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Primer on Probability/Random Variables  
 

The 0th Module 
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Real World Experiments and Mathematical Abstraction 

 Experiments 

– Measurement of voltage across a resistance  

– Roll a die 

 Three entities in the real world experiments 

– The set of all possible outcomes 

– Grouping of the outcomes into classes, called results 

– The relative frequencies of occurrences of the results  

 The corresponding mathematical abstractions  

– The sample space 

– The set of events 

– The probability measure assigned on each of these events 
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Fundamental Definitions in Set Theory 

 A set is a collection of objects (elements). 

– A = {v: 0 ·  v ·  5 volts} 

– B1 = {1, 2, 3, 4}, B2 = {head, tail} 

 A subset C of A is another set whose elements are also elements of A. 

– C = {1, 2} ½  B1 

– We say C belongs to B1 

 Set operations: Union and Intersection 

– B1  B2 = {1,2,3,4, head, tail} 

– B1  C = {1, 2} (Sometimes, a shorthand notation, B1C, is used) 

 The empty set or null set {?} (or simply ?) is the set having no 

elements. 
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Fundamental Definitions in Set Theory 

 Two sets A and B are mutually exclusive or disjoint if they have no 

common elements. 

– A  B = AB = ? 

 A partition U of a set S is a collection of mutually exclusive subsets Ai 

of S whose union equals S. 

– S = A1  A2  A3 and Ai Aj = ? for any i, j i 

 In the figure below, U=[A1, A2, A3], and the subset  

 B = (A1  B)  (A2  B)  (A3  B) 

B 

A1 A2 A3 

S 
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Sample Spaces and Events 

 A sample space , which is called the certain event of a 

particular experiment, is the collection of all experimental 

outcomes (objects). 

– An object in  is called a sample point; is usually denoted by . 

 Subsets of a sample space is called events. 

– Grouping of the outcomes into the subsets 

– A set of sample points 

– A = {: some condition(s) on  is provided here}, the event A is 

the set of all  satisfying the condition(s) on . 

– An event consisting of a single element is called an elementary 

event. 
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Complement of an Event 

We define a complement of an event A as the set of all 

outcomes of S which are not included in A.  

We denote Ac = S\A.  

19 

A 

S 

Ac 
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Examples of Sample Spaces and Events (Results) 

 Die experiment:  = {1, 2, 3, 4, 5, 6} 

– A = {: odd} = {1, 3, 5} 

– B = {: even} = {2, 4, 6}  

 The closed interval of the real line:  

  = [0, 1] = {: 0·   ·  1} 

– A = {: 0.2 ·   ·  0.7} 

 All time functions f(t), -1 < t < 1 

– An event may be a set of all time functions whose energy is less 

than 1. 

 A finite sample space of N elements  There are 2N 

possible subsets. 
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Trial 

 A single performance of an experiment is called a trial. 

 In each trial we observe a single outcome ai 2 S . 

We say an event A occurs during this trial when A 

contains ai . 

 From a single trial, multiple events can occur. 

 Roll a die:  = {1, 2, 3, 4, 5, 6} . 

– Now, suppose after a trial, an outcome ―1‖ is observed. 

– Then, the events {1}, {1, 3, 5}, {1, 3}, and all the rest 25 - 3 events 

that contain ―1‖ as an element, it can be said, have occurred. 
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On the Occurrence of Events In a Trial 

We say an event A={a1, a2, a3} has occurred in a trial, if 

any one element of the set, namely, a1, a2, or a3, was the 

outcome of the trial. 

 

 The event  occurs in every trial. 
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Probability Measure 

 An assignment of a real number from the interval [0, 1] to the events 
defined on . 

 

– Ex) Fair die: All faces occur equally likely with probability 1/6. 

 

– Ex-2) Unfair die: face-1 event occurs with probability 1/3, the rest 5 faces 
with 2/15. 

 

– Ex-3)You can create and use your own rule which suits your needs the 
most (your betting rule in Gambling for example). 

 

 Probability measure P(A) is assigned to a field E of subsets (events) of 
the sample space . 

 P: E ! [0, 1] 
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Relative Frequency vs. Probability Measure 

 The assignment of probability measure to an event A, P(A), 
may be done in terms of relative frequency of occurrences 
in N independent trials 

  P(A) = limn! 1 nA/N 

 where nA is the number of occurrence of event A in N trials 

 

 Ex-1) a coin is tossed 100 times.  

– The event of head occurred 51 times.  

– Then, P(A) = 51/100 

 Ex-2) An experienced gambler watches the cards played, 
and updates his table of probability measures assigned only 
on the events of his interests and makes bets accordingly 
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Axiomatic Definition of Probability 

 The assignment of probability to events should follow the three 

fundamental rules (Kolmogoroff’s axioms) 

 1. 0 ·  P(A) ·  1  (The frequency of an event) 

 2. P() = 1  (In every trial there is an outcome) 

 3. If A  B = ?, then P(A  B) = P(A) + P(B) 

– Die: frequency(1 or 2) = frequency(1) + frequency(2),  

      {1}{2} =  ? 

 In the theory of probability, all conclusions are direct or indirect 

consequences of these three axioms. 

 These conclusions allow us to predict -- by calculation – the 

probability of occurrence of observable(or wanting-to-observe) events 

in real world experiments. 

 
 Reference: Web-site: http://www.kolmogorov.com/Kolmogorov.html 
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Examples 

 A coin toss experiment: S = {h, t} 

 Events are the four subsets of S, {?}, {t}, {h}, {h, t}. 

 It forms a sigma field.   

 A sigma field is a collection of sets which is closed under 

the union and the complement operations.  

 A complement of {t} is {h} in this example.   

We will use superscript c to denote complement, i.e., {t}c 
= {h} and Sc = {?}. 

We may assign P{t} = p and P{h} = q, i.e., p + q=1. 
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Coin Toss Three Times Experiment (1) 

27 

 S ={hhh, hht, hth, htt, ttt, tth, tht, thh}. 

 Assume a fair coin; then head/tail occurs with equal prob. 

 First, consider the naive case such that all 28 possible 

events are of interest, and then the probability assignment 

is trivial. 

 Ex) The probability of an event {hht, hhh} is   

– P{hht, hhh} = P{hht} + P{hhh} = 2/8 . 
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Coin Toss Three Times Experiment (2) 

 Now, consider a non trivial case: 

 Suppose we are interested in the occurrence of an event A 

= {hth, tht} only. 

 Then, we assign probability to only those events in the 
sigma field formed by A, i.e., {A, Ac, {?}, S}. 

 Thus, assign P(A) = 1/4  (The coin is a fair coin).  

We note that the probability measure satisfies all the 

conditions of the Kolmogoroff’s axioms.  

 

28 © 200x Heung-No Lee 



29 

Conditional Probability 

 Given any two events A and B, the conditional probability 

P(A|B) of an event A is defined as 

  P(A | B) := P(AB)/P(B) 

 whenever P(B)  0. 

 

 P(A | A) = 1 

 

 In the Coin-Toss Three Times experiment, let A={hhh} 

and B = {a head in the first toss} = {hhh, hht, hth, htt} 

 P(A | B) = (1/8)/(1/2) = ¼ .  
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Probability of Joint Event  

 Notation: P(A, B) = P(AB) =  P(A  B) 

We refer P(A, B) as the probability of a ―joint event A and 

B.‖ 

 
 

A B 
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Probability of Joint Event 

 P(A, B) = P(A | B) P(B)  

        = P(B | A) P(A) 

 

 A box contains three white balls, w1, w2, and w3 and two 

red balls r1 and r2. We remove two balls in succession. 

What is the probability that the first removed is white and 

the second is red? 
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Independence 

 If P(A|B) = P(A) or P(B|A) = P(B), the two events A and B 
are, said to be, (statistically) independent with each other. 

 Coin Toss Twice:  

–   = {hh, ht, th, tt} 

– Suppose we use numbers a and b in [0, 1] with a + b =1 in the 
following manner: 

– P{hh}=a2, P{ht}=P{th}=ab, P{tt}=b2 

– Note that the assignment satisfies the axioms: a2+2ab+b2 = (a+b)2 
= 1 

– Now, define two events A={head at the first toss} and B={head at 
the second toss} 

– Note P(A)=aa + ab = a and P(B)= ba + aa = a 

– P(A, B) = P{hh} = a2 = P(A) P(B)  
– Then, we note A and B are mutually independent.  
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Theorem of Total Probability (Very Important) 

 If U=[A1, A2, …, An] is a partition of  and B is an arbitrary event, 

then 

 P(B) = P(B, A1) + P(B, A2) + P(B, A3) + P(B, A4) 

   = P(B|A1)P(A1) + P(B|A2)P(A2) +P(B|A3)P(A3) + P(B|A4)P(A4)  

A1 
A2 … 

An B 
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Bayes’ Theorem [Very Important] 

 From the results of the conditional probability and the total 

probability theorem, we could easily get the following, 
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Examples of Bayes’ Theorem 

 Box-1 contains a white balls and b black balls. Box-2 contains c white 

balls and d black balls. One ball is drawn from Box-1 and inserted into 

Box-2. Then, a ball is drawn from Box-2.  

 What is the probability that a ball drawn from Box-2 is white? 

 

 

 

 What is the probability that the first draw from Box-1 was black, given 

that a white ball was obtained at the second draw from Box-2 
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Permutation/Combination 

 Consider a set of N distinct objects 

 Permutation: The total number of distinctive arrangements 

(each in an ordered sequence) of N distinct objects is  

  N!  

 The total number of distinctive arrangements when taking 

K objects out of N distinct objects is  

  N(N-1)(N-2) … (N-K+1) = N!/(N-K)! 

 Combination: The total number of ways to select K objects 

out of N distinct objects is 
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Bernoulli Trials 

 Observe the occurrence of an event A in each trial 

 The event A occurs with P(A) = p and P(Ac) = 1- p = q 

 Find the probability of a compound event that there are k occurrences 

of event A in N trials 

 None in N … (1-p)N 

 One in N … N p(1-p)N-1 

 Two in N … 

… 

 In general,    
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Random Variable and Processes 

 A signal is a function of time 

 ex)  y(t) = sin (2fct), this is a deterministic signal 

 A random signal: the value of the signal at a fixed time t is 

a random variable 

 ex)  y(t) = sin (2fct + ), 0 ·  t ·  T  

  where  is +180 degree with probability 1/2 or -180 

 degree with prob. 1/2 

 A random process y(t) is a collection of different random 

variables at each time t  

– Stochastic processes 
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Random Variable 

 A function X:  ! R  (Domain is , range is R) 

– Given any , the function specifies a finite real number X() 

1 

2 
3 

4 

5 

6 

 

X(1) X(2) X(6) X(3) 

A random variable is a 

function whose domain is , 

the range of this function is 

usually a real line (Real-valued 

random variable).  Also, it has 

a probability distribution Pr{X 

<= x} associated with it. 
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Motivation for RV 

 It may be easier to deal with numbers, instead of abstract 

objects. 
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Events Described by Random Variables 

We know now that we assign probability to the field of 

subsets of  . 

 Note that with the use of a random variable, the subsets of 

range space are associated with the subsets of . 

 Thus, events defined on the outcomes of experiments can 

be described by the subsets of the range space of the 

function. 
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Examples of Random Variables 

 Roll a die experiment 

– 6 outcomes,  = {f1, f2, f3, …, f6} 

– We may define a random variable X1 which has the following rule 

  X1(f1) = 10, X1(f2) = 20, X1(f3)=30, X1(f4)=40, X1(f5)=50, and

 X1(f6)=60 

– We may also define a random variable X2 which uses the 

following rule 

  X2(f1) = -1, X2(f2) = -2, X2(f3) = -3, X2(f4)=+3, X2(f5)=+2,…, and 

X2(f6) = +1 

– It’s up to the designer to choose a map for convenience 
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Examples of Random Variables (2) 

 According to the r.v.s X1 and X2, we can say the following: 

 A subset {: X1() = 10, 30, 50} is equivalent to the event 

{f1, f3, f5} = {: odd}. 

 Similarly, a subset {: X2() = -1, -2} is equivalent to the 

event {f1, f2}. 

 Thus, we can talk about assigning a probability measure on 

the events described by random variables, in exactly the 

same way we do with the events of .  
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Distribution Function 

 Suppose the probability measure defined on the die 

experiment was 

  P(fk) = 1/6 for all k=1, 2, .., 6 

 Then, correspondingly we could have the probability 

measure defined on the random variables X1 and X2 

 For X1, we have 

  P(X1 = 10) = 1/6, P(X1=20) = 1/6, … 

 For X2, we have 

  P(X1 = -1) = 1/6, P(X2=-2) = 1/6, P(X2=-3) = 1/6… 

 Probability assignment is easy with finite and countable 

sample space.  
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Distribution Function (2) 

We use a cumulative distribution function to deal with an 

infinite uncountable sample space.   

– For example, S = [0, 1].   

 The probability is assigned on the intervals of interest.   

– A collection of intervals, say events, is of interest. 

– A sigma field can be formed for the collection of intervals. 

– Distribution function FX(x) of a random variable X is defined as 

  FX(x) := P(: X()  ·  x) 

– It is called the cumulative distribution function (CDF) of X. 

 Examples) Find the distribution functions for random 

variable X1 and X2 that were defined in the roll-a-die 

experiment. 
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Distribution Function (3) 

 FX1(x) = P(X1 ·  x) 

 Note that the function is 

right continuous 

 

 

 FX2(x) = P(X2·  x)  
10 20 30 40 50 60 

x 

-3 -2 -1 1 2 3 x 0 

f3 f2 f1 f6 

f5 
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Properties of Distribution Function F(x) 

 Non-decreasing function of x: For x2 > x1, F(x2) ¸  F(x1)  

 Continuous from the right.  

  lim + 0 F(x+) = F(x),  

 F(-1) = P(X ·  -1) = 0 

 F(+1) = P(X ·  1) = 1 

 0 ·  F(x) ·  1 
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Probability Density Function f(x)  

 f(a) := dF(x)/dx |x=a  

 P{x < X ·  X+dx} = P{X ·  x+dx} – P{X ·  x} = f(x) dx 

 

 

 

 

 Example of pdf of X1:  

  f1(x) = (1/6) k = 1
6 (x – 10 k)  

10 20 30 40 50 60 

1/6 

x x+dx 

1 
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Ensemble Averages (Expected Value) 

 Ensemble Average E(X) 

 1st moment: m1=E{X} := s=1
1 x f(x) dx 

 Note that this operator is a linear operator 

 

 2nd moment: m2 = E{X2} = s=1
1 x2 f(x) dx 

 Var(X) = E{(X-E{X})2} = E{(X – m1)
2}  

  = E(X2) – E{X}m1 – m1 E{X} + E(m1
2) = m2 – m1

2 
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Ensemble Average of Product XY 

 X and Y are two random variables with PDF fx(x) and fy(y) 

 Then, fXY(x, y) is the joint density function 

 E{XY} = s s x y fxy(x, y) dx dy 

– This is called the Correlation of the two random variables X and 

Y 

– Note, what happens when X and Y are independent 

– When E{XY} = E{X}E{Y}, X and Y are said to be mutually 

uncorrelated 

– Note, if you have two indep. r.v.s, then they are uncorrelated, but 

not vice versa 

 E{(X-E(X))(Y-E(Y))} is called the Covariance  

– Note what happens when two are uncorrelated  
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Binomial Distribution 

 Binomial PDF: prob. of obtaining k ―1‖s in N Bernoulli 

trials  

 P(k) =  

 By letting x = k, where k = 0, 1, 2, …, N 

 f(x) = k=0
N P(k) (x – k) 

– Binomial expansion: (p + q)N = k=0
N P(k)  

     = k=0
N 
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Random Processes (Stochastic Processes) 

 A random process can be described as a collection of 

random variables parameterized by time index t. 

 Continuous random process {xt, t 2 [0, 1]} 

– For a fixed t, xt is a random variable. 

 Discrete-time random process {xk}, such that x1, x2, …, xk, 

… 

– Again, each xk is a random variable. 

 Ex) Flipping a coin repeatedly xk = 1 with prob. p  

                or -1 with prob. 1-p 

 Ex2) Zn := k=1
n Xk 
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Random Processes (Stochastic Processes) 

 Suppose we observe a path being taken by the random process Zn in 8 steps. 

 There are 28 possible paths. This collection is called ensemble. 

 In an observation, Zn takes a particular path. It is called a sample path taken by 
the random process in an experiment. 

 We may interpret it as an outcome of a random experiment: choosing one 
object out of 28 objects. 

 We use Zn() to denote a particular sample path. 

Each is called 

a sample path. 

 

Ensemble: 

Collection of 

every possible 

sample paths 

Zn(1) 

Zn(2) 

Zn(3) 
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Stationary Processes (Strict Sense) 

 A random process x(t) is said to be stationary to the order 

N, if for any t1, t2, …, tN, 

 fx(x(t1), x(t2), …, x(tN)) = fx(x(t1+t0), x(t2+t0), …, x(tN+t0))  

  where t0 is any arbitrary real constant. 

 That is, the joint distribution function is shift-invariant in 

time. 

 If this holds for any N, then we say the process is strictly 

stationary. 
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Ergodic Random Process (Important) 

 If time average ´ ensemble average, then ergodic. 

 A random process is said to be ergodic if the time average 
of any sample path is equal to the ensemble average 
(expectation). 
– E(x(t)) = limT! 1 (1/T) sT x(t) dt (ergodic in mean) 

– E(x2(t)) = limT! 1 (1/T) sT x2(t) dt (ergodic in 2nd moment) 

 An ergodic process must be a stationary process (but not 
vice versa). 

– If a process is non-stationary, then the ensemble average of the 
process changes over time. 

– Not all stationary processes are ergodic.  

• Select a coin from a box containing two coins with different weight in 
a box and throw them repeatedly. 
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Example of Ergodic Processes 

 Show that x(t) = cos(2 f0 t + ) is ergodic in mean and 2nd moment, 

where  is uniformly distributed over [0, 2]. 

 E(x(t)) = (1/2) s0
2 cos(2  f0 t + ) d  

      = (1/2) sin(2  f0 t + ) |0
2  

      = 0 

 E(x2(t)) = (1/2) s0
2 cos2(2  f0 t + ) d  

        = (1/2) (1/2) s0
2 1 + cos(2  2f0 t + 2) d         

       = 1/2 

 T0 = 1/f0 

 <x(t)> = (1/T0) s0
T0 cos(2 f0 t + ) dt = 0 

 <x2(t)> = (1/T0) s0
T0 cos2(2 f0 t + ) dt  

      = (1/2T0) s0
T0 1+cos(2 2f0 t + 2) dt = 1/2  
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HW#0 

 Complete the following problems and submit by the next 

lecture. 

Will be checked, but not graded. 
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Mutually Exclusive vs. Independence 

 The events A and B are mutually exclusive.  Can they be 

independent? 
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Probability/Random Variable/Distribution 

 A coin with Pr{tail} = p is tossed n times.  

– (a). Find the probability of the event that shows k heads in n trials. 

– (b). What is the conditional probability that the first toss is head 

given that there are 2 heads in n tosses? 

– (c). Let X be the random variable denoting the number of heads. 

Specify the domain and the range of this random variable. 

– (d). Sketch the cumulative distribution function of X for n = 6. 

Assume p = 0.1. 
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Probability 

 Consider a box shown above. It has 10 pockets. Two balls are thrown 

into the box in sequence. A ball can be placed in any pocket with equal 

probability. No pocket can hold two balls. No balls can be placed 

outside the box. 

– (a) What is the probability that both balls are placed into the same column? 

– (b) What is the probability that both balls are placed into the same row? 

– (c) What is the probability that the two balls are separated into both 

different row and different column?  

– (d) Is there any other case? Justify your answer.   
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Joint distribution/conditional probability 

 Two i.i.d. (indep. identically distr.) binary random 

variables, X1 and X2 2 {1,-1} with p and (1-p). What’s the 

conditional probability Pr(X1=1|X2=1)? 

 Now consider a series of binary random variables, X1, X2, 

X3, …..     X1 produces equally likely outcomes, the second 

and the rest are i.i.d. random variables producing the 

outcome 1 with probability p and outcome -1 with 

probability (1-p) where p is a number between zero and 1. 

The number p is determined at the first experiment. p is 1/2 

if X1= 1 or 1/4 if X1=-1.  

– What is Pr{X4 = 1}?  

– What about Pr{X1 + X2 = 2}? 
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Joint distribution/conditional probability 

 In this problem, , U, V, e1 and e2 are all binary {0, 1} random 

variables. Let’s use notation P = Pr(=1),  and thus Pr( = 0) = 1 – P. 

The same goes for the other random variables. For example, Pe1 = Pr(e1 

= 1), and Pe2 = Pr(e1 = 1).  

 Suppose U and V are binary random variable, i.e. 

  U =  + e1 modulo 2 

  V =  + e2 modulo 2 

 where P = p, Pe1 = p1 and Pe2 = p2, and , e1 and e2 are mutually 

independent. 

1. For P =0.6, Pe1 = 0.1 and Pe2 = 0.2, find the joint distribution Pr(U = 

x,V=y).   

2. Repeat 1 with P =0.9, Pe1 = 0.01 and Pe2 = 0.02.  
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Urn Problem 

 A box contains m white balls and n black balls.  Balls are 

drawn at random one at a time without replacement.  Find 

the probability of encountering a white ball by the k-th 

draw.  
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Total Probability/Bayes’ Theorem 

 Suppose there is a test for a prostate cancer which is 

known to be 95% accurate. A person took the test and the 

result came out positive.  Suppose that the person comes 

from a population of a million, where 20,000 people suffer 

from that disease.  What can we conclude about the 

probability that the person under test has that particular 

cancer.  
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