
144

Information Theory
3rd Module

© 200x Heung-No Lee

145

Agenda

 Entropy Rates of a Stochastic Process (Chapter 4)

 Compression (Chapter 5)

© 200x Heung-No Lee

147

A sequence in the Typical Set A
(n)

 For any sequence (x1, …, xn) 2 A
(n) :={(x1, …, xn):

| –(1/n) log2[p(x1, …, xn)] – H(X) | · }, the prob. of
the sequence must have the following property

 | –(1/n) log2[p(x1, …, xn)] – H(X) | ·

 H(X) - · – (1/n) log2[p(x1, …, xn)]| · H(X) +

 2-n(H(X)+) · p(x1, …,xn) · 2-n(H(X) -)

 Since we can choose a very small , the prob. of a
sequence can be made very close to 2-nH(X), as n ! 1.

H(X) -(1/n) log(x1, …,xn) H(X) - H(X) +

© 200x Heung-No Lee

148

Basically, AEP tells us that

 For length n i.i.d. sequence of r.v.’s

 nH bits are good enough for describing the typical

sequence.

– Size of the typical message set is 2nH(X) .

– Each sequence in the message set occurs with 2-nH(X) .

 In an experiment, usually a sequence in the typical set

happens.

 Shannon’s Theorem 3 is AEP (see page 13).

 But what happens if the r.v.’s are dependent?

– Motivation to consider the entropy rate

© 200x Heung-No Lee

shannon1948.pdf

Shannon’s Paper

 Shannon uses Markov chain to describe English.

– Shannon’s 1948 paper

– Zero-order, first-order, second-order letters

– First-order word, second-order word

– Let’s take a look at his paper.

 ―Can we define a quantity which will measure, in some

sense, how much information is ―produced‖ by such a

process, or better, at what rate information is produced?‖

149 © 200x Heung-No Lee

shannon1948.pdf

Shannon1948 page 7

Heung-No Lee
연필

150

Some Definitions for MC

 Stationary stochastic process:

Pr(X1=x1, …, Xn= xn)=Pr(Xt+1=x1, …, Xt+n = xn) for all t.

 MC

– Pr(Xn+1 = a | Xn = b, …, X1=x1) = Pr(Xn+1 = a|Xn = b)

 MC is time-invariant (almost always we assume this) if

P(Xn+1+t = a|Xn+t = b)=P(Xn+1 = a | Xn = b)

– Transition matrix P stays the same.

– Stationary distribution: s = Ps

 If the initial distribution is s, then the MC is stationary.

© 200x Heung-No Lee

151

Per-Symbol Entropy (Entropy Rate)

 Consider a sequence of r.v.s X1, X2, …, Xn

 How does the entropy of a sequence of n r.v.’s grow with n?

 Let’s define the per symbol entropy

H(X) : = limn ! 1 (1/n) H(X1, …, Xn) when it exists

 Examples:

When X1, X2, … are iid, the rate attains the maximum H(X1).

H(X) = limn ! 1 (1/n) H(X1, …, Xn) = nH(X1)/n = H(X1).

When X1, X2, … are indep. but different distr.

Then, H(X1, …, Xn) = i H(Xi).

© 200x Heung-No Lee

152

Conditional Entropy Rate

 H’(X) := limn ! 1 H(Xn|Xn-1, …, X1)

 For a stationary process, H’(X) = H(X), both limits exist

and equal.

 H(Xn+1|Xn, …, X1) · H(Xn+1|Xn, …, X2}

--- why?

= H(Xn|Xn-1, …, X1)

--- why?

We know that

– It is a non increasing series of non-negative numbers.

– It is bounded from below.

 Then, the limit exists. (convergence from above)

 © 200x Heung-No Lee

153

Cesaro Mean (from Analysis):

 Cesaro Mean (from Analysis):

If an ! a and bn = (1/n) i=1
n ai, then bn ! a

|bn – a| · (1/n) i=1
n |an – a| · (1/n) i=1

N() |an – a| +

a

an

n

n=N() < 1 n=1

0 as n ! 1

since N() < 0

+

-

© 200x Heung-No Lee

Heung-No Lee
입력 텍스트

Heung-No Lee
입력 텍스트

Heung-No Lee
입력 텍스트

154

H(X) = H’(X) for stationary process

 From the chain rule:

(1/n) H(X1, …, Xn) = (1/n) i=1
N H(Xi|Xi-1, …, X1)

 By applying the Cesaro Mean, we know

H(X) = lim (1/n) H(X1, …, Xn) = lim H(Xn|Xn-1, …, X1) = H’(X)

 Implications: For a stationary process,

– There are about 2nH(X) typical sequences of length n.

– The prob. of typical set is close to 1.

– nH(X) bits are usually needed to represent the length n typical

sequences.

© 200x Heung-No Lee

155

Entropy Rate of a stationary MC

 H(X) = H’(X) = limn! 1 H(Xn|Xn-1, …, X1)

 = limn! 1 H(Xn|Xn-1)

 = H(X2|X1)

 Let vector s denote the stationary distribution and P the

transition matrix of a stationary MC.

s = Ps

H(X) = H(X2|X1) = i si (- j Pij log Pij)

© 200x Heung-No Lee

156

Entropy rate of two state MC

 s = [s0 s1]’; P = [1-p p; 1-q q];

 H(X) = H(X2|X1) = i si (- j Pij log Pij)

 Then, the entropy rate H(X) = (q*H(p) + p*H(q))/(p+q)

0 1

p

q

1-q 1- p

© 200x Heung-No Lee

Heung-No Lee
입력 텍스트
P = [1-p q;p 1-q]

Heung-No Lee
연필

Heung-No Lee
연필

Heung-No Lee
연필

157

Shannon’s Examples

 See section 7 of his paper.

 He was interested in finding the entropy rate of an

information source (English).

– How much redundancy is there in the source?

– Redundancy in English ¼ 0.5 .

– This is my example.

– I _a_t _o _o h_m_ _nd p_ly _it_ m_ k_d_.

– is it possible to make out the meaning?

– Deleted about 13 characters (13/40 = 33%)

© 200x Heung-No Lee

158

Answer to my example

– I want to go home and play with my kids. (40 char’s and spaces)

© 200x Heung-No Lee

 Chapter 5: Data Compression

Information generated from a source can be compressed

without distortion.

In this chapter, we are interested in distortion-less Source

Compression.

159 © 200x Heung-No Lee

160

Data Compression (Distortionless)

 Intuition tells us that we would want to use

– Short description for frequent outcomes

– Long description for less frequent outcomes

 A code constructed this way will have a small minimum

description length.

 A source code does this efficiently.

 Information sources include data sources such as type

writer, signals and telegraph.

 Shortest description length of a random source

– A variable/a process ~ Entropy/Entropy rate

 Expected description length ¸ Entropy

© 200x Heung-No Lee

161

A code is a map

 A source code C for a random variable X is a mapping

from X = {X(): x1, x2, …} to D*, the set of codewords

– A codeword C(x) is a finite length string of D-ary digits assigned

to x.

 Let l(x) be the length of C(x).

 The expected length L(C) = E{l(X)} = xi l(xi) p(xi).

 X D* X
C strings of

D-ary

digits

© 200x Heung-No Lee

162

A string of a D-ary digit

 D-ary alphabet is D = {0, 1, 2, …, D-1}.

 Ex) 012201 is a ternary alphabet string.

© 200x Heung-No Lee

163

Non-singular code

 A code is said to be non-singular if every element of X

maps into a different string in D*, i.e.,

xi xj) C(xi) C(xj)

– This statement does not allow many-to-one mapping.

– Mapping—by the definition—is either only one-to-one or many-

to-one (no one-to-many).

– Thus, a map (a code) can include either one-to-one or many-to-one

assignments.

– Hence, a non-singular code is a code that does not allow any

many-to-one assignment in a map.

– Non-singularity thus implies the one-to-one mapping which is

sufficient for unambiguous decoding.

© 200x Heung-No Lee

164

Some Definitions on Functions

 A function f: A |! B is a relation between A and B

satisfying the following conditions:

– For each a 2 A, there exists b 2 B such that (a, b) 2 f, AND

– If (a, b) and (a, c) are in f, then b = c.

 A function f: A |! B is said to be

– One-to-one if given b 2 B, there is at most one a 2 A.

– Onto if for each b 2 B, there is at least one a 2 A, i.e. b=f(a)

– One-to-one correspondence if a function is both one-to-one and

onto.

© 200x Heung-No Lee

165

Extension C* of C is a map

 An extension C* of a code C is a mapping from finite

length springs of X to finite length strings of D, defined by

 C(x1x2…xn) = C(x1)C(x2) … C(xn)

– It is concatenation of codewords.

– Ex) If C(x1) = 00 and C(x2) = 11, then C(x1x2) = 0011

– Why? Efficiency! It can get rid of a space symbol which would

have been needed for separating any pair of different length

codewords.

– Ex) C(x1)=11, C(x2)=10, C(x3) = 110, C(x4) = 01

• 110110 ~ 110, 110 or 11,01,10 (not decodable)

• Space symbols useful but wasteful!

• Not efficient!

© 200x Heung-No Lee

166

Uniquely Decodable Code

 A code C is called uniquely decodable if its k-th extension

is one-to-one mapping from Xk to D* for all k ¸ 0.

– (see P5.21, not P5.18)

– Uniquely decodable = non singular when extended

© 200x Heung-No Lee

167

Prefix Code

 A code C is called a prefix(-free) code or an instantaneous

code if no codeword is a prefix of any other codeword.

 Ex) C = {0, 10, 110, 1110}

– 0101100110 0, 10, 110, 0, 110 uniquely decodable

– Instantaneous, since the end of a codeword is immediately

recognizable

– Self-punctuating

All codes

Non-singular

Prefix Uniquely

decodable

© 200x Heung-No Lee

168

Examples

 X = {1, 2, 3, 4}

 Consider the following codes (the elements are ordered)

– Non-singular, uniquely decodable, instantaneous?

Map#1: {0, 0, 1, 1}

Map#2: {0, 010, 01, 10}

Map#3: {10, 00, 11, 110}

Map#4: {0, 10, 110, 111}

© 200x Heung-No Lee

169

Kraft Inequality

 For any instantaneous code over D-ary alphabet, the

collection of codeword lengths, l1, l2, …, lm, must satisfy

the inequality

i=1
m D-li · 1

where m is the number of codewords.

 (Converse) Given a col. of codeword lengths that satisfy

this inequality, there exists an instantaneous code with

these word lengths.

– Sufficiency test for existence of a prefix code.

 Fundamental constraints on the lengths of a prefix code.

© 200x Heung-No Lee

If A is a prefix code, then the lengths of A's codeword satisfies Kraft inequality.

If the lengths of a code A satsifies Kraft inequality, A is a prefix code. True?

If the lengths satsifies Kraft inequality, there exists a prefix code with these word lengths.

170

Kraft Inequality (Proof)

 Prefix code ~ each
codeword has no child.

 l1, …, lm

 lmax = max{l1, …, lm}

 Dlmax ¸ i D
lmax – li

) 1 ¸ i D
– li . (QED)

When do you have
equality?

 Ex) 23 ¸ 4 + 2 + 1 or
4+2+1+1

3

0

1

1

2

© 200x Heung-No Lee

The previous proof is not rigorous!

 The proof was based on induction (D=2, 3, …).

– Consider the leaves at the maximum depth of the tree.

– The total number of leaves is greater than or equal to the sum of

the leaves displaced by codewords.

• All descents of a codeword are displaced

• Any leave occupied by a codeword is displaced as well.

– Sum of codewords + descendents of codewords cannot be greater

than the total number of leaves at the maximum depth.

 Any way to improve the proof?

171 © 200x Heung-No Lee

172

Kraft Inequality for UD code

 For any uniquely decodable code over D-ary alphabet, the

collection of codeword lengths, l1, l2, …, lm, must satisfy

the inequality

 i=1
m D-li · 1

 where m is the number of codewords.

 (Converse) Given a col. of codeword lengths that satisfy

this inequality, there exists a uniquely decodable code with

these word lengths.

– Sufficiency test for existence of a uniquely decodable code.

 Fundamental constraints on the lengths of a UD code.

© 200x Heung-No Lee

173

Examples

 Is there an instantaneous prefix code with a col. of lengths

{1, 2, 2, 3}?

– NO, since 2-1+2-2 + 2-2 + 2-3 > 1

 How about {1, 2, 3, 3}?

© 200x Heung-No Lee

174

Example

 {1, 2, 4, 4, 4, 4}

2-1+2-2+4*2-4 = 1/2 +

1/4 + 4*1/16 = 1

0

1

0

10

1100

1101

1110

1111

© 200x Heung-No Lee

175

Optimal Codes

 Find a prefix code that has the minimum L=E(l).

 First, find the lengths {l1, …, lm} which satisfy the Kraft

inequality and have the minimum L.

 Second, construct the prefix code using the tree.

© 200x Heung-No Lee

There are many prefix codes satisfying the Kraft inequality.

E(l) means there is a distribution.

Given the distribution, p_i's, map them to lengths l_i's.
Find the lengths l_i's satisfying KI, map them to p_i's.

Looks like we are
doing the first.
Given pi's find
li's.

176

Let’s use the Calculus, just to have an idea

 Use the Lagrange multiplier method to solve

– Minimize L = pi li

– Subject to D-li · 1

– Let’s relax the condition and let li be any positive

number.

– Let li = l(C(xi)), i=1, …, |X| and pi = Pr{X = xi}.

– Note that |X| = m

© 200x Heung-No Lee

Find li's
given pi's.

177

Lagrange multiplier minimization

 Let J = pi li + (D-li)

 Differentiate wrt each li and obtain

 J/ li = pi - D-li log D,

 Setting it equal to 0, we have

D-li = pi/(log D)

 Substitute this in the constraint D-li =1 and obtain =

1/logD

 Thus, pi = D-li or l*
i = - logD pi

 Then, L = E{l(X)} = pi l
*

i = - pi logD pi = HD(X)

© 200x Heung-No Lee

178

L ¸ HD(X)

 Since codeword length must be integer, we must do the

ceiling operation , i.e.

li = d l*
i e

 Thus, L ¸ HD(X), equality iff l*
i integers or pi = D-li

 Ex) {pi} = {1/2, 1/4, 1/16, 1/16, 1/16, 1/16}

– {C(xi)} = {0, 10, 1100, 1101,1110, 1111}

– Lengths 1, 2, 4, 4, 4, 4

– E(L) = (1/2) * 1 + (1/4) * 2 + (1/4) * 4 = 2

– H = (1/2) *log2(2) + (1/4) * log2(4) + 4 * (1/16) * log2(16) = 2

– E(L) = H since pi = 2-li , li = 1, 2, 4, 4, 4, 4

© 200x Heung-No Lee

179

D-adic distribution

 A distribution where each of the probabilities is equal to D-n.

 The lower bound on expected length, L ¸ HD(X) is achieved

iff the distribution is D-adic (i.e. pi = D-li).

© 200x Heung-No Lee

180

Information Theoretic Proof: L ¸ HD(X)

 L – HD(X) = x p(x) l(x) - x p(x) logD(1/p(x))

= x p(x) {logD[p(x)] - logD[D-l(x)]}

--- let r(x) = D-l(x)/ro

--- with ro = D-l(x) · 1 (Kraft Inequality)

= x p(x) {logD[p(x)] – logD[r(x)ro]}

= x p(x) {logD[p(x)] – logD[r(x)] – logD[ro]}

= x p(x) logD[p(x)/r(x)] + logD[1/ro]

¸ 0 (why?)

© 200x Heung-No Lee

181

A possible procedure to find an optimal code

 Find the D-adic distribution that is closest (in the relative

entropy sense) to the distribution of X

– pi = D-li, i = 1, …, |X|

– So now you have {li}, the col. of codeword lengths.

 Construct a D-adic tree according to the col.

 Assign codewords on the leaves of the tree.

 The first step of searching for the closest D-adic

distribution is not trivial.

We may use a sub-optimal procedure.

© 200x Heung-No Lee

183

HD(X)+1/n > Ln ¸ HD(X)

 Previous pages say we have an overhead of maximum one
bit per symbol.

 Now, consider a series of r.v.s, X1, X2, …,

We want to get rid of the one overhead bit per symbol by
spreading out over many symbols.

 For a simple example, consider a group of iid X1, …, Xn ~
p(x). Then, the distribution is Pn(x) = i=1

n p(x).

 Then, we have

HD(X1, …, Xn) · E{l(X1, …, Xn)} < HD(X1, …, Xn) + 1

 Dividing by n, we have the expected length per symbol Ln

HD(X) · Ln < HD(X) + 1/n

© 200x Heung-No Lee

184

X1, X2, …, Xn is a stationary stochastic process

We know H(X1, …, Xn)/n ! H(X) (Cesaro Mean)

– nH(X) bits ~ sufficient for description of typical seq. of length n

 Then, the minimum expected codeword length per symbol

converges to the entropy rate of the process

L*
n ! H(X) as n ! 1

© 200x Heung-No Lee

Messages learned

 Thus, one can always construct a near optimal prefix code.

– Use the Shannon code, li = dlogD(1/pi)e

– Use a sequence, rather than a symbol (vector processing, rather

than a symbol processing)

185 © 200x Heung-No Lee

Two Important Coding Methods

 Huffman code

 Lempel-Ziv code

186 © 200x Heung-No Lee

187

Huffman Code (Huffman Tree)

 Huffman code is an optimal prefix code, with the shortest

expected length for a given distribution, which can be

constructed by the Huffman algorithm.

 It minimizes L = i p(xi) li .

 Compare it with H = i p(xi) log(1/p(xi)) .

pi

0.4

0.2

0.1

0.1

0.1

0.1

i

1

2

3

4

5

6
0.2

0.2

0.4

0.6

1.0

1

0

li

1

2

3

4

5

6

Prefix

code

11

10

011

010

001

000

© 200x Heung-No Lee

188

Huffman Code

 L = 0.4*2 + 0.2*2 + 4*0.1*3 = 2.4

 H = 2.319 (Lower bound)

• It should be noted here that the expected length turned out quite close

to the lower bound.

© 200x Heung-No Lee

189

Recall the 8-Horse Race Problem

The code we constructed is a Huffman code.

The distribution is 2-adic.

L = 2 = H

0

1

2

3

4

5

6

7

0

10

110

1110

111100

111101

111110

111111

Length

1

2

3

4

6

6

6

6

pi

1/2

1/4

1/8

1/16

1/64

1/64

1/64

1/64

© 200x Heung-No Lee

190

Huffman Encoding Algorithm

 Construct a tree in the following routine:

– First, have the probabilities (and the index) listed in the decreasing

order.

– Second, go over the list and locate two indices with lowest

probabilities. Group these low probable items, and add the

probabilities and label it for the group. Now note that the size of

the list is reduced by one.

– Repeat the second step exhaustively.

 Once a tree is completed, we can assign ―1‖ for up and ―0‖

for down from the top of the tree.

© 200x Heung-No Lee

191

Optimality of Huffman Codes

 Given a distribution, there could be many Huffman codes

which all lead to the same expected length.

 Let’s call the Huffman tree procedure Huffman coding.

 Huffman coding is optimal in the sense that if C* is a

Huffman code, and C’ is a code from other coding

procedure, then L(C*) · L(C’)

– See Ch5.8 for proof by induction

© 200x Heung-No Lee

192

Lempel-Ziv Coding (Ch13)

 Construction of Huffman code requires knowledge of priors.

 Huffman code does not make use of correlation between words and

phrases (based on the assumption that text is generated from a random

variable, rather than a random process)

 Lempel-Ziv code figures out the correlation structure of the source in

a sequence, and further compress

– LZ code is a universal code (does not need to know the distribution or

correlation of the source).

– LZ code is dictionary based.

 It’s adaptive and simple.

 Operation: parse the data stream into segments that are the shortest

subsequences not appeared previously.

© 200x Heung-No Lee

193

Lempel-Ziv Encoding

 Let’s take a simple example for illustration of the algorithm

 Consider a data stream

aaababbbaaabaaaaabbababb

 Starting from the left of the stream, parse the data stream into
segments not appeared previously

a, aa, b, ab, bb, aaa, ba, aaaa, bba, bab, b

Index– 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Encoding-- a, 1a, b, 1b, 3b, 2a, 3a, 6a, 5a, 7b, 3

 (Appeared, new) = (Index, new) = (4 bits, 7 bits)

 The total number of bits per segment needed in this example is 4 bits
for the index and 7 bit ascii code for the new part.

– 11 segments £ (4 + 7) bits = 121 bits

– 24 characters £ 7 bits = 168 bits

– (168-121)/168 is the compression ratio in this example

© 200x Heung-No Lee

Lempel-Ziv Coding (MATLAB)

We will compress the following text with an LZ algorithm

that I programmed in MATLAB, Lempel_ziv.m

 Jordan_text.txt

 H1N1_virus.txt

194 © 200x Heung-No Lee

../Mfiles/Jordan_text.txt
../Mfiles/H1N1_virus.txt

195

Huffman Codes vs. Shannon Codes

 X is binary, X=1 with prob. 2-10, X=0 with prob. 1 - 2-20

 Shannon Code: l(x=1) = dlog2(2
10)e = 10, l(x=0) = 1

 Huffman Code: l(x=1) = 1 and l(x=0) =1

 A codeword for infrequent symbol in Shannon Code is

much longer than in an optimal code.

 But, this does not mean that a codeword in an optimal code

is always shorter than those in the Shannon code.

 Ex) X ~ (1/3, 1/3, 1/4, 1/12)

– two kinds of Huffman trees with lengths (2, 2, 2, 2) or (1, 2, 3, 3)

– Shannon lengths (2, 2, 2, 4)

© 200x Heung-No Lee

196

HW

 P4.4, 4.7, 4.11, 4.24

 P5.3, 5.6, 5.7, 5.16, 5.18

© 200x Heung-No Lee

Heung-No Lee
입력 텍스트
HW #4

	빈 페이지
	빈 페이지

Jensen’s Inequality

Jensen’s inequality is one of the fundamental tools very frequently used in information theory.

A function ()f x is said to be convex over an interval (,)a b , if for every 1x , 2x (,)a b∈ and
0.0 1.0λ≤ ≤ ,

 ()1 2 1 2(1) () (1) ()f x x f x f xλ λ λ λ+ − ≤ + − . (1.1)

It is said strictly convex if the equality holds only if 1.0λ = or 0.0λ = .

A function f is concave if f− is convex.

Examples of convex functions include 2x and x .

Examples of concave functions include log(),x x over 0x ≥ .

