Primer on Probability/Random Variables

The 0th Module

Real World Experiments and Mathematical Abstraction

Experiments

- Measurement of voltage across a resistance
- Roll a die
* Three entities in the real world experiments
- The set of all possible outcomes
- Grouping of the outcomes into classes, called results
- The relative frequencies of occurrences of the results

The corresponding mathematical abstractions

- The sample space
- The set of events
- The probability measure assigned on each of these events

Fundamental Definitions in Set Theory

* A set is a collection of objects (elements).
- $A=\{\mathrm{v}: 0 \leq \mathrm{v} \leq 5$ volts $\}$
- $B_{1}=\{1,2,3,4\}, B_{2}=\{$ head, tail $\}$
* A subset C of A is another set whose elements are also elements of A .
- $\mathrm{C}=\{1,2\} \subset \mathrm{B}_{1}$
- We say C belongs to B_{1}
* Set operations: Union and Intersection
- $B_{1} \cup B_{2}=\{1,2,3,4$, head, tail $\}$
- $B_{1} \cap C=\{1,2\}$ (Sometimes, a shorthand notation, $B_{1} C$, is used)

The empty set or null set $\{\varnothing\}$ (or simply \varnothing) is the set having no elements.

Fundamental Definitions in Set Theory

* Two sets A and B are mutually exclusive or disjoint if they have no common elements.
$-\mathrm{A} \cap \mathrm{B}=\mathrm{AB}=\varnothing$
A partition U of a set S is a collection of mutually exclusive subsets A_{i} of S whose union equals S.
- $S=A_{1} \cup A_{2} \cup A_{3}$ and $A_{i} A_{j}=\varnothing$ for any $i, j \neq i$
* In the figure below, $\mathrm{U}=\left[\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}\right]$, and the subset $B=\left(A_{1} \cap B\right) \cup\left(A_{2} \cap B\right) \cup\left(A_{3} \cap B\right)$

Sample Spaces and Events

* A sample space Ω, which is called the certain event of a particular experiment, is the collection of all experimental outcomes (objects).
- An object in Ω is called a sample point; is usually denoted by ω.
* Subsets of a sample space is called events.
- Grouping of the outcomes into the subsets
- A set of sample points
$-A=\{\omega$: some condition(s) on ω is provided here $\}$, the event A is the set of all ω satisfying the condition(s) on ω.
- An event consisting of a single element is called an elementary event.

Complement of an Event

* We define a complement of an event A as the set of all outcomes of S which are not included in A.

We denote $A^{c}=S \backslash A$.

Examples of Sample Spaces and Events (Results)

Die experiment: $\Omega=\{1,2,3,4,5,6\}$

- $\mathrm{A}=\{\omega$: odd $\}=\{1,3,5\}$
$-B=\{\omega$: even $\}=\{2,4,6\}$
*The closed interval of the real line:
$\Omega=[0,1]=\{\omega: 0 \leq \omega \leq 1\}$
$-\mathrm{A}=\{\omega: 0.2 \leq \omega \leq 0.7\}$
* All time functions $f(\mathrm{t}),-\infty<\mathrm{t}<\infty$
- An event may be a set of all time functions whose energy is less than 1.
A finite sample space of N elements \rightarrow There are 2^{N} possible subsets.

Trial

* A single performance of an experiment is called a trial.

In each trial we observe a single outcome $a_{\mathrm{i}} \in \mathrm{S}$.
We say an event A occurs during this trial when A contains a_{i}.

* From a single trial, multiple events can occur.

Roll a die: $\Omega=\{1,2,3,4,5,6\}$.

- Now, suppose after a trial, an outcome " 1 " is observed.
- Then, the events $\{1\},\{1,3,5\},\{1,3\}$, and all the rest $2^{5}-3$ events that contain " 1 " as an element, it can be said, have occurred.

On the Occurrence of Events In a Trial

We say an event $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ has occurred in a trial, if any one element of the set, namely, a_{1}, a_{2}, or a_{3}, was the outcome of the trial.

* The event Ω occurs in every trial.

Probability Measure

An assignment of a real number from the interval $[0,1]$ to the events defined on Ω.

- Ex) Fair die: All faces occur equally likely with probability 1/6.
- Ex-2) Unfair die: face-1 event occurs with probability $1 / 3$, the rest 5 faces with $2 / 15$.
- Ex-3)You can create and use your own rule which suits your needs the most (your betting rule in Gambling for example).
* Probability measure $\mathrm{P}(\mathrm{A})$ is assigned to a field E of subsets (events) of the sample space Ω.
$\mathrm{P}: \mathrm{E} \rightarrow[0,1]$

Relative Frequency vs. Probability Measure

The assignment of probability measure to an event $\mathrm{A}, \mathrm{P}(\mathrm{A})$, may be done in terms of relative frequency of occurrences in N independent trials

$$
\mathrm{P}(\mathrm{~A})=\lim _{n \rightarrow \infty} n_{\mathrm{A}} / N
$$

where n_{A} is the number of occurrence of event A in N trials
Ex-1) a coin is tossed 100 times.

- The event of head occurred 51 times.
- Then, $\mathrm{P}(\mathrm{A})=51 / 100$
* Ex-2) An experienced gambler watches the cards played, and updates his table of probability measures assigned only on the events of his interests and makes bets accordingly

Axiomatic Definition of Probability

* The assignment of probability to events should follow the three fundamental rules (Kolmogoroff's axioms)
- $1.0 \leq \mathrm{P}(\mathrm{A}) \leq 1$
(The frequency of an event)

2. $\mathrm{P}(\Omega)=1$ (In every trial there is an outcome)
3. If $\mathrm{A} \cap \mathrm{B}=\varnothing$, then $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$

- Die: frequency $(1$ or 2$)=$ frequency $(1)+$ frequency (2),

$$
\{1\} \cap\{2\}=\varnothing
$$

* In the theory of probability, all conclusions are direct or indirect consequences of these three axioms.
*These conclusions allow us to predict -- by calculation - the probability of occurrence of observable(or wanting-to-observe) events in real world experiments.
* Reference: Web-site: http://www.kolmogorov.com/Kolmogorov.html

Examples

* A coin toss experiment: $S=\{h, t\}$

Events are the four subsets of $S,\{\varnothing\},\{\mathrm{t}\},\{\mathrm{h}\},\{\mathrm{h}, \mathrm{t}\}$.

- It forms a sigma field.
* A sigma field is a collection of sets which is closed under the union and the complement operations.
* A complement of $\{\mathrm{t}\}$ is $\{\mathrm{h}\}$ in this example.

We will use superscript c to denote complement, i.e., $\{t\}^{\text {c }}$
$=\{h\}$ and $S^{c}=\{\varnothing\}$.
We may assign $\mathrm{P}\{\mathrm{t}\}=p$ and $\mathrm{P}\{\mathrm{h}\}=q$, i.e., $p+q=1$.

Coin Toss Three Times Experiment (1)

* $\mathrm{S}=\{\mathrm{hhh}, \mathrm{hht}$, hth, htt, ttt, tth, tht, thh $\}$.
* Assume a fair coin; then head/tail occurs with equal prob.
* First, consider the naive case such that all 2^{8} possible events are of interest, and then the probability assignment is trivial.
Ex) The probability of an event $\{$ hht, hhh $\}$ is
$-\mathrm{P}\{$ hht, hhh$\}=\mathrm{P}\{$ hht $\}+\mathrm{P}\{h h h\}=2 / 8$.

Coin Toss Three Times Experiment (2)

* Now, consider a non trivial case:
- Suppose we are interested in the occurrence of an event A
$=\{h t h$, tht $\}$ only.
* Then, we assign probability to only those events in the sigma field formed by A, i.e., $\left\{A, A^{c},\{\varnothing\}, S\right\}$.
Thus, assign $\mathrm{P}(\mathrm{A})=1 / 4$ (The coin is a fair coin).
We note that the probability measure satisfies all the conditions of the Kolmogoroff's axioms.

Conditional Probability

Given any two events A and B, the conditional probability $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ of an event A is defined as

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B}):=\mathrm{P}(\mathrm{AB}) / \mathrm{P}(\mathrm{~B})
$$

whenever $P(B) \neq 0$.
$\mathrm{P}(\mathrm{A} \mid \mathrm{A})=1$

* In the Coin-Toss Three Times experiment, let $\mathrm{A}=\{\mathrm{hhh}\}$ and $B=\{$ a head in the first toss $\}=\{$ hhh, hht, hth, htt $\}$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=(1 / 8) /(1 / 2)=1 / 4$.

Probability of Joint Event

Notation: $\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

* We refer $\mathrm{P}(\mathrm{A}, \mathrm{B})$ as the probability of a "joint event A and B."

Probability of Joint Event

* $\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})$

$$
=\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A})
$$

* A box contains three white balls, $\mathrm{w}_{1}, \mathrm{w}_{2}$, and w_{3} and two red balls r_{1} and r_{2}. We remove two balls in succession. What is the probability that the first removed is white and the second is red?

Independence

If $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A})$ or $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B})$, the two events A and B are, said to be, (statistically) independent with each other.
Coin Toss Twice:
$-\Omega=\{\mathrm{hh}, \mathrm{ht}, \mathrm{th}, \mathrm{tt}\}$

- Suppose we use numbers a and b in $[0,1]$ with $a+b=1$ in the following manner:
$-\mathrm{P}\{\mathrm{hh}\}=a^{2}, \mathrm{P}\{\mathrm{ht}\}=\mathrm{P}\{\mathrm{th}\}=a b, \mathrm{P}\{\mathrm{tt}\}=b^{2}$
- Note that the assignment satisfies the axioms: $a^{2}+2 a b+b^{2}=(a+b)^{2}$ = 1
- Now, define two events $A=\{$ head at the first toss $\}$ and $B=\{$ head at the second toss $\}$
- Note $\mathrm{P}(\mathrm{A})=a a+a b=a$ and $\mathrm{P}(\mathrm{B})=b a+a a=a$
$-\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}\{\mathrm{hh}\}=a^{2}=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$
- Then, we note A and B are mutually independent.

Theorem of Total Probability (Very Important)

If $\mathrm{U}=\left[\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right]$ is a partition of Ω and B is an arbitrary event, then

$$
\begin{aligned}
\mathrm{P}(\mathrm{~B}) & =\mathrm{P}\left(\mathrm{~B}, \mathrm{~A}_{1}\right)+\mathrm{P}\left(\mathrm{~B}, \mathrm{~A}_{2}\right)+\mathrm{P}\left(\mathrm{~B}, \mathrm{~A}_{3}\right)+\mathrm{P}\left(\mathrm{~B}, \mathrm{~A}_{4}\right) \\
& =\mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{1}\right) \mathrm{P}\left(\mathrm{~A}_{1}\right)+\mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{2}\right) \mathrm{P}\left(\mathrm{~A}_{2}\right)+\mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{3}\right) \mathrm{P}\left(\mathrm{~A}_{3}\right)+\mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}_{4}\right) \mathrm{P}\left(\mathrm{~A}_{4}\right)
\end{aligned}
$$

Bayes' Theorem [Very Important]

*From the results of the conditional probability and the total probability theorem, we could easily get the following,

$$
\begin{aligned}
P\left(A_{i} \mid B\right) & =\frac{P\left(A_{i}, B\right)}{P(B)} \\
& =\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{k=1}^{n} P\left(B \mid A_{k}\right) P\left(A_{k}\right)}
\end{aligned}
$$

Examples of Bayes' Theorem

* Box- 1 contains a white balls and b black balls. Box- 2 contains c white balls and d black balls. One ball is drawn from Box- 1 and inserted into Box-2. Then, a ball is drawn from Box-2.
What is the probability that a ball drawn from Box-2 is white?
*. What is the probability that the first draw from Box-1 was black, given that a white ball was obtained at the second draw from Box-2

Permutation/Combination

Consider a set of N distinct objects
Permutation: The total number of distinctive arrangements (each in an ordered sequence) of N distinct objects is

$$
N!
$$

* The total number of distinctive arrangements when taking K objects out of N distinct objects is

$$
N(N-1)(N-2) \ldots(N-K+1)=N!/(N-K)!
$$

Combination: The total number of ways to select K objects out of N distinct objects is

$$
\binom{N}{K}=\frac{N!}{(N-K)!K!}
$$

Bernoulli Trials

* Observe the occurrence of an event A in each trial
*The event A occurs with $P(A)=p$ and $P\left(A^{c}\right)=1-p=q$
* Find the probability of a compound event that there are k occurrences of event A in N trials
* None in $N \ldots(1-\mathrm{p})^{\mathrm{N}}$
* One in $N \ldots N \mathrm{p}(1-\mathrm{p})^{\mathrm{N}-1}$

Two in $N \ldots\binom{N}{2} p^{2}(1-p)^{N-2}$

* In general,

$$
\begin{array}{r}
P\{\mathrm{~A} \text { occurs } \mathrm{k} \text { times in } \mathrm{N} \text { trials }\} \\
\\
=\binom{N}{k} p^{k}(1-p)^{N-k}
\end{array}
$$

Random Variable and Processes

* A signal is a function of time
ex) $y(t)=\sin \left(2 \pi f_{c} t\right)$, this is a deterministic signal
* A random signal: the value of the signal at a fixed time t is a random variable

$$
\text { ex) } \mathrm{y}(t)=\sin \left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}+\theta\right), 0 \leq t \leq \mathrm{T}
$$ where θ is +180 degree with probability $1 / 2$ or -180 degree with prob. $1 / 2$

A random process $\mathrm{y}(t)$ is a collection of different random variables at each time t

- Stochastic processes

Random Variable

* A function X: $\Omega \rightarrow \mathrm{R} \quad$ (Domain is Ω, range is R)
- Given any ω, the function specifies a finite real number $\mathrm{X}(\omega)$

A random variable is a function whose domain is Ω, the range of this function is usually a real line (Real-valued random variable). Also, it has a probability distribution $\operatorname{Pr}\{X$ $<=x\}$ associated with it.

Motivation for RV

* It may be easier to deal with numbers, instead of abstract objects.

Events Described by Random Variables

* We know now that we assign probability to the field of subsets of Ω.
* Note that with the use of a random variable, the subsets of range space are associated with the subsets of Ω.
* Thus, events defined on the outcomes of experiments can be described by the subsets of the range space of the function.

Examples of Random Variables

* Roll a die experiment
- 6 outcomes, $\Omega=\left\{f_{1}, f_{2}, f_{3}, \ldots, f_{6}\right\}$
- We may define a random variable X_{1} which has the following rule

$$
\begin{aligned}
& X_{1}\left(f_{1}\right)=10, X_{1}\left(f_{2}\right)=20, X_{1}\left(f_{3}\right)=30, X_{1}\left(f_{4}\right)=40, X_{1}\left(f_{5}\right)=50, \text { and } \\
& X_{1}\left(f_{6}\right)=60
\end{aligned}
$$

- We may also define a random variable X_{2} which uses the following rule

$$
\begin{aligned}
& X_{2}\left(f_{1}\right)=-1, X_{2}\left(f_{2}\right)=-2, X_{2}\left(f_{3}\right)=-3, X_{2}\left(f_{4}\right)=+3, X_{2}\left(f_{5}\right)=+2, \ldots, \text { and } \\
& X_{2}\left(f_{6}\right)=+1
\end{aligned}
$$

- It's up to the designer to choose a map for convenience

Examples of Random Variables (2)

* According to the r.v.s X_{1} and X_{2}, we can say the following:

A subset $\left\{\omega: \mathrm{X}_{1}(\omega)=10,30,50\right\}$ is equivalent to the event $\left\{f_{1}, f_{3}, f_{5}\right\}=\{\omega$: odd $\}$.

* Similarly, a subset $\left\{\omega: X_{2}(\omega)=-1,-2\right\}$ is equivalent to the event $\left\{\mathrm{f}_{1}, \mathrm{f}_{2}\right\}$.
* Thus, we can talk about assigning a probability measure on the events described by random variables, in exactly the same way we do with the events of Ω.

Distribution Function

- Suppose the probability measure defined on the die experiment was

$$
\mathrm{P}\left(\mathrm{f}_{\mathrm{k}}\right)=1 / 6 \text { for all } \mathrm{k}=1,2, . ., 6
$$

* Then, correspondingly we could have the probability measure defined on the random variables X_{1} and X_{2}
* For X_{1}, we have

$$
\mathrm{P}\left(\mathrm{X}_{1}=10\right)=1 / 6, \mathrm{P}\left(\mathrm{X}_{1}=20\right)=1 / 6, \ldots
$$

* For X_{2}, we have

$$
\mathrm{P}\left(\mathrm{X}_{1}=-1\right)=1 / 6, \mathrm{P}\left(\mathrm{X}_{2}=-2\right)=1 / 6, \mathrm{P}\left(\mathrm{X}_{2}=-3\right)=1 / 6 \ldots
$$

* Probability assignment is easy with finite and countable sample space.

Distribution Function (2)

* We use a cumulative distribution function to deal with an infinite uncountable sample space.
- For example, $\mathrm{S}=[0,1]$.
* The probability is assigned on the intervals of interest.
- A collection of intervals, say events, is of interest.
- A sigma field can be formed for the collection of intervals.
- Distribution function $F_{X}(x)$ of a random variable X is defined as

$$
\mathrm{F}_{\mathrm{X}}(\mathrm{x}):=\mathrm{P}(\omega: \mathrm{X}(\omega) \leq \mathrm{x})
$$

- It is called the cumulative distribution function (CDF) of X.
* Examples) Find the distribution functions for random variable X_{1} and X_{2} that were defined in the roll-a-die experiment.

Distribution Function (3)

$\mathrm{F}_{\mathrm{X} 1}(\mathrm{x})=\mathrm{P}\left(\mathrm{X}_{1} \leq \mathrm{x}\right)$
Note that the function is right continuous

$\mathrm{F}_{\mathrm{X} 2}(\mathrm{x})=\mathrm{P}\left(\mathrm{X}_{2} \leq \mathrm{x}\right)$

Properties of Distribution Function F(x)

Non-decreasing function of x : For $\mathrm{x}_{2}>\mathrm{x}_{1}, \mathrm{~F}\left(\mathrm{x}_{2}\right) \geq \mathrm{F}\left(\mathrm{x}_{1}\right)$

* Continuous from the right.
$\lim _{\varepsilon \Downarrow 0} \mathrm{~F}(\mathrm{x}+\varepsilon)=\mathrm{F}(\mathrm{x})$,
* $\mathrm{F}(-\infty)=\mathrm{P}(\mathrm{X} \leq-\infty)=0$

F $\mathrm{F}(+\infty)=\mathrm{P}(\mathrm{X} \leq \infty)=1$
$0 \leq \mathrm{F}(\mathrm{x}) \leq 1$

Probability Density Function f(x)

$$
\begin{aligned}
& \mathrm{f}(\mathrm{a}):=\mathrm{dF}(\mathrm{x}) /\left.\mathrm{dx}\right|_{\mathrm{x}=\mathrm{a}} \\
& \mathrm{P}\{\mathrm{x}<\mathrm{X} \leq \mathrm{X}+\mathrm{dx}\}=\mathrm{P}\{\mathrm{X} \leq \mathrm{x}+\mathrm{dx}\}-\mathrm{P}\{\mathrm{X} \leq \mathrm{x}\}=\mathrm{f}(\mathrm{x}) \mathrm{dx} \\
& \xrightarrow[\mathrm{x} \mid \mathrm{X}_{\mathrm{x}+\mathrm{dx}}]{ }
\end{aligned}
$$

* Example of pdf of X_{1} :

$$
\mathrm{f}_{1}(\mathrm{x})=(1 / 6) \sum_{\mathrm{k}=1}{ }^{6} \delta(\mathrm{x}-10 \mathrm{k})
$$

Ensemble Averages (Expected Value)

* Ensemble Average E(X)
* $1^{\text {st }}$ moment: $\mathrm{m}_{1}=\mathrm{E}\{\mathrm{X}\}:=\int_{=\infty}{ }^{\infty} \mathrm{xf}(\mathrm{x}) \mathrm{dx}$
* Note that this operator is a linear operator
* 2nd moment: $\mathrm{m}_{2}=\mathrm{E}\left\{\mathrm{X}^{2}\right\}=\int_{=\infty} \mathrm{D}^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
* $\operatorname{Var}(\mathrm{X})=\mathrm{E}\left\{(\mathrm{X}-\mathrm{E}\{\mathrm{X}\})^{2}\right\}=\mathrm{E}\left\{\left(\mathrm{X}-\mathrm{m}_{1}\right)^{2}\right\}$

$$
=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}\{\mathrm{X}\} \mathrm{m}_{1}-\mathrm{m}_{1} \mathrm{E}\{\mathrm{X}\}+\mathrm{E}\left(\mathrm{~m}_{1}^{2}\right)=\mathrm{m}_{2}-\mathrm{m}_{1}^{2}
$$

Ensemble Average of Product XY

X and Y are two random variables with $\operatorname{PDF}_{\mathrm{f}}(\mathrm{x})$ and $\mathrm{f}_{\mathrm{y}}(\mathrm{y})$
Then, $\mathrm{f}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})$ is the joint density function

* $\mathrm{E}\{\mathrm{XY}\}=\iint \mathrm{xy} \mathrm{f}_{\mathrm{xy}}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \mathrm{dy}$
- This is called the Correlation of the two random variables X and Y
- Note, what happens when X and Y are independent
- When $E\{X Y\}=E\{X\} E\{Y\}, X$ and Y are said to be mutually uncorrelated
- Note, if you have two indep. r.v.s, then they are uncorrelated, but not vice versa
* $\mathrm{E}\{(\mathrm{X}-\mathrm{E}(\mathrm{X}))(\mathrm{Y}-\mathrm{E}(\mathrm{Y}))\}$ is called the Covariance
- Note what happens when two are uncorrelated

Binomial Distribution

*Binomial PDF: prob. of obtaining k " 1 "s in N Bernoulli trials

$$
\mathrm{P}(\mathrm{k})=\binom{N}{k} p^{k}(1-p)^{N-k}
$$

By letting $\mathrm{x}=\mathrm{k}$, where $\mathrm{k}=0,1,2, \ldots, \mathrm{~N}$

$$
\mathrm{f}(\mathrm{x})=\sum_{\mathrm{k}=0}{ }^{\mathrm{N}} \mathrm{P}(\mathrm{k}) \delta(\mathrm{x}-\mathrm{k})
$$

- Binomial expansion: $(p+q)^{\mathrm{N}}=\sum_{k=0}{ }^{\mathrm{N}} \mathrm{P}(k)$

$$
=\sum_{\mathrm{k}=0} \mathrm{~N}\binom{N}{k} p^{k}(1-p)^{N-k}
$$

Random Processes (Stochastic Processes)

A random process can be described as a collection of random variables parameterized by time index t.
Continuous random process $\left\{\mathrm{x}_{\mathrm{t}}, t \in[0, \infty]\right\}$

- For a fixed $t, \mathrm{x}_{\mathrm{t}}$ is a random variable.

Discrete-time random process $\left\{\mathrm{x}_{\mathrm{k}}\right\}$, such that $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}$,

- Again, each x_{k} is a random variable.

Ex) Flipping a coin repeatedly $\mathrm{x}_{\mathrm{k}}=1$ with prob. p or -1 with prob. 1-p
(Ex2) $\mathrm{Z}_{\mathrm{n}}:=\sum_{\mathrm{k}=1}{ }^{\mathrm{n}} \mathrm{X}_{\mathrm{k}}$

Random Processes (Stochastic Processes)

Each is called a sample path.

Ensemble:

Collection of every possible sample paths

* Suppose we observe a path being taken by the random process Z_{n} in 8 steps.
* There are 2^{8} possible paths. This collection is called ensemble.
* In an observation, Z_{n} takes a particular path. It is called a sample path taken by the random process in an experiment.
* We may interpret it as an outcome of a random experiment: choosing one object out of 2^{8} objects.
* We use $\mathrm{Z}_{\mathrm{n}}(\omega)$ to denote a particular sample path.

Stationary Processes (Strict Sense)

* A random process $\mathrm{x}(t)$ is said to be stationary to the order N, if for any $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{N}$, $f_{\mathrm{x}}\left(\mathrm{x}\left(\mathrm{t}_{1}\right), \mathrm{x}\left(\mathrm{t}_{2}\right), \ldots, \mathrm{x}\left(\mathrm{t}_{\mathrm{N}}\right)\right)=f_{\mathrm{x}}\left(\mathrm{x}\left(\mathrm{t}_{1}+\mathrm{t}_{0}\right), \mathrm{x}\left(\mathrm{t}_{2}+\mathrm{t}_{0}\right), \ldots, \mathrm{x}\left(\mathrm{t}_{\mathrm{N}}+\mathrm{t}_{0}\right)\right)$ where t_{0} is any arbitrary real constant.
* That is, the joint distribution function is shift-invariant in time.
* If this holds for any N, then we say the process is strictly stationary.

Ergodic Random Process (Important)

* If time average' ensemble average, then ergodic.
* A random process is said to be ergodic if the time average of any sample path is equal to the ensemble average (expectation).
$-\mathrm{E}(\mathrm{x}(\mathrm{t}))=\lim _{\mathrm{T} \rightarrow \infty}(1 / \mathrm{T}) \int_{\mathrm{T}} \mathrm{x}(\mathrm{t}) \mathrm{dt} \quad$ (ergodic in mean)
$-\mathrm{E}\left(\mathrm{x}^{2}(\mathrm{t})\right)=\lim _{\mathrm{T} \rightarrow \infty}(1 / \mathrm{T}) \int_{\mathrm{T}} \mathrm{X}^{2}(\mathrm{t}) \mathrm{dt} \quad$ (ergodic in $2^{\text {nd }}$ moment)
- An ergodic process must be a stationary process (but not vice versa).
- If a process is non-stationary, then the ensemble average of the process changes over time.
- Not all stationary processes are ergodic.
- Select a coin from a box containing two coins with different weight in a box and throw them repeatedly.

Example of Ergodic Processes

*. Show that $\mathrm{x}(\mathrm{t})=\cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}+\theta\right)$ is ergodic in mean and $2^{\text {nd }}$ moment, where θ is uniformly distributed over $[0,2 \pi]$.
\& $E(x(t))=(1 / 2 \pi) \int_{0}^{2 \pi} \cos \left(2 \pi f_{0} t+\theta\right) d \theta$

$$
\begin{aligned}
& =\left.(1 / 2 \pi) \sin \left(2 \pi f_{0} t+\theta\right)\right|_{0} ^{2 \pi} \\
& =0
\end{aligned}
$$

- $E\left(x^{2}(t)\right)=(1 / 2 \pi) \int_{0}^{2 \pi} \cos ^{2}\left(2 \pi f_{0} t+\theta\right) d \theta$

$$
\begin{aligned}
& =(1 / 2 \pi)(1 / 2) \int_{0}^{2 \pi} 1+\cos \left(2 \pi 2 \mathrm{f}_{0} \mathrm{t}+2 \theta\right) \mathrm{d} \theta \\
& =1 / 2
\end{aligned}
$$

- $\mathrm{T}_{0}=1 / \mathrm{f}_{0}$
- $\langle\mathrm{x}(\mathrm{t})\rangle=\left(1 / \mathrm{T}_{0}\right) \int_{0}^{\mathrm{T0}} \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}+\theta\right) \mathrm{dt}=0$
* 〈x $\left.{ }^{2}(\mathrm{t})\right\rangle=\left(1 / \mathrm{T}_{0}\right) \int_{0}{ }^{\mathrm{T0}} \cos ^{2}\left(2 \pi \mathrm{f}_{0} \mathrm{t}+\theta\right) \mathrm{dt}$

$$
=\left(1 / 2 \mathrm{~T}_{0}\right) \int_{0}^{\mathrm{T} 0} 1+\cos \left(2 \pi 2 \mathrm{f}_{0} \mathrm{t}+2 \theta\right) \mathrm{dt}=1 / 2
$$

HW\#0

- Complete the following problems and submit by the next lecture.
Will be checked, but not graded.

Mutually Exclusive vs. Independence

*The events A and B are mutually exclusive. Can they be independent?

Probability/Random Variable/Distribution

A coin with $\operatorname{Pr}\{$ tail $\}=p$ is tossed n times.

- (a). Find the probability of the event that shows k heads in n trials.
- (b). What is the conditional probability that the first toss is head given that there are 2 heads in n tosses?
- (c). Let X be the random variable denoting the number of heads. Specify the domain and the range of this random variable.
- (d). Sketch the cumulative distribution function of X for $n=6$. Assume $\mathrm{p}=0.1$.

Probability

* Consider a box shown above. It has 10 pockets. Two balls are thrown into the box in sequence. A ball can be placed in any pocket with equal probability. No pocket can hold two balls. No balls can be placed outside the box.
- (a) What is the probability that both balls are placed into the same column?
- (b) What is the probability that both balls are placed into the same row?
- (c) What is the probability that the two balls are separated into both different row and different column?
- (d) Is there any other case? Justify your answer.

Joint distribution/conditional probability

Two i.i.d. (indep. identically distr.) binary random variables, X_{1} and $X_{2} \in\{1,-1\}$ with p and (1-p). What's the conditional probability $\operatorname{Pr}\left(\mathrm{X}_{1}=1 \mid \mathrm{X}_{2}=1\right)$?

* Now consider a series of binary random variables, $\mathrm{X}_{1}, \mathrm{X}_{2}$, $\mathrm{X}_{3}, \ldots \ldots \quad \mathrm{X}_{1}$ produces equally likely outcomes, the second and the rest are i.i.d. random variables producing the outcome 1 with probability p and outcome -1 with probability ($1-p$) where p is a number between zero and 1 . The number p is determined at the first experiment. p is $1 / 2$ if $X_{1}=1$ or $1 / 4$ if $X_{1}=-1$.
- What is $\operatorname{Pr}\left\{\mathrm{X}_{4}=1\right\}$?
- What about $\operatorname{Pr}\left\{X_{1}+X_{2}=2\right\}$?

Joint distribution/conditional probability

* In this problem, $\theta, \mathrm{U}, \mathrm{V}, \mathrm{e}_{1}$ and e_{2} are all binary $\{0,1\}$ random variables. Let's use notation $P_{\theta}=\operatorname{Pr}(\theta=1)$, and thus $\operatorname{Pr}(\theta=0)=1-P_{\theta}$. The same goes for the other random variables. For example, $\mathrm{P}_{\mathrm{e} 1}=\operatorname{Pr}\left(\mathrm{e}_{1}\right.$ $=1)$, and $\mathrm{P}_{\mathrm{e} 2}=\operatorname{Pr}\left(\mathrm{e}_{1}=1\right)$.
* Suppose U and V are binary random variable, i.e.

$$
\begin{aligned}
& \mathrm{U}=\theta+\mathrm{e}_{1} \text { modulo } 2 \\
& \mathrm{~V}=\theta+\mathrm{e}_{2} \text { modulo } 2
\end{aligned}
$$

where $P_{\theta}=p, P_{e 1}=p_{1}$ and $P_{e 2}=p_{2}$, and θ, e_{1} and e_{2} are mutually independent.

1. For $\mathrm{P}_{\theta}=0.6, \mathrm{P}_{\mathrm{e} 1}=0.1$ and $\mathrm{P}_{\mathrm{e} 2}=0.2$, find the joint distribution $\operatorname{Pr}(\mathrm{U}=$ $\mathrm{x}, \mathrm{V}=\mathrm{y}$).
2. Repeat 1 with $\mathrm{P}_{\theta}=0.9, \mathrm{P}_{\mathrm{e} 1}=0.01$ and $\mathrm{P}_{\mathrm{e} 2}=0.02$.

Urn Problem

* A box contains m white balls and n black balls. Balls are drawn at random one at a time without replacement. Find the probability of encountering a white ball by the k-th draw.

Total Probability/Bayes’ Theorem

* Suppose there is a test for a prostate cancer which is known to be 95% accurate. A person took the test and the result came out positive. Suppose that the person comes from a population of a million, where 20,000 people suffer from that disease. What can we conclude about the probability that the person under test has that particular cancer.

