Jensen's Inequality

Jensen's inequality is one of the fundamental tools very frequently used in information theory.

A function $f(x)$ is said to be convex over an interval (a, b), if for every $x_{1}, x_{2} \in(a, b)$ and $0.0 \leq \lambda \leq 1.0$,

$$
\begin{equation*}
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) . \tag{1.1}
\end{equation*}
$$

It is said strictly convex if the equality holds only if $\lambda=1.0$ or $\lambda=0.0$.
A function f is concave if $-f$ is convex.
Examples of convex functions include x^{2} and $|x|$.
Examples of concave functions include $\log (x), \sqrt{x}$ over $x \geq 0$.

