Primer on Probability/Random Variables

The 0th Module

© 200x Heung-No Lee

Real World Experiments and Mathematical Abstraction

Experiments

- Measurement of voltage across a resistance
- Roll a die
- Three entities in the real world experiments
 - The set of all possible *outcomes*
 - Grouping of the outcomes into classes, called results
 - The *relative frequencies* of occurrences of the *results*
- The corresponding mathematical abstractions
 - The sample space
 - *The set of events*
 - The probability measure assigned on each of these events

Fundamental Definitions in Set Theory

* A set is a collection of *objects* (*elements*).

 $- A = \{v: 0 \le v \le 5 \text{ volts}\}$

- $B_1 = \{1, 2, 3, 4\}, B_2 = \{\text{head, tail}\}$

A subset C of A is another set whose elements are also elements of A.

 $- C = \{1, 2\} \subset B_1$

- We say C belongs to B_1
- Set operations: Union and Intersection

- $B_1 \cup B_2 = \{1, 2, 3, 4, \text{head, tail}\}$

- $B_1 \cap C = \{1, 2\}$ (Sometimes, a shorthand notation, B_1C , is used)

The *empty set* or *null set* {Ø} (or simply Ø) is the set having no elements.

Fundamental Definitions in Set Theory

Two sets A and B are *mutually exclusive* or *disjoint* if they have no common elements.

 $- A \cap B = AB = \emptyset$

A partition U of a set S is a collection of mutually exclusive subsets A_i of S whose union equals S.

- $S = A_1 \bigcup A_2 \bigcup A_3$ and $A_i A_j = \emptyset$ for any $i, j \neq i$

★ In the figure below, U=[A₁, A₂, A₃], and the subset B = (A₁ ∩ B) ∪ (A₂ ∩ B) ∪ (A₃ ∩ B)

Sample Spaces and Events

* A sample space Ω , which is called *the certain event of a particular experiment*, is the collection of all *experimental outcomes* (objects).

- An object in Ω is called *a sample point*; is usually denoted by ω .
- Subsets of a sample space is called *events*.
 - Grouping of the *outcomes* into the subsets
 - A set of sample points
 - $A = \{\omega: \text{ some condition}(s) \text{ on } \omega \text{ is provided here}\}, \text{ the event } A \text{ is the set of all } \omega \text{ satisfying the condition}(s) \text{ on } \omega.$
 - An event consisting of a single element is called an *elementary event*.

Complement of an Event

We define a complement of an event A as the set of all outcomes of S which are not included in A.

 $\bullet We denote A^c = S \setminus A.$

Examples of Sample Spaces and Events (Results)

• Die experiment:
$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$- A = \{\omega: \text{ odd}\} = \{1, 3, 5\}$$

$$- B = \{\omega: even\} = \{2, 4, 6\}$$

The closed interval of the real line:

$$\Omega = [0, 1] = \{ \omega : 0 \le \omega \le 1 \}$$

$$- A = \{ \omega: 0.2 \le \omega \le 0.7 \}$$

• All time functions f(t), $-\infty < t < \infty$

- An event may be a set of all time functions whose energy is less than 1.
- ♦ A finite sample space of N elements → There are 2^N possible subsets.

Trial

- * A single performance of an experiment is called a *trial*.
- ♦ In each trial we observe a single outcome $a_i \in S$.
- We say an event A occurs during this trial when A contains a_i .
- From a single trial, multiple events can occur.
- ♦ Roll a die: $Ω = \{1, 2, 3, 4, 5, 6\}$.
 - Now, suppose after a trial, an outcome "1" is observed.
 - Then, the events $\{1\}$, $\{1, 3, 5\}$, $\{1, 3\}$, and all the rest 2^5 3 events that contain "1" as an element, it can be said, have occurred.

On the Occurrence of Events In a Trial

We say an event A={a₁, a₂, a₃} has occurred in a trial, if any one element of the set, namely, a₁, a₂, or a₃, was the outcome of the trial.

***** The event Ω occurs in every trial.

Probability Measure

* *An assignment* of a real number from the interval [0, 1] to the *events* defined on Ω .

- Ex) Fair die: All faces occur equally likely with probability 1/6.
- Ex-2) Unfair die: face-1 event occurs with probability 1/3, the rest 5 faces with 2/15.
- Ex-3)You can create and use your own rule which suits your needs the most (your betting rule in Gambling for example).
- ♦ Probability measure P(A) is assigned to a *field E* of subsets (events) of the sample space Ω.
 P: E → [0, 1]

Relative Frequency vs. Probability Measure

The assignment of probability measure to an event A, P(A), may be done in terms of relative frequency of occurrences in N independent trials

 $P(A) = \lim_{n \to \infty} n_A / N$

where n_A is the number of occurrence of event A in N trials

- Ex-1) a coin is tossed 100 times.
 - The event of head occurred 51 times.
 - Then, P(A) = 51/100
- Ex-2) An experienced gambler watches the cards played, and updates his table of probability measures assigned only on the events of his interests and makes bets accordingly

Axiomatic Definition of Probability

- The assignment of probability to events should follow the three fundamental rules (Kolmogoroff's axioms)
- ♦ 1. $0 \le P(A) \le 1$ (The frequency of an event)
- 2. $P(\Omega) = 1$ (In every trial there is an outcome)
- ♦ 3. If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$
 - Die: frequency(1 or 2) = frequency(1) + frequency(2), $\{1\} \cap \{2\} = \emptyset$
- In the theory of probability, all conclusions are direct or indirect consequences of these three axioms.
- These conclusions allow us to predict -- by calculation the probability of occurrence of observable(or wanting-to-observe) events in real world experiments.

Reference: Web-site: http://www.kolmogorov.com/Kolmogorov.html
 © 200x Heung-No Lee

Examples

- * A coin toss experiment: $S = \{h, t\}$
- * Events are the four subsets of S, $\{\emptyset\}$, $\{t\}$, $\{h\}$, $\{h, t\}$.
- It forms a sigma field.
- A sigma field is a collection of sets which is closed under the *union* and the *complement* operations.
- * A complement of {t} is {h} in this example.
- ♦ We will use superscript c to denote complement, i.e., $\{t\}^c = \{h\}$ and $S^c = \{\emptyset\}$.
- We may assign $P{t} = p$ and $P{h} = q$, i.e., p + q = 1.

Coin Toss Three Times Experiment (1)

- \bullet S ={hhh, hht, hth, htt, ttt, tth, tht, thh}.
- * Assume a fair coin; then head/tail occurs with equal prob.
- First, consider the naive case such that all 2⁸ possible events are of interest, and then the probability assignment is trivial.
- Ex) The probability of an event {hht, hhh} is
 - $P{hht, hhh} = P{hht} + P{hhh} = 2/8$.

Coin Toss Three Times Experiment (2)

- Now, consider a non trivial case:
- Suppose we are interested in the occurrence of an event A
 = {hth, tht} only.
- Then, we assign probability to only those events in the sigma field formed by A, i.e., {A, A^c, {Ø}, S}.
- Thus, assign P(A) = 1/4 (The coin is a fair coin).
- We note that the probability measure satisfies all the conditions of the Kolmogoroff's axioms.

Conditional Probability

Given any two events A and B, the conditional probability P(A|B) of an event A is defined as
 P(A | B) := P(AB)/P(B)
 whenever P(B) ≠ 0.

 $\mathbf{*} \mathbf{P}(\mathbf{A} \mid \mathbf{A}) = 1$

In the Coin-Toss Three Times experiment, let A={hhh} and B = {a head in the first toss} = {hhh, hht, htt, htt}
P(A | B) = (1/8)/(1/2) = ¼.

Probability of Joint Event

- * Notation: $P(A, B) = P(AB) = P(A \cap B)$
- We refer P(A, B) as the probability of a "joint event A and B."

Probability of Joint Event

$$P(A, B) = P(A | B) P(B)$$
$$= P(B | A) P(A)$$

A box contains three white balls, w₁, w₂, and w₃ and two red balls r₁ and r₂. We remove two balls in succession.
 What is the probability that the first removed is white and the second is red?

Independence

- If P(A|B) = P(A) or P(B|A) = P(B), the two events A and B are, said to be, (statistically) independent with each other.
- Coin Toss Twice:
 - $\quad \Omega = \{hh, ht, th, tt\}$
 - Suppose we use numbers *a* and *b* in [0, 1] with a + b = 1 in the following manner:
 - $P{hh}=a^2$, $P{ht}=P{th}=ab$, $P{tt}=b^2$
 - Note that the assignment satisfies the axioms: $a^2+2ab+b^2 = (a+b)^2 = 1$
 - Now, define two events A={head at the first toss} and B={head at the second toss}
 - Note P(A)=aa + ab = a and P(B)=ba + aa = a
 - $P(A, B) = P{hh} = a^2 = P(A) P(B)$
 - Then, we note A and B are mutually independent.

© 200x Heung-No Lee

Theorem of Total Probability (Very Important)

If U=[A₁, A₂, ..., A_n] is a partition of Ω and B is an arbitrary event, then
 P(B) = P(B, A₁) + P(B, A₂) + P(B, A₃) + P(B, A₄)
 = P(B|A₁)P(A₁) + P(B|A₂)P(A₂) + P(B|A₃)P(A₃) + P(B|A₄)P(A₄)

Bayes' Theorem [Very Important]

From the results of the conditional probability and the total probability theorem, we could easily get the following,

$$P(A_i|B) = \frac{P(A_i, B)}{P(B)}$$
$$= \frac{P(B|A_i) P(A_i)}{\sum_{k=1}^n P(B|A_k) P(A_k)}$$

Examples of Bayes' Theorem

- Sox-1 contains a white balls and b black balls. Box-2 contains c white balls and d black balls. One ball is drawn from Box-1 and inserted into Box-2. Then, a ball is drawn from Box-2.
- What is the probability that a ball drawn from Box-2 is white?

What is the probability that the first draw from Box-1 was black, given that a white ball was obtained at the second draw from Box-2

Permutation/Combination

- Consider a set of N distinct objects
- *Permutation*: The total number of distinctive arrangements (each in an ordered sequence) of N distinct objects is N!
- The total number of distinctive arrangements when taking *K* objects out of *N* distinct objects is

 $N(N-1)(N-2) \dots (N-K+1) = N!/(N-K)!$

Combination: The total number of ways to select K objects out of N distinct objects is

$$\binom{N}{K} = \frac{N!}{(N-K)!K!}$$

Bernoulli Trials

- Observe the occurrence of an event A in each trial
- The event A occurs with P(A) = p and $P(A^c) = 1 p = q$
- Find the probability of a compound event that there are k occurrences of event A in N trials
- None in $N \dots (1-p)^N$
- One in $N ... N p(1-p)^{N-1}$

• Two in
$$N \dots \binom{N}{2} p^2 (1-p)^{N-2}$$

In general,

. . .

$$P\{A \text{ occurs } k \text{ times in } N \text{ trials}\} = {N \choose k} p^k (1-p)^{N-k}$$

Random Variable and Processes

✤ A signal is a function of time

ex) $y(t) = \sin (2\pi f_c t)$, this is a deterministic signal

A random signal: the value of the signal at a fixed time *t* is a random variable

ex) $y(t) = \sin (2\pi f_c t + \theta), 0 \le t \le T$

where θ is +180 degree with probability 1/2 or -180 degree with prob. 1/2

- A random process y(t) is a collection of different random variables at each time t
 - Stochastic processes

Random Variable

A function X: Ω → R (Domain is Ω, range is R)
Given any ω, the function specifies a finite real number X(ω)

A random variable is a function whose domain is Ω , the range of this function is usually a real line (Real-valued random variable). Also, it has a probability distribution Pr{X <= x} associated with it.

Motivation for RV

It may be easier to deal with numbers, instead of abstract objects.

Events Described by Random Variables

- * We know now that we assign probability to the field of subsets of Ω .
- * Note that with the use of a random variable, the subsets of *range* space are associated with the subsets of Ω.
- Thus, events defined on the outcomes of experiments can be described by the subsets of the range space of the function.

Examples of Random Variables

Roll a die experiment

- 6 outcomes, $\Omega = \{f_1, f_2, f_3, ..., f_6\}$
- We may define a random variable X_1 which has the following rule $X_1(f_1) = 10, X_1(f_2) = 20, X_1(f_3)=30, X_1(f_4)=40, X_1(f_5)=50$, and $X_1(f_6)=60$
- We may also define a random variable X_2 which uses the following rule

 $X_2(f_1) = -1, X_2(f_2) = -2, X_2(f_3) = -3, X_2(f_4) = +3, X_2(f_5) = +2, ..., and X_2(f_6) = +1$

- It's up to the designer to choose a map for convenience

Examples of Random Variables (2)

- * According to the r.v.s X_1 and X_2 , we can say the following:
- A subset { ω : X₁(ω) = 10, 30, 50} is equivalent to the event { f_1, f_3, f_5 } = { ω : odd}.
- Similarly, a subset { ω : X₂(ω) = -1, -2} is equivalent to the event {f₁, f₂}.
- * Thus, we can talk about assigning a probability measure on the events described by random variables, in exactly the same way we do with the events of Ω.

Distribution Function

Suppose the probability measure defined on the die experiment was

 $P(f_k) = 1/6$ for all k=1, 2, ..., 6

Then, correspondingly we could have the probability measure defined on the random variables X₁ and X₂

• For
$$X_1$$
, we have

 $P(X_1 = 10) = 1/6, P(X_1 = 20) = 1/6, \dots$

• For X_2 , we have

 $P(X_1 = -1) = 1/6, P(X_2 = -2) = 1/6, P(X_2 = -3) = 1/6...$

Probability assignment is easy with finite and countable sample space.

© 200x Heung-No Lee

Distribution Function (2)

We use a cumulative distribution function to deal with an infinite uncountable sample space.

- For example, S = [0, 1].

* The probability is assigned on the intervals of interest.

- A collection of intervals, say events, is of interest.
- A sigma field can be formed for the collection of intervals.
- Distribution function $F_X(x)$ of a random variable X is defined as $F_X(x) := P(\omega: X(\omega) \le x)$
- It is called the cumulative distribution function (CDF) of X.
- Examples) Find the distribution functions for random variable X₁ and X₂ that were defined in the roll-a-die experiment.

© 200x Heung-No Lee

Distribution Function (3)

Properties of Distribution Function F(x)

Non-decreasing function of x: For x₂ > x₁, F(x₂) ≥ F(x₁)
Continuous from the right. $\lim_{\epsilon \downarrow 0} F(x+\epsilon) = F(x),$ F(-∞) = P(X ≤ -∞) = 0
F(+∞) = P(X ≤ ∞) = 1
0 ≤ F(x) ≤ 1

Probability Density Function f(x)

© 200x Heung-No Lee

Ensemble Averages (Expected Value)

- \bullet Ensemble Average E(X)
- * 1st moment: $m_1 = E\{X\} := \int_{-\infty}^{\infty} x f(x) dx$

* Note that this operator is a linear operator

Ensemble Average of Product XY

- * X and Y are two random variables with PDF $f_x(x)$ and $f_y(y)$
- * Then, $f_{XY}(x, y)$ is the joint density function
- $\mathbf{\stackrel{\bullet}{\bullet}} E\{XY\} = \iint x \ y \ f_{xy}(x, y) \ dx \ dy$
 - This is called the Correlation of the two random variables X and Y
 - Note, what happens when X and Y are independent
 - When E{XY} = E{X}E{Y}, X and Y are said to be mutually uncorrelated
 - Note, if you have two indep. r.v.s, then they are uncorrelated, but not vice versa
- $\mathbf{E}{(X-E(X))(Y-E(Y))}$ is called the **Covariance**
 - Note what happens when two are uncorrelated

Binomial Distribution

Binomial PDF: prob. of obtaining k "1"s in N Bernoulli trials

$$P(\mathbf{k}) = \binom{N}{k} p^{k} (1-p)^{N-k}$$

By letting $\mathbf{x} = \mathbf{k}$, where $\mathbf{k} = 0, 1, 2, ..., N$
$$f(\mathbf{x}) = \sum_{\mathbf{k}=0}^{N} P(\mathbf{k}) \, \delta(\mathbf{x} - \mathbf{k})$$

- Binomial expansion: $(p+q)^{N} = \sum_{k=0}^{N} P(k)$
 $= \sum_{\mathbf{k}=0}^{N} \binom{N}{k} p^{k} (1-p)^{N-k}$

Random Processes (Stochastic Processes)

A random process can be described as a *collection of random variables* parameterized by time index *t*.

♦ Continuous random process $\{x_t, t \in [0, \infty]\}$

- For a fixed t, x_t is a random variable.

* Discrete-time random process $\{x_k\}$, such that $x_1, x_2, ..., x_k$, ...

- Again, each x_k is a random variable.

***** Ex) Flipping a coin repeatedly $x_k = 1$ with prob. p

or -1 with prob. 1-p

$$\bigstar \text{Ex2) } \mathbf{Z}_n := \sum_{k=1}^n \mathbf{X}_k$$

Random Processes (Stochastic Processes)

Each is called a *sample path*.

Ensemble: Collection of every possible sample paths

- Suppose we observe a path being taken by the random process Z_n in 8 steps.
- * There are 2^8 possible paths. This collection is called *ensemble*.
- * In an observation, Z_n takes a particular path. It is called a *sample path* taken by the random process in an experiment.
- We may interpret it as an outcome of a random experiment: choosing one object out of 2⁸ objects.
- We use $Z_n(\omega)$ to denote a particular sample path.

Stationary Processes (Strict Sense)

- ☆ A random process x(t) is said to be stationary to the order N, if for any t₁, t₂, ..., t_N, f_x(x(t₁), x(t₂), ..., x(t_N)) = f_x(x(t₁+t₀), x(t₂+t₀), ..., x(t_N+t₀)) where t₀ is any arbitrary real constant.
- That is, the joint distribution function is shift-invariant in time.
- If this holds for any N, then we say the process is *strictly stationary*.

Ergodic Random Process (Important)

- If time average ' ensemble average, then ergodic.
- A random process is said to be *ergodic* if the time average of any sample path is equal to the ensemble average (expectation).
 - $E(x(t)) = \lim_{T \to \infty} (1/T) \int_T x(t) dt$ (ergodic in mean)
 - $E(x^2(t)) = \lim_{T \to \infty} (1/T) \int_T x^2(t) dt$ (ergodic in 2nd moment)
- An ergodic process must be a stationary process (but not vice versa).
 - If a process is non-stationary, then the ensemble average of the process changes over time.
 - Not all stationary processes are ergodic.
 - Select a coin from a box containing two coins with different weight in a box and throw them repeatedly.

Example of Ergodic Processes

© 200x Heung-No Lee

HW#0

Complete the following problems and submit by the next lecture.

✤ Will be checked, but not graded.

Mutually Exclusive vs. Independence

The events A and B are mutually exclusive. Can they be independent?

Probability/Random Variable/Distribution

- A coin with $Pr{tail} = p$ is tossed *n* times.
 - (a). Find the probability of the event that shows k heads in n trials.
 - (b). What is the conditional probability that the first toss is head given that there are 2 heads in *n* tosses?
 - (c). Let X be the random variable denoting the number of heads.
 Specify the domain and the range of this random variable.
 - (d). Sketch the cumulative distribution function of X for n = 6. Assume p = 0.1.

Probability

- Consider a box shown above. It has 10 pockets. Two balls are thrown into the box in sequence. A ball can be placed in any pocket with equal probability. No pocket can hold two balls. No balls can be placed outside the box.
 - (a) What is the probability that both balls are placed into the same column?
 - (b) What is the probability that both balls are placed into the same row?
 - (c) What is the probability that the two balls are separated into both different row and different column?
 - (d) Is there any other case? Justify your answer.

Joint distribution/conditional probability

- ✤ Two i.i.d. (indep. identically distr.) binary random variables, X₁ and X₂ ∈ {1,-1} with p and (1-p). What's the conditional probability $Pr(X_1=1|X_2=1)$?
- Now consider a series of binary random variables, X_1 , X_2 , X_3 , X_1 produces equally likely outcomes, the second and the rest are i.i.d. random variables producing the outcome 1 with probability *p* and outcome -1 with probability (1-*p*) where *p* is a number between zero and 1. The number *p* is determined at the first experiment. p is 1/2 if $X_1 = 1$ or 1/4 if $X_1 = -1$.
 - What is $Pr\{X_4 = 1\}$?
 - What about $Pr\{X_1 + X_2 = 2\}$?

Joint distribution/conditional probability

- ✤ In this problem, θ, U, V, e₁ and e₂ are all binary {0, 1} random variables. Let's use notation P_θ = Pr(θ=1), and thus Pr(θ = 0) = 1 − P_θ. The same goes for the other random variables. For example, P_{e1} = Pr(e₁ = 1), and P_{e2} = Pr(e₁ = 1).
- Suppose U and V are binary random variable, i.e.

$$\begin{split} U &= \theta + e_1 \text{ modulo } 2\\ V &= \theta + e_2 \text{ modulo } 2\\ \end{split}$$
 where $P_\theta &= p, \ P_{e1} = p_1 \text{ and } P_{e2} = p_2, \text{ and } \theta, \ e_1 \text{ and } e_2 \text{ are mutually independent.} \end{split}$

- 1. For $P_{\theta} = 0.6$, $P_{e1} = 0.1$ and $P_{e2} = 0.2$, find the joint distribution Pr(U = x, V=y).
- 2. Repeat 1 with $P_{\theta} = 0.9$, $P_{e1} = 0.01$ and $P_{e2} = 0.02$.

Urn Problem

A box contains *m* white balls and *n* black balls. Balls are drawn at random one at a time without replacement. Find the probability of encountering a white ball by the *k*-th draw.

Total Probability/Bayes' Theorem

Suppose there is a test for a prostate cancer which is known to be 95% accurate. A person took the test and the result came out positive. Suppose that the person comes from a population of a million, where 20,000 people suffer from that disease. What can we conclude about the probability that the person under test has that particular cancer.

© 200x Heung-No Lee