) 

where Z  is defined in Lemma 3, and 

     21 , 1, 2.
i

iW S M K SM i       

Applying the Chernoff bound [54] to to (44) yields 
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where the equality is from Lemma 3, 1 0t   and  2 0,1 2 .t   

As each  ;i if t W  is convex, i it t at 
   1

; 0i if t W   yields the minimizer of  ; ,i if t W  where 

   1 12 1 , 1, 2.i it W S M K i       

Thus,    ; ;i i i if t W f t W  for each i. If 1 0,W   it is clear that  1Z 0W   because Z  is quadratic. 

Thus, we have 
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where  1p d  and 1d  are defined in (42) and (43), respectively. If 1 0W   then    1 1 2 2; ;f t W f t W   

because 

          1 1 2 2 1 1 1log ; log ; 2log 1 2log 1 0.f t W f t W S M K d d d            

Thus, 
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Finally, combining (46) and (47) leads to (42).  

Lemma 2: Let   and a matrix R
 be 
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 (48) 

where 
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2

,
2

: 0.s

s   x  (49) 

Consider any positive  such that 
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min0 1 K M     R  

where  min R  is the smallest eigenvalue of .R Then, we have 
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where the function p is defined in (41), 
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and  
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Proof: From (17), we have 

        1 2 1Z Z ZW W W       (54) 

where Z  is defined in Lemma 4, and 

    2 1 , 1,2.
i

iW S M K SM i       (55) 

Applying the Chernoff bound [54] to (54) yields for 0,t   
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 (56) 

where the equality is from Lemma 4 and the second inequality is due to that all the eigenvalues are 

positive. We then define a function    1: log ; .h t f t W  Then, we have 

 
          

22 2

min min2 1 2 0h t S M K t 


   R R  

which implies that h is convex with respect to t. It leads to that f in (56) is logarithmically convex. Thus 

t t  at 

   1

1; 0f t W   yields the minimizer of  1;f t W  where 

     1 1 1

min 12 0.t W S M K      R  

Substituting t  in (56) yields 
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 (57) 

where 

 min2,
d

 R
 is defined in (51) and p is defined in (41). 

Next, let  12 S M K    and 
 min2,

x d



R

 in the upper bound (57). Then, we have  

     1 exp 1 ,p x x x      
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where 
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exp 1 1 0
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and 

 
 min
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 R
 (59) 

Due to (58) and (59), we have 
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R R  

which shows that the upper bound in (57) is decreasing with respect to  min . R  Then, remind that the 

matrix in (48) is the covariance matrix of a multivariate Gaussian vector b in (68). Then for any incor-

rect support set, its smallest eigenvalue can be easily computed and lower bounded by 

  
 

2 2

min , min,
1,2, ,
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s S
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   R  (60) 

where 
2

min,x  is defined in (53) and  
 is defined in (52). Thus, for any incorrect support set 

,  we conclude that 
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which completes the proof. 

 

2.6.2. Appendix B: Lemmas 3 and 4 

First of all, we give the Scharf’s theorem [57] to compute the moment generating function of a 

quadratic random variable. We then make Lemmas 3 and 4 to give the moment generating functions of 

the random variables of 
c

 and  that were used in the proofs of Lemmas 1 and 2, respectively. 

Scharf's theorem [Page 64, [57]]: Let 

Nb  be a multivariate Gaussian vector with a mean m and a 

covariance R. Then, a random variable  
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Lemma 3: In (16), define a quadratic random variable 
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Proof: The orthogonal projection matrix is decomposed as 

    
T

s s s sQ F U D U  

where 

s
D  is a diagonal matrix, whose first M K  diagonals are ones and the remains are zeros, and  

s
U  

is a unitary matrix. Then, we have 
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where 

s
w  is a multivariate Gaussian vector with mean M0  and covariance .MI  Since the first M K  

diagonal elements of each diagonal matrix are ones, we have 
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which is quadratic, where  

      1 2
T

s s s sw w w M K   w  

and 

      1 2 .
T

T T T
S 

  
w w w w  (65) 

In (63), 

s
w  is determined by 

s
U  and .s

n  Since the elements of 

s
U  and 

s
n  are independent, 

i
w  and 

j
w  

are mutually independent for any 1 .i j S    The covariance matrix of w is an identity matrix. Thus, 

applying the Scharf’s theorem to Z  completes the proof. 

Lemma 4: In (17), for any ,  define a quadratic random variable 
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Then, we have 
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where R  is given in (48). 

Proof: Similar to the proof of Lemma 3, 
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where 

s
D  is a diagonal matrix, whose first M K  diagonals are ones and the remains are zeros, and 
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is a unitary matrix. Then, 
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where 

s
b  is a multivariate Gaussian vector with mean M0  and 
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    .s s s s
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 c n f  

Since the first M K  diagonal elements of each diagonal matrix are ones, we have 
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which is quadratic, where  

      1 2
T

s s s sb b b M K   b  

and 

      1 2 .
T

T T T
S 

  
b b b b  

In (68), 

s
b  is determined by ,s s

U n  and  : .s

u uf  Since the elements of ,s s
U n  and 

 :s

u uf  are independent, 
i

b  and 
j

b  are mutually independent for any 1 .i j S    As shown in 

(48), the covariance matrix of b is diagonal. Thus, applying the Scharf’s theorem to Z  completes the 

proof. 

 

 

2.6.3. Appendix C: Proofs of Theorems 1, 2, and 3 

Proof of Theorem 1: It is clear that K goes to infinity as N goes to infinity in the linear sparsity regime. 

Then, let M cK  where 1.c   From (42), we have 
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where 0A   due to (43). Thus, 
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implying that the probability that the correct support set is not  jointly typical with all the measurement 

vectors vanishes.Then, from (50), we have 
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where the last inequality is due to 

 exp log .
N Ne
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In (69), 0   for any t such that 
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If 

1

11 ,c S    then 0,   which yields 

    lim lim exp 0
N K
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implying that the probability that all incorrect support sets are  jointly typical with all the measurement 

vectors vanishes. Thus the failure probability defined in (18) converges to zero if M satisfies (19). 

Next, the remain is to derive (21) in the sublinear sparsity regime. Let log N

K
M K cK   where 1.c   

From, (42), we have 
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where 0A   due to (43). Thus, we have 

    1lim lim exp 2 log log 2 0c N

K
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implying that the probability that the correct support set is not  jointly typical with all the measurement 

vectors vanishes. Then, from (50), we have 
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where the last inequality is due to the bound in (70) and 0   for any t defined in (71). If 

1

2 ,c S   

then  0,   which yields 
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implying that the probability that all incorrect support sets are  jointly typical with all the measurement 

vectors vanishes. Thus, the failure probability defined in (18) converges to zero if M satisfies (21), 

which completes the proof. 

Proof of Theorem 2: From Lemma 1, we have 
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If 1,M K   we have 
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due to (43), which implies 1.   From Lemma 2, 
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Similarly, if 1,M K   we have 

     1log 2 log 1 0M K t t       (75) 

due to (71), which implies 1.   Thus, we conclude 
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for 1M K   which completes the proof. 
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Proof of Theorem 3: The mutual information in (34) is bounded by 
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where  h x  is the differential entropy of x, and  h x y  is the conditional entropy of x given y. Then, the 

last inequality is due to that the Gaussian distribution maximizes the differential entropy. The denomina-

tor in (34) is bounded by 
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for sufficiently large N. Then, we have 

 

 

   

 

 

min

min min
ˆ

1

min

ˆsup ,

ˆmin max ,

2 log 1 SNR log 2
1 .

log

x

x x

err

N
K

p

SM K

K



 



 

 

  
 

F
x

F
x x

x F

x x x F  (76) 

From (76), the failure probability is bounded away from zero by zero if (35) is satisfied, which com-

pletes the proof. 

 

2.6.4. Appendix D: Proofs of Corollaries 1, 2 and 3 

Proof of Corollary 1: From the inequality   2
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where t is defined in (71). Then, we have 

 
2

2

4
.

S St


  (78) 

From (71), 
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Combining (21), (78) and (79) leads to (23). This approach is used to get (24) using the following 

equality 

  1 2 1 log     (80) 

where  lim 0,1 2 ,K

N
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   which completes the proof. 

Proof of Corollary 2: Substituting 2 3   in (25), and rearranging the result with respect to t can yield, 

2 3 1t   where t is defined in (71). Then from (77), a simple computation yields that 
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which immediately yields that 
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Combining (21), (81) and (82) leads to (26). This approach is used to get (27) using (80), which 

completes the proof. 

Proof of Corollary 3: We assume that    and 
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Then, if the number of measurement vectors satisfies 
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(83) is achieved for small , and hence, a reliable support set reconstruction is possible. If ,   we 
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obtain inequalities similar to (83) and (84) by replacing   by ,  where 
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Combining (84) and (85) yields (28). 

Next, a simple computation yields that for any 1d  in (43), 
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where log   is given in (73). From (43), we see 1 minSNRd   that leads to 
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Also, for any t in (71), we have 
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where log   is given in(75). From (43), we see minSNRt   that leads to  

 
1

minlog SNR .   

Thus, the sufficient condition on S in (28) turns out to be a decreasing function with respect to  minSNR ,  

which completes the proof. 

 

2.6.5. Appendix E: Proofs of Propositions 1 and 2 

First of all, we introduce the exponential inequalities [56], and use them in the proofs of Propositions 1 

and 2. 

The exponential inequalities [56]: Let  
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be i.i.d. Gaussian variables with a zero mean and a unit variance. Then, let  
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and let 
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Then, the following inequalities hold for any positive x 
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Proof of Proposition 1: In the proof of Lemma 3, Z  is represented by 
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which is of the form of (86). Then, we have 
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Combining A with (88) gives 
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and combining B with (87) gives 

 
    2

1,exp

2 2Y SM Y S M K x x

p

     


 

where 1,expp  is defined in (38). It is readily seen that 1,exp ,p C  which leads to   1,exp2 .c p  

Next, from (42) and (38), we have 
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where 1 0d   is defined in (43). Then, we have 
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Thus, we conclude  
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which completes the proof. 

Proof of Proposition 2: In the proof of Lemma 4, Z
 is represented by 
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where ,s  is defined in (49) and  sg i  is Gaussian with a zero mean and a unit variance. Then, define 

a new random variable below 
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which is of the form of (86). Then, from (54), we have 
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where 2, ,expp
 is defined in (40), the last inequality is due to (88). Due to (39), A is negative. Thus the 

exponential inequality of (88) gives the upper bound 2, ,exp .p  

Next, from (50) and (40), we have 
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and 
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where  0,1t  is defined in (71) and the inequality is due to (60). Then, we have 
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For any  0,1 ,t  we have 
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which completes the proof. 
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Chapter 3: Fast Mixed Integer Quadratic Programming for 

Sparse Signal Estimation 

 

3.1. Introduction 

Compressed sensing [6] has attracted attention because it allows for the acquisition of signal samples at 

a rate lower than the Nyquist rate. The theory of compressed sensing is built under a sparsity assumption 

that an n-dimensional signal x can be sparsely represented using a few non-zero coefficients in a basis. 

This sparse signal is sampled to yield an m-dimensional measurement vector  

  b Fx n  

where n is a noise vector of size m × 1 and F is a sensing matrix of size m × n. Since ,m n  the problem 

of estimating x is ill-posed. However, the theory shows that x is reliably estimated by solving the l0-norm 

problem: 

 
21

0 2
min 2  

x
x b Fx  (90) 

where τ is a positive regularization value. In (90), the l0-norm function is non-convex and discontinuous. 

Indeed, (90) is known to be NP-hard. Instead of solving (90), researches aim to solve an l1-norm prob-

lem which can be formulated by relaxing the l0-norm function in (90) as follows: 

 
21

1 2
min 2 .  

x
x b Fx  (91) 

Candes [6] has proved that a solution to (91) is equivalent to a solution to (90) if F satisfies a re-

stricted isometry constant (RIC) condition. Many l1-norm-based methods have been proposed to solve 

(91). The earliest method is l1ls [58]. This method is based on an interior point technique and can estimate 

x from a small number of iterations. In each of iteration, l1ls solves a linear equation system expressed in a 

matrix-vector product form. The matrix in each system changes as the iteration passes. Thus, factorization 

methods such as the LU decomposition and the QR decomposition can be used to reduce the computa-

tions for solving this system. However, solving multiple linear equation systems can be still burdensome. 

This makes its computational cost too high for high-dimensional x. Then, gradient projection sparse re-

covery [59], homotopy [60], split-Bregman [61] and your algorithms for l1 (YALL1) [62] have been pro-
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posed to solve (91). These are first-order-type methods that do not require matrix-inversions in all itera-

tions. This implies that they are computationally tractable to estimate high-dimensional x. But, there are 

known problems on (91). First, the l1-norm function yields a biased estimation for large non-zero magni-

tudes, while the l0-norm function considers all non-zero magnitudes equally [63]. Second, if F does not 

satisfy the RIC condition, – either m is small or the elements of F are correlated – then a solution to (91) 

is sub-optimal [64]. 

In the literature, l0-norm-based methods such as iterative hard thresholding (IHT) [25], variants of IHT 

[26]–[28], and mean doubly augmented Lagrangian (MDAL) [31] have been proposed to solve (90). Zhu 

and Dong [28] have shown that their method is superior to homotopy [60]. Dong and Zhang [31] have 

shown that MDAL restores images with higher quality than those recovered by split-Bregman [61]. These 

results in [28], [31] suggest that more accurate sparse signal estimation is conducted using the l0-norm 

function rather than the l1-norm function. 

Recently, Bourguignon et al. [32] have proposed a novel approach to solve (90). This approach aims to 

find an estimate for x and the positions of the non-zero elements of x, i.e., the support set. From (90), 

they have made a mixed integer quadratic programming (MIQP) problem: 

  

21

2
0,1 ,

min 2

subject to

n n

T

n

M

 

 

 



u x

1 u b Fx

x u

 (92) 

where the binary vector u indicates the support set and M is a positive value. For (92), M can be known 

in practical contexts. For example, if x is an 8-bit greyscale image, M is set to be 255. Bertsimas et al. [33] 

have proposed methods to estimate upper bounds on M if both F and b are known. Bourguignon et al. [32] 

used CPLEX [34] to solve (92) and demonstrated that CPLEX is superior to IHT [xx] for sparse signal 

estimation. According to explanations in [32], this result is because CPLEX exhaustively searches for a 

whole feasible space to find the global solution to (92) while IHT finds a local solution to (90). 

CPLEX [34] is a commercial solver which can be used to solve MIQP problems. Then, CPLEX is im-

plemented based on a branch-and-cut method [66] that is a combination of a cutting plane method [67] 

with a branch-and-bound method [65]. As noted in [40], the branch-and-cut method has non-polynomial 

computational costs in the worst-case and can be troublesome to solve MIQP problems with large varia-

bles. This implies the computational intractability of using CPLEX in solving integer programming prob-
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lems with large variables. In 3.4, we empirically confirm this computational intractability. 

In this chapter, we aim to propose a fast method based on the alternating direction method (ADM) for 

solving (92). We analyze the computational cost per iteration of the proposed method, referred to as 

ADM-MIQP. According to this result, we can show that ADM-MIQP is a first-order-type method. We 

evaluate the quality of its solution using metrics defined as follows. 

First, we define support set error (SSE) as 

      1

1 1 1
ˆ ˆ, :

n

i
d k i i


 u u u u  (93) 

where û  is a solution to (92) and u is constructed from 

 

 

 

0 if 

1 if 

i i

i i

 

 

u

u
 

where  is the support set to be detected. Second, we define mean square error (MSE) as 

  
21

2 2
, :d n x x x x  (94) 

where x is an original signal and   x is an estimate of x. Then, we compare ADM-MIQP with both YALL1 

and MDAL in terms of SSE and MSE. We observe the following: 

 ADM-MIQP significantly surpasses both MDAL and YALL1 in terms of both MSE and SSE. 

 ADM-MIQP exhibits good estimation performance close to the performance of ORACLE that 

knows support set a priori. 

 ADM-MIQP is computationally tractable for solving (92) with the problem dimension up to the 

order of one million. 

 ADM-MIQP exhibits a computational cost given by  1.3n  in our simulations. 

The rest of this chapter is organized as follows. Section 3.2 gives a summary about ADM. Section 3.3 

elucidates the derivation and computational costs associated with ADM-MIQP. Also, Section 3.3 gives 

results of comparison between our proposed approach with that of [40] for solving our problem. Section 

3.4 gives simulation studies and shows the superiority of ADM-MIQP compared to other ADM-based 

methods [28], [62]. Section 3.5 gives conclusions of this paper. 

 

 

3.2. Alternating Direction Method (ADM) 
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A branch and bound method [65] finds the global solution to a MIQP problem. But, since this method 

has non-polynomial computational costs, it is computationally intractable for solving MIQP problems 

with large variables. We turn instead to ADM for solving the MIQP problem (92). In this sub-section, we 

introduce ADM and provide its recent results. 

It is well-known that ADM is a powerful technique for solving a large-scale convex problem. ADM in-

volves the following steps: i) ADM splits this problem into sub-problems and ii) solves alternatively these 

sub-problems until conditions are satisfied. ADM is then proven to find the global solution to this prob-

lem as the iteration continues [36], [37]. As the number of iterations approaches infinity, the solution gen-

erated by ADM converges to an optimal solution which satisfies the Karush-Kuhn-Tucker conditions to a 

convex problem. 

Recently, ADM has been empirically shown to be a powerful technique to find accurate solutions to in-

teger programming problems [38]–[40]. Yadav et al. [38] have used ADM to solve an image separation 

problem that can be modeled as a binary quadratic programming. Souto and Dinis [39] have then solved a 

signal decoding problem modeled as an integer quadratic programming with an equality constraint using 

ADM. Last, Takapoui et al. [40] have solved problems modeled as MIQPs with an equality constraint, 

and shown that ADM could be greatly faster than a commercial integer programming method. We are 

motivated to derive a computationally tractable and accurate method to solve (92) using ADM, inspired 

by these results in [38]–[40]. 

 

3.3. Sparse Signal Estimation via MIQP Problem 

The MIQP problem (92) has an inequality constraint and this constraint can be formulated into an 

equality constraint. Thus, we can use the approach of [40] to solve (92) by taking a further formulation. 

But, no explicit discussion on how this approach can be used to solve a MIQP problem which has an ine-

quality constraint was given in [40]. In Section 3.3.3, we derive an algorithm based on the approach of 

[40] for solving (92). We call it Takapoui’s Algorithm with Inequality Constraint (TAIC). We then com-

pare ADM-MIQP with TAIC with respect to the computational cost per iteration. We show that ADM-

MIQP requires much less computation per iteration than TAIC does. 
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3.3.1. Derivation of ADM-MIQP 

It is convenient to solve a single minimization problem rather than a joint minimization problem. To 

this end, we define 

 
 0,1

T nT T n    d x u
 

which is nonconvex. Then, (92) is reformulated into 

 1

2min 2 subject toT T
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 We define a nonnegative vector z. Then, 
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where  I z  is an indicator function of  2: ,n z z 0  i.e.,   0I z  for z  and  I z  for 

.z  

We apply ADM into (95) to obtain 
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 (96) 

where  1, ,T

t t t  q q A λ z  λ is the dual variable, and 0   is a penalty value. The sub-problem on d 

is an MIQP. Thus, solving this problem is difficult, but we separate it into a pair of problems in terms of x 

and u, respectively: 
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Since the sub-problem on x has a quadratic objective function, we have an analytic closed-form solu-

tion: 
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where the second equality is due to the Woodbury formula [xx] and  
1

: 2 .T

m


 D FF I  The sub-

problem on u is a binary quadratic programming. Since  ,T T

nu u 1 u we have 

 
  2

1 1,arg min 1: 2
T

t n tM n n   
u

u 1 q u
 

which has an analytic closed-form solution as follows: 
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where  2

1, .t tM n i   q The sub-problem on z is solved to yield a solution: 
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u x
z 0 λ

u x
 (99) 

where “max” operation is performed element-wise.  

In summary, we have formulated (95) from (92) by adding the non-negative vector and the indicator 

function. We then have applied ADM into (95) to produce the iterations given in (96). We have provided 

analytic solutions to these sub-problems. Then, we have summarized ADM-MIQP in Table 3.3.1. 

In [36], [37], it has been proved that for any positive penalty value ρ, ADM can find the global solution 

to a convex problem. The penalty value only affects the convergence speed, not the quality of the solution. 

Researchers have discussed how this penalty value can be chosen to improve the speed [36], [37]. How-

ever, our problem (92) is non-convex due to the non-convex variable d. In the literature, there are no 

convergence studies for non-convex problems with non-convex variables, to the best of our knowledge. It 

is difficult to find convergence conditions for the penalty value in the problem (92) that is being solved 

using ADM-MIQP. Afonso et al. [68] have solved (90) using their own algorithm derived based on 

ADM. They have set their penalty value as 10  in their simulations. Ghadimi et al. [36] have made a 

tool for setting the penalty value for a strictly convex problem with an inequality constraint. This tool 

takes a matrix given in the constraint as its input. By inspired by these works, we have relied upon exten-

sive simulations with various penalty values given by a combination of τ and M, i.e., 

 
 2 2, ,..., ,M M M   

 

where M is the element of our matrix A. Based on results of these simulations, we set the penalty value as  

 
M 
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and use this value in our simulations. In our simulations, we empirically observe that ADM-MIQP with 

this penalty value can be used to solve (3) for estimating a sparse signal with the accuracy of  

 

2

2

2

2





x x

x
 

where x is an original sparse signal,   x is the estimated sparse signal and ε is sufficiently small.  

Any warm-start techniques can be applied into ADM-MIQP for improving its performance. We run 

ADM-MIQP multiple times with different initial variables randomly generated. Then, we have different 

solutions, i.e., 

 
 1 2, , , L
d d d

 

where L is the number of runs of ADM-MIQP. We then select a solution among these multiple solutions 

via 
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This selected solution is at least guaranteed to be better than the other unselected solutions in terms of the 
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Step 2: for t = 0, 1, 2, … maxIter 

Step 3: update 
1tx  by (97). 

Step 4: update 
1tu  by (98). 

Step 5: update 
1tz  by (99). 

Step 6: update 1 1 1 .
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Table 3.3.1: The pseudo codes of ADM-MIQP 
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cost function. 

 

3.3.2. Computation Costs per Iteration 

We aim to show that ADM-MIQP is a first-order-type method. The costs of updating z and u are both 

 .n  Then, the cost of updating x is  3 ,mn m   due to both the matrix inversion and the matrix-

vector products. If D is stored, then this cost can be reduced to   .mn  

Next, in applications such as a single pixel camera [69], [70], a lensless camera, [71], [72] for an image 

compression [73], a sensing matrix is constructed by randomly taking m rows from an orthogonal matrix. 

Then, D becomes a constant value  
1

1 2
.


As a result, the update on x is given as 

         
1

1 1, 1,1 2 1: 1: 2 .T

t t tn n 


   x F Fq q  (100) 

Indeed, if F is a partial discrete cosine transform (DCT) matrix, all matrix-vector products in (100) can 

be performed by the fast Fourier transform operation. That is, the update cost for x can be significantly 

reduced to  log .n n  

 

3.3.3. Comparison with Work [40] 

We now derive the algorithm called TAIC (Takapoui’s Algorithm with Inequality Constraint) by follow-

ing the approach of [40] for solving the MIQP problem (92) which only has the inequality constraint. As 

shown in the Section 3.3.1, it is noted that (92) is equal to (95). Then, we define the symbols as follows: 
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where z is a slack variable. With these symbols, we reformulate (95) into an MIQP problem with an 

equality constraint 
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d

d Qd q d Ad 0 d  (101) 
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where   2: 0,1
nn n

    is a non-convex set. Similar to (95), we also reformulate (101) into a 

standard form of ADM as follows: 
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where  I z  is an indicator function of  and 2 4n nO is the 2n × 4n matrix of zeros.  

Then, TAIC is implemented via 
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where λ  is the dual variable, ρ > 0 is a penalty value, and 
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It is noted that (95) is formed by adding one slack variable to (92). But, (102) is formed by adding 

two slack variables into (92). Thus, there is an intuition that TAIC requires more computational costs per 

iteration than ADM-MIQP does. 

To investigate the validation of our intuition, we restrict our attentions to the sub-problem on d  in 

(103) that can be simplified to 

 1

1 arg min 2 T T T

t t
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The sub-problem on d in (96) has been decomposed into a pair of problems on x and u, respectively. 

But, D is a non-diagonal matrix that implies that the sub-problem in (104) cannot be decomposed. We 

then consider an analytic closed form solution to (104) as follows: 

 
1

1 .t t



  d D h  (105) 

For saving computational costs, the inverse matrix in (105) can be stored. Even with this stored matrix, 
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TAIC takes  216n computational cost per iteration for conducting (105) due to the matrix-vector 

product. This cost can be negligible for a small value of n. For a large value of n, it cannot be ignored. On 

the other hands, ADM-MIQP takes  mn  computational cost per iteration. It can be seen that TAIC 

takes more computational costs per iteration for updating the other variables than ADM-MIQP does. Thus, 

it can be concluded that the cost of ADM-MIQP is greatly less than that of TAIC. 

 

3.4. Simulations Studies 

We conduct simulations to show that ADM-MIQP gives a solution to (92). We compare ADM-MIQP 

with MDAL and YALL1. The reasons for selecting both MDAL and YALL1 as comparative approaches 

are a) these methods are also based on ADM and b) are known to be computationally tractable. We define 

a Gaussian sparse vector ensemble and a Gaussian noise vector ensemble as follows. 

Definition 1: The Gaussian sparse vector ensemble is an ensemble of n-dimensional k-sparse vectors, 

where each vector x is generated as follows: a) the positions of the non-zero values of x are randomly 

selected, b) the non-zero values are taken from the standard normal distribution and c) x is normalized to 

produce the l2-norm for x unit. 

Definition 2: The Gaussian noise vector ensemble is an ensemble of m-dimensional noise vectors whose 

elements are independent and identically distributed Gaussian with zero mean and variance  

2 .  

We define the signal-to-noise ratio (SNR) as 

     2 2

10 2
SNR dB : 10log .m Fx  

We then set the parameters of ADM-MIQP, MDAL, and YALL1 as follows. The regularization value is 

set as 2logn   if  SNR dB is finite and 

410  if  SNR dB is infinite. The M value is set as 

   max .iM i x As we have stated in 3.3.1, our penalty value is set as .M  The penalty value of 

YALL1 is set as 
1

,m  b  used in [62]. But, MDAL with the penalty value used in [31] failed to yield 

an accurate solution in our simulation. We conducted extensive simulations to find the penalty value for 

MDAL. Thus, in our simulations, it was set as 10 .   We terminated these methods either when the 

number of iterations exceeded 2000 or when  

1 2

1 2

410
t t

t





 
x x

x
, as was done in [62], for YALL1, and when 
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1 2
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t t  
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b
, as in [31] for MDAL and when 
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410
t t
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d d

d
for ADM–MIQP. 

We kept in mind that a solution for x in (92) must satisfy a convex constraint 

 
  M i M   x x x

 

where i = 1,2, …, n. However, both YALL1 and MDAL are not designed to use this constraint. Therefore, 

we extended these methods to use the constraint for a fair comparison. Since the constraint is convex, this 

extension was easily carried out by adding the following codes: 

 
     min max , ,t ti i M M x x

 

where  t ix is the i
th

 element of an intermediate solution at the t
th

 iteration. We conduct all simulations 

using a computer with Intel (R) Core (TM) i7-3820 processor clocked at 3.6 GHz. The codes are in [74]. 

 

3.4.1. Convergence Behaviors of ADM-MIQP 

We remind that both SSE defined in (93) and MSE defined in (94) can be used to evaluate the quali-

ty of a solution given by ADM-MIQP. We use both of the metrics to study how this solution behaves. 

Since the elements of u are either 0 or 1, we have 
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 (106) 

where td is the t
th

 solution of the ADM-MIQP and d is a feasible solution to (92). Thus, if both the met-

rics are small, the l2-norm between the t
th

 solution and the d is also small. Based on this relation, we de-

fine the convergence of ADM-MIQP. 

Definition 3: A solution 

T
T T

t t t
   d x u of by ADM-MIQP is convergent to a point 

T
T T   d x u  to 

(92) if there exists an integer T > 0 such that for every positive ε1 and ε2, we then have  1 1, td u u and 

 2 2, td x x for all maxIter,T t  where maxIter is the maximum number of iteration. 
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Figure 3.4.1: It plots the average MSE of ADM-MIQP depending on the number of iterations. The prob-

lem dimension n, the number of measurements m and the sparsity level k are set to be 1024, 307 and 30, 

respectively 

 
Figure 3.4.2: It plots the average SSE of ADM-MIQP depending on the number of iterations. The prob-

lem dimension n, the number of measurements m and the sparsity level k are set to be 1024, 307 and 30, 

respectively 
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To show that ADM-MIQP can find a converged solution to the MIQP problem (92), the problem di-

mension n, the number of measurements m and the sparsity level k were set as 1024, 307 and 30, respec-

tively. Two values for  SNR dB  were considered: 35 and 45, respectively. We generated 1000 independ-

ent realizations of the set (F, x, n) where F was made by randomly taking 307 rows of the 1024 × 1024 

DCT matrix, x was taken from the Gaussian sparse vector ensemble, and n was taken from the Gaussian 

noise vector ensemble. We determined average values for both MSE defined in (94) and SSE defined in 

(93). We then plotted the results in both Figure 3.4.1 and Figure 3.4.2, respectively. 

For all the SNRs investigated, both MSE and SSE gradually decreased and were eventually saturated. 

For  SNR dB 45,  at the 250
th

 and 500
th 

iterations, MSEs were 3.5 × 1E
-5

 and 2.4 × 1E
-5

, respectively. 

Finally, MSE converged to 2 × 1E
-5

 after  310  iterations. This means that an estimate of x converges to 

an original sparse signal. Next, we considered SSE at  SNR dB 45.  At the 250
th
 and 500

th
 iterations, 

SSEs were 0.041 and 0.031, respectively. Eventually, SSE converged to 0.029 after   310  iterations. 

This suggests that the detected support set converges to an original support set. Due to (17), after   310

iterations, we observed 

 
 

2

2
10 c

t

  d d
 

where c ≈ 1. This observation shows the convergence of ADM-MIQP under the definition 3. 

 

3.4.2. Comparison Studies and Discussion 

Let : m n   be an under-sampling ratio and : k m   be an over-sampling ratio. The phase transition 

for a given method shows how accurately this method can estimate sparse signals in the   ,   plane 

with n. We conducted simulations to study the phase transitions in computations obtained by ADM-MIQP, 

MDAL and YALL1. The aims of this study include being aware of the overall performance of ADM-

MIQP and understanding which of these ADM-based methods, each of which solves different problems to 

estimate sparse signals, achieves the best performance for this sparse signal estimation. 

The problem dimension n was set as 1024. Then, a 15 × 15 uniformly spaced grid on the  ,  plane 
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was made for  , 0.15, 0.175, , 0.5 .   We made 1000 independent realizations of the set (F, x), 

where F was derived by randomly taking m rows of the 1024 × 1024 DCT matrix and x was taken from 

the Gaussian sparse vector ensemble. The estimate   x was considered to be successful if 
2

2

2

2

410 .
 

x x

x
 

In Figure 3.4.3, we illustrated the phase transitions for all these methods. The solid line represents a 99% 

probability of success. That is, for points lying in the graphical area below this line, there was at least 99% 

probability of success in problem solving. The area beneath the dashed-line then represents a 50% proba-

bility of success.  

First, we fixed the over-sampling ratio. We then considered the under-sampling ratio to attain a 99% 

probability of success. The under-sampling ratio for ADM-MIQP was found to be the smallest. As an ex-

 

Figure 3.4.3: It plots the empirical phase transitions of the ADM-based methods such as ADM-MIQP, 

MDAL and YALL1, respectively 
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ample, for a fixed 0.25,   we observed that the under-sampling ratios of ADM-MIQP, MDAL, and 

YALL1 were 0.25, 0.275, and 0.325, respectively. The under-sampling ratio was proportional to m be-

cause n was fixed. This implies that ADM-MIQP requires the smallest value of m for sparse signal esti-

mation, when compared with the other methods. 

Second, we fixed the under-sampling ratio and considered the over-sampling ratio to achieve a 99% 

probability of success. We observed that for ADM-MIQP, the over-sampling ratio was the largest. For a 

fixed 0.3,   the over-sampling ratios of ADM-MIQP, MDAL and YALL1 were 0.325, 0.25, and 0.225, 

respectively. The over-sampling ratio was proportional to k for a fixed under-sampling ratio. This shows 

that ADM-MIQP can estimate x with the higher value of k in which the other methods cannot. 

Next, we conducted simulations to study the performance of all these methods by varying k for a fixed 

n and m under noisy cases. To this end,  SNR dB ,  n and m were set as 35, 1024, and 307, respectively 

and k was varied between 30 and 100. We generated 1000 independent realizations of the set  , ,F x n  in 

which F, x, and n were obtained through the manner discussed in Section 3.4.1. Then, we obtained the 

average MSE for each method and plotted these values in Figure 3.4.4 

For any k, ADM-MIQP can achieve the lowest MSE when compared with MDAL and YALL1. This 

means that ADM-MIQP can more accurately estimate x than the other methods can. The MSE gap be-

tween ADM-MIQP and ORACLE is small. At 40,k   as an example, we see that MSEs of ADM- MIQP 

and ORACLE are 7 × 1E
-6

 and 4 × 1E
-6

, respectively. This suggests that ADM-MIQP can achieve a per-

formance close to that achieved by ORACLE. 

Since both MDAL and YALL1 are originally designed to find an estimate of x, not the support set, we 

needed to construct the support set based on the estimate x  in order to measure SSEs for these methods. 

For this purpose, we set a threshold value 

 
 0.8min i i  x

 

and constructed the support set û  by 

 

   

   

ˆ 0 if ,

ˆ 1 if .

i i

i i





 

 

u x
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Figure 3.4.4: It plots the average MSEs of ADM-MIQP, MDAL, YALL1 and ORACLE depending on the 

sparsity level k. The problem dimension n, the number of measurements m and SNR [dB] are set to be 

1024, 307 and 35, respectively 

 

 
Figure 3.4.5: It plots the average SSEs of ADM-MIQP, MDAL and YALL1 depending on the sparsity 

level k. The problem dimension n, the number of measurements m and SNR [dB] are set to be 1024, 307 

and 35, respectively 
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Under the same conditions used in the experiment depicted in Figure 3.4.4, we independently generated 

1000 realizations of the set  , , .F x n  We then determined the average SSE for each of the methods and 

plotted the results in Figure 3.4.5. As with MSE, for any k, ADM-MIQP was found to achieve the lowest 

SSE. As an example, at 80,k   SSEs of ADM-MIQP, MDAL, and YALL1 were 0.04, 0.14, and 0.26, re-

spectively. This means that ADM-MIQP can more accurately detect the support set than the other meth-

ods can. Next, at 60,k   we counted the number of events for which    
1 1

ˆ 6,
n

i
i i


  u u i.e., for 

which the support set error could occur within 10%. The results for ADM-MIQP, MDAL, and YALL1 

were 962, 227, and 349 events respectively. This suggests that ADM-MIQP surpasses the other methods. 

Thus far, we have shown that ADM-MIQP is superior to other ADM-based methods in terms of MSE 

and SSE. There are multiple reasons for why this is the case. 

First, ADM-MIQP is designed to solve (92). The binary vector u in (92) indicates the support set and 

T

n1 u  counts the number of ones in u. This means that ADM-MIQP aims to find a solution that both the 

cardinality of the support set and the data-fidelity are jointly minimized. Minimizing the cardinality of the 

support set is a characteristic of l0-norm based methods. This is the reason for the superiority of our meth-

od over YALL1. 

Second, Dong and Zhang [31] have empirically reported that MDAL finds a local solution to the l0-

norm problem. By contrast, methods based on ADM tend to find the global solution to a MIQP problem, 

as reported in [38]–[40]. Then, as reported in [32], CPLEX is capable of finding the global solution to 

(92). To understand whether ADM-MIQP finds the global solution or not, we compared the solution of 

ADM-MIQP and that of CPLEX. We independently made 100 realizations of the set  ,F x  by assuming 

that n, m, and k were 200, 80, and 10 respectively, where F was a partial orthogonal sensing matrix and x 

was taken from the Gaussian sparse vector ensemble. We determined the average of the objective function 

 
21

2
2T

n  1 u b Fx
 

for each method, as well as the average for normalized MSE, 

 
2 2

C A C2 2
x x x

 

where Ax is an estimate of x obtained by ADM-MIQP and Cx  is an estimate of x obtained by CPLEX. 

The value of the objective function of CPLEX, and that of ADM-MIQP, were 0.0099 and 0.0094, respec-
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tively, and the normalized MSE was 0.0033. The gap between these values and the normalized MSE were 

both small. This indicates that ADM-MIQP indeed finds the global solution to (92). This makes ADM-

MIQP a superior approach to MDAL. 

We observed that ADM-MIQP is computationally tractable for solving (92) up to the problem dimen-

sion n of the order of one million. To this end,  SNR dB was set as 45 and n was varied from 1024 to 

1048576. For a fixed n, we altered m and k to 0.3m n    and 0.3 .k m    The number of iterations was 

set as 1000. At each point   , , , SNR dB ,n m k we generated 500 independent realizations of the set 

 , , ,F x n where F, x, and n are obtained by the approach given in Section 3.4.1.We determined the aver-

age running time for each method and plotted the results in Figure 3.4.6. 

In Figure 3.4.6, the average running times for each method grow linearly with n. We calculated the or-

der of the average running times for ADM-MIQP, MDAL and YALL1 with respect to n. The orders are 

roughly  1.3 ,n   1.3 ,n  and  1.13n  respectively.  

These orders show that ADM-MIQP has polynomial computation costs, leading to that ADM-MIQP is 

still computationally tractable for solving (92) with the large problem dimension. Finally, YALL1 was 

found to be a faster method than ADM-MIQP. This is because the l1-norm problem (91), solved by 

YALL1, is easier to solve than (92). Despite this, if the running time for ADM-MIQP is acceptable, 

ADM-MIQP gains significant improvements on sparse signal estimation. 

We conducted simulations to compare ADM-MIQP with CPLEX in terms of the running time. MaxIter 

was set as 1000.  SNR dB was set as 45 and n was varied from 128 to 224. Both m and k were altered to 

0.3m n     and 0.2 .k m     At each point, we made 50 independent realizations of the set  , , ,F x n  

where x and n are obtained by the approach given in Section 3.4.1 and F is a partial orthogonal matrix.  

In Figure 3.4.7, the average running time of CPLEX rapidly grows with n. Even n was roughly doubled, 

the time rapidly increased. At n = 128 and n = 224, the times are 6.7 secs and 2113 secs, respectively. This 

observation can be in accordance with the statement in Section 3.1 that CPLEX has the computational 

intractability in solving (92) with large variables. On the other hands, the average running time of ADM-

MIQP does not rapidly grow with n. This observation shows that ADM-MIQP is faster than CPLEX. 
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Figure 3.4.6: It plots the average running times of ADM-MIQP, MDAL, YALL1 and CPLEX depending 

on the problem dimension n with 0.3 ,m n    0.3k m    and SNR [dB] = 45. ADM-MIQP, MDAL and 

YALL1 have the polynomial computational order 

 

 

Figure 3.4.7: It plots the average running times of ADM-MIQP and CPLEX depending on the problem 

dimension n with 0.3 ,m n    0.2k m    and SNR [dB] = 45. This figure shows that ADM-MIQP is 

significantly faster than CPLEX 
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Figure 3.4.8: The original grayscale images of size 512 × 512 are shown in the first row. The images 

recovered by ADM-MIQP are shown in the second row. The images recovered by MDAL are shown in 

the third row. Then, the PSNR value of each recovered image is averaged 10 trials at  0.15m n     and 

0.05k n     

 

Figure 3.4.9: The images are corresponding to the part of the original and each recovered airplane imag-

es 
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3.4.3. An Image Recovery Example 

We conducted an image recovery experiment to demonstrate the successful application of ADM-MIQP. 

For this study, the discrete wavelet transform was applied onto each image. The k largest magnitude val-

ues of the transformed image were retained. For each image, k non-zero values were stacked to form a 

sparse vector, to be compressed to get an m-dimensional measurement vector using a partial DCT matrix. 

Both MDAL and ADM-MIQP were used to recover the image. To evaluate the qualities of the recovered 

images, we used the following peak-signal-to-noise ratio (PSNR): 

    22

10 2
PSNR dB : 10log 255 ,n  x x  (107) 

where x is an original image and x is the recovered image. 

In Figure 3.4.8, we illustrate the original greyscale images of size 512 × 512 with a problem dimension 

n = 262144. We have also showed the images recovered by each method and their PSNRs. These PSNR 

values were the averages of results from 10 trials where 0.15m n     and 0.05 .k n     

It is immediately observed that ADM-MIQP recovers images with higher quality than MDAL in terms 

of PSNR. ADM-MIQP then preserves the detailed information in the original images. For example, let us 

consider the text part “US AIR Force” of the recovered airplane image. As shown in Figure 3.4.9, we 

clearly see this text in (b), recovered by ADM-MIQP, we cannot make out it in (c), recovered by MDAL. 

This result shows that ADM-MIQP surpasses MDAL in this image recovery example. 

 

3.5. Conclusion 

We proposed a fast method referred to as ADM-MIQP to solve the mixed integer quadratic program-

ming problem (92) formulated in [32] from the l0-norm problem (90). We derived ADM-MIQP using 

the alternating direction method, which has been recently used to solve integer programming problems in 

[38]–[40]. We then showed that ADM-MIQP is a first-order-type method. That is, matrix-vector products 

are only used to implement ADM-MIQP. We selected MDAL [31] and YALL1 [62] as competitors to 

ADM-MIQP because these methods are based on ADM to solve the l0-norm and the l1-norm problems, 

respectively. We compared ADM-MIQP with ORACLE, an approach which involved a priori knowledge 

of the support set. We used both support set error (SSE) (93) and mean square error (MSE) (94) to 
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assess the quality of a solution obtained by each method.  

We empirically demonstrated that ADM-MIQP could achieve a significantly better performance than 

MDAL and YALL1 in terms of both SSE and MSE. We also showed that ADM-MIQP eventually 

achieved a performance close to that of ORACLE in terms of MSE. We showed that ADM-MIQP is com-

putationally tractable for solving (92) up to the order of one million in the problem dimension. We con-

firmed that the computational cost of ADM-MIQP is  1.3n  in our simulations. We concluded that 

ADM-MIQP is efficient in finding an accurate solution to (92) when the problem dimension n is large. 

 The next step is to conduct convergence analysis for ADM-MIQP. Specifically, it will be interesting to 

prove that a solution of ADM-MIQP is convergent. Also, this work can be extended to determine the ap-

propriate penalty value that would guarantee the convergence of ADM-MIQP. 
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Chapter 4: Conclusions Remarks of this Dissertation 

In Chapter 1, the author began to introduce the compressed sensing (CS) [2][7] framework where high-

dimensional signals can be sampled and reconstructed at a rate below the Nyquist sampling rate using the 

sparsity structure. The author explained how the signal acquisition and reconstruction in this framework 

can be conducted. The author compared this framework with the conventional framework supported by 

the Nyquist-sampling rate. The aim of this comparison is to show that the CS framework can be used to 

remove an inefficient aspect of the conventional framework, in which the sampling and compression are 

separately conducted. The author introduced a problem of support set reconstruction in which it aims to 

reconstruct the support set of an original sparse signal from the knowledge of its corresponding measure-

ments. The author presented motivations to conduct both an information-theoretic work and a construc-

tion of a practical algorithm for a reliable support set reconstruction. 

In Chapter 2, the author began to review information-theoretic works [9]–[14], [22]–[24] that provide 

necessary and sufficient conditions for a reliable support set reconstruction under three different models 

called as noisy single measurement vector (SMV), noisy multiple measurement vectors (MMV) with the 

same sensing matrix [21] and noiseless MMV with different sensing matrices [17][18], respectively. Then, 

the author contributed to the signal processing and information theory community by conducting the in-

formation-theoretic work which firstly aims to give necessary and sufficient conditions for a reliable sup-

port set reconstruction under noisy MMV with the different sensing matrices. The author used these con-

ditions to theoretically confirm benefits, which have not been theoretically verified but only empirically 

reported in [15], [16]. Last, the author discussed relations between our works with [23] which considers 

noisy MMV with the same sensing matrix. 

In Chapter 3, the author began to review practical algorithms [25]–[28], [31], [58]–[62] to solve either 

a l0-norm minimization problem or a l1-norm minimization problem. The author showed recent results in 

the signal processing community, demonstrating that i) the l0-norm minimization problem can be recast as 

an mixed integer quadratic programming problem [32] and ii) an alternating direction method can be an 

useful technique for solving integer programming problems [38]–[40]. These results motivated the author 

to propose an algorithm to solve the l0-norm minimization problem. The author empirically verified the 

superiority of the proposed algorithm over other algorithms [28], [62] which solve either the l0-norm min-
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imization problem or the l1-norm minimization problem using the alternating direction method. 
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